JP2013191697A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2013191697A
JP2013191697A JP2012056276A JP2012056276A JP2013191697A JP 2013191697 A JP2013191697 A JP 2013191697A JP 2012056276 A JP2012056276 A JP 2012056276A JP 2012056276 A JP2012056276 A JP 2012056276A JP 2013191697 A JP2013191697 A JP 2013191697A
Authority
JP
Japan
Prior art keywords
wavelength
light
conversion element
photoelectric conversion
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012056276A
Other languages
Japanese (ja)
Inventor
Masao Miyamoto
正雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2012056276A priority Critical patent/JP2013191697A/en
Publication of JP2013191697A publication Critical patent/JP2013191697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell the photoelectric conversion efficiency of which is enhanced, by converting to a wavelength range of high photoelectric conversion efficiency in a photoelectric conversion element, depending on the dispersed wavelength range.SOLUTION: A solar cell 10a includes a spectral element 12a for dispersing sunlight LS (incident light) into first wavelength ranges L3, L4, and a second wavelength range L2, a wavelength conversion element 14a for converting the light in the second wavelength range L2 dispersed by the spectral element 12a into the light in the first wavelength range L1, and a photoelectric conversion element 20 performing photoelectric conversion of the light in the first wavelength range L1.

Description

本発明は、太陽光のエネルギーを電力に変換する際の光電変換効率を向上させた太陽電池に関する。   The present invention relates to a solar cell with improved photoelectric conversion efficiency when converting sunlight energy into electric power.

一般に太陽電池では、シリコンや化合物半導体等の励起物質に、太陽光を直接照射して励起を起こさせ、電気エネルギーを発生させている。しかし、シリコンや半導体等の励起物質の禁止帯幅(電荷を分離させて励起を起こすために必要なエネルギーに相当する)は一定であるので、その禁止帯幅よりも大きいエネルギーの光を照射したとき、余分なエネルギーは熱として消費される。そのため、太陽電池の励起物質に大きいエネルギーの光を照射しても、電気エネルギーに変換される光エネルギーは略一定となり、変換効率を上げることができない。   In general, in a solar cell, an excitation substance such as silicon or a compound semiconductor is directly irradiated with sunlight to cause excitation to generate electric energy. However, since the forbidden band width (corresponding to the energy required to cause excitation by separating the charges) is constant, excitation light such as silicon or semiconductor is irradiated with light of energy larger than the forbidden band width. When excess energy is consumed as heat. For this reason, even if the excitation material of the solar cell is irradiated with a large amount of light, the light energy converted into electric energy becomes substantially constant, and the conversion efficiency cannot be increased.

例えば、太陽電池に用いられる励起物質の一例である単結晶シリコンの禁止帯幅は約1.1eVであり、光の波長では約1000nmに相当する。この禁止帯幅よりも大きいエネルギーを有する10000nm以下の波長帯の光を照射した場合には、熱消費によるエネルギー損失が大きくなる。太陽光の波長は、300〜2000nmの範囲に幅広く分布している。また、光の強度は、550nm付近で最大を示している。このような太陽光のうち、特にエネルギーが大きな短波長の光(300〜900nm)を効率よく電気エネルギーに変換すると共に、長波長の光も併せて電気エネルギーに変換することは、重要な課題である。   For example, the forbidden band width of single crystal silicon, which is an example of an excitation substance used in a solar cell, is about 1.1 eV, which corresponds to about 1000 nm in the wavelength of light. When light having a wavelength band of 10,000 nm or less having energy larger than the forbidden band width is irradiated, energy loss due to heat consumption increases. The wavelength of sunlight is widely distributed in the range of 300 to 2000 nm. Further, the intensity of light shows a maximum at around 550 nm. Among such sunlight, it is an important issue to convert short wavelength light (300 to 900 nm) with particularly large energy into electric energy efficiently and also convert long wavelength light into electric energy. is there.

特許文献1〜5には、光電変換素子での光電変換効率の低い短波長の光を吸収して、光電変換効率の高い長波長の光を発光する波長変換素子(蛍光体)を、光電変換素子の入射側に配置した太陽電池の構成が開示されている。   In Patent Documents 1 to 5, a wavelength conversion element (phosphor) that absorbs short-wavelength light with low photoelectric conversion efficiency and emits long-wavelength light with high photoelectric conversion efficiency is photoelectrically converted. The structure of the solar cell arrange | positioned at the incident side of an element is disclosed.

また、特許文献6には、フレネルレンズを用いて光電変換素子の集光面に集光して、光エネルギーを電気エネルギーに変換する太陽電池が開示されている。特許文献6に記載されている太陽電池では、散乱光の入射により光電変換効率が低下することを防止するために、散乱光を垂直光に偏向させるプリズムシート(偏向板)を、フレネルレンズの入射側に配置した構成が示されている。   Patent Document 6 discloses a solar cell that condenses light on a light condensing surface of a photoelectric conversion element using a Fresnel lens and converts light energy into electric energy. In the solar cell described in Patent Document 6, a prism sheet (deflecting plate) that deflects scattered light into vertical light is used to prevent the photoelectric conversion efficiency from being lowered due to the incident scattered light. A configuration arranged on the side is shown.

また、特許文献7には、光電変換素子の受光面側に複数の集電グリッドを備える太陽電池において、集電グリッドによるシャドー損失を低減させて、光電変換効率を向上させる構成が開示されている。特許文献7に記載されている太陽電池では、集電グリッドの更に入射側に、所定の間隔を空けて回折部材を配置することによって、集電グリッドに向かって入射した光を回折により偏向させて、光電変換素子に入射させるように構成している。   Patent Document 7 discloses a configuration in which, in a solar cell including a plurality of current collecting grids on the light receiving surface side of a photoelectric conversion element, the shadow loss due to the current collecting grid is reduced and the photoelectric conversion efficiency is improved. . In the solar cell described in Patent Document 7, a diffraction member is arranged at a predetermined interval on the incident side of the current collecting grid so that light incident toward the current collecting grid is deflected by diffraction. The light is incident on the photoelectric conversion element.

特開昭63−200576号公報JP 63-200576 A 特開平7−142752号公報Japanese Patent Laid-Open No. 7-142752 特開平10−261811号公報Japanese Patent Laid-Open No. 10-261811 特開平11−220147号公報JP-A-11-220147 特開平11−345993号公報JP 11-345993 A 特開2007−73774号公報JP 2007-73774 A 特開2011−165731号公報JP 2011-165731 A

しかしながら、特許文献1〜5に記載されている太陽電池では、光電変換素子の入射側の全面に波長変換素子を配置していることから、光電変換効率が高い波長の光も、この波長変換素子で吸収され、減衰してしまう。   However, in the solar cells described in Patent Documents 1 to 5, since the wavelength conversion element is disposed on the entire surface on the incident side of the photoelectric conversion element, light having a wavelength with high photoelectric conversion efficiency is also applied to this wavelength conversion element. Is absorbed and attenuated.

また、特許文献6〜7に記載されている太陽電池では、光電変換効率が悪い波長の光の利用効率が悪いという不具合を生じていた。   Moreover, in the solar cell described in patent documents 6-7, the malfunction that the utilization efficiency of the light of a wavelength with bad photoelectric conversion efficiency was bad had arisen.

本発明は上記の課題に鑑み、光電変換効率を更に向上させた太陽電池を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a solar cell with further improved photoelectric conversion efficiency.

本発明に係る太陽電池は、入射光を第1波長帯及び第2波長帯に分光する分光素子と、前記分光素子により分光した第2波長帯を第1波長帯に変換する波長変換素子と、前記第1波長帯の光を光電変換する光電変換素子とを備えることを特徴とする。   A solar cell according to the present invention includes a spectroscopic element that splits incident light into a first wavelength band and a second wavelength band, a wavelength conversion element that converts a second wavelength band split by the spectroscopic element into a first wavelength band, And a photoelectric conversion element that photoelectrically converts light in the first wavelength band.

本発明によれば、分光した波長帯に応じて、光電変換素子において光電変換効率が良い波長帯に変換することができる。よって、広い波長帯域を有する入射光を有効に利用して、光電変換効率を向上させることができる。   According to the present invention, the photoelectric conversion element can be converted into a wavelength band with good photoelectric conversion efficiency according to the spectral wavelength band. Therefore, it is possible to improve the photoelectric conversion efficiency by effectively using incident light having a wide wavelength band.

また、他の発明は、前記分光素子は、回折格子であり、前記波長変換素子を、前記第2波長帯に含まれる複数の波長帯毎に複数種類の波長変換素子で構成したことを特徴とする。   In another aspect of the invention, the spectroscopic element is a diffraction grating, and the wavelength conversion element includes a plurality of types of wavelength conversion elements for a plurality of wavelength bands included in the second wavelength band. To do.

本発明によれば、簡単な構成で分光を行うことができる。   According to the present invention, spectroscopy can be performed with a simple configuration.

また、他の発明によれば、前記分光素子と前記光電変換素子との間の光路に沿ってミラーを配置し、前記ミラーの表面に前記波長変換素子を形成したことを特徴とする。   According to another invention, a mirror is disposed along an optical path between the spectroscopic element and the photoelectric conversion element, and the wavelength conversion element is formed on a surface of the mirror.

本発明によれば、簡単な構成で、分光した光に対する波長の変換を行うことができる。   According to the present invention, it is possible to perform wavelength conversion on the dispersed light with a simple configuration.

また、他の発明によれば、前記分光素子は、前記第1波長帯又は前記第2波長帯のいずれか一方の光を透過させると共に、他方の光を所定方向に反射させる第1波長選択フィルタであり、前記波長変換素子を、前記第2波長帯の光の光路上に配置したことを特徴とする。   According to another aspect of the invention, the spectroscopic element transmits the light in either the first wavelength band or the second wavelength band, and reflects the other light in a predetermined direction. The wavelength conversion element is arranged on the optical path of the light in the second wavelength band.

本発明は、入射光を波長帯に応じて分光し、光電変換素子において光電変換効率が低い波長帯については波長変換素子を配置して光電変換効率が良好な波長帯に変換し、光電変換素子において光電変換効率が良好な波長帯についてはそのまま光電変換素子に対して出射する。よって、広い波長帯域を有する入射光を有効に利用して、光電変換効率を向上することができる。   The present invention divides incident light according to a wavelength band, converts a wavelength band having a low photoelectric conversion efficiency in a photoelectric conversion element into a wavelength band having a high photoelectric conversion efficiency, and converts the photoelectric conversion element to a photoelectric conversion element. The wavelength band with good photoelectric conversion efficiency is directly output to the photoelectric conversion element. Therefore, it is possible to improve the photoelectric conversion efficiency by effectively using incident light having a wide wavelength band.

また、他の発明によれば、前記第1波長選択フィルタにより反射された前記他方の光を前記光電変換素子に向けて反射させる反射膜を配置したことを特徴とする。   According to another aspect of the invention, there is provided a reflective film that reflects the other light reflected by the first wavelength selection filter toward the photoelectric conversion element.

本発明によれば、分光素子をコンパクトに纏めることができる。   According to the present invention, the spectroscopic elements can be collected in a compact manner.

また、他の発明によれば、前記第1波長選択フィルタと前記反射膜とを平行に配置し、前記波長変換素子と前記入射光の入射面とを平行に配置し、前記第1波長選択フィルタと前記反射膜と前記波長変換素子と前記入射面とが平行四辺形状の透光性ブロックを形成していることを特徴とする。   According to another aspect of the invention, the first wavelength selection filter and the reflective film are arranged in parallel, the wavelength conversion element and the incident light incident surface are arranged in parallel, and the first wavelength selection filter The reflection film, the wavelength conversion element, and the incident surface form a parallelogram-shaped translucent block.

本発明によれば、分光素子と波長変換素子をコンパクトに纏めることができる。   According to the present invention, the spectroscopic element and the wavelength conversion element can be combined in a compact manner.

また、他の発明によれば、前記波長変換素子の入光面側に、前記第1波長帯の光を前記波長変換素子側に反射させる第2波長選択フィルタを配置したことを特徴とする。   According to another aspect of the invention, the second wavelength selection filter that reflects the light in the first wavelength band toward the wavelength conversion element is disposed on the light incident surface side of the wavelength conversion element.

本発明によれば、光電変換素子から反射してきた光を再度光電変換素子に向けて出射することで、光電変換効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, photoelectric conversion efficiency can be improved by radiate | emitting the light reflected from the photoelectric conversion element toward a photoelectric conversion element again.

また、他の発明によれば、前記第1波長選択フィルタを複数並列して配置し、前記第1波長選択フィルタのそれぞれに対して入射光を集光させるレンズアレイを配置したとを特徴とする。   According to another aspect of the invention, a plurality of the first wavelength selection filters are arranged in parallel, and a lens array for condensing incident light is arranged for each of the first wavelength selection filters. .

本発明によれば、入射光を効率良く光電変換素子に対して出射することができる。   ADVANTAGE OF THE INVENTION According to this invention, incident light can be radiate | emitted efficiently with respect to a photoelectric conversion element.

本発明に係る太陽電池は、入射光を波長帯に応じて分光し、その分光した波長帯に応じて、光電変換素子において光電変換効率が良い波長帯に変換する。従って、広い波長帯域を有する入射光を有効に利用して、光電変換効率を向上することができる。   The solar cell according to the present invention splits incident light according to a wavelength band, and converts the incident light into a wavelength band with good photoelectric conversion efficiency in the photoelectric conversion element according to the split wavelength band. Therefore, it is possible to improve the photoelectric conversion efficiency by effectively using incident light having a wide wavelength band.

アモルファスシリコン型の光電変換素子における光電変換効率の波長依存性の一例を示す図である。It is a figure which shows an example of the wavelength dependence of the photoelectric conversion efficiency in an amorphous silicon type photoelectric conversion element. 分光素子として回折格子を用いた、波長変換素子付きの太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell with a wavelength conversion element using the diffraction grating as a spectroscopic element. 分光素子として回折格子を用い、波長帯に応じて複数の波長変換素子を配置した太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell which used the diffraction grating as a spectroscopic element, and has arrange | positioned several wavelength conversion elements according to a wavelength range. 分光素子として回折格子を用い、分光した波長帯の光を平行光にするレンズを備えた、波長変換素子付きの太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell with a wavelength conversion element provided with the lens which uses a diffraction grating as a spectroscopic element, and parallelized the light of the spectral wavelength band. 分光素子として回折格子を用い、分光素子と光電変換素子との間の光路に沿って配置したミラー上に波長変換素子を形成した太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell which used the diffraction grating as a spectroscopic element, and formed the wavelength conversion element on the mirror arrange | positioned along the optical path between a spectroscopic element and a photoelectric conversion element. 分光素子として波長分光変換モジュールを用いた太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell using the wavelength spectral conversion module as a spectroscopic element. 分光素子として回折格子を用い、波長帯に応じて複数の波長変換素子を配置し、光電変換素子において反射した波長帯L1を再び光電変換素子に戻す第2波長選択フィルタを配置した太陽電池の構成を示す図である。Configuration of solar cell using a diffraction grating as a spectroscopic element, arranging a plurality of wavelength conversion elements according to the wavelength band, and arranging a second wavelength selection filter for returning the wavelength band L1 reflected by the photoelectric conversion element back to the photoelectric conversion element FIG. 分光素子として波長分光変換モジュールを用い、光電変換素子において反射した波長帯L1を再び光電変換素子に戻す第2波長選択フィルタを配置した太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell which has arrange | positioned the 2nd wavelength selection filter which returns the wavelength range | band L1 reflected in the photoelectric conversion element to a photoelectric conversion element again using a wavelength spectral conversion module as a spectral element. 斜めの入射光に対応するために偏向板を配置した太陽電池の構成を示す図である。It is a figure which shows the structure of the solar cell which has arrange | positioned the deflection | deviation board in order to respond | correspond to diagonal incident light.

先ず、図1に、アモルファスシリコン型の光電変換素子における光電変換効率の波長依存性の一例を示す。   First, FIG. 1 shows an example of wavelength dependency of photoelectric conversion efficiency in an amorphous silicon photoelectric conversion element.

図1に示すように、太陽光のエネルギー分布は広い波長帯に亙っている。これに対し、アモルファスシリコン型の光電変換素子が光電変換を行う波長帯は、狭い範囲である。従って、光電変換素子は、太陽光の一部分しか吸収しておらず、光電変換効率は低いものとなってしまう。   As shown in FIG. 1, the energy distribution of sunlight extends over a wide wavelength band. On the other hand, the wavelength band in which the amorphous silicon photoelectric conversion element performs photoelectric conversion is in a narrow range. Therefore, the photoelectric conversion element absorbs only a part of sunlight, and the photoelectric conversion efficiency is low.

そこで、本発明では、光電変換素子において吸収されない波長帯の光を有効利用するために、先ず回折格子等の分光素子を用いて太陽光を分光することとした。そして、分光した波長帯のうち、光電変換効率が低い波長帯の光を波長変換素子により変換して、光電変換素子において吸収可能な波長帯の光にする。以下、本発明の実施形態について、図面を参照して説明する。   Therefore, in the present invention, in order to effectively use light in a wavelength band that is not absorbed by the photoelectric conversion element, first, sunlight is dispersed using a spectral element such as a diffraction grating. Then, light in a wavelength band having a low photoelectric conversion efficiency among the spectral wavelength bands is converted by the wavelength conversion element so as to be light in a wavelength band that can be absorbed by the photoelectric conversion element. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、分光素子として回折格子を用いた、波長変換素子付きの太陽電池の構成を示す図である。図2に示す太陽電池10aでは、回折格子を用いた分光素子12aを用いて、太陽光LS(入射光)を所定の回折角毎に分光させる。そして、光電変換素子20において光電変換効率が低い波長帯L2(第2波長帯)と、所定の光電変換効率が得られる波長帯L3、L4(第1波長帯)を得る。分光した波長帯のうち、光電変換素子20において光電変換効率が低い波長帯L2は、波長変換素子14aを用いて所定の光電変換効率が得られる波長帯L1の光に変換する。   FIG. 2 is a diagram showing a configuration of a solar cell with a wavelength conversion element using a diffraction grating as a spectroscopic element. In the solar cell 10a shown in FIG. 2, sunlight LS (incident light) is spectrally separated for every predetermined diffraction angle using the spectroscopic element 12a using a diffraction grating. And in the photoelectric conversion element 20, the wavelength band L2 (2nd wavelength band) with low photoelectric conversion efficiency and the wavelength bands L3 and L4 (1st wavelength band) from which predetermined | prescribed photoelectric conversion efficiency are obtained are obtained. Of the spectral bands, the wavelength band L2 having a low photoelectric conversion efficiency in the photoelectric conversion element 20 is converted into light in the wavelength band L1 at which a predetermined photoelectric conversion efficiency is obtained using the wavelength conversion element 14a.

このように、太陽光LSを回折格子を用いた分光素子12aで分光して、より光電変換効率が良好な波長帯L1へ変換してから光電変換素子20に入光させることで、太陽電池10aの光電変換効率を向上させることができる。   As described above, the solar cell 10a is obtained by dispersing the sunlight LS with the spectroscopic element 12a using the diffraction grating, and converting the sunlight LS into the wavelength band L1 having better photoelectric conversion efficiency and then entering the photoelectric conversion element 20. The photoelectric conversion efficiency of can be improved.

従来のように、光電変換素子の入光面の全面に波長変換素子を配置した場合には、波長変換する必要のない波長帯の光も波長変換素子を通過することになって、その過程で吸収または散乱による損失が生じていた。本発明では、光電変換効率が低い特定の波長帯L2以外は、波長変換素子14aに入射しないように構成している。従って、吸収または散乱による損失を抑制することができる。なお、回折角は入射角に依存して変わるため、入射角は一定であることが好ましい。従って、太陽電池10aの向きを、太陽光の入射方向に追従させるための、太陽光追従用の駆動機構を備えることもできる。   When the wavelength conversion element is arranged on the entire light incident surface of the photoelectric conversion element as in the past, light in a wavelength band that does not need to be converted also passes through the wavelength conversion element. Loss due to absorption or scattering occurred. In the present invention, the light is not incident on the wavelength conversion element 14a except for the specific wavelength band L2 having low photoelectric conversion efficiency. Therefore, loss due to absorption or scattering can be suppressed. Since the diffraction angle changes depending on the incident angle, the incident angle is preferably constant. Therefore, it is possible to provide a driving mechanism for tracking sunlight, in order to make the direction of the solar cell 10a follow the incident direction of sunlight.

光電変換素子20として、単結晶シリコン型やアモルファスシリコン型等の素子を用いることができる。また、分光素子12aとして回折格子を用いる他、やプリズム等の素子を用いることができる。また、波長変換素子14aとして、蛍光体等を用いることができる。例えば、青色から黄色に波長を変換する素子として、Y3Al512:Ce(YAG:Ce系蛍光体)を用いることができる。また、緑色から赤色に波長を変換する素子として、CaAlSiN3:Eu(赤色カズン蛍光体)を用いることができる。また、短い波長の光を吸収して長い波長の光を発光するストークス型の波長変換素子として、ZnS等を用いることができる。また、長い波長の光を吸収して短い波長の光を発光するアンチストークス型の波長変換素子として、YbEr、YbTm等を用いることができる。 As the photoelectric conversion element 20, an element such as a single crystal silicon type or an amorphous silicon type can be used. In addition to using a diffraction grating as the spectroscopic element 12a, an element such as a prism can be used. A phosphor or the like can be used as the wavelength conversion element 14a. For example, Y 3 Al 5 O 12 : Ce (YAG: Ce-based phosphor) can be used as an element for converting the wavelength from blue to yellow. In addition, as a device for converting the wavelength from green to red, CaAlSiN 3 : Eu (red cousin phosphor) can be used. In addition, ZnS or the like can be used as a Stokes type wavelength conversion element that absorbs light having a short wavelength and emits light having a long wavelength. Further, YbEr, YbTm, or the like can be used as an anti-Stokes type wavelength conversion element that absorbs light having a long wavelength and emits light having a short wavelength.

図3は、分光素子として回折格子を用い、波長帯に応じて複数の波長変換素子を配置した太陽電池の構成を示す図である。図3に示す太陽電池10bでは、回折格子を用いた分光素子12aを用いて、太陽光LSを所定の回折角毎に分光させる。そして、光電変換素子20において光電変換効率が低い波長帯L2、L3、L4(第2波長帯)の光を得る。分光した波長帯L2、L3、L4に対して、それぞれの波長帯に適した波長変換素子14a、14b、14cを用いて、より高い光電変換効率が得られる波長帯L1(第1波長帯)の光に変換する。   FIG. 3 is a diagram showing a configuration of a solar cell in which a diffraction grating is used as a spectroscopic element and a plurality of wavelength conversion elements are arranged according to the wavelength band. In the solar cell 10b shown in FIG. 3, the sunlight LS is dispersed at every predetermined diffraction angle by using the spectroscopic element 12a using a diffraction grating. And in the photoelectric conversion element 20, the light of the wavelength band L2, L3, L4 (2nd wavelength band) with a low photoelectric conversion efficiency is obtained. Using the wavelength conversion elements 14a, 14b, and 14c suitable for each wavelength band, the wavelength band L1 (first wavelength band) in which higher photoelectric conversion efficiency is obtained with respect to the spectral wavelength bands L2, L3, and L4. Convert to light.

このように、太陽光LSを回折格子を用いた分光素子12aで分光して、光電変換素子20の量子効率に優れる、光電変換効率が良好な波長帯L1へ変換してから光電変換素子20に入光させることで、太陽電池10bの光電変換効率を向上させることができる。分光素子12aを用いて波長毎に分光することによって、複数の波長帯L2、L3、L4に適した波長変換素子14a、14b、14cを選択して配置することができる。   In this way, the solar light LS is spectrally separated by the spectroscopic element 12a using a diffraction grating, and converted into the wavelength band L1 having excellent quantum efficiency of the photoelectric conversion element 20 and good photoelectric conversion efficiency. By making it enter, the photoelectric conversion efficiency of the solar cell 10b can be improved. By performing spectroscopy for each wavelength using the spectroscopic element 12a, it is possible to select and arrange the wavelength conversion elements 14a, 14b, and 14c suitable for the plurality of wavelength bands L2, L3, and L4.

図4は、分光素子として回折格子を用い、分光した波長帯の光を平行光にするレンズを備えた、波長変換素子付きの太陽電池の構成を示す図である。図4に示す太陽電池10cでは、回折格子を用いた分光素子12aを用いて太陽光LSを所定の回折角毎に分光させる。そして、光電変換素子20において光電変換効率が低い波長帯L2(第2波長帯)と、所定の光電変換効率が得られる波長帯L3、L4(第1波長帯)の光を得る。その後、レンズ16を用いて広がって進行する波長帯L2、L4及び波長帯L3の光を平行光に集約する。そして、分光した波長帯のうち、光電変換素子20において光電変換効率が低い波長帯L2は、波長変換素子14aを用いて所定の光電変換効率が得られる波長帯L1の光に変換する。   FIG. 4 is a diagram illustrating a configuration of a solar cell with a wavelength conversion element that includes a diffraction grating as a spectroscopic element and includes a lens that collimates light in a spectral wavelength band. In the solar cell 10c shown in FIG. 4, the sunlight LS is dispersed at every predetermined diffraction angle using the spectroscopic element 12a using a diffraction grating. And the light of the wavelength band L2 (2nd wavelength band) with a low photoelectric conversion efficiency in the photoelectric conversion element 20 and the wavelength bands L3 and L4 (1st wavelength band) from which predetermined photoelectric conversion efficiency is obtained is obtained. Thereafter, the light beams in the wavelength bands L2 and L4 and the wavelength band L3 that spread and travel using the lens 16 are collected into parallel light. Of the spectral bands, the wavelength band L2 having a low photoelectric conversion efficiency in the photoelectric conversion element 20 is converted into light in the wavelength band L1 at which a predetermined photoelectric conversion efficiency is obtained using the wavelength conversion element 14a.

このように、太陽光LSを回折格子を用いた分光素子12aで分光し、平行光に集約してから光電変換素子20に入光させることで、光電変換素子20を小型化することができる。また、レンズ16を用いて波長帯L2及び波長帯L4の光を平行光にする代わりに、所定の大きさに集光させることもできる。レンズ16を用いて波長帯L2及び波長帯L4の光を集光させることで、更に光電変換素子20を小型化することができる。   Thus, the photoelectric conversion element 20 can be reduced in size by dispersing the sunlight LS with the spectroscopic element 12a using a diffraction grating, concentrating the light into parallel light, and entering the photoelectric conversion element 20. Further, instead of using the lens 16 to convert the light in the wavelength band L2 and the wavelength band L4 into parallel light, the light can be condensed to a predetermined size. By condensing the light of the wavelength band L2 and the wavelength band L4 using the lens 16, the photoelectric conversion element 20 can be further reduced in size.

図5は、分光素子として回折格子を用い、分光素子と光電変換素子との間の光路に沿って対向配置した一対のミラーの一方の上に波長変換素子を形成した太陽電池の構成を示す図である。図5に示す太陽電池10dでは、回折格子を用いた分光素子12aを用いて太陽光LSを所定の回折角毎に分光させる。そして、光電変換素子20において光電変換効率が低い波長帯L2(第2波長帯)と、所定の光電変換効率が得られる波長帯L3、L4(第1波長帯)の光を得る。分光した波長帯のうち、所定の角度で回折した波長帯の光を、光路に沿って配置したミラー22a、22bで反射させる。光電変換素子20において光電変換効率が低い波長帯L2は、ミラー22a上に形成した波長変換素子14aを用いて所定の光電変換効率が得られる波長帯L1の光に変換する。   FIG. 5 is a diagram showing a configuration of a solar cell in which a diffraction grating is used as a spectroscopic element, and a wavelength conversion element is formed on one of a pair of mirrors arranged to face each other along an optical path between the spectroscopic element and the photoelectric conversion element. It is. In the solar cell 10d shown in FIG. 5, the sunlight LS is dispersed at every predetermined diffraction angle using the spectroscopic element 12a using a diffraction grating. And the light of the wavelength band L2 (2nd wavelength band) with a low photoelectric conversion efficiency in the photoelectric conversion element 20 and the wavelength bands L3 and L4 (1st wavelength band) from which predetermined photoelectric conversion efficiency is obtained is obtained. Of the spectral wavelength band, light in the wavelength band diffracted at a predetermined angle is reflected by mirrors 22a and 22b arranged along the optical path. The wavelength band L2 having a low photoelectric conversion efficiency in the photoelectric conversion element 20 is converted into light in the wavelength band L1 at which a predetermined photoelectric conversion efficiency is obtained using the wavelength conversion element 14a formed on the mirror 22a.

このように、太陽光LSを回折格子を用いた分光素子12aで分光し、より光電変換効率が良好な波長帯L1へ変換してから光電変換素子20に入光させることで、太陽電池10dの光電変換効率を向上させることができる。また、図4に示したように、集光用のレンズ16を配置すると太陽電池10cが大型になってしまうような場合には、互いに対向配置させた回折格子と光電変換素子20との光路間にミラー22a、22bを配置し、ミラー22aの表面の一部に波長変換素子14aを配置することで、太陽電池10dの小型化と軽量化を実現することができる。   In this way, the solar light LS is spectrally separated by the spectroscopic element 12a using the diffraction grating, converted into the wavelength band L1 having better photoelectric conversion efficiency, and then incident on the photoelectric conversion element 20, thereby allowing the solar cell 10d to Photoelectric conversion efficiency can be improved. In addition, as shown in FIG. 4, when the condensing lens 16 is arranged, the solar cell 10 c becomes large in size, and the optical path between the diffraction grating and the photoelectric conversion element 20 arranged to face each other. The solar cells 10d can be reduced in size and weight by disposing the mirrors 22a and 22b and disposing the wavelength conversion element 14a on a part of the surface of the mirror 22a.

なお、図5に示す実施例では、ミラー22a上に1種類の波長変換素子14aを配置している例を示しているが、光の回折角に応じてミラー22a上に複数種類の波長変換素子を配置することができる。また、対向する側のミラー22bに、他の種類の波長変換素子を配置することもできる。   In the embodiment shown in FIG. 5, an example is shown in which one type of wavelength conversion element 14a is arranged on the mirror 22a. However, a plurality of types of wavelength conversion elements are provided on the mirror 22a according to the diffraction angle of light. Can be arranged. In addition, other types of wavelength conversion elements can be arranged on the opposite mirror 22b.

図6は、分光素子として波長分光変換モジュールを用いた太陽電池の構成を示す図である。図6に示す太陽電池10eでは、分光素子12bを用いて太陽光LSを、波長帯L1及び波長帯L2に分光させている。分光素子12bには、太陽光LSをそれぞれの第1波長選択フィルタ28に向けて集光させるレンズアレイ24と、レンズアレイ24によって集光した光のうち波長帯L1を透過させると共に波長帯L2を反射させて分光を行う第1波長選択フィルタ28と、第1波長選択フィルタ28が反射させた波長帯L2を波長変換素子14aに向けて反射させる反射膜30とを備えている。   FIG. 6 is a diagram showing a configuration of a solar cell using a wavelength spectral conversion module as a spectroscopic element. In the solar cell 10e shown in FIG. 6, the sunlight LS is spectrally divided into the wavelength band L1 and the wavelength band L2 using the spectroscopic element 12b. The spectroscopic element 12b has a lens array 24 that condenses sunlight LS toward each first wavelength selection filter 28, and transmits the wavelength band L1 of the light collected by the lens array 24 and transmits the wavelength band L2. A first wavelength selection filter 28 that reflects and performs spectroscopy and a reflection film 30 that reflects the wavelength band L2 reflected by the first wavelength selection filter 28 toward the wavelength conversion element 14a are provided.

波長変換素子14aは、波長帯L2の光を波長帯L1の光に変換する。このように、太陽光LSを第1波長選択フィルタ28を用いた分光素子12bで波長帯L1及び波長帯L2に分光し、波長帯L2の光を、より光電変換効率が良好な波長帯L1へ変換してから光電変換素子20に入光させることで、回折格子を用いずに、太陽電池10eの光電変換効率を向上させることができる。   The wavelength conversion element 14a converts light in the wavelength band L2 into light in the wavelength band L1. In this way, the sunlight LS is split into the wavelength band L1 and the wavelength band L2 by the spectroscopic element 12b using the first wavelength selection filter 28, and the light in the wavelength band L2 is converted into the wavelength band L1 with better photoelectric conversion efficiency. By converting the light into the photoelectric conversion element 20 after conversion, the photoelectric conversion efficiency of the solar cell 10e can be improved without using a diffraction grating.

第1波長選択フィルタ28として、誘電体多層膜から構成されるダイクロイックフィルタを用いることができる。第1波長選択フィルタ28は、太陽光LSの光軸(光電変換素子20の法線方向)に対して傾けて配置され、例えば太陽光LSに含まれる量子効率が劣る短波長光(波長帯L2)の光を反射させると共に、量子効率に優れた長波長光(第1波長帯)の光を透過させる。   As the first wavelength selection filter 28, a dichroic filter composed of a dielectric multilayer film can be used. The first wavelength selection filter 28 is arranged to be inclined with respect to the optical axis of the sunlight LS (the normal direction of the photoelectric conversion element 20). For example, the short wavelength light (wavelength band L2) in which the quantum efficiency included in the sunlight LS is inferior. ) And the light of the long wavelength light (first wavelength band) excellent in quantum efficiency are transmitted.

反射膜30は、第1波長選択フィルタ28に対向して配置され、第1波長選択フィルタ28で反射された短波長光(波長帯L2)の光を波長変換素子14aに向けて反射する。波長変換素子14aは、波長帯L2の光を入射して波長帯L1の光に変換して、光電変換素子20に入光させる。また、第1波長選択フィルタ28を透過した波長帯L1の光も、光電変換素子20に入光させる。   The reflective film 30 is disposed to face the first wavelength selection filter 28 and reflects the light of the short wavelength light (wavelength band L2) reflected by the first wavelength selection filter 28 toward the wavelength conversion element 14a. The wavelength conversion element 14 a enters the light in the wavelength band L <b> 2, converts the light into the light in the wavelength band L <b> 1, and causes the photoelectric conversion element 20 to enter the light. Further, the light in the wavelength band L1 that has passed through the first wavelength selection filter 28 is also incident on the photoelectric conversion element 20.

また、図6に示すように、第1波長選択フィルタ28と反射膜30とを平行に配置し、波長変換素子14aと太陽光LS(入射光)の入射面とを平行に配置してある。そして、第1波長選択フィルタ28と反射膜30と波長変換素子14aと入射面とが平行四辺形状の透光性ブロックになるように、一体化して形成してある。更に、複数の平行四辺形状の透光性ブロックを、アレー状に一体化してある。   Moreover, as shown in FIG. 6, the 1st wavelength selection filter 28 and the reflecting film 30 are arrange | positioned in parallel, and the wavelength conversion element 14a and the incident surface of sunlight LS (incident light) are arrange | positioned in parallel. The first wavelength selection filter 28, the reflective film 30, the wavelength conversion element 14a, and the incident surface are integrally formed so as to form a parallelogram-shaped translucent block. Furthermore, a plurality of parallelogram-shaped translucent blocks are integrated in an array.

なお、波長帯L1を透過して波長帯L2を反射する第1波長選択フィルタ28とは逆に、波長帯L2を透過して波長帯L1を反射する波長選択フィルタを用いることもできる。その場合には、波長帯L2の透過光は波長変換素子14aを通過させて波長帯L1の光に変換してから光電変換素子20に入光させる。また、波長選択フィルタが反射した波長帯L1は、反射膜30で反射させて、直接光電変換素子20に入光させる。また、太陽光のような平行光を第1波長選択フィルタ28に入射させる場合には、複数のリニアレンズからなるレンズアレイ24は、基本的に1枚とすることもできる。   Note that a wavelength selection filter that transmits the wavelength band L2 and reflects the wavelength band L1 may be used instead of the first wavelength selection filter 28 that transmits the wavelength band L1 and reflects the wavelength band L2. In this case, the transmitted light in the wavelength band L2 passes through the wavelength conversion element 14a and is converted into light in the wavelength band L1, and then enters the photoelectric conversion element 20. The wavelength band L1 reflected by the wavelength selection filter is reflected by the reflective film 30 and directly enters the photoelectric conversion element 20. When parallel light such as sunlight is incident on the first wavelength selection filter 28, the lens array 24 composed of a plurality of linear lenses can be basically one.

図7は、分光素子として回折格子を用い、波長帯に応じて複数の波長変換素子を配置し、光電変換素子において反射して戻ってきた光を再び光電変換素子に戻す第2波長選択フィルタを配置した太陽電池の構成を示す図である。図7に示す太陽電池10fでは、回折格子を用いた分光素子12aにより太陽光LSを所定の回折角毎に分光させる。そして、光電変換素子20における光電変換効率が低い波長帯L2、L3、L4(第2波長帯)の光を得る。分光した波長帯L2、L3、L4に対して、それぞれの波長帯に適した波長変換素子14a、14b、14cを用いて、より高い光電変換効率が得られる波長帯L1(第1波長帯)の光に変換する。   FIG. 7 shows a second wavelength selection filter that uses a diffraction grating as a spectroscopic element, arranges a plurality of wavelength conversion elements according to wavelength bands, and returns light reflected and returned from the photoelectric conversion element to the photoelectric conversion element again. It is a figure which shows the structure of the arrange | positioned solar cell. In the solar cell 10 f shown in FIG. 7, the sunlight LS is dispersed at every predetermined diffraction angle by the spectroscopic element 12 a using a diffraction grating. And the light of the wavelength band L2, L3, L4 (2nd wavelength band) with the low photoelectric conversion efficiency in the photoelectric conversion element 20 is obtained. Using the wavelength conversion elements 14a, 14b, and 14c suitable for each wavelength band, the wavelength band L1 (first wavelength band) in which higher photoelectric conversion efficiency is obtained with respect to the spectral wavelength bands L2, L3, and L4. Convert to light.

更に、太陽電池10fでは、分光素子12aと波長変換素子14a、14b、14cとの間に、第2波長選択フィルタ32a、32b、32cを配置して、一旦光電変換素子20に到達した光が光電変換素子20において反射して戻ってきた場合に、波長帯L1の光を再び光電変換素子20に向けて反射させている。この第2波長選択フィルタ32a、32b、32cは、分光素子12aにより分光した光を透過させるとともに、波長変換素子14a、14b、14cによって波長変換された波長帯L1を反射させる素子であり、ダイクロイックフィルタ等を用いることができる。   Further, in the solar cell 10f, the second wavelength selection filters 32a, 32b, and 32c are disposed between the spectroscopic element 12a and the wavelength conversion elements 14a, 14b, and 14c, and the light that has once reached the photoelectric conversion element 20 is photoelectrically converted. When the light is reflected and returned by the conversion element 20, the light in the wavelength band L <b> 1 is reflected again toward the photoelectric conversion element 20. The second wavelength selection filters 32a, 32b, and 32c are elements that transmit the light dispersed by the spectroscopic element 12a and reflect the wavelength band L1 wavelength-converted by the wavelength conversion elements 14a, 14b, and 14c, and are dichroic filters. Etc. can be used.

図7に示す太陽電池10fの構成を用いることにより、光電変換素子20で電力に変換されずに反射して戻ってきた光を、再度、光電変換素子20(波長変換素子14a側)に入射させて、光電変換効率を向上させることができる。   By using the configuration of the solar cell 10 f shown in FIG. 7, the light that is reflected and returned without being converted into electric power by the photoelectric conversion element 20 is incident again on the photoelectric conversion element 20 (the wavelength conversion element 14 a side). Thus, the photoelectric conversion efficiency can be improved.

図8は、分光素子として波長分光変換モジュールを用い、光電変換素子において反射して戻ってきた波長帯L1を再び光電変換素子に戻す第2波長選択フィルタを配置した太陽電池の構成を示す図である。図8に示す太陽電池10gでは、分光素子12bを用いて太陽光LSを、波長帯L1及び波長帯L2に分光させる。分光素子12bには、太陽光LSをそれぞれの第1波長選択フィルタ28に向けて集光させるレンズアレイ24と、レンズアレイ24によって集光した光のうち波長帯L1を透過させると共に波長帯L2を反射させて分光を行う第1波長選択フィルタ28と、第1波長選択フィルタ28が反射させた波長帯L2を波長変換素子14aに向けて反射させる反射膜30とを備えている。   FIG. 8 is a diagram illustrating a configuration of a solar cell in which a wavelength spectral conversion module is used as a spectroscopic element, and a second wavelength selection filter that returns the wavelength band L1 reflected and returned from the photoelectric conversion element to the photoelectric conversion element is disposed. is there. In the solar cell 10g shown in FIG. 8, the sunlight LS is spectrally divided into the wavelength band L1 and the wavelength band L2 using the spectroscopic element 12b. The spectroscopic element 12b has a lens array 24 that condenses sunlight LS toward each first wavelength selection filter 28, and transmits the wavelength band L1 of the light collected by the lens array 24 and transmits the wavelength band L2. A first wavelength selection filter 28 that reflects and performs spectroscopy and a reflection film 30 that reflects the wavelength band L2 reflected by the first wavelength selection filter 28 toward the wavelength conversion element 14a are provided.

波長変換素子14aは、波長帯L2の光を波長帯L1の光に変換する。このように、太陽光LSを第1波長選択フィルタ28を用いた分光素子12bで波長帯L1及び波長帯L2に分光し、波長帯L2の光を、より光電変換効率が良好な波長帯L1へ変換してから光電変換素子20に入光させている。第1波長選択フィルタ28として、誘電体多層膜から構成されるダイクロイックフィルタを用いることができる。   The wavelength conversion element 14a converts light in the wavelength band L2 into light in the wavelength band L1. In this way, the sunlight LS is split into the wavelength band L1 and the wavelength band L2 by the spectroscopic element 12b using the first wavelength selection filter 28, and the light in the wavelength band L2 is converted into the wavelength band L1 with better photoelectric conversion efficiency. After conversion, light is incident on the photoelectric conversion element 20. As the first wavelength selection filter 28, a dichroic filter composed of a dielectric multilayer film can be used.

反射膜30は、第1波長選択フィルタ28に対して対向して配置され、第1波長選択フィルタ28で反射された短波長光(波長帯L2)の光を波長変換素子14aに向けて反射する。波長変換素子14aは、波長帯L2の光を入射して波長帯L1の光に変換して、光電変換素子20に入光させる。また、第1波長選択フィルタ28を透過した波長帯L1の光も、光電変換素子20に入光させる。   The reflective film 30 is disposed to face the first wavelength selection filter 28 and reflects the light of the short wavelength light (wavelength band L2) reflected by the first wavelength selection filter 28 toward the wavelength conversion element 14a. . The wavelength conversion element 14 a enters the light in the wavelength band L <b> 2, converts the light into the light in the wavelength band L <b> 1, and causes the photoelectric conversion element 20 to enter the light. Further, the light in the wavelength band L1 that has passed through the first wavelength selection filter 28 is also incident on the photoelectric conversion element 20.

更に、太陽電池10gでは、分光素子12bと波長変換素子14aとの間に、第2波長選択フィルタ32を配置して、一旦光電変換素子20に到達した光が光電変換素子20において反射して戻ってきた場合に、波長帯L1の光を再び光電変換素子20(波長変換素子14a側)に向けて反射させている。この第2波長選択フィルタ32は、分光素子12bにより分光した光を透過させるとともに、波長変換素子14aによって波長変換された波長帯L1を反射させる素子であり、ダイクロイックフィルタを用いることができる。   Furthermore, in the solar cell 10g, the second wavelength selection filter 32 is disposed between the spectroscopic element 12b and the wavelength conversion element 14a, and the light that has once reached the photoelectric conversion element 20 is reflected by the photoelectric conversion element 20 and returned. In this case, the light in the wavelength band L1 is reflected again toward the photoelectric conversion element 20 (on the wavelength conversion element 14a side). The second wavelength selection filter 32 is an element that transmits the light dispersed by the spectroscopic element 12b and reflects the wavelength band L1 wavelength-converted by the wavelength conversion element 14a, and a dichroic filter can be used.

図8に示す太陽電池10gの構成を用いることにより、光電変換素子20で電力に変換されずに反射してしまった光を、再度、光電変換素子20に入射させて、光電変換効率を向上させることができる。なお、実施例5と同様に、波長帯L1を透過して波長帯L2を反射する第1波長選択フィルタ28とは逆に、波長帯L2を透過して波長帯L1を反射する波長選択フィルタを用いることもできる。   By using the configuration of the solar cell 10 g shown in FIG. 8, the light that has been reflected without being converted into electric power by the photoelectric conversion element 20 is incident on the photoelectric conversion element 20 again to improve the photoelectric conversion efficiency. be able to. Similarly to the fifth embodiment, a wavelength selection filter that transmits the wavelength band L2 and reflects the wavelength band L1 is opposite to the first wavelength selection filter 28 that transmits the wavelength band L1 and reflects the wavelength band L2. It can also be used.

図9は、斜めの入射光に対応するために拡散板を配置した太陽電池の構成を示す図である。図9に示す太陽電池10hでは、斜めの太陽光LS(入射光)を、分光素子12aに対して垂直に近づけるように偏向(分光素子12aに対して垂直に入射する成分が生じるように拡散)させる拡散板34を配置してある。そして、回折格子を用いた分光素子12aにより太陽光LSを所定の回折角毎に分光させる。そして、光電変換素子20において光電変換効率が低い波長帯L2(第2波長帯)と、所定の光電変換効率が得られる波長帯L3、L4(第1波長帯)の光を得る。分光した波長帯のうち、光電変換素子20において光電変換効率が低い波長帯L2は、波長変換素子14aを用いて所定の光電変換効率が得られる波長帯L1の光に変換してから、光電変換素子20に入光させる。拡散板34は、入射した光を全方位に略均一に拡散させることができるので、該拡散板34を配置することにより、太陽の位置によらずに回折格子(分光素子12a)に入射する光の状態(分布)を一定に近づけることができる。これにより、太陽光追従用の駆動機構を備えることなく、安定した回折(ひていは、安定した変換効率または変換効率の向上)が達成できる。なお、拡散板34と回折格子(分光素子12a)の間に、該拡散板34により拡散した光を、例えば平行光に近づけるように集光するレンズを配置してもよい。   FIG. 9 is a diagram showing a configuration of a solar cell in which a diffusion plate is arranged to cope with oblique incident light. In solar cell 10h shown in FIG. 9, slanting sunlight LS (incident light) is deflected so as to approach perpendicular to spectral element 12a (diffuse so as to produce a component that is perpendicularly incident on spectral element 12a). A diffusion plate 34 is disposed. And the sunlight LS is spectrally divided for every predetermined diffraction angle by the spectroscopic element 12a using a diffraction grating. And the light of the wavelength band L2 (2nd wavelength band) with a low photoelectric conversion efficiency in the photoelectric conversion element 20 and the wavelength bands L3 and L4 (1st wavelength band) from which predetermined photoelectric conversion efficiency is obtained is obtained. Among the spectral bands, the wavelength band L2 having a low photoelectric conversion efficiency in the photoelectric conversion element 20 is converted into light of the wavelength band L1 at which a predetermined photoelectric conversion efficiency is obtained using the wavelength conversion element 14a, and then photoelectric conversion is performed. The light enters the element 20. Since the diffuser plate 34 can diffuse the incident light substantially uniformly in all directions, the light incident on the diffraction grating (spectral element 12a) regardless of the position of the sun by arranging the diffuser plate 34. The state (distribution) of can be brought close to a constant. Thereby, stable diffraction (and eventually stable conversion efficiency or improvement of conversion efficiency) can be achieved without providing a drive mechanism for tracking sunlight. A lens for condensing the light diffused by the diffusion plate 34 so as to be close to, for example, parallel light may be disposed between the diffusion plate 34 and the diffraction grating (spectral element 12a).

10a、10b、10c、10d、10f、10g、10h…太陽電池
12a、12b…分光素子
14a、14b、14c…波長変換素子
16…レンズ
20…光電変換素子
22a、22b…ミラー
24…レンズアレイ
26…波長分光変換モジュール
28…第1波長選択フィルタ
30…反射膜
32、32a、32b、32c…第2波長選択フィルタ
34…拡散板
10a, 10b, 10c, 10d, 10f, 10g, 10h ... solar cells 12a, 12b ... spectral elements 14a, 14b, 14c ... wavelength conversion elements 16 ... lenses 20 ... photoelectric conversion elements 22a, 22b ... mirrors 24 ... lens arrays 26 ... Wavelength spectral conversion module 28 ... first wavelength selection filter 30 ... reflection film 32, 32a, 32b, 32c ... second wavelength selection filter 34 ... diffusing plate

Claims (8)

入射光を第1波長帯及び第2波長帯に分光する分光素子と、
前記分光素子により分光した第2波長帯を第1波長帯に変換する波長変換素子と、
前記第1波長帯の光を光電変換する光電変換素子と、を備える太陽電池。
A spectroscopic element that splits incident light into a first wavelength band and a second wavelength band;
A wavelength conversion element that converts a second wavelength band dispersed by the spectral element into a first wavelength band;
A solar cell comprising: a photoelectric conversion element that photoelectrically converts light in the first wavelength band.
前記分光素子は、回折格子であり、
前記波長変換素子は、前記第2波長帯に含まれる複数の波長帯毎に複数種類の波長変換素子で構成されている請求項1に記載の太陽電池。
The spectroscopic element is a diffraction grating;
The solar cell according to claim 1, wherein the wavelength conversion element includes a plurality of types of wavelength conversion elements for a plurality of wavelength bands included in the second wavelength band.
前記分光素子と前記光電変換素子との間の光路に沿ってミラーを配置し、
前記ミラーの表面に前記波長変換素子を形成した請求項1又は2に記載の太陽電池。
A mirror is disposed along an optical path between the spectroscopic element and the photoelectric conversion element,
The solar cell according to claim 1, wherein the wavelength conversion element is formed on a surface of the mirror.
前記分光素子は、前記第1波長帯又は前記第2波長帯のいずれか一方の光を透過させ、他方の光を所定方向に反射させる第1波長選択フィルタであり、
前記波長変換素子は、前記第2波長帯の光の光路上に配置されている請求項1に記載の太陽電池。
The spectroscopic element is a first wavelength selection filter that transmits light in either the first wavelength band or the second wavelength band and reflects the other light in a predetermined direction.
The solar cell according to claim 1, wherein the wavelength conversion element is disposed on an optical path of light in the second wavelength band.
前記第1波長選択フィルタにより反射された前記他方の光を前記光電変換素子に向けて反射させる反射膜を配置した請求項4に記載の太陽電池。   The solar cell of Claim 4 which has arrange | positioned the reflecting film which reflects the said other light reflected by the said 1st wavelength selection filter toward the said photoelectric conversion element. 前記第1波長選択フィルタと前記反射膜とを平行に配置し、前記波長変換素子と前記入射光の入射面とを平行に配置し、前記第1波長選択フィルタと前記反射膜と前記波長変換素子と前記入射面とが平行四辺形状の透光性ブロックを形成している請求項5に記載の太陽電池。   The first wavelength selection filter and the reflection film are arranged in parallel, the wavelength conversion element and the incident surface of the incident light are arranged in parallel, the first wavelength selection filter, the reflection film, and the wavelength conversion element. The solar cell according to claim 5, wherein the incident surface forms a parallelogram-shaped translucent block. 前記波長変換素子の入光面側に、前記第1波長帯の光を前記波長変換素子側に反射させる第2波長選択フィルタを配置した請求項1、2、4、5、6のいずれか1項に記載の太陽電池。   7. The first wavelength selection filter according to claim 1, further comprising a second wavelength selection filter configured to reflect the light in the first wavelength band toward the wavelength conversion element side on the light incident surface side of the wavelength conversion element. The solar cell according to item. 前記第1波長選択フィルタが、複数並列して配置され、
前記第1波長選択フィルタのそれぞれに対して入射光を集光させるレンズアレイを配置した請求項4〜7のいずれか1項に記載の太陽電池。
A plurality of the first wavelength selection filters are arranged in parallel;
The solar cell of any one of Claims 4-7 which has arrange | positioned the lens array which condenses incident light with respect to each of said 1st wavelength selection filter.
JP2012056276A 2012-03-13 2012-03-13 Solar cell Pending JP2013191697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056276A JP2013191697A (en) 2012-03-13 2012-03-13 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056276A JP2013191697A (en) 2012-03-13 2012-03-13 Solar cell

Publications (1)

Publication Number Publication Date
JP2013191697A true JP2013191697A (en) 2013-09-26

Family

ID=49391666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056276A Pending JP2013191697A (en) 2012-03-13 2012-03-13 Solar cell

Country Status (1)

Country Link
JP (1) JP2013191697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892637B1 (en) * 2017-08-30 2018-08-28 한국과학기술연구원 Solar cell panel and the window comprising the same
CN110190147A (en) * 2019-06-24 2019-08-30 北京大学深圳研究生院 A kind of concentration photovoltaic system based on beam splitter
CN113871507A (en) * 2021-08-10 2021-12-31 无锡极电光能科技有限公司 Photovoltaic module and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892637B1 (en) * 2017-08-30 2018-08-28 한국과학기술연구원 Solar cell panel and the window comprising the same
US20190067505A1 (en) * 2017-08-30 2019-02-28 Korea Institute Of Science And Technology Solar cell panel and the window comprising the same
CN110190147A (en) * 2019-06-24 2019-08-30 北京大学深圳研究生院 A kind of concentration photovoltaic system based on beam splitter
CN113871507A (en) * 2021-08-10 2021-12-31 无锡极电光能科技有限公司 Photovoltaic module and preparation method thereof

Similar Documents

Publication Publication Date Title
US20080223438A1 (en) Systems and methods for improving luminescent concentrator performance
JP6359661B2 (en) Electric energy generator
US20070277869A1 (en) Systems and methods for enhanced solar module conversion efficiency
EP2418694B1 (en) Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements
JP5573797B2 (en) Solar cell module
KR20090117690A (en) High efficiency solar cell with a silicon scavenger cell
US9306089B2 (en) Solar cell module and solar generator
EP2418693B1 (en) Luminescent solar concentrator with distributed outcoupling structures and microoptical elements
US20150207009A1 (en) Photovoltaic system with stacked spectrum splitting optics and photovoltaic array tuned to the resulting spectral slices produced by the spectrum splitting optics
JP2010263115A (en) Solar light collector
Goetzberger et al. Light trapping, a new approach to spectrum splitting
US20130153000A1 (en) Multi-band light collection and energy conversion module
CA2658193A1 (en) Stimulated emission luminescent light-guide solar concentrators
EP2577743A2 (en) Luminescent solar concentrator system
US9595909B2 (en) Storage type solar power generation device and storage type solar power generation system
JP5626796B2 (en) Series connection type solar cell and solar cell system
JP2013191697A (en) Solar cell
WO2017179223A1 (en) Solar battery, solar battery device, and manufacturing method
CN208028848U (en) A kind of photovoltaic module and photovoltaic battery panel based on spectral
JPS626354B2 (en)
Kosten et al. Spectrum splitting photovoltaics: light trapping filtered concentrator for ultrahigh photovoltaic efficiency
RU2426198C1 (en) Solar photoelectric converter module built around nano heterostructure photo converters
CN209729934U (en) A kind of concentration photovoltaic system based on beam splitter
CN114400265B (en) Photoelectric conversion device for solar photovoltaic power generation
KR20170002733A (en) Solar light and heat hybrid system dividing the wavelength of solar light