JP2013191521A - Apparatus of manufacturing membrane electrode assembly for solid polymer fuel cell, and membrane electrode assembly - Google Patents

Apparatus of manufacturing membrane electrode assembly for solid polymer fuel cell, and membrane electrode assembly Download PDF

Info

Publication number
JP2013191521A
JP2013191521A JP2012058892A JP2012058892A JP2013191521A JP 2013191521 A JP2013191521 A JP 2013191521A JP 2012058892 A JP2012058892 A JP 2012058892A JP 2012058892 A JP2012058892 A JP 2012058892A JP 2013191521 A JP2013191521 A JP 2013191521A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
catalyst ink
electrode assembly
membrane
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058892A
Other languages
Japanese (ja)
Other versions
JP5928030B2 (en
Inventor
Yu Sakurada
雄 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2012058892A priority Critical patent/JP5928030B2/en
Publication of JP2013191521A publication Critical patent/JP2013191521A/en
Application granted granted Critical
Publication of JP5928030B2 publication Critical patent/JP5928030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus of manufacturing a solid polymer fuel cell in which a catalyst layer has a uniform thickness, and swelling of the membrane is suppressed when forming a catalyst layer by coating the surface of an electrolyte membrane directly with a catalyst ink by means of a die coater, and then drying.SOLUTION: The apparatus of manufacturing a membrane electrode assembly for solid polymer fuel cell includes means for forming beads by supplying a catalyst ink containing at least a polymer material and a solvent onto one surface of an electrolyte membrane, means for coating one surface of the electrolyte membrane with the catalyst ink, by moving the electrolyte membrane placed on a suction plate by means of a conveyance roll and then sweeping the beads, and means for removing a solvent in the catalyst ink by volatilization, by heating the position of the electrolyte membrane corresponding to the beads, the part of the catalyst ink immediately after coating, and the remaining part of the catalyst ink after coating, from the other side of the electrolyte membrane.

Description

本発明は、固体高分子形燃料電池における膜電極接合体の製造装置に関する。   The present invention relates to an apparatus for manufacturing a membrane electrode assembly in a polymer electrolyte fuel cell.

燃料電池の発電方式は、水素などの燃料と空気などの酸化剤を電気化学的に反応させることにより燃料の化学エネルギーを電気エネルギーに変換して取り出す方式である。この発電方式は、発電効率が高く、静粛性に優れ、大気汚染の原因となるNOx、SOx、また地球温暖化の原因となるCO2の排出量が少ない等の利点から、新エネルギー用途として期待されている。この燃料電池が適用されている例としては、携帯電気機器の長時間電力供給、コジェネレーション用定置型発電温水供給機、燃料電池自動車等があり、用途も規模も多様である。 The power generation system of a fuel cell is a system in which chemical energy of a fuel is converted into electrical energy and extracted by causing an electrochemical reaction between a fuel such as hydrogen and an oxidant such as air. This power generation method is expected to be used as a new energy application because of its advantages such as high power generation efficiency, excellent quietness, NOx and SOx that cause air pollution, and low CO 2 emissions that cause global warming. Has been. Examples of the application of this fuel cell include a long-time power supply for portable electric devices, a stationary power generation hot water supply machine for cogeneration, a fuel cell vehicle, and the like, which have various uses and scales.

燃料電池の種類は使用する電解質によって、固体高分子形、リン酸形、溶融炭酸塩形、固体酸化物形、アルカリ形等に分類され、それぞれ運転温度が大きく異なり、それに伴い発電規模や利用分野も異なる。   The types of fuel cells are classified into solid polymer type, phosphoric acid type, molten carbonate type, solid oxide type, alkaline type, etc. depending on the electrolyte used. Is also different.

陽イオン交換膜を電解質として用いたものは、固体高分子形燃料電池と呼ばれ、燃料電池の中でも比較的低温での動作が可能であり、また、電解質膜の薄膜化により内部抵抗を低減できるため高出力化、コンパクト化が可能であり、車載電源や家庭据置用電源等への使用が有望視されている。   The one using a cation exchange membrane as an electrolyte is called a polymer electrolyte fuel cell, and can operate at a relatively low temperature among fuel cells, and the internal resistance can be reduced by reducing the thickness of the electrolyte membrane. Therefore, high output and compactness are possible, and it is considered promising for use in in-vehicle power supplies, household stationary power supplies, and the like.

固体高分子形燃料電池は、膜電極接合体(Membrane−Electrode−Assembly;MEA)と呼ばれる電解質膜の両面に一対の電極触媒層を配置させた接合体を、電極の一方(アノード側)に水素を含有する燃料ガスを供給するためのガス流路を形成したセパレータ板と、電極の他方(カソード側)に酸素を含む酸化剤ガスを供給するためのガス流路を形成したセパレータ板とで挟持した電池である。この一対のセパレータ板で挟持した電池を単電池セルと呼ぶ。   A polymer electrolyte fuel cell has a structure in which a pair of electrocatalyst layers are arranged on both sides of an electrolyte membrane called a membrane-electrode-assembly (MEA), and one electrode (anode side) is hydrogenated. Sandwiched between a separator plate having a gas flow path for supplying a fuel gas containing oxygen and a separator plate having a gas flow path for supplying an oxidant gas containing oxygen to the other electrode (cathode side) Battery. A battery sandwiched between the pair of separator plates is called a single battery cell.

固体高分子形燃料電池は、出力密度の増大と燃料電池全体のコンパクト化を目的として、単電池セルを複数積層(スタック)して用いられる。スタックする枚数は、必要な電力により異なり、一般的な携帯電気機器のポータブル電源では数枚から10枚程度、コジェネレーション用定置型電気および温水供給機では60〜90枚程度、自動車用途では250〜400枚程度である。高出力化をするためにはスタック枚数を増やすことが必要となり、単電池セルのコストが燃料電池全体のコストに大きく影響する。プロセスコストの観点から、部品数が少なく組み立てが容易な膜電極接合体構造が望まれている。   A polymer electrolyte fuel cell is used by stacking a plurality of unit cells for the purpose of increasing power density and making the entire fuel cell compact. The number of sheets to be stacked varies depending on the required electric power. For portable power sources of general portable electric devices, several to about 10 sheets, for stationary electric and hot water supply machines for cogeneration, about 60 to 90 sheets, and for automobile applications, 250 to About 400 sheets. In order to increase the output, it is necessary to increase the number of stacks, and the cost of the unit cell greatly affects the cost of the entire fuel cell. From the viewpoint of process cost, a membrane electrode assembly structure with a small number of parts and easy assembly is desired.

近年、膜電極接合体を製造する際、触媒インクを電解質膜に直接塗布することにより触媒層を形成する手法が試みられている。この手法は、副資材を必要としないことからプロセスコストが抑えられる点と、電解質膜と触媒層の密着性が高いことにより性能が向上する点とから、理想的な手法として注目されている。   In recent years, when manufacturing a membrane electrode assembly, a method of forming a catalyst layer by directly applying a catalyst ink to an electrolyte membrane has been attempted. This method is attracting attention as an ideal method because it does not require any auxiliary material and can reduce the process cost, and the performance is improved due to the high adhesion between the electrolyte membrane and the catalyst layer.

しかしながら、電解質膜は触媒インクの溶媒に触れるとすぐに膨潤してしまうという課題がある。この課題を解決する方法として、加熱吸着プレート上に電解質膜を設置し、背面加熱を行うことにより、触媒インクを塗布すると同時に溶媒を乾燥・除去する方法が提案されている(例えば、特許文献1、2を参照)。触媒インクの塗工法としては、溶媒の蒸発を促進させることを目的としてスプレー法が採用されている。   However, there is a problem that the electrolyte membrane swells as soon as it comes into contact with the solvent of the catalyst ink. As a method for solving this problem, there has been proposed a method of drying and removing the solvent at the same time as applying the catalyst ink by installing an electrolyte membrane on the heating adsorption plate and performing backside heating (for example, Patent Document 1). 2). As a method for applying the catalyst ink, a spray method is employed for the purpose of promoting the evaporation of the solvent.

特開2003−100314号公報JP 2003-100314 A 特開2006−344517号公報JP 2006-344517 A

しかしながら、特許文献1、2に記載の技術では、塗工法として、グラビア印刷法・刷毛塗り・ダイコート法・ドクターブレード等による手法を適用した場合、背面加熱を行っている為、触媒インク供給部が塗工途中に乾燥し、触媒インク中の溶媒量が塗工と共に減少していく。結果、電解質膜に形成される触媒層が不均一な厚さとなる。例えば、ダイコート法による塗工を行った場合、触媒インク供給部となるビードと呼ばれる、触媒インクの液溜まり部が塗工途中に乾燥し、触媒インク中の溶媒量が塗工と共に減少していく。塗工時のウェット膜厚は一定であるので、結果、塗工エンド部にかけて徐々に触媒層厚が厚くなっていくことになる。   However, in the techniques described in Patent Documents 1 and 2, when a method using a gravure printing method, a brush coating method, a die coating method, a doctor blade, or the like is applied as a coating method, the backside heating is performed. It dries in the middle of coating, and the amount of solvent in the catalyst ink decreases with coating. As a result, the catalyst layer formed on the electrolyte membrane has a non-uniform thickness. For example, when coating is performed by a die coating method, a catalyst ink liquid reservoir called a bead serving as a catalyst ink supply unit dries during coating, and the amount of solvent in the catalyst ink decreases with coating. . Since the wet film thickness at the time of coating is constant, as a result, the catalyst layer thickness gradually increases toward the coating end portion.

本発明は、上記問題を考慮して成し遂げられたものであり、電解質膜にブレード法により直接触媒インクを塗布させる際に、電解質膜の膨潤を抑制すると共に、触媒層厚を均一にする製造装置を提供することを目的とする。   The present invention has been accomplished in consideration of the above problems, and a manufacturing apparatus that suppresses swelling of the electrolyte membrane and makes the thickness of the catalyst layer uniform when the catalyst ink is directly applied to the electrolyte membrane by the blade method. The purpose is to provide.

本発明に係る固体高分子形燃料電池用膜電極接合体の製造装置は、少なくとも高分子材料と溶媒とを含む触媒インクを、電解質膜の一方面上に供給してビードを形成するビード形成手段と、電解質膜を保持し、保持した電解質膜を所定の搬送方向に搬送することにより、保持した電解質膜をビード形成手段に対して相対的に移動させて、触媒インクを電解質膜の一方面に塗工する搬送手段と、電解質膜上に形成されたビードより搬送方向側に位置する触媒インクの塗工直後の部分と、塗工直後の部分より搬送方向側に位置する触媒インクの塗工後の部分とを、電解質膜の他方面側から加熱して、触媒インク中の溶媒を揮発除去する加熱手段とを備える。   The apparatus for producing a membrane electrode assembly for a polymer electrolyte fuel cell according to the present invention comprises a bead forming means for supplying a catalyst ink containing at least a polymer material and a solvent onto one surface of an electrolyte membrane to form a bead. The electrolyte membrane is held, and the held electrolyte membrane is transferred in a predetermined transfer direction, so that the held electrolyte membrane is moved relative to the bead forming means, and the catalyst ink is placed on one surface of the electrolyte membrane. The transporting means for coating, the part immediately after coating of the catalyst ink positioned on the transport direction side from the bead formed on the electrolyte membrane, and the coating of the catalyst ink positioned on the transporting direction side from the part immediately after coating And a heating means for heating the portion from the other side of the electrolyte membrane to volatilize and remove the solvent in the catalyst ink.

加熱手段は、電解質膜の他方面側に配置され、異なる温度に設定された複数の加熱帯を含むことを特徴とする。   The heating means is arranged on the other surface side of the electrolyte membrane and includes a plurality of heating zones set at different temperatures.

加熱帯は、電解質膜上に形成されたビードに対応する位置と、触媒インクの塗工直後の部分に対応する位置と、触媒インクの塗工直後の部分より搬送方向側の位置とに配置されており、電解質膜上に形成されたビードに対応する位置に配置された加熱帯は、ビードが乾燥しない温度に設定され、触媒インクの塗工直後の部分に対応する位置に配置された加熱帯は、触媒インク中の溶媒の揮発温度近傍に設定され、触媒インクの塗工直後の部分より搬送方向側の位置に配置された加熱帯は、触媒インクの溶媒の揮発温度以上に設定されることを特徴とする。   The heating zone is disposed at a position corresponding to the bead formed on the electrolyte membrane, a position corresponding to a portion immediately after the application of the catalyst ink, and a position on the transport direction side from the portion immediately after the application of the catalyst ink. The heating zone disposed at a position corresponding to the bead formed on the electrolyte membrane is set to a temperature at which the bead does not dry and is disposed at a position corresponding to the portion immediately after the application of the catalyst ink. Is set in the vicinity of the volatilization temperature of the solvent in the catalyst ink, and the heating zone arranged at the position in the transport direction side immediately after the coating of the catalyst ink is set to be equal to or higher than the volatilization temperature of the solvent in the catalyst ink. It is characterized by.

搬送方向における加熱帯の幅が、同方向におけるビードの幅と同じ長さであることを特徴とする。   The width of the heating zone in the transport direction is the same length as the width of the bead in the same direction.

本発明に係る膜電極接合体は上記の製造装置により作製された膜電極接合体である。   The membrane / electrode assembly according to the present invention is a membrane / electrode assembly produced by the production apparatus described above.

本発明に係る製造装置によれば、触媒インクを塗工すると同時に加熱乾燥を行う為、触媒インク中の溶媒が電解質膜に触れると同時に蒸発し、電解質膜の膨潤を抑制することができると共に、常に同量の触媒を電解質膜に塗工できる為、触媒層厚が均一となっている。   According to the production apparatus of the present invention, since the catalyst ink is applied and heated and dried at the same time, the solvent in the catalyst ink evaporates at the same time as touching the electrolyte membrane, and the swelling of the electrolyte membrane can be suppressed. Since the same amount of catalyst can always be applied to the electrolyte membrane, the catalyst layer thickness is uniform.

従来の背面加熱乾燥を行った塗工による膜電極接合体の製造装置の概略模式図Schematic diagram of a conventional manufacturing apparatus for membrane electrode assemblies by coating with backside heating drying 本発明の背面加熱乾燥を行った塗工による膜電極接合体の製造装置の概略模式図Schematic schematic diagram of an apparatus for producing a membrane / electrode assembly by coating with backside heating drying of the present invention 本発明の製造装置により作製された膜電極接合体の断面図Sectional drawing of the membrane electrode assembly produced with the manufacturing apparatus of this invention 本発明の製造装置により作製された膜電極接合体の上面図The top view of the membrane electrode assembly produced with the manufacturing apparatus of this invention

以下、本発明の実施の形態にかかる固体高分子形燃料電池における膜電極接合体の製
造装置について、図面を用いて詳細に説明する。
Hereinafter, the manufacturing apparatus of the membrane electrode assembly in the polymer electrolyte fuel cell concerning embodiment of this invention is demonstrated in detail using drawing.

図1は、従来の背面加熱乾燥を行った塗工による膜電極接合体の製造装置を示す概略模式図である。図1に示した膜電極接合体の製造装置は、上面に電解質膜1を吸着固定し、吸着固定した電解質膜1を搬送する搬送吸着装置7と、予め調整された触媒インクを電解質膜1に塗工するヘッド12と、搬送吸着装置7の下面側に配置され、触媒インクの溶媒揮発温度以上の温度に設定された1つの加熱帯15とを備える。電解質膜1に触媒インクを塗工することによってカソード触媒層2が形成される。図1に示した膜電極接合体の製造装置では、加熱帯15により、電解質膜1の全体が一様に加熱されているので、触媒インクのビード13を掃引中に、ビード13部分に含まれる固形成分濃度が徐々に上昇するため、溶媒除去後のカソード触媒層2の厚みが不均一となる。   FIG. 1 is a schematic diagram showing a conventional apparatus for producing a membrane / electrode assembly by coating with backside heating and drying. The membrane / electrode assembly manufacturing apparatus shown in FIG. 1 has an electrolyte membrane 1 adsorbed and fixed on the upper surface, a transport adsorbing device 7 for conveying the adsorbed and fixed electrolyte membrane 1, and a catalyst ink adjusted in advance to the electrolyte membrane 1. The head 12 to be coated and one heating zone 15 which is disposed on the lower surface side of the transport adsorption device 7 and set to a temperature equal to or higher than the solvent volatilization temperature of the catalyst ink are provided. The cathode catalyst layer 2 is formed by applying catalyst ink to the electrolyte membrane 1. In the apparatus for manufacturing a membrane electrode assembly shown in FIG. 1, since the entire electrolyte membrane 1 is uniformly heated by the heating zone 15, it is included in the bead 13 portion while sweeping the bead 13 of catalyst ink. Since the solid component concentration gradually increases, the thickness of the cathode catalyst layer 2 after the solvent removal becomes nonuniform.

図2は、本発明の背面加熱を行った塗工による膜電極接合体の製造装置の概略模式図で
ある。図2に示すように、本発明の実施の形態にかかる膜電極接合体の製造装置は、大きくは、上面に電解質膜1を吸着固定し、吸着した電解質膜1を搬送する搬送吸着装置7と、予め調整された触媒インクを電解質膜1に塗工するヘッド12と、搬送吸着装置7の下面側に配置され、それぞれ異なる温度に設定された加熱帯8・9・10とを備える。図2に示した膜電極接合体の製造装置は、図1に示した膜電極接合体の製造装置の加熱帯15に代えて、異なる温度に設定された加熱帯8・9・10を備える点で異なっている。また、図2の膜電極接合体の製造装置は、電解質膜1に触媒インクを塗工することによってカソード触媒層2を形成する。
FIG. 2 is a schematic diagram of an apparatus for producing a membrane / electrode assembly by coating with backside heating according to the present invention. As shown in FIG. 2, the apparatus for manufacturing a membrane / electrode assembly according to an embodiment of the present invention mainly includes a transport adsorption device 7 that adsorbs and fixes an electrolyte membrane 1 on the upper surface and transports the adsorbed electrolyte membrane 1. The head 12 for applying the catalyst ink prepared in advance to the electrolyte membrane 1 and the heating zones 8, 9, and 10 that are arranged on the lower surface side of the transport adsorption device 7 and set to different temperatures are provided. The membrane electrode assembly manufacturing apparatus shown in FIG. 2 includes heating zones 8, 9, and 10 set at different temperatures instead of the heating zone 15 of the membrane electrode assembly manufacturing apparatus shown in FIG. Is different. 2 forms the cathode catalyst layer 2 by applying a catalyst ink to the electrolyte membrane 1.

搬送吸着装置7は、少なくとも電解質膜1が設置される部分が吸着可能に構成されており、かつ、吸着した電解質膜1を搬送可能であれば、任意の機構を採用することができる。例えば、搬送可能な多孔質プレートをポンプにより吸引させることにより、吸着を行う機構が挙げられる。尚、一般的なベルトコンベア上に多孔質の吸着プレートを設置する構成を取ってもよい。   The transport adsorption device 7 can adopt any mechanism as long as at least a portion where the electrolyte membrane 1 is installed can be adsorbed and the adsorbed electrolyte membrane 1 can be transported. For example, a mechanism that performs suction by sucking a transportable porous plate with a pump can be used. In addition, you may take the structure which installs a porous adsorption | suction plate on a general belt conveyor.

本発明で用いる電解質膜1は、固体高分子形燃料電池に一般的に用いられるものでよい。例えば、フッ素系電解質膜や炭化水素電解質膜が好適に使用でき、特にフッ素系電解質膜が望ましい。   The electrolyte membrane 1 used in the present invention may be one generally used for polymer electrolyte fuel cells. For example, a fluorine-based electrolyte membrane or a hydrocarbon electrolyte membrane can be suitably used, and a fluorine-based electrolyte membrane is particularly desirable.

ヘッド12は、ダイコート等の一般的に塗工時に用いられるダイヘッドでよい。図2に
示すように、ヘッド12は、その長手方向が電解質膜1の幅方向(搬送方向に直交する方向)と一致するように所定の位置に固定されており、電解質膜1の幅方向に延びるライン状に同時に触媒インクを塗出する。ヘッド12は、搬送吸着装置7により搬送される電解質膜1に対して電解質膜幅方向のインクラインを連続的に形成することができ、これにより、電解質膜1上に配置されたマスク11の開口部に触媒インクを塗布することができる。また、ブレード法により塗工する場合には、予め触媒インクをマスク11の上面部に溜め、ブレードにより掃引し、ダイコートと同様にインクラインを連続的に形成してもよい。
The head 12 may be a die head that is generally used during coating, such as die coating. As shown in FIG. 2, the head 12 is fixed at a predetermined position so that the longitudinal direction thereof coincides with the width direction of the electrolyte membrane 1 (the direction orthogonal to the transport direction), and the head 12 extends in the width direction of the electrolyte membrane 1. The catalyst ink is applied at the same time in the extending line shape. The head 12 can continuously form an ink line in the width direction of the electrolyte membrane with respect to the electrolyte membrane 1 conveyed by the conveyance adsorption device 7, thereby opening the mask 11 disposed on the electrolyte membrane 1. The catalyst ink can be applied to the part. In the case of coating by the blade method, the catalyst ink may be stored in advance on the upper surface portion of the mask 11 and swept by the blade to form the ink lines continuously in the same manner as the die coating.

ヘッド12より塗出される触媒インクとしては、固体高分子形燃料電池に一般的に用いられるものでよい。例えば、白金または白金と他の金属(例えばRu、Rh、Mo、Cr、Co、Fe等)との合金の微粒子(平均粒径は10nm以下が望ましい)が表面に担持されたカーボンブラックなどの導電性炭素微粒子(平均粒径:20〜100nm程度)と、パーフルオロスルホン酸樹脂溶液などの高分子溶液とが適当な溶剤(エタノールなど)中で均一に混合されたものが使用できる。   The catalyst ink applied from the head 12 may be one generally used for solid polymer fuel cells. For example, a conductive material such as carbon black in which fine particles of platinum or an alloy of platinum and another metal (for example, Ru, Rh, Mo, Cr, Co, Fe, etc.) (the average particle diameter is preferably 10 nm or less) is supported on the surface. The carbonaceous fine particles (average particle diameter: about 20 to 100 nm) and a polymer solution such as a perfluorosulfonic acid resin solution are uniformly mixed in an appropriate solvent (ethanol or the like).

搬送吸着装置7の下面側に設置された加熱帯8・9・10は、それぞれ異なる温度に設定される。具体的に、ビード13に対応する位置に設置されている加熱帯8は常温に、加熱帯8に隣接し電解質膜1の搬送方向にあって、触媒インクの塗工直後の部分に対応する位置に設置されている加熱帯9は触媒インク中の溶媒の揮発温度に、加熱帯9に隣接し電解質膜1の搬送方向にあって、触媒層の部分に対応する位置に設置される加熱帯10は触媒インクの溶媒の揮発温度以上に設定する。   The heating zones 8, 9, and 10 installed on the lower surface side of the conveyance suction device 7 are set to different temperatures. Specifically, the heating zone 8 installed at a position corresponding to the bead 13 is at a normal temperature, adjacent to the heating zone 8 and in the transport direction of the electrolyte membrane 1 and corresponding to a portion immediately after application of the catalyst ink. The heating zone 9 installed in the heating zone 10 is installed at a position corresponding to the catalyst layer portion in the transport direction of the electrolyte membrane 1 adjacent to the heating zone 9 at the volatilization temperature of the solvent in the catalyst ink. Is set above the volatilization temperature of the solvent of the catalyst ink.

ビード13に対応する位置に設置されている加熱帯8の温度が常温の20℃〜25℃に設定されていることによりビード13の乾燥を防ぐことができる。また、ビード13の乾燥を防ぐことにより、ビード13の固形分濃度が一定に保たれるため、溶媒除去後のカソード触媒層2の厚みが均一となる。また、ビード13の乾燥を防ぎ、固形分濃度を一定に保つために、搬送方向における加熱帯8の幅が、搬送方向におけるビード13の幅と同じであることが望ましい。この場合、加熱帯8はビード13と重なり合う位置に配置される。加熱帯8の幅がビード13の幅より小さい場合、隣接する高温に設定した加熱帯9がビード13の背面に設置されることになり、ビード13が乾燥してしまう。一方、加熱帯8の幅がビード13の幅より大きい場合、ビード13部に隣接する塗工直後の触媒層部の背面に常温の加熱帯8が設置されることになり、触媒層を即座に乾燥することができなくなってしまう。なお、加熱帯8の幅とビード13の幅とは厳密に一致している必要はなく、±1.0mm程度の誤差があってもよい。また、固形分濃度を一定に保つために、搬送方向と直行する方向における加熱帯8の幅が、搬送方向と直行する方向におけるビード13の幅以上の長さであることが望ましい。   Drying of the bead 13 can be prevented by setting the temperature of the heating zone 8 installed at a position corresponding to the bead 13 to a room temperature of 20 ° C. to 25 ° C. Moreover, since the solid content concentration of the bead 13 is kept constant by preventing the bead 13 from drying, the thickness of the cathode catalyst layer 2 after removing the solvent becomes uniform. Further, in order to prevent the beads 13 from being dried and to keep the solid concentration constant, it is desirable that the width of the heating band 8 in the transport direction is the same as the width of the beads 13 in the transport direction. In this case, the heating zone 8 is arranged at a position overlapping the bead 13. When the width of the heating zone 8 is smaller than the width of the bead 13, the adjacent heating zone 9 set to a high temperature is installed on the back surface of the bead 13, and the bead 13 is dried. On the other hand, when the width of the heating zone 8 is larger than the width of the bead 13, the heating zone 8 at room temperature is installed on the back surface of the catalyst layer portion immediately after coating adjacent to the bead portion 13, and the catalyst layer is immediately removed. It becomes impossible to dry. The width of the heating zone 8 and the width of the bead 13 do not need to be exactly the same, and there may be an error of about ± 1.0 mm. Further, in order to keep the solid content concentration constant, it is desirable that the width of the heating zone 8 in the direction orthogonal to the conveyance direction is longer than the width of the bead 13 in the direction orthogonal to the conveyance direction.

また、加熱帯8に隣接し電解質膜1の搬送方向にあって、触媒インクの塗工直後の部分に対応する位置に設置される加熱帯9の温度を、触媒インク中の溶媒の揮発温度に設定することにより、触媒インク中の溶媒が電解質膜1に触れると同時に蒸発し、電解質膜1の膨潤を抑制することができる。さらに、加熱帯9に隣接し電解質膜1の搬送方向にある、カソード触媒層2部分に対応する位置に設置される加熱帯10の温度を触媒インク中の溶媒の揮発温度以上に設定することにより、カソード触媒層2中の溶媒を段階的に除去することができる。加えて、異なる温度に設定される加熱帯9および10を設けることにより、カソード触媒層2の乾燥を段階的に行うことができるため、触媒インクの溶媒が混合溶媒である場合にも好適に使用することができる。また、カソード触媒層2の乾燥を充分に行うために、搬送方向と直行する方向における加熱帯9および10の幅が、搬送方向と直行する方向におけるビード13の幅以上の長さであることが望ましい。   Further, the temperature of the heating zone 9 that is located adjacent to the heating zone 8 and in the transport direction of the electrolyte membrane 1 and corresponding to the portion immediately after the application of the catalyst ink is set to the volatilization temperature of the solvent in the catalyst ink. By setting, the solvent in the catalyst ink evaporates at the same time as touching the electrolyte membrane 1, and the swelling of the electrolyte membrane 1 can be suppressed. Furthermore, by setting the temperature of the heating zone 10 installed at a position corresponding to the cathode catalyst layer 2 portion adjacent to the heating zone 9 and in the transport direction of the electrolyte membrane 1 to be equal to or higher than the volatilization temperature of the solvent in the catalyst ink. The solvent in the cathode catalyst layer 2 can be removed stepwise. In addition, by providing the heating zones 9 and 10 set at different temperatures, the cathode catalyst layer 2 can be dried stepwise, so that it can be suitably used even when the solvent of the catalyst ink is a mixed solvent. can do. Further, in order to sufficiently dry the cathode catalyst layer 2, the width of the heating zones 9 and 10 in the direction perpendicular to the transport direction is longer than the width of the bead 13 in the direction perpendicular to the transport direction. desirable.

上述した製造装置により電解質膜1の一方面上にカソード触媒層2が形成される。電解質膜1の他方面に対しても、図2に示した製造装置を用いて触媒インクを塗布することによって、アノード触媒層3を形成することで、膜電極接合体14が完成する。尚、電解質膜1にカソード触媒層2およびアノード触媒層3を形成する順序は任意で良い。また、上述では、加熱帯8を有する構造であったが、加熱帯8を有してなくても良い。ビード13形成部に隣接する電解質膜1の搬送方向の部分に対応する位置に加熱帯9を設置し、加熱帯9に隣接し電解質膜1の搬送方向の位置に加熱帯10を設置していれば良い。   The cathode catalyst layer 2 is formed on one surface of the electrolyte membrane 1 by the manufacturing apparatus described above. The anode electrode layer 3 is formed on the other surface of the electrolyte membrane 1 by applying the catalyst ink using the manufacturing apparatus shown in FIG. 2, thereby completing the membrane electrode assembly 14. The order of forming the cathode catalyst layer 2 and the anode catalyst layer 3 on the electrolyte membrane 1 may be arbitrary. In the above description, the heating zone 8 is used. However, the heating zone 8 may not be provided. A heating zone 9 may be installed at a position corresponding to a portion in the transport direction of the electrolyte membrane 1 adjacent to the bead 13 forming portion, and a heating zone 10 may be installed at a location in the transport direction of the electrolyte membrane 1 adjacent to the heating zone 9. It ’s fine.

以下に、具体的な実施例により本発明の固体高分子形燃料電池の製造装置を説明する。尚、後述する実施例は本発明の1実施例であり、本発明はこの実施例のみに限定されるものではない。本実施例により作製された膜電極接合体14の断面図を図3に示し、上面図を図4に示す。   Below, the manufacturing apparatus of the polymer electrolyte fuel cell of this invention is demonstrated by a specific Example. In addition, the Example mentioned later is one Example of this invention, and this invention is not limited only to this Example. FIG. 3 shows a cross-sectional view of the membrane electrode assembly 14 produced in this example, and FIG. 4 shows a top view thereof.

白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中
貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)とを、混合比1:2の水−エタノール混合溶媒に混合した。続いて、遊星ボールミルで分散処理を行い、触媒インクを調整した。
A platinum-supporting carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) having a platinum-supporting amount of 50% and Nafion (registered trademark, manufactured by DuPont), which is a 20% by mass polymer electrolyte solution, have a mixing ratio of 1: 2 water-ethanol mixed solvent. Subsequently, a dispersion treatment was performed with a planetary ball mill to prepare a catalyst ink.

ガスケット層に弱粘着層付きのポリエチレンテレフタラートフィルムを貼合わせた2層構造のフィルムの中央部を打ち抜き、環状の2層構造のマスク11を作製した。マスク11の開口部サイズは50mm四方である。続いて、作製した枠状のマスク11を電解質膜に貼合わせた。電解質膜1としては、Nafion212(登録商標、デュポン社製)を用いた。   A central portion of a two-layer film in which a polyethylene terephthalate film with a weak adhesive layer was bonded to the gasket layer was punched out to produce an annular two-layer mask 11. The opening size of the mask 11 is 50 mm square. Subsequently, the manufactured frame-shaped mask 11 was bonded to the electrolyte membrane. As the electrolyte membrane 1, Nafion 212 (registered trademark, manufactured by DuPont) was used.

搬送吸着装置7上に枠状のマスク11を貼合わせた電解質膜1を固定し、100mm/secの搬送速度で搬送した。ビード13形成部の背面には、常温の25℃に設定した長さ10mmの加熱帯8を設置し、120℃に設定した長さ10mmの加熱帯9を加熱帯8と隣接し電解質膜1の搬送方向の位置に設置し、150℃に設定した長さ10mmの加熱帯10を加熱帯9と隣接し電解質膜1の搬送方向の位置に設置した。   The electrolyte membrane 1 having the frame-shaped mask 11 bonded thereto was fixed on the transport adsorption device 7 and transported at a transport speed of 100 mm / sec. A heating zone 8 having a length of 10 mm set at a room temperature of 25 ° C. is installed on the back surface of the bead 13 forming portion, and a heating zone 9 having a length of 10 mm set at 120 ° C. is adjacent to the heating zone 8 and the electrolyte membrane 1. A heating zone 10 having a length of 10 mm set at 150 ° C. was placed adjacent to the heating zone 9 at a position in the conveyance direction of the electrolyte membrane 1.

調整した触媒インクをヘッド(ダイヘッド)12から塗出し、ダイコータによる塗工を行った。白金担持量がカソード触媒層相当(0.4mg/cm2)となるよう、塗工工程と背面加熱乾燥工程を2度繰り返した後に、吸着固定を解除した。続いて弱粘着層付きのポリエチレンテレフタラートフィルムをガスケット層から剥離し、片面にカソード触媒層2が形成され、カソード触媒層2周縁部にカソード側ガスケット層4が配置された電解質膜1を得た。 The adjusted catalyst ink was applied from the head (die head) 12 and applied by a die coater. After the coating process and the backside heating drying process were repeated twice so that the amount of platinum supported was equivalent to the cathode catalyst layer (0.4 mg / cm 2 ), the adsorption fixation was released. Subsequently, the polyethylene terephthalate film with a weak adhesive layer was peeled from the gasket layer to obtain an electrolyte membrane 1 in which the cathode catalyst layer 2 was formed on one side and the cathode side gasket layer 4 was disposed on the peripheral edge of the cathode catalyst layer 2. .

カソード触媒層2が片面に形成された電解質膜1を上下反転させ、カソード触媒層2形成面と反対側の面にアノード触媒層3を同様にして形成し、電解質膜1の両面にアノード触媒層3が形成され、アノード触媒層3の周縁にアノード側ガスケット層5が配置された膜電極接合体14とした。尚、白金担持量がアノード触媒層3相当(0.1mg/cm2)となるよう、ダイコータによる塗工工程と背面加熱乾燥工程は1度だけ行った。 The electrolyte membrane 1 having the cathode catalyst layer 2 formed on one side is turned upside down, and the anode catalyst layer 3 is formed in the same manner on the surface opposite to the surface on which the cathode catalyst layer 2 is formed, and the anode catalyst layer is formed on both surfaces of the electrolyte membrane 1. 3 was formed, and a membrane electrode assembly 14 in which the anode side gasket layer 5 was arranged on the periphery of the anode catalyst layer 3 was obtained. The coating process using the die coater and the back surface heating and drying process were performed only once so that the amount of platinum supported was equivalent to the anode catalyst layer 3 (0.1 mg / cm 2 ).

作製された膜電極接合体14の触媒層厚を測定したところ、カソード側、アノード側共に、均一なものであった。   When the thickness of the catalyst layer of the produced membrane electrode assembly 14 was measured, it was uniform on both the cathode side and the anode side.

本発明は固体高分子形燃料電池、特に燃料電池自動車や家庭用燃料電池などにおける、固体高分子形燃料電池単セルやスタックに好適に活用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for a polymer electrolyte fuel cell single cell or a stack in a polymer electrolyte fuel cell, particularly a fuel cell automobile or a household fuel cell.

1 電解質膜
2 カソード触媒層
3 アノード触媒層
4 カソード側ガスケット層
5 アノード側ガスケット層
7 搬送吸着装置
8 加熱帯(常温)
9 加熱帯(触媒インクの溶媒揮発温度)
10 加熱帯(触媒インクの溶媒揮発温度以上)
11 マスク
12 ヘッド
13 ビード
14 膜電極接合体
15 加熱帯(従来の装置)
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Cathode catalyst layer 3 Anode catalyst layer 4 Cathode side gasket layer 5 Anode side gasket layer 7 Conveyance adsorption device 8 Heating zone (room temperature)
9 Heating zone (solvent volatilization temperature of catalyst ink)
10 Heating zone (above solvent evaporation temperature of catalyst ink)
11 Mask 12 Head 13 Bead 14 Membrane Electrode Assembly 15 Heating Zone (Conventional Device)

Claims (5)

固体高分子形燃料電池用膜電極接合体の製造装置であって、
少なくとも高分子材料と溶媒とを含む触媒インクを、電解質膜の一方面上に供給してビードを形成するビード形成手段と、
前記電解質膜を保持し、保持した前記電解質膜を所定の搬送方向に搬送することにより、保持した前記電解質膜を前記ビード形成手段に対して相対的に移動させて、前記触媒インクを前記電解質膜の前記一方面に塗工する搬送手段と、
前記電解質膜上に形成された前記ビードより前記搬送方向側に位置する前記触媒インクの塗工直後の部分と、前記塗工直後の部分より前記搬送方向側に位置する前記触媒インクの塗工後の部分とを、前記電解質膜の他方面側から加熱して、前記触媒インク中の溶媒を揮発除去する加熱手段とを備える、固体高分子形燃料電池用膜電極接合体の製造装置。
An apparatus for producing a membrane electrode assembly for a polymer electrolyte fuel cell,
A bead forming means for supplying a catalyst ink containing at least a polymer material and a solvent onto one surface of the electrolyte membrane to form a bead;
The electrolyte membrane is retained, and the retained electrolyte membrane is transported in a predetermined transport direction, whereby the retained electrolyte membrane is moved relative to the bead forming means, and the catalyst ink is moved to the electrolyte membrane. Conveying means for coating the one side of
A portion immediately after application of the catalyst ink positioned on the transport direction side of the bead formed on the electrolyte membrane, and after application of the catalyst ink positioned on the transport direction side of a portion immediately after the coating And a heating means for volatilizing and removing the solvent in the catalyst ink by heating the portion from the other surface side of the electrolyte membrane.
前記加熱手段は、前記電解質膜の前記他方面側に配置され、異なる温度に設定された複数の加熱帯を含むことを特徴とする、請求項1に記載の固体高分子形燃料電池用膜電極接合体の製造装置。   2. The membrane electrode for a polymer electrolyte fuel cell according to claim 1, wherein the heating means includes a plurality of heating zones arranged on the other surface side of the electrolyte membrane and set at different temperatures. Bonded body manufacturing equipment. 前記加熱帯は、前記電解質膜上に形成された前記ビードに対応する位置と、前記触媒インクの塗工直後の部分に対応する位置と、前記触媒インクの塗工直後の部分より前記搬送方向側の位置とに配置されており、
前記電解質膜上に形成された前記ビードに対応する位置に配置された前記加熱帯は、前記ビードが乾燥しない温度に設定され、
前記触媒インクの塗工直後の部分に対応する位置に配置された前記加熱帯は、前記触媒インク中の溶媒の揮発温度近傍に設定され、
前記触媒インクの塗工直後の部分より前記搬送方向側の位置に配置された前記加熱帯は、前記触媒インクの溶媒の揮発温度以上に設定されることを特徴とする、請求項2に記載の固体高分子形燃料電池用膜電極接合体の製造装置。
The heating zone includes a position corresponding to the bead formed on the electrolyte membrane, a position corresponding to a portion immediately after application of the catalyst ink, and a side in the transport direction from a portion immediately after application of the catalyst ink. It is arranged at the position of
The heating zone disposed at a position corresponding to the bead formed on the electrolyte membrane is set to a temperature at which the bead does not dry,
The heating zone disposed at a position corresponding to the portion immediately after the application of the catalyst ink is set near the volatilization temperature of the solvent in the catalyst ink,
The heating zone disposed at a position closer to the transport direction than a portion immediately after application of the catalyst ink is set to be equal to or higher than a volatilization temperature of a solvent of the catalyst ink. An apparatus for producing a membrane electrode assembly for a polymer electrolyte fuel cell.
前記搬送方向における前記加熱帯の幅が、同方向における前記ビードの幅と同じ長さであることを特徴とする、請求項2または3に記載の固体高分子形燃料電池用膜電極接合体の製造装置。   4. The membrane electrode assembly for a polymer electrolyte fuel cell according to claim 2, wherein the width of the heating zone in the transport direction is the same length as the width of the bead in the same direction. 5. manufacturing device. 請求項1〜4のいずれかに記載の製造装置により作製された膜電極接合体。   The membrane electrode assembly produced with the manufacturing apparatus in any one of Claims 1-4.
JP2012058892A 2012-03-15 2012-03-15 Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell Active JP5928030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058892A JP5928030B2 (en) 2012-03-15 2012-03-15 Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058892A JP5928030B2 (en) 2012-03-15 2012-03-15 Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2013191521A true JP2013191521A (en) 2013-09-26
JP5928030B2 JP5928030B2 (en) 2016-06-01

