JP2013191475A - Catalyst ink for fuel cell and coating sheet - Google Patents

Catalyst ink for fuel cell and coating sheet Download PDF

Info

Publication number
JP2013191475A
JP2013191475A JP2012058106A JP2012058106A JP2013191475A JP 2013191475 A JP2013191475 A JP 2013191475A JP 2012058106 A JP2012058106 A JP 2012058106A JP 2012058106 A JP2012058106 A JP 2012058106A JP 2013191475 A JP2013191475 A JP 2013191475A
Authority
JP
Japan
Prior art keywords
catalyst
carbon
ink
coating
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012058106A
Other languages
Japanese (ja)
Inventor
Kinya Shiraishi
欣也 白石
Naoki Deguchi
直幹 出口
Koichiro Miyajima
浩一郎 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2012058106A priority Critical patent/JP2013191475A/en
Publication of JP2013191475A publication Critical patent/JP2013191475A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst ink which can form an excellent catalyst layer for cathode fuel cell, by using a carbon-based catalyst that is safe and inexpensive when compared with a platinum-based catalyst, and exhibiting excellent coating properties for a proton conductive polymer solid electrolyte membrane.SOLUTION: The catalyst ink used for formation of the electrode of a solid polymer fuel cell is a carbon catalyst ink for fuel cell containing a nitrogen atom-containing carbon catalyst, a proton conductive polymer electrolyte, a solvent having a boiling point of 70-130°C, and water. A catalyst coating sheet is produced by coating a proton conductive polymer electrolyte membrane with the catalyst ink, and then drying the membrane.

Description

本発明は、固体高分子型燃料電池に用いる、貴金属を用いない燃料電池用触媒インキ組成物及びその塗布シートに関する。   The present invention relates to a catalyst ink composition for a fuel cell that does not use a noble metal, and a coated sheet thereof, which are used for a polymer electrolyte fuel cell.

燃料電池は、水素と酸素の化学反応により電気を取り出すシステムであり、生成するのは水のみのため環境に対する負荷が小さく、石油や天然ガス、原子力に代わる発電方法として注目されている。   A fuel cell is a system that takes out electricity by a chemical reaction between hydrogen and oxygen, and produces only water, so that the load on the environment is small, and has attracted attention as a power generation method that replaces oil, natural gas, and nuclear power.

固体高分子型燃料電池の電池セルは、プロトン透過性の高分子固体電解質膜と、該電解質膜を両側から挟みこむアノード側とカソード側の電極触媒層とから膜電極接合体(Membrane Electrode Assembly,以下MEAと略記)を形成し、各触媒層の外側にガス拡散層(以下GDLと略記)を設け、更に外側にセパレータを有する構造を持つ。
従来、電極層触媒として白金担持カーボンが主に用いられてきたが、白金はその埋蔵量に限りがあり高価であるため、カソード側電極触媒として、炭素を主原料とした白金代替触媒の研究が行われている。この炭素系触媒は、白金触媒のように製造時に発火する危険性がなく、また安価であることがメリットである。しかし、白金等を用いた貴金属触媒と比較するとその性能はまだ十分といえず、触媒性能を上げるために、触媒を多量に用いる必要がある。
A battery cell of a polymer electrolyte fuel cell includes a proton permeable polymer solid electrolