JP2000275872A - Characteristic evaluation apparatus for photoreceptor - Google Patents

Characteristic evaluation apparatus for photoreceptor

Info

Publication number
JP2000275872A
JP2000275872A JP11081232A JP8123299A JP2000275872A JP 2000275872 A JP2000275872 A JP 2000275872A JP 11081232 A JP11081232 A JP 11081232A JP 8123299 A JP8123299 A JP 8123299A JP 2000275872 A JP2000275872 A JP 2000275872A
Authority
JP
Japan
Prior art keywords
exposure
photoconductor
photoreceptor
laser
voltmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11081232A
Other languages
Japanese (ja)
Inventor
Kiyoshi Masuda
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11081232A priority Critical patent/JP2000275872A/en
Publication of JP2000275872A publication Critical patent/JP2000275872A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To execute evaluation with high reliability by evaluating the sensitivity characteristic of a photoreceptor in the time of the same scale as the scale of a digital machine having a laser scan optical system. SOLUTION: An electrostatic charger 2, destaticizer 4, first surface electrometer 5 and second surface electrometer 6 arranged around the photoreceptor 1 are arbitrarily moved with respect to the electrophotoreceptor 1, by which the characteristics of the photoreceptor 1 are evaluated from the outside diameter of the electrophotoreceptor 1, the line speed of the photoreceptor, the resolution of a laser scan sub-scanning direction, electrostatic charge time, exposure time, the arrangement position information in the peripheral direction of the electrostatic charger 2 and the surface potentials of the photoreceptor 1 before and after exposure measured by the first surface electrometer 5 and the second surface electrometer 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子写真方式の
複写機やプリンタに使用する感光体の特性評価装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating the characteristics of a photosensitive member used in an electrophotographic copying machine or printer.

【0002】[0002]

【従来の技術】複写気等で電子写真方式に使用する感光
体の特性の評価方法、特に感度特性の測定は各種方法が
採用されている。第1の測定方法は感光体を1000
r.p.mの高速で回転させた状態で感光体の表面を所
定の時間あるいは所定の表面電位になるまで帯電し、そ
の後、感光体の表面に光を照射し、所定の時間あるいは
所定の表面電位になるまで露光する。この露光により感
光体が所定の表面電位減衰に要した時間と照度の積、す
なわち露光量を計算し、必要とされた露光量を感光体の
感度とするダイナミックな測定方法である。
2. Description of the Related Art Various methods have been adopted for evaluating the characteristics of a photoreceptor used in an electrophotographic system, especially for measuring the sensitivity characteristics, in a copying process. The first measurement method uses a photoconductor of 1000
r. p. m, the surface of the photoreceptor is charged for a predetermined time or until a predetermined surface potential is reached, and then the surface of the photoreceptor is irradiated with light for a predetermined time or a predetermined surface potential. Exposure to This is a dynamic measurement method in which the product of the time required for the photoconductor to attenuate a predetermined surface potential by this exposure and the illuminance, that is, the amount of exposure, is calculated, and the required amount of exposure is used as the sensitivity of the photoconductor.

【0003】第2の測定方法は、電子写真学会、199
2年3月31日制定の電子写真学会標準、白色光感度測
定法で標準化したダイナミック測定法に示すように、感
光体を100r.p.mの低速で回転させた状態で、あ
らかじめ所定の表面電位になるよう調節された帯電条件
で感光体の表面を帯電し、感光体表面の帯電部分が露光
部を通り過ぎてゆくとき、あらかじめ決められた照度で
スリット光を照射し、露光部を通り過ぎた後、所定の位
置又は時間に感光体の表面電位を測定し、測定した表面
電位値を感光体の感度とするように、一定の光強度の白
色光で連続露光を行ったときの表面電位の変化を測定す
る方法である。
[0003] The second measuring method is based on the Electrographic Society of Japan, 199
As shown in the electrophotographic society standard established on March 31, 2000, the dynamic measurement method standardized by the white light sensitivity measurement method, the photoreceptor was set to 100 r. p. m, the surface of the photoreceptor is charged under charging conditions adjusted to a predetermined surface potential in advance, and when the charged portion of the surface of the photoreceptor passes through the exposure section, it is determined in advance. After irradiating the slit light with the illuminance and passing through the exposure part, the surface potential of the photoreceptor is measured at a predetermined position or time, and a constant light intensity is set so that the measured surface potential value is the sensitivity of the photoreceptor. This is a method for measuring a change in surface potential when continuous exposure is performed with white light.

【0004】第3の測定方法は、電子写真学会、199
2年3月31日制定の電子写真学会標準、白色光感度測
定法で標準化したスタティック測定法に示すように、感
光体を100r.p.mの低速で回転させた状態で、あ
らかじめ所定の表面電位になるよう調節された帯電条件
で感光体の表面を帯電し、感光体表面の帯電部分が露光
部に来たときに感光体の回転を止め、あらかじめ決めら
れた照度の光をあらかじめ決められた時間だけ照射し、
表面電位の変化を光透過型表面電位計で測定して、所定
の表面電位減衰に要した露光量を感光体の感度とする。
[0004] A third measuring method is as follows:
As shown in the electrophotographic society standard established on March 31, 2000, the static measurement method standardized by the white light sensitivity measurement method, the photoconductor was charged at 100 r. p. m, the surface of the photoreceptor is charged under charging conditions adjusted to a predetermined surface potential in advance, and the photoreceptor rotates when the charged portion of the photoreceptor surface comes to the exposure section. Stop, irradiate the light of the predetermined illuminance for the predetermined time,
The change in surface potential is measured by a light transmission surface potential meter, and the exposure amount required for a predetermined surface potential attenuation is defined as the sensitivity of the photoconductor.

【0005】[0005]

【発明が解決しようとする課題】上記各感度評価方法
は、光照射用の光源にタングステンランプあるいはハロ
ゲンランプが使用され、照射時間の制御にメカニカルシ
ャッタあるいは電磁シャッタが使用されること、表面電
位計のレスポンス等の測定システムの制約から露光時間
は概ね、第1の測定方法で0.1秒以上であり、第2の
測定方法では0.01秒以上、第3の測定方法では0.
001秒以上であり、感光体の1点が露光される時間を
短くとれないことに共通の問題がある。また、光の強度
は0.1μW/cm2 から10μW/cm2 となる。し
かしながら、最近の電子写真プロセスを用いた複写機や
プリンタはレーザスキャンによるいわゆるデジタル機が
主流である。このデジタル機においては感光体上の1点
が露光される時間は数10nsから100ns前後が普
通であり、光の強度も数10W/cm2 であることが多
く、従来の測定方法では実現が不可能な領域の測定条件
である。
The above sensitivity evaluation methods are based on the fact that a tungsten lamp or a halogen lamp is used as a light source for light irradiation, and a mechanical shutter or an electromagnetic shutter is used for controlling irradiation time. Exposure time is generally 0.1 second or more in the first measurement method, 0.01 second or more in the second measurement method, and 0.
001 seconds or more, and there is a common problem that the time for exposing one point of the photoconductor cannot be shortened. Further, the intensity of light becomes 10 .mu.W / cm 2 from 0.1μW / cm 2. However, recently, digital copiers and printers using an electrophotographic process are mainly digital machines using laser scanning. In this digital machine, the exposure time of one point on the photoreceptor is usually several tens ns to about 100 ns, and the light intensity is often several tens W / cm 2. This is a measurement condition of a possible area.

【0006】また、実際の複写機等における感光体の特
性を予測評価するためには、実際の複写機等で感光体に
施される条件の尺度(スケール)と同じスケールで評価
する必要があり、実際に感光体を使用する複写機等で感
光体の感度を測定すれば良いが、通常は、感光体の開発
とこれが搭載される複写機等の開発が並行に行われ、感
光体の開発中には測定器として安定して使用できる複写
機等を用意できず、感光体の評価を実際に搭載する複写
機等により行うことは困難な場合が多い。
Further, in order to predict and evaluate the characteristics of the photoconductor in an actual copying machine or the like, it is necessary to evaluate the photoconductor on the same scale as the condition applied to the photoconductor in the actual copying machine or the like. The sensitivity of the photoconductor may be measured by a copying machine or the like that actually uses the photoconductor, but usually, the development of the photoconductor and the development of a copying machine in which the photoconductor is mounted are performed in parallel, and the development of the photoconductor is performed. In some cases, a copying machine or the like that can be used stably as a measuring device cannot be prepared, and it is often difficult to evaluate a photoconductor using a copying machine or the like actually mounted.

【0007】さらに、実際に感光体を使用する複写機等
で感光体の感度を評価しようとしても、複写機等は、感
光体サイズやプロセス装置の配置や線速,プロセスタイ
ミング等の動作条件が一義的に決まっており、変更がで
きないため、感光体のドラム径やドラム長のサイズが変
わるたびに、それに応じた複写機等を用意する必要があ
るとうい問題がある。
Further, even if it is attempted to evaluate the sensitivity of the photoreceptor using a copying machine or the like that actually uses the photoreceptor, the operating conditions such as the size of the photoreceptor, the arrangement of the processing apparatus, the linear velocity, and the process timing are not sufficient. Since it is uniquely determined and cannot be changed, there is a problem that every time the drum diameter or drum length of the photoconductor changes, it is necessary to prepare a copying machine or the like in accordance with the change.

【0008】この発明はかかる問題を解消し、レーザス
キャン光学系を持つデジタル機と同一スケールの時間で
感光体の感度特性を評価でき、かつ特定のデジタル機に
依存しないで自由度が高く、信頼性の高い評価を行うこ
とができるデジタル用感光体の特性評価装置を提供する
ことを目的とするものである。
The present invention solves such a problem, and can evaluate the sensitivity characteristics of a photosensitive member in the same scale of time as a digital machine having a laser scanning optical system, and has a high degree of freedom without relying on a specific digital machine and has high reliability. It is an object of the present invention to provide a digital photoreceptor characteristic evaluation apparatus capable of performing high-quality evaluation.

【0009】[0009]

【課題を解決するための手段】この発明に係る感光体の
特性評価装置は、被検査体である感光体の周囲に順に配
置された帯電装置と露光装置と除電装置を有し、帯電装
置と露光装置の間に第1の表面電位計が配置され、露光
装置と除電装置の間に第2の表面電位計が配置され、感
光体は回転自在に保持され、帯電装置と除電装置及び第
1の表面電位計と第2の表面電位計は感光体の周方向と
径方向と長手方向とに移動できるように共通の架台に取
り付けられ、露光装置はレーザ書込装置からなり、感光
体の径方向と長手方向に可動自在に設けられ、レーザ発
光デバイスを連続点灯して感光体をスキャン露光し、第
2の表面電位計は周方向の可動範囲に最大の自由度が与
えられており、感光体の周囲に配置された装置は最大の
自由度が与えられており、感光体の外径と感光体の線
速,レーザスキャン副走査方向の解像度,帯電時間,露
光時間及び感光体周囲に配置された装置の配置位置情報
に基づきオン/オフ制御され、第1の表面電位計と第2
の表面電位計が測定した感光体の露光前後の表面電位と
各装置の配置位置情報から感光体の特性を評価して解析
することを特徴とする。
An apparatus for evaluating characteristics of a photoreceptor according to the present invention includes a charging device, an exposure device, and a static eliminator which are sequentially arranged around a photoreceptor to be inspected. A first surface voltmeter is disposed between the exposure device, a second surface voltmeter is disposed between the exposure device and the static eliminator, the photoconductor is rotatably held, and the charging device, the static eliminator and the first The surface voltmeter and the second surface voltmeter are mounted on a common frame so that they can move in the circumferential direction, the radial direction, and the longitudinal direction of the photoreceptor, and the exposure device comprises a laser writing device. The second surface voltmeter is provided with a maximum degree of freedom in the circumferential movable range, and is provided so as to be movable in the direction and the longitudinal direction, continuously illuminating the laser light emitting device and continuously exposing the photosensitive member. Devices placed around the body give maximum freedom The on / off control is performed based on the outer diameter of the photoconductor, the linear velocity of the photoconductor, the resolution in the laser scanning sub-scanning direction, the charging time, the exposure time, and the arrangement position information of the device arranged around the photoconductor. Surface electrometer and the second
The characteristics of the photoconductor are evaluated and analyzed based on the surface potential of the photoconductor before and after exposure measured by the surface voltmeter and information on the arrangement position of each device.

【0010】露光装置のレーザ発光デバイスとポリゴン
ミラーとの間に光減衰用フィルタを設け、光減衰用フィ
ルタのレーザ光の波長に対する透過率T(%)は、レー
ザ発光デバイスの露光パワーの駆動電流調整範囲におけ
る最高の露光パワーをPmax,最小の露光パワーをP
minとしたとき、nを正の整数として、T≧{(Pm
in/Pmax)のn乗}×100(%)とすることが
望ましい。この光減衰用フィルタは色ガラスを基板とす
ると良い。また、上記n=1の透過率Tの光減衰用フィ
ルタを複数設けると良い。
A light attenuating filter is provided between the laser light emitting device of the exposure apparatus and the polygon mirror, and the transmittance T (%) of the light attenuating filter with respect to the wavelength of the laser beam is determined by the drive current of the exposure power of the laser light emitting device. The maximum exposure power in the adjustment range is Pmax, and the minimum exposure power is P
When n is a positive integer, T ≧ {(Pm
(in / Pmax) × n (100) (%). The light attenuating filter is preferably made of colored glass as a substrate. Further, it is preferable to provide a plurality of optical attenuation filters having the transmittance T of n = 1.

【0011】また、露光装置の露光パワーを可変しなが
ら、露光前後の表面電位を繰返して測定した後、光減衰
用フィルタを換えて同様な測定を繰返すと良い。
It is preferable that the surface potential before and after the exposure is repeatedly measured while changing the exposure power of the exposure apparatus, and then the same measurement is repeated by changing the light attenuating filter.

【0012】さらに、露光装置の露光パワーを可変しな
がら、露光パワーに応じて光減衰用フィルタの枚数を替
えて感光体の表面電位を複数回測定しても良い。
Further, the surface potential of the photosensitive member may be measured a plurality of times by changing the number of light attenuating filters according to the exposure power while varying the exposure power of the exposure apparatus.

【0013】[0013]

【発明の実施の形態】この発明の感光体の特性評価装置
は、被検査体である感光体の周囲に配置された帯電装置
と露光装置と除電装置を有し、帯電装置と露光装置の間
に第1の表面電位計が配置され、露光装置と除電装置の
間に第2の表面電位計が配置されている。感光体は回転
自在に保持されている。帯電装置と除電装置及び第1の
表面電位計と第2の表面電位計は、感光体の周方向と径
方向と長手方向とに移動できるように共通の架台に取り
付けられている。露光装置はレーザ書込装置からなり、
感光体の径方向と長手方向に可動でき、感光体の径方向
には感光体表面とレーザ書込系のfθレンズの焦点距離
だけ間隔がとられるように位置決めされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for evaluating characteristics of a photoreceptor according to the present invention has a charging device, an exposing device, and a static eliminator disposed around a photoreceptor to be inspected. , A first surface voltmeter is disposed between the exposure device and the static eliminator. The photoreceptor is held rotatably. The charging device and the static eliminator, and the first surface voltmeter and the second surface voltmeter are mounted on a common base so as to be movable in the circumferential direction, the radial direction and the longitudinal direction of the photoconductor. The exposure device comprises a laser writing device,
It is movable in the radial direction and the longitudinal direction of the photoconductor, and is positioned in the radial direction of the photoconductor so as to be spaced by the focal length of the surface of the photoconductor and the fθ lens of the laser writing system.

【0014】感光体の評価を開始すると、露光装置のポ
リゴンミラーを回転するとともに感光体を一定の回転速
度で回転させながら、除電装置で感光体の表面を除電
し、帯電装置で感光体の表面を所定の表面電位になるよ
うに帯電し、帯電した感光体に露光装置でレーザ光を照
射する。この帯電したときの感光体の表面電位を第1の
表面電位計で測定し、露光後の感光体の表面電位を第2
の表面電位計で測定し、感光体の外径と線速,レーザス
キャン副走査方向の解像度,帯電時間,露光時間と帯電
装置の周方向における配置位置と測定した感光体の表面
電位から電位減衰に要した露光量(到達エネルギ)を計
算し、計算した露光量と測定された露光後の電位あるい
は露光前後の電位変化量との関係を感光体の感度とす
る。この処理を感光体に照射される露光パワーを換えて
所定回数繰返す。
When the evaluation of the photoreceptor is started, the surface of the photoreceptor is neutralized by the static eliminator while the polygon mirror of the exposure device is rotated and the photoreceptor is rotated at a constant rotation speed, and the surface of the photoreceptor is charged by the charging device. Is charged so as to have a predetermined surface potential, and the charged photoconductor is irradiated with laser light by an exposure device. The surface potential of the photoconductor when charged is measured with a first surface voltmeter, and the surface potential of the photoconductor after exposure is measured with a second surface electrometer.
Potential decay from the outer diameter and linear velocity of the photoconductor, resolution in the laser scanning sub-scanning direction, charging time, exposure time, the arrangement position of the charging device in the circumferential direction, and the measured surface potential of the photoconductor. Is calculated, and the relationship between the calculated exposure amount and the measured potential after exposure or the amount of change in potential before and after exposure is defined as the sensitivity of the photoreceptor. This process is repeated a predetermined number of times by changing the exposure power applied to the photoconductor.

【0015】[0015]

【実施例】図1はこの発明の一実施例の構成図である。
図に示すように、感光体の特性評価装置は、感光体1の
周囲に帯電装置2と露光装置3と除電装置4が配置さ
れ、帯電装置2と露光装置3の間に第1の表面電位計5
が配置され、露光装置3と除電装置4の間に第2の表面
電位計6が配置されている。感光体1は駆動機構部に回
転自在に保持されている。帯電装置2と除電装置4及び
第1の表面電位計5と第2の表面電位計6は、感光体1
の周方向と径方向と長手方向とに移動できるように共通
の架台に取り付けられている。露光装置3はレーザ書込
装置からなり、感光体1の径方向と長手方向に可動で
き、感光体1の径方向には感光体1表面とレーザ書込系
のfθレンズの焦点距離だけ間隔がとられるように決め
られる。
FIG. 1 is a block diagram of one embodiment of the present invention.
As shown in the figure, the device for evaluating the characteristics of a photoreceptor includes a charging device 2, an exposing device 3, and a static eliminator 4 around a photoreceptor 1, and a first surface potential between the charging device 2 and the exposing device 3. 5 in total
Are arranged, and a second surface voltmeter 6 is arranged between the exposure device 3 and the static elimination device 4. The photoconductor 1 is rotatably held by a drive mechanism. The charging device 2, the static eliminator 4, and the first surface voltmeter 5 and the second surface voltmeter 6
Are mounted on a common gantry so as to be movable in a circumferential direction, a radial direction, and a longitudinal direction. The exposure device 3 is composed of a laser writing device, and can be moved in the radial direction and the longitudinal direction of the photoreceptor 1. In the radial direction of the photoreceptor 1, an interval is set between the surface of the photoreceptor 1 and the focal length of the fθ lens of the laser writing system. It is decided to be taken.

【0016】露光装置3のレーザ書込系のfθレンズの
焦点距離f1は実際に使用する複写機等(以下、実マシ
ンという)のレーザスキャン書込系のfθレンズの焦点
距離f2と近いもの、例えば、実マシンのレーザスキャ
ン書込系のfθレンズの焦点距離f2との比率f2/f
1が「1」、好ましくは0.75〜1.33の範囲にな
っている。これは感光体1上の1転が露光される時間に
ついて、実マシンに対する差を極力小さくするためであ
る。
The focal length f1 of the fθ lens of the laser writing system of the exposure device 3 is close to the focal length f2 of the fθ lens of the laser scan writing system of an actual copying machine or the like (hereinafter referred to as an actual machine). For example, the ratio f2 / f to the focal length f2 of the fθ lens of the laser scan writing system of the actual machine
1 is "1", preferably in the range of 0.75 to 1.33. This is for minimizing the difference between the exposure time of one rotation on the photoconductor 1 and the actual machine.

【0017】特性評価装置の制御部には、図2のブロッ
ク図に示すように、入力部8とコントローラ9と評価部
10及び出力部11を有する。入力部8は感光体1の外
径と感光体1の線速と、露光装置3のレーザスキャン副
走査方向の解像度と、帯電装置2で帯電する時間と、露
光装置3のレーザ露光時間と、帯電装置2と除電装置4
と第1の表面電位計5と第2の表面電位計6の感光体1
の周方向における配置位置情報等を入力する。コントロ
ーラ9は入力部8から入力した各種情報により感光体1
を回転駆動するとともに帯電装置2と露光装置3及び除
電装置4の動作を制御し、入力部8から入力した各種情
報と第1の表面電位計5と第2の表面電位計6から入力
した感光体1の表面電位を評価部10に送る。評価部1
0は送られた各種情報と感光体1の表面電位と露光量を
感光体1の感度として評価し出力部11を介して表示装
置やプリンタに出力する。
As shown in the block diagram of FIG. 2, the control unit of the characteristic evaluation device includes an input unit 8, a controller 9, an evaluation unit 10, and an output unit 11. The input unit 8 includes an outer diameter of the photoconductor 1, a linear velocity of the photoconductor 1, a resolution of the exposure device 3 in a laser scanning sub-scanning direction, a charging time by the charging device 2, a laser exposure time of the exposure device 3, Charging device 2 and static eliminator 4
And photoreceptor 1 of first surface voltmeter 5 and second surface voltmeter 6
Is input in the circumferential direction. The controller 9 controls the photosensitive member 1 based on various information input from the input unit 8.
, And controls the operations of the charging device 2, the exposure device 3, and the static elimination device 4, and various information input from the input unit 8 and the photosensitive information input from the first surface voltmeter 5 and the second surface voltmeter 6. The surface potential of the body 1 is sent to the evaluation unit 10. Evaluation unit 1
0 evaluates the transmitted various information, the surface potential of the photoconductor 1 and the exposure amount as the sensitivity of the photoconductor 1, and outputs the evaluation information to a display device or a printer via the output unit 11.

【0018】上記のように構成された特性評価装置にお
いて感光体1の感度を測定するときは、図3のタイムチ
ャートに示すように、露光装置3のポリゴンミラーを回
転するとともに感光体1を一定の回転速度で回転させな
がら、除電装置4で感光体1の表面を除電し、帯電装置
2で感光体1の表面を所定の表面電位になるように帯電
し、帯電した感光体1に露光装置3でレーザ光を照射す
る。この帯電したときの感光体1の表面電位を第1の表
面電位計5で測定し、露光後の感光体1の表面電位を第
2の表面電位計6で測定し、感光体1の外径と感光体1
の線速,レーザスキャン副走査方向の解像度,帯電時
間,露光時間と帯電装置の周方向における配置位置と測
定した感光体1の表面電位から電位減衰に要した露光量
(到達エネルギ)を計算し、計算した露光量と測定され
た露光後の電位あるいは露光前後の電位変化量との関係
を感光体の感度とする。この処理を感光体に照射される
露光パワーを換えて所定回数繰返す。
When measuring the sensitivity of the photoreceptor 1 in the characteristic evaluation apparatus constructed as described above, as shown in the time chart of FIG. 3, the polygon mirror of the exposure apparatus 3 is rotated and the photoreceptor 1 is kept constant. The surface of the photoconductor 1 is neutralized by the static eliminator 4 while being rotated at the rotation speed, and the surface of the photoconductor 1 is charged by the charging device 2 so as to have a predetermined surface potential. In step 3, laser light is applied. The surface potential of the photoconductor 1 when charged is measured by a first surface voltmeter 5, the surface potential of the photoconductor 1 after exposure is measured by a second surface voltmeter 6, and the outer diameter of the photoconductor 1 is measured. And photoconductor 1
From the linear velocity of the laser, the resolution in the laser scanning sub-scanning direction, the charging time, the exposure time, the arrangement position of the charging device in the circumferential direction, and the measured surface potential of the photoreceptor 1, the amount of exposure (energy reached) required for the potential attenuation is calculated. The relationship between the calculated exposure amount and the measured potential after exposure or the amount of change in potential before and after exposure is defined as the sensitivity of the photoconductor. This process is repeated a predetermined number of times by changing the exposure power applied to the photoconductor.

【0019】この感光体1を露光する露光装置3のレー
ザ書込系のfθレンズの焦点距離f1は実際に使用する
複写機等(以下、実マシンという)のレーザスキャン書
込系のfθレンズの焦点距離f2と近いもの、例えば、
実マシンのレーザスキャン書込系のfθレンズの焦点距
離f2との比率f2/f1が「1」、好ましくは0.7
5〜1.33の範囲になっている。このように露光装置
3のレーザ書込系のfθレンズの焦点距離f1の範囲を
定めることにより、実マシンを使用せずに、実マシンと
同等に露光を行うことができる。すなわち、露光装置3
で特定の実マシンの条件を再現させようとするときに、
感光体1の線速(mm/s)と副走査方向解像度(DP
I)を同じにしても、露光装置3のレーザ書込系のfθ
レンズの焦点距離が異なると、感光体1の主走査方向の
スキャン速度が異なり、レーザ書込系のポリゴンミラー
の面数とレーザビーム径を同じにしても、感光体1の表
面上の1点が露光を受けている時間が焦点距離の違いの
比率だけ変わってくる。感光体1表面の1点が露光を受
けている時間は主走査方向のレーザビーム径/レーザス
キャン速度で求められる。感光体1上の1点が露光を受
けている時間をt1とし、実マシンで感光体上の1点が
露光を受けている時間をt2とすると両者の間には次の
関係がある。 t1=(φ1/φ2)・(f2/f1)・(N1/N
2)・t2 ここでサフィックス1は特性評価装置の露光装置3を、
サフィックス2は実マシンを表し、φはレーザビーム径
(主走査方向)、fはfθレンズの焦点距離、Nはポリ
ゴンミラーの面数を表す。
The focal length f1 of the fθ lens of the laser writing system of the exposing device 3 for exposing the photosensitive member 1 is determined by the fθ lens of the laser scan writing system of a copying machine or the like actually used (hereinafter referred to as an actual machine). One close to the focal length f2, for example,
The ratio f2 / f1 to the focal length f2 of the fθ lens of the laser scan writing system of the actual machine is “1”, preferably 0.7
It is in the range of 5 to 1.33. By setting the range of the focal length f1 of the fθ lens of the laser writing system of the exposure device 3 in this manner, exposure can be performed in the same manner as in a real machine without using a real machine. That is, the exposure apparatus 3
When trying to reproduce the conditions of a specific real machine with
The linear velocity (mm / s) of the photoconductor 1 and the sub-scanning direction resolution (DP)
Even if I) is the same, fθ of the laser writing system of the exposure apparatus 3
If the focal length of the lens is different, the scanning speed of the photoconductor 1 in the main scanning direction is different, and even if the number of laser writing system polygon mirrors and the laser beam diameter are the same, one point on the surface of the photoconductor 1 The time during which the camera is exposed changes by the ratio of the difference in focal length. The time during which one point on the surface of the photoreceptor 1 is exposed is obtained by (laser beam diameter in main scanning direction / laser scanning speed). If the time during which one point on the photoconductor 1 is exposed is t1 and the time during which one point on the photoconductor is exposed in the actual machine is t2, the following relationship exists between the two. t1 = (φ1 / φ2) · (f2 / f1) · (N1 / N
2) · t2 Here, the suffix 1 is the exposure device 3 of the characteristic evaluation device,
Suffix 2 represents the actual machine, φ represents the laser beam diameter (main scanning direction), f represents the focal length of the fθ lens, and N represents the number of surfaces of the polygon mirror.

【0020】レーザビーム径は多くの実マシンでほぼ同
じレーザビーム径が採用されることが多いため、露光装
置3でも一般的なレーザビーム径を採用しておけばシュ
ミレートできる実マシンが多くなることになる。小さい
レーザビーム径を採用した実マシンに合わせるにはレー
ザデバイスにアパチャーをつけて同じサイズのレーザビ
ーム径にすることができるので、上式でφ1/φ2≒1
と見なすことができ、上記式はt1≒(f2/f1)・
(N1/N2)・t2となる。ポリゴンミラーの面数は
6面か8面が採用されることが多いので、露光装置3で
6面を採用したとき、実マシンが6面の場合の露光時間
のちがいはfθレンズの焦点距離の比で決まる。また実
マシンで8面を採用した場合は、露光装置3の露光時間
t1は、t1=(6/8)・(f2/f1)・t2とな
る。このとき露光装置3のfθレンズの焦点距離f1に
対する実マシンの焦点距離f2の比f2/f1を、f2
/f1=(1〜1.33)となるように露光装置3のf
θレンズの焦点距離f1が小さめであれば、露光装置3
の露光時間t1は、t1=(0.75〜1)t2にする
ことができる。同様に露光装置3で8面のポリゴンミラ
ーを採用したとき、実マシンで6面の場合は、露光装置
3の露光時間t1は、t1=(8/6)・(f2/f
1)・t2となる。そこで露光装置3のfθレンズの焦
点距離f1に対する実マシンの焦点距離f2の比f2/
f1を、f2/f1=(0.75〜1)となるように露
光装置3のfθレンズの焦点距離f1を大きめのものを
採用しておけば、露光装置3の露光時間t1を実マシン
の露光時間t2に対して、t1=(1〜1.33)t2
とすることができ、実マシンが8面のとき、露光装置3
と実マシンの露光時間の相違を焦点距離だけの相違
(0.75〜1)にすることができ、実マシンを使用せ
ずに、実マシンを使用したときと同等に感光体1の感度
を測定することができる。
Since almost the same laser beam diameter is often used in many real machines, many actual machines can be simulated by using a general laser beam diameter in the exposure apparatus 3. become. To match an actual machine with a small laser beam diameter, an aperture can be attached to the laser device to make the laser beam diameter of the same size.
And the above equation is t1 ≒ (f2 / f1) ·
(N1 / N2) · t2. In many cases, six or eight polygon mirrors are used. Therefore, when six surfaces are used in the exposure apparatus 3, the exposure time when the actual machine has six surfaces is different from the focal length of the fθ lens. Determined by the ratio. When eight surfaces are used in the actual machine, the exposure time t1 of the exposure device 3 is t1 = (6/8) · (f2 / f1) · t2. At this time, the ratio f2 / f1 of the focal length f2 of the real machine to the focal length f1 of the fθ lens of the exposure device 3 is represented by f2
F of the exposure apparatus 3 so that /f1=(1-1.33)
If the focal length f1 of the θ lens is small, the exposure device 3
Can be set to t1 = (0.75 to 1) t2. Similarly, when the exposure apparatus 3 employs an eight-sided polygon mirror and the actual machine has six sides, the exposure time t1 of the exposure apparatus 3 is t1 = (8/6). (F2 / f).
1) t2. Therefore, the ratio f2 / of the focal length f2 of the real machine to the focal length f1 of the fθ lens of the exposure device 3
If the focal length f1 of the fθ lens of the exposure apparatus 3 is set to be large so that f1 is f2 / f1 = (0.75 to 1), the exposure time t1 of the exposure apparatus 3 can be reduced by the actual machine. For the exposure time t2, t1 = (1-1.33) t2
When the actual machine has eight surfaces, the exposure device 3
And the difference in the exposure time of the actual machine can be made the difference (0.75 to 1) of only the focal length, so that the sensitivity of the photoconductor 1 can be increased without using the actual machine, as in the case of using the actual machine. Can be measured.

【0021】この感光体1の感度特性評価のためには、
感光体1に到達した露光エネルギを正確に評価する必要
がある。このため露光装置3のレーザ光照射はレーザデ
バイス連続点灯状態で行うことが好ましい。これは実マ
シンのようにレーザ光をMHzオーダーで高速にオン/
オフすると、本来矩形の露光出力が、図4の波形図に示
すように、立上り時の光出力が実際の光出力より大きく
なり、感光体1に到達した露光エネルギを正確に把握す
ることができなくなるためである。ここで感光体1に到
達する露光エネルギEは、レーザ静止パワーをP0 、有
効走査期間率をER、有効走査画像幅をL、感光体1の
線速をV、fθレンズの焦点距離をf、ポリゴンミラー
の面数をNとすると、 E=P0 ・ER/(L・V)=P0 ・(4fπ/N) で表せる。
In order to evaluate the sensitivity characteristics of the photoreceptor 1,
It is necessary to accurately evaluate the exposure energy that has reached the photoconductor 1. For this reason, it is preferable that the laser beam irradiation of the exposure apparatus 3 is performed in a laser device continuous lighting state. This means that the laser light is turned on / off at a high speed in the order of MHz like a real machine.
When the switch is turned off, the exposure output which is originally rectangular becomes larger than the actual light output as shown in the waveform diagram of FIG. 4, so that the exposure energy which has reached the photoconductor 1 can be accurately grasped. It is because it disappears. Here, the exposure energy E arriving at the photoreceptor 1 is P 0 for laser stationary power, ER for the effective scanning period ratio, L for the effective scanning image width, V for the linear velocity of the photoreceptor 1, and f for the focal length of the fθ lens. If the number of surfaces of the polygon mirror is N, then E = P 0 ER / (LV) = P 0 (4fπ / N).

【0022】また、感光体1の周囲に設けた帯電装置2
と露光装置3と除電装置4を1個所に固定して配置した
場合、露光エネルギEに対する表面電位を測定すると
き、第2の表面電位計6が設置された位置により得られ
る表面電位データは異なるのが普通であり、第2の表面
電位計6が設置される位置も1個所では測定データとし
ては不完全である。このため現像部に相当する第2の表
面電位計6の位置がドラム周方向に可変される範囲を十
分に大きくとってある。
A charging device 2 provided around the photosensitive member 1
When the surface potential with respect to the exposure energy E is measured, the surface potential data obtained differs depending on the position where the second surface voltmeter 6 is installed when the exposure device 3 and the static eliminator 4 are fixedly arranged at one place. In general, the position where the second surface electrometer 6 is installed is incomplete at one location as measured data. For this reason, the range in which the position of the second surface voltmeter 6 corresponding to the developing unit is variable in the circumferential direction of the drum is set sufficiently large.

【0023】〔具体例〕 ドラム径とドラム長さが異な
る感光体1の回転速度を変えて感光体1の感度を測定し
た結果を示す。帯電装置2はスコロトロン方式を使用
し、グリッド電圧は±1500Vまで印加可能で、メイ
ン高圧電源は最高電圧±10KVのものを使用した。ま
た、露光装置3と除電装置4は下記(1),(2)の条
件のものを使用した。 (1)露光装置3 LDスキャン方式 光源波長780nm fθレンズ焦点距離: 251mm 主走査ビーム径 68.5μm 副走査ビーム径 81.5 光量(像面静止パワー) 0.833〜3.3mW(フィルターなし) 書込み幅 60mm 点灯周波数 連続点灯のみ ポリゴンミラー面数 6面 ポリゴン回転数 6,000〜40,000r.p.m.回転可変 ポリゴン回転安定時間 5s (2)除電装置4 LED 光源660nm前後 光量 Max1060μW/cm2(光量可変) 露光幅 感光体上約2mmの幅(感光体表面との距離2mm)
[Specific Example] The results of measuring the sensitivity of the photoconductor 1 by changing the rotation speed of the photoconductor 1 having different drum diameters and drum lengths are shown. The charging device 2 uses a scorotron method, can apply a grid voltage up to ± 1500 V, and uses a main high-voltage power supply having a maximum voltage of ± 10 KV. The exposure apparatus 3 and the static eliminator 4 used were those under the following conditions (1) and (2). (1) Exposure device 3 LD scanning method Light source wavelength 780 nm fθ lens Focal length: 251 mm Main scanning beam diameter 68.5 μm Sub scanning beam diameter 81.5 Light intensity (image surface static power) 0.833 to 3.3 mW (no filter) Writing width 60mm Lighting frequency Continuous lighting only Polygon mirror surface number 6 Polygon rotation speed 6,000-40,000r. p. m. Rotation variable Polygon rotation stabilization time 5 s (2) Static eliminator 4 LED light source around 660 nm Light amount Max1060 μW / cm2 (light amount variable) Exposure width Width of about 2 mm above the photoconductor (distance from the photoconductor surface 2 mm)

【0024】そして第2の表面電位計6の位置の可変範
囲は、感光体1のドラム径が24mmのときは露光装置
3の露光位置より角度20度〜130度、感光体1のド
ラム径が60mmのときは露光装置3の露光位置より角
度20度〜145度、感光体1のドラム径が120mm
のときは露光装置3の露光位置より角度20度〜150
度であった。
The variable range of the position of the second surface voltmeter 6 is as follows: when the drum diameter of the photoconductor 1 is 24 mm, the angle is 20 to 130 degrees from the exposure position of the exposure device 3; When the distance is 60 mm, the angle is 20 to 145 degrees from the exposure position of the exposure device 3, and the drum diameter of the photoconductor 1 is 120 mm.
In this case, the angle is 20 to 150 degrees from the exposure position of the exposure apparatus 3.
Degree.

【0025】〔具体例1〕 帯電装置2と露光装置3と
除電装置4と第1の表面電位計5及び第2の表面電位計
6の位置を下記条件1に設定して、ドラム径が24mm
の感光体1を線速38mm/sで回転しながら、感光体
1の表面電位を測定した。ここで帯電装置2と露光装置
3と除電装置4と第1の表面電位計5及び第2の表面電
位計6の位置は露光装置3の露光位置を基準にして、時
計方向を「+」、反時計方向を「−」として角度で表し
た。 〔条件1〕 副走査方向解像度(DPI) 600 像面静止パワー(mW) 0.266 紙送りサイズ(mm) 210 繰返し間隔(ms) 500 除電装置 −180度 帯電装置 −90度 第1の表面電位計 −20度 露光装置 0度 第2の表面電位計 +55 帯電グリッドバイアス(V) −750
[Specific Example 1] The positions of the charging device 2, the exposing device 3, the discharging device 4, the first surface voltmeter 5 and the second surface voltmeter 6 were set under the following condition 1, and the drum diameter was 24 mm.
While rotating the photoconductor 1 at a linear speed of 38 mm / s, the surface potential of the photoconductor 1 was measured. Here, the positions of the charging device 2, the exposure device 3, the static eliminator 4, the first surface voltmeter 5 and the second surface voltmeter 6 are such that the clockwise direction is “+” with respect to the exposure position of the exposure device 3, The counterclockwise direction was expressed as an angle with "-". [Condition 1] Resolution in the sub-scanning direction (DPI) 600 Image plane stationary power (mW) 0.266 Paper feed size (mm) 210 Repetition interval (ms) 500 Static eliminator -180 degrees Charger -90 degrees First surface potential Total -20 degrees Exposure device 0 degrees Second surface voltmeter +55 Charging grid bias (V) -750

【0026】この結果、第1の表面電位計5で測定した
感光体1の表面電位は−750Vであり、第2の表面電
位計6で測定した感光体1の表面電位は−81Vであ
り、露光エネルギーEは21.05(erg/cm2
であった。
As a result, the surface potential of the photosensitive member 1 measured by the first surface voltmeter 5 was -750 V, the surface potential of the photosensitive member 1 measured by the second surface voltmeter 6 was -81 V, Exposure energy E is 21.05 (erg / cm 2 )
Met.

【0027】[具体例2] 次ぎに、ドラム径が60mm
の感光体1を使用し、第2の表面電位計6の位置を変
え、露光装置3でレーザ露光後、表面電位の測定位置依
存性、すなわち露光から電位測定までの時間依存性を調
べた。
[Specific Example 2] Next, the drum diameter is 60 mm.
The position of the second surface voltmeter 6 was changed using the photoreceptor 1 described above, and after the laser exposure by the exposure device 3, the measurement position dependency of the surface potential, that is, the time dependency from exposure to potential measurement was examined.

【0028】〔具体例2−1〕 線速(mm/s) 180 副走査方向解像度(DPI) 400 像面静止パワー(mW) 0.36 紙送りサイズ(mm) 210 繰返し間隔(ms) 500 除電装置 −160度 帯電装置 −80度 第1の電位計 −40度 露光装置 0度 第2の表面電位計 +20度 帯電グリッドバイアス(V) −950[Specific Example 2-1] Linear velocity (mm / s) 180 Sub-scanning direction resolution (DPI) 400 Image plane stationary power (mW) 0.36 Paper feed size (mm) 210 Repetition interval (ms) 500 Static electricity removal Device -160 degrees Charging device -80 degrees First electrometer -40 degrees Exposure device 0 degree Second surface electrometer +20 degrees Charging grid bias (V) -950

【0029】この場合、第1の表面電位計5で測定した
感光体1の表面電位は−950Vであり、第2の表面電
位計6で測定した感光体1の表面電位は−150Vであ
り、露光エネルギーEは3.8(erg/cm2 )であ
った。
In this case, the surface potential of the photosensitive member 1 measured by the first surface voltmeter 5 is -950 V, the surface potential of the photosensitive member 1 measured by the second surface voltmeter 6 is -150 V, The exposure energy E was 3.8 (erg / cm 2 ).

【0030】〔具体例2−2〕 線速(mm/s) 180 副走査方向解像度(DPI) 400 像面静止パワー(mW) 0.36 紙送りサイズ(mm) 210 繰返し間隔(ms) 500 除電装置 −160度 帯電装置 −80度 第1の表面電位計 −40度 露光装置 0度 第2の表面電位計 +40度 帯電グリッドバイアス(V) −950[Specific Example 2-2] Linear velocity (mm / s) 180 Sub-scanning direction resolution (DPI) 400 Image plane stationary power (mW) 0.36 Paper feed size (mm) 210 Repetition interval (ms) 500 Static electricity removal Device -160 degrees Charging device -80 degrees First surface voltmeter -40 degrees Exposure device 0 degree Second surface voltmeter +40 degrees Charging grid bias (V) -950

【0031】この場合、第1の表面電位計5で測定した
感光体1の表面電位は−950Vであり、第2の表面電
位計6で測定した感光体1の表面電位は−125Vであ
り、露光エネルギーEは3.8(erg/cm2 )であ
った。
In this case, the surface potential of the photosensitive member 1 measured by the first surface voltmeter 5 is -950 V, the surface potential of the photosensitive member 1 measured by the second surface voltmeter 6 is -125 V, The exposure energy E was 3.8 (erg / cm 2 ).

【0032】〔具体例2−3〕 線速(mm/s) 180 副走査方向解像度(DPI) 400 像面静止パワー(mW) 0.36 紙送りサイズ(mm) 210 繰返し間隔(ms) 500 除電装置 −160度 帯電装置 −80度 第1の表面電位計 −40度 露光装置 0度 第2の表面電位計 +120度 帯電グリッドバイアス(V) −950[Specific Example 2-3] Linear speed (mm / s) 180 Sub-scanning direction resolution (DPI) 400 Image plane stationary power (mW) 0.36 Paper feed size (mm) 210 Repetition interval (ms) 500 Static electricity removal Device -160 degrees Charging device -80 degrees First surface voltmeter -40 degrees Exposure device 0 degree Second surface voltmeter +120 degrees Charging grid bias (V) -950

【0033】この場合は第1の表面電位計5で測定した
感光体1の表面電位は−950Vであり、第2の表面電
位計6で測定した感光体1の表面電位は−121Vであ
り、露光エネルギーEは3.8(erg/cm2 )であ
った。
In this case, the surface potential of the photosensitive member 1 measured by the first surface voltmeter 5 is -950 V, the surface potential of the photosensitive member 1 measured by the second surface voltmeter 6 is -121 V, The exposure energy E was 3.8 (erg / cm 2 ).

【0034】上記具体例2−1〜2−3で測定した結
果、露光後の経過時間(s)(露光後の表面電位測定位
置)に対する感光体1の表面電位VL(V)は、図5に
示すように、露光後の電位測定までの時間に依存するこ
とが明らかである。
As a result of the measurement in the specific examples 2-1 to 2-3, the surface potential VL (V) of the photosensitive member 1 with respect to the elapsed time (s) after exposure (surface potential measurement position after exposure) is shown in FIG. As shown in FIG. 7, it is apparent that the time depends on the time until the potential measurement after the exposure.

【0035】〔具体例3〕 次ぎに、ドラム径が80m
mの感光体1を使用し、下記条件により露光装置3でレ
ーザ露光後の表面電位を調べた。 〔条件〕 線速(mm/s) 105 副走査方向解像度(DPI) 400 像面静止パワー(mW) 0.687 紙送りサイズ(mm) 210 繰返し間隔(ms) 500 除電装置 −160度 帯電装置 −80度 第1の表面電位計 −40度 露光装置 0度 第2の表面電位計 +55度 帯電グリッドバイアス(V) −670
[Specific Example 3] Next, the drum diameter is 80 m.
Using the photosensitive member 1 of m, the surface potential after laser exposure was examined by the exposure device 3 under the following conditions. [Conditions] Linear velocity (mm / s) 105 Sub-scanning direction resolution (DPI) 400 Image plane stationary power (mW) 0.687 Paper feed size (mm) 210 Repetition interval (ms) 500 Static eliminator-160 degree charging device- 80 degrees First surface voltmeter -40 degrees Exposure device 0 degree Second surface voltmeter +55 degrees Charging grid bias (V) -670

【0036】この場合は第1の表面電位計5で測定した
感光体1の表面電位は−670Vであり、第2の表面電
位計6で測定した感光体1の表面電位は−108Vであ
り、露光エネルギーEは12・43(erg/cm2
であった。
In this case, the surface potential of the photosensitive member 1 measured by the first surface voltmeter 5 is -670 V, the surface potential of the photosensitive member 1 measured by the second surface voltmeter 6 is -108 V, Exposure energy E is 12.43 (erg / cm 2 )
Met.

【0037】上記具体例1〜具体例3に示すように、サ
イズの異なる種々の感光体1をレーザ光で露光したとき
の表面電位の変化を容易に測定することができるととも
に、具体例2に示すように、露光後の電位測定位置に応
じて異なる表面電位を測定することができ、第2の表面
電位計6の測定範囲を変えることにより、種々の実マシ
ンと同じ配置で表面電位を測定することができ、実マシ
ンを使用したと同等な測定結果を精度良く得ることがで
きる。
As shown in the specific examples 1 to 3, it is possible to easily measure the change in the surface potential when various types of photosensitive members 1 having different sizes are exposed to laser light. As shown, different surface potentials can be measured according to the potential measurement position after exposure, and the surface potential is measured in the same arrangement as various actual machines by changing the measurement range of the second surface voltmeter 6. And a measurement result equivalent to that obtained by using an actual machine can be obtained with high accuracy.

【0038】上記のように1台の特性評価装置で種々の
実マシンの露光パワーに対応するためには、露光装置3
のレーザダイオード(LD)の駆動電流を調節する必要
がある。レーザ書込装置ではLDの発光を安定に動作さ
せるために、その駆動電流の調整範囲を最適化して調整
範囲が狭いことが多い。感光体1の感度評価用として
は、種々の露光エネルギEに対する表面電位のデータを
とる必要があり、電位の範囲が1500Vから50Vに
及ぶことから露光パワーに対しても対応した調整範囲が
得られるようにする必要がある。このため露光装置3の
調整範囲を大きくするためにレーザの波長に対応した分
光透過率を持つフィルタを組み合わせる。露光パワー調
整範囲を大きくするためには、分光透過率をを一段と低
くしたフィルタを用意するか、1種類の分光透過率のも
のを複数枚組み合わせれば良い。このフィルタの波長に
対する透過率T(%)は、通常のLDデバイスの駆動電
流調整範囲における最高の露光パワーをPmax、最小
の露光パワーをPminとするとき、nを正の整数とす
ると、T≧{(Pmin/Pmax)のn乗}×100
(%)とすることにより、切れ目のない露光調整範囲を
得ることができ、種々の感光体1に対して露光パワーに
対する表面電位のデータを取りこぼしなく測定すること
ができる。ここで同一分光透過率のフィルタを複数枚組
み合わせるときには、上記式でn=1が好ましい。
As described above, in order for one characteristic evaluation device to correspond to the exposure power of various actual machines, the exposure device 3
It is necessary to adjust the drive current of the laser diode (LD). In a laser writing device, in order to stably operate the light emission of the LD, the adjustment range of the drive current is often optimized and the adjustment range is narrow. In order to evaluate the sensitivity of the photoreceptor 1, it is necessary to obtain surface potential data for various exposure energies E. Since the potential range is from 1500 V to 50 V, an adjustment range corresponding to the exposure power can be obtained. You need to do that. Therefore, in order to increase the adjustment range of the exposure device 3, a filter having a spectral transmittance corresponding to the wavelength of the laser is combined. In order to increase the exposure power adjustment range, it is only necessary to prepare a filter with a further reduced spectral transmittance or to combine a plurality of filters with one type of spectral transmittance. The transmittance T (%) with respect to the wavelength of this filter is as follows: When the maximum exposure power in the drive current adjustment range of a normal LD device is Pmax, and the minimum exposure power is Pmin, n is a positive integer. {(Pmin / Pmax) nth power} × 100
By setting (%), a continuous exposure adjustment range can be obtained, and data of the surface potential with respect to the exposure power can be measured for the various photoconductors 1 without fail. Here, when combining a plurality of filters having the same spectral transmittance, it is preferable that n = 1 in the above equation.

【0039】例えば露光装置3のフィルタがないときの
像面露光パワーの最大値Pmaxが3.32mW、最小
値Pminは0.833mWで、(Pmin/Pma
x)×100(%)=25.1(%)である場合に、L
Dの波長780nmに対する分光透過率が27%のフィ
ルタを3枚用意し、LDデバイスとポリゴンミラーの間
にそれぞれ1枚から3枚を設置して像面の露光パワー
(mW)を測定した結果を下記表に示す。
For example, the maximum value Pmax of the image-surface exposure power without the filter of the exposure device 3 is 3.32 mW, the minimum value Pmin is 0.833 mW, and (Pmin / Pma
x) × 100 (%) = 25.1 (%), L
Three filters having a spectral transmittance of 27% for the wavelength 780 nm of D were prepared, and one to three filters were installed between the LD device and the polygon mirror, and the result of measuring the exposure power (mW) on the image plane was obtained. It is shown in the table below.

【0040】[0040]

【表1】 [Table 1]

【0041】上記表に示すように、露光装置3で設定で
きる露光パワーの範囲を切れ目のない広範囲なものにす
ることができた。これは分光透過率が27%,7.3
%,2%のフィルタを替えて測定しても同じである。
As shown in the above table, the range of the exposure power that can be set by the exposure apparatus 3 could be widened without any break. This means that the spectral transmittance is 27%, 7.3.
The same is true even when the measurement is performed while changing the% and 2% filters.

【0042】また、透過光を減じるフィルタには基板と
して白板のガラス基板や石英ガラス等に光を吸収する材
料を薄膜蒸着した吸収型のNDフィルタあるいは光を反
射する材料を薄膜蒸着した反射型のNDフィルタがあ
る。これらとは別に光を吸収する物質を成分中に含有さ
せた色ガラスを用いるNDフィルタがある。露光装置3
に使用するフィルとしては、色ガラスによるNDフィル
タを使用するのが好ましい。すなわち、ガラス表面に薄
膜を蒸着したフィルタは、吸収型であれ反射型であれ、
薄膜表面での無視できない反射光がLDに戻り、光の干
渉を生じさせて安定した光量を得ることができないが、
色ガラスを使用したNDフィルタは、この現象が見られ
ず安定した光量を得ることができる。
As a filter for reducing transmitted light, an absorption type ND filter in which a light absorbing material is thin-film deposited on a white glass substrate or quartz glass as a substrate or a reflection type in which a light reflecting material is thin-film deposited is used as a substrate. There is an ND filter. In addition to these, there is an ND filter using colored glass containing a substance that absorbs light in its components. Exposure device 3
It is preferable to use an ND filter made of colored glass as the fill used for the above. That is, a filter in which a thin film is deposited on a glass surface is an absorption type or a reflection type,
Reflected light that cannot be ignored on the surface of the thin film returns to the LD, causing light interference and a stable amount of light cannot be obtained.
The ND filter using the color glass can obtain a stable light amount without this phenomenon.

【0043】例えば白板のガラス基板を使用した透過率
25%の薄膜吸収型のNDフィルタと色ガラスを使用し
たNDフィルターを使用し、像面露光パワーの最大値P
maxが3.32mWになるよう駆動電流を設定し、L
Dデバイスとポリゴンミラの間にフィルタを置き、LD
をオンした後、3分間の像面露光パワーの変化を光量計
で調べた。ここで同時にLDデバイスのモニター電流を
測定したが、変動はなくLDデバイス側に問題はなかっ
た。この測定した像面露光パワーの変化は、薄膜吸収型
のNDフィルタを使用した場合は、−8.7%の変化で
直線的に下降していたが、色ガラスによるNDフィルタ
を使用した場合は+0.1%の変化であり、安定した光
量を得ることができた。
For example, using a thin film absorption type ND filter having a transmittance of 25% using a white glass substrate and an ND filter using color glass, the maximum value P of the image plane exposure power is used.
The drive current is set so that max becomes 3.32 mW, and L
Place a filter between the D device and the polygon mirror, LD
After turning on, the change of the image surface exposure power for 3 minutes was examined with a light meter. Here, the monitor current of the LD device was measured at the same time, but there was no fluctuation and there was no problem on the LD device side. The change in the measured image plane exposure power decreased linearly with a change of -8.7% when the ND filter of the thin film absorption type was used, but when the ND filter using the colored glass was used, The change was + 0.1%, and a stable light amount could be obtained.

【0044】そして、図3のタイムチャートに示すよう
に、感光体1の帯電と露光と電位測定を複数回繰り返す
ことを一つのステップとし、一つのステップが終了した
時点でコントローラ9により露光装置3のLD駆動電流
をその調整範囲で制御し(露光パワーを換え)、次ぎの
ステップを実行する。これをLD駆動電流をあらかじめ
定めた水準で変えて繰り返し実行する。この処理が終了
すると、フィルタをLDデバイスとポリゴンミラーの間
に装着して、上記の処理を繰返す。この処理を繰り返す
ことにより露光エネルギに対する表面電位のデータを自
動で集録することができ、感光体1の感度特性を効率良
く測定することができる。図6は露光パワーを変えてフ
ィルタを1枚〜3枚使用して測定した感光体1の表面電
位の変化を示す。図6において菱形印はこの実施例で測
定した場合、正方形印は比較のために従来のスタティッ
ク測定法で測定した場合を示す。評価に使用した感光体
1は実マシンでは露光パワーが4.5(erg/cm
2 )に対して感光体1の露光後の表面電位は−120V
〜−140Vであることから、この実施例の場合は実マ
シンにおける感光体の感度をよく予測していることが明
らかである。
As shown in the time chart of FIG. 3, the charging, exposure, and potential measurement of the photosensitive member 1 are repeated a plurality of times as one step. Is controlled within the adjustment range (exposing power is changed), and the next step is executed. This is repeatedly performed while changing the LD drive current at a predetermined level. When this processing is completed, the filter is mounted between the LD device and the polygon mirror, and the above processing is repeated. By repeating this process, the data of the surface potential with respect to the exposure energy can be automatically collected, and the sensitivity characteristics of the photoconductor 1 can be measured efficiently. FIG. 6 shows the change in the surface potential of the photoconductor 1 measured using one to three filters while changing the exposure power. In FIG. 6, rhombic marks indicate the case where the measurement was performed in this example, and square marks indicate the case where the measurement was performed by the conventional static measurement method for comparison. The photoconductor 1 used for the evaluation had an exposure power of 4.5 (erg / cm) in a real machine.
2 ), the surface potential of the photosensitive member 1 after the exposure is -120 V
From -140 V, it is clear that the sensitivity of the photoconductor in the actual machine is well predicted in the case of this embodiment.

【0045】[0045]

【発明の効果】この発明は以上説明したように、被検査
体である感光体の周囲に帯電装置とレーザ書込装置から
なる露光装置と除電装置を配置し、帯電装置と露光装置
の間に第1の表面電位計を配置し、露光装置と除電装置
の間に第2の表面電位計を配置し、帯電装置と除電装置
及び第1の表面電位計と第2の表面電位計は感光体の周
方向と径方向と長手方向とに移動できるようにし、露光
装置を感光体の径方向と長手方向に可動自在としたか
ら、感光体周囲に配置した各装置を感光体に対して任意
に動かすことができ、各種サイズの感光体の特性を測定
することができる。
As described above, according to the present invention, an exposing device and a static eliminator including a charging device and a laser writing device are arranged around a photoreceptor to be inspected, and a charging device and an exposing device are disposed between the charging device and the exposing device. A first surface voltmeter is disposed, a second surface voltmeter is disposed between the exposure device and the static eliminator, and the charging device and the static eliminator, and the first surface voltmeter and the second surface voltmeter are a photoconductor. The exposure device can be moved in the radial and longitudinal directions of the photoreceptor so that each device disposed around the photoreceptor can be moved arbitrarily with respect to the photoreceptor. It can be moved, and the characteristics of photoreceptors of various sizes can be measured.

【0046】また、感光体の外径と感光体の線速,レー
ザスキャン副走査方向の解像度,帯電時間,露光時間及
び帯電装置の周方向における配置位置情報及び第1の表
面電位計と第2の表面電位計が測定した露光前後の感光
体の表面電位から感光体の特性を評価するようにしたか
ら、各種の実マシンに応じた評価を精度良く行うことが
できる。
The outer diameter of the photosensitive member and the linear velocity of the photosensitive member, the resolution in the laser scanning sub-scanning direction, the charging time, the exposure time, the positional information of the charging device in the circumferential direction, the first surface voltmeter and the second The characteristics of the photoreceptor are evaluated based on the surface potential of the photoreceptor before and after the exposure measured by the surface voltmeter, so that the evaluation according to various actual machines can be performed with high accuracy.

【0047】さらに、露光装置でレーザ発光デバイスを
連続点灯するから、露光エネルギの評価を正確にでき、
評価精度を向上することができる。
Further, since the laser light emitting device is continuously turned on by the exposure apparatus, the evaluation of the exposure energy can be accurately performed.
Evaluation accuracy can be improved.

【0048】また、露光装置のレーザ発光デバイスとポ
リゴンミラーとの間に光減衰用フィルタを設け、光減衰
用フィルタのレーザ光の波長に対する透過率T(%)を
レーザ発光デバイスの最大と最小の露光パワーに応じて
定めることにより、対応できる実マシンや感光体の適用
範囲を広くすることができる。
Further, a light attenuating filter is provided between the laser light emitting device of the exposure apparatus and the polygon mirror, and the transmittance T (%) of the light attenuating filter with respect to the wavelength of the laser light is set to the maximum value and the minimum value of the laser light emitting device. By determining the exposure power according to the exposure power, it is possible to broaden the applicable range of applicable real machines and photoconductors.

【0049】さらに、光減衰用フィルタは色ガラスを基
板とすることにより、測定中の像面露光パワーを安定に
確保することができ、評価精度を安定に確保することが
できる。
Further, since the light attenuating filter is made of colored glass as a substrate, the image surface exposure power during measurement can be secured stably, and the evaluation accuracy can be secured stably.

【0050】また、光減衰用フィルタの透過率を変えた
ものを順次切り換えるか、光減衰用フィルタを複数設け
ることにより、測定中の像面露光パワーを切れ目なく広
範囲に調整することができる。
Further, by sequentially switching the light attenuating filters having different transmittances or by providing a plurality of light attenuating filters, the image surface exposure power during the measurement can be adjusted over a wide range without any interruption.

【0051】さらに、必要とする露光パワーに応じて光
減衰用フィルタの枚数を替えるか、光減衰用フィルタの
種類を替えて、露光露光装置のLD駆動電流を可変しな
がら感光体の表面電位を測定することにより、露光エネ
ルギと表面電位の必要なデータを全て得ることができ、
安定した評価を行うことができる。
Further, the surface potential of the photosensitive member is changed while changing the LD drive current of the exposure apparatus by changing the number of light attenuating filters or the type of the light attenuating filter in accordance with the required exposure power. By measuring, all necessary data of exposure energy and surface potential can be obtained,
Stable evaluation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】上記実施例の制御部の構成を示すブロック図で
ある。
FIG. 2 is a block diagram showing a configuration of a control unit of the embodiment.

【図3】上記実施例の測定動作を示すタイムチャートで
ある。
FIG. 3 is a time chart showing a measurement operation of the embodiment.

【図4】実マシンのレーザ波形を示す波形図である。FIG. 4 is a waveform diagram showing a laser waveform of an actual machine.

【図5】露光後の感光体の表面電位の変化特性図であ
る。
FIG. 5 is a graph showing a change characteristic of a surface potential of a photoconductor after exposure.

【図6】露光エネルギに対する感光体の表面電位の変化
特性図である。
FIG. 6 is a graph showing a change characteristic of a surface potential of a photoconductor with respect to exposure energy.

【符号の説明】[Explanation of symbols]

1 感光体 2 帯電装置 3 露光装置 4 除電装置 5 第1の表面電位計 6 第2の表面電位計 7 制御部 8 入力部 9 コントローラ 10 評価部 11 出力部 REFERENCE SIGNS LIST 1 photoconductor 2 charging device 3 exposure device 4 static elimination device 5 first surface voltmeter 6 second surface voltmeter 7 control unit 8 input unit 9 controller 10 evaluation unit 11 output unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検査体である感光体の周囲に順に配置
された帯電装置と露光装置と除電装置を有し、帯電装置
と露光装置の間に第1の表面電位計が配置され、露光装
置と除電装置の間に第2の表面電位計が配置され、 感光体は回転自在に保持され、帯電装置と除電装置及び
第1の表面電位計と第2の表面電位計は感光体の周方向
と径方向と長手方向とに移動できるように共通の架台に
取り付けられ、露光装置はレーザ書込装置からなり、感
光体の径方向と長手方向に可動自在に設けられ、レーザ
発光デバイスを連続点灯して感光体をスキャン露光し、 第2の表面電位計には周方向の可動範囲に最大の自由度
が与えられており、感光体の周囲に配置された装置は最
大の自由度が与えられており、感光体の外径と感光体の
線速,レーザスキャン副走査方向の解像度,帯電時間,
露光時間及び感光体周囲に配置された装置の配置位置情
報に基づきオン/オフ制御され、 第1の表面電位計と第2の表面電位計が測定した感光体
の露光前後の表面電位と各装置の配置位置情報から感光
体の特性を評価して解析することを特徴とする感光体の
特性評価装置。
A first surface voltmeter disposed between the charging device and the exposure device, wherein the first surface voltmeter is disposed between the charging device and the exposure device; A second surface voltmeter is disposed between the device and the static eliminator, the photoconductor is rotatably held, and the charging device and the static eliminator and the first surface voltmeter and the second surface voltmeter are arranged around the photoconductor. It is mounted on a common frame so that it can move in the direction, the radial direction, and the longitudinal direction, and the exposure device is composed of a laser writing device, is provided movably in the radial direction and the longitudinal direction of the photoconductor, and continuously connects the laser emitting device. Lights to scan and expose the photoreceptor. The second surface voltmeter has the maximum degree of freedom in the circumferential movable range, and the devices arranged around the photoreceptor have the maximum degree of freedom. The outer diameter of the photoconductor, the linear velocity of the photoconductor, and laser scanning Scanning direction resolution, charging time,
On / off control based on the exposure time and the arrangement position information of the devices arranged around the photoconductor, the surface potential of the photoconductor before and after exposure measured by the first surface voltmeter and the second surface voltmeter, and each device A characteristic evaluation apparatus for a photoreceptor, wherein the characteristic of the photoreceptor is evaluated and analyzed from the arrangement position information of the photoreceptor.
【請求項2】 上記露光装置のレーザ発光デバイスとポ
リゴンミラーとの間に光減衰用フィルタを設け、光減衰
用フィルタのレーザ光の波長に対する透過率T(%)
は、レーザ発光デバイスの露光パワーの駆動電流調整範
囲における最高の露光パワーをPmax,最小の露光パ
ワーをPminとしたとき、nを正の整数として、T≧
{(Pmin/Pmax)のn乗}×100(%)であ
る請求項1記載の感光体の特性評価装置。
2. A light attenuating filter is provided between a laser light emitting device of the exposure apparatus and a polygon mirror, and a transmittance T (%) of the light attenuating filter with respect to a wavelength of laser light.
Is defined as T ≧ T, where Pmax is the maximum exposure power and Pmin is the minimum exposure power in the drive current adjustment range of the exposure power of the laser light emitting device, where n is a positive integer.
The photoconductor characteristic evaluation apparatus according to claim 1, wherein {(Pmin / Pmax) nth power} x 100 (%).
【請求項3】 上記光減衰用フィルタは色ガラスを基板
とした請求項2記載の感光体の特性評価装置。
3. An apparatus according to claim 2, wherein said light attenuating filter is made of a colored glass substrate.
【請求項4】 上記n=1の透過率Tの光減衰用フィル
タを複数設けた請求項3記載の感光体の特性評価装置。
4. An apparatus according to claim 3, wherein a plurality of filters for light attenuation having a transmittance T of n = 1 are provided.
【請求項5】 上記露光装置の露光パワーを可変しなが
ら、露光前後の表面電位を繰返して測定した後、光減衰
用フィルタを換えて同様な測定を繰返す請求項2記載の
感光体の特性評価装置。
5. The characteristic evaluation of the photoreceptor according to claim 2, wherein the surface potential before and after the exposure is repeatedly measured while changing the exposure power of the exposure apparatus, and then the same measurement is repeated by changing a light attenuation filter. apparatus.
【請求項6】 上記露光装置の露光パワーを可変しなが
ら、露光パワーに応じて光減衰用フィルタの枚数を替え
て感光体の表面電位を複数回測定する請求項4記載の感
光体の特性評価装置。
6. The characteristic evaluation of a photoconductor according to claim 4, wherein the surface potential of the photoconductor is measured a plurality of times by changing the number of light attenuating filters according to the exposure power while varying the exposure power of the exposure apparatus. apparatus.
JP11081232A 1999-03-25 1999-03-25 Characteristic evaluation apparatus for photoreceptor Pending JP2000275872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081232A JP2000275872A (en) 1999-03-25 1999-03-25 Characteristic evaluation apparatus for photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081232A JP2000275872A (en) 1999-03-25 1999-03-25 Characteristic evaluation apparatus for photoreceptor

Publications (1)

Publication Number Publication Date
JP2000275872A true JP2000275872A (en) 2000-10-06

Family

ID=13740717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081232A Pending JP2000275872A (en) 1999-03-25 1999-03-25 Characteristic evaluation apparatus for photoreceptor

Country Status (1)

Country Link
JP (1) JP2000275872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129372A (en) * 2006-11-22 2008-06-05 Ricoh Co Ltd Characteristic evaluation apparatus of photoreceptor drum
EP2078988A2 (en) 2008-01-10 2009-07-15 Ricoh Company, Ltd. Image forming apparatus and image forming method
US7714882B2 (en) 2006-09-15 2010-05-11 Ricoh Company, Ltd. Image forming apparatus and image forming process
US7894750B2 (en) 2006-05-17 2011-02-22 Ricoh Company Limited Compact and high speed image forming apparatus and image forming method using the same
JP2014052524A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894750B2 (en) 2006-05-17 2011-02-22 Ricoh Company Limited Compact and high speed image forming apparatus and image forming method using the same
US7714882B2 (en) 2006-09-15 2010-05-11 Ricoh Company, Ltd. Image forming apparatus and image forming process
JP2008129372A (en) * 2006-11-22 2008-06-05 Ricoh Co Ltd Characteristic evaluation apparatus of photoreceptor drum
EP2078988A2 (en) 2008-01-10 2009-07-15 Ricoh Company, Ltd. Image forming apparatus and image forming method
JP2014052524A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
US6567171B1 (en) Digital densitometer with controlled light emitter
JP2000275872A (en) Characteristic evaluation apparatus for photoreceptor
KR950033722A (en) Image Forming Device
US4623243A (en) Apparatus for improving the performance of non-crystalline silicon photosensitive material in an electronic copier
JP2007155974A (en) Method of measuring fine area potential of photoreceptor, and device of measuring fine area potential of photoreceptor
JPH0241028B2 (en)
JP2539218B2 (en) Inspection method for photoreceptor characteristics
JP3717728B2 (en) Exposure timing correction method for photoreceptor characteristic evaluation apparatus
JP2003255791A (en) Image forming system
JP4739131B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method using the same
JPS61189567A (en) Image forming device
JPH05119569A (en) Image forming device
JP4686417B2 (en) Photoconductor durability characteristic evaluation apparatus and photoconductor durability characteristic evaluation method
JP4743877B2 (en) Photoreceptor evaluation apparatus, image forming apparatus, and evaluation method
JPH0229761A (en) Image forming device
JP2010204655A (en) Apparatus and method for suppressing image ghost due to photoreceptor
JP2881129B2 (en) Image forming device
JP2006038666A (en) Electric potential variation measuring device
GB2066983A (en) Variable magnification photocopier
JPH1124496A (en) Electrophotographic photoreceptor evaluating device
JP3410758B2 (en) Image forming device
JP2756969B2 (en) Image forming device
JPS63136071A (en) Control method for light quantity of electrostatic discharging light
JP2006039104A (en) Potential change measuring method and potential change measuring device
JPS61129662A (en) Image information recording device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116