Family

ID=49391544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058892A Active JP5928030B2 (en) 2012-03-15 2012-03-15 Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5928030B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053100A (en) * 2012-09-05 2014-03-20 Toppan Printing Co Ltd Process of manufacturing membrane electrode assembly and membrane electrode assembly
JP2016219180A (en) * 2015-05-18 2016-12-22 凸版印刷株式会社 Membrane-electrode assembly manufacturing method and membrane-electrode assembly
JP2017027724A (en) * 2015-07-21 2017-02-02 凸版印刷株式会社 Coating device, membrane electrode assembly, fuel cell stack, polymer electrolyte fuel cell, and coating method
GB2555127A (en) * 2016-10-19 2018-04-25 Univ Cape Town A method of coating a membrane with a catalyst
CN110100341A (en) * 2016-12-21 2019-08-06 玛太克司马特股份有限公司 The electrode forming method and fuel cell of PEFC type fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057281A1 (en) * 2002-07-29 2006-03-16 Shintaro Izumi Method for manufacturing membrane electrode assembly for fuel cell
JP2009245872A (en) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd Manufacturing apparatus and manufacturing method of gas diffusion layer for fuel cell
JP2010140718A (en) * 2008-12-10 2010-06-24 Honda Motor Co Ltd Manufacturing method of solid polymer fuel cell and manufacturing apparatus
WO2011099285A1 (en) * 2010-02-10 2011-08-18 パナソニック株式会社 Catalyst-coated membrane assembly manufacturing method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057281A1 (en) * 2002-07-29 2006-03-16 Shintaro Izumi Method for manufacturing membrane electrode assembly for fuel cell
JP2009245872A (en) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd Manufacturing apparatus and manufacturing method of gas diffusion layer for fuel cell
JP2010140718A (en) * 2008-12-10 2010-06-24 Honda Motor Co Ltd Manufacturing method of solid polymer fuel cell and manufacturing apparatus
WO2011099285A1 (en) * 2010-02-10 2011-08-18 パナソニック株式会社 Catalyst-coated membrane assembly manufacturing method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015047699; 奥田 敦子: '"ダイコーティングにおけるビード上流側内部流動が下流側メニスカスに及ぼす影響"' FUJIFILM RESEARCH & DEVELOPMENT No.52-2007, 2007, pp.55-58 *
JPN6015047701; 清水 智仁 他: '"ダイ塗布方式における巾方向膜厚精度設計技術"' Ricoh Technical Report No.28, 200212, pp.66-71 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053100A (en) * 2012-09-05 2014-03-20 Toppan Printing Co Ltd Process of manufacturing membrane electrode assembly and membrane electrode assembly
JP2016219180A (en) * 2015-05-18 2016-12-22 凸版印刷株式会社 Membrane-electrode assembly manufacturing method and membrane-electrode assembly
JP2017027724A (en) * 2015-07-21 2017-02-02 凸版印刷株式会社 Coating device, membrane electrode assembly, fuel cell stack, polymer electrolyte fuel cell, and coating method
GB2555127A (en) * 2016-10-19 2018-04-25 Univ Cape Town A method of coating a membrane with a catalyst
GB2555127B (en) * 2016-10-19 2019-11-20 Univ Cape Town A method of coating a membrane with a catalyst
US10897048B2 (en) 2016-10-19 2021-01-19 University Of Cape Town Method of coating a membrane with a catalyst
CN110100341A (en) * 2016-12-21 2019-08-06 玛太克司马特股份有限公司 The electrode forming method and fuel cell of PEFC type fuel cell
CN110100341B (en) * 2016-12-21 2022-08-26 玛太克司马特股份有限公司 Method for forming electrode of PEFC type fuel cell and fuel cell

Also Published As

Publication number Publication date
JP5928030B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
EP2688129A1 (en) Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP4879372B2 (en) Method and apparatus for manufacturing membrane-catalyst layer assembly
JP5928030B2 (en) Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell
US9325017B2 (en) Method for controlling ionomer and platinum distribution in a fuel cell electrode
WO2015122081A1 (en) Electrolyte membrane modification apparatus and electrolyte membran modification method, and system and process for producing catalyst-coated membrane
JPWO2012081169A1 (en) Method for producing membrane-catalyst layer assembly
JP5707825B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5838688B2 (en) Manufacturing method of membrane electrode assembly
JP6364855B2 (en) Manufacturing method of membrane electrode assembly
JP6439678B2 (en) Base film for catalyst transfer film and method for producing the same, method for producing catalyst transfer film, method for producing electrolyte membrane with catalyst layer
JP6354126B2 (en) Membrane electrode assembly and manufacturing method thereof
JP6074979B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP6048015B2 (en) Manufacturing method of membrane electrode assembly
JP5619841B2 (en) Method for producing polymer electrolyte fuel cell
JP5736232B2 (en) Polymer electrolyte fuel cell
JP6307960B2 (en) Method for producing electrolyte membrane with catalyst layer for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and electrolyte membrane with catalyst layer
JP2010027271A (en) Fuel cell catalyst layer forming method
KR102480909B1 (en) Device of manufacturing electrode and method of manufacturing electrode
JP6319940B2 (en) Method for producing electrolyte membrane with catalyst layer
JP2012054140A (en) Method of producing catalyst supporting carrier and method of producing electrode catalyst
JP2013004390A (en) Method of manufacturing assembly of electrolytic membrane and catalyst layer for fuel cell
JP2012190671A (en) Gas diffusion electrode and method for manufacturing the same
JP2012248371A (en) Method for producing electrolyte membrane-electrode structure for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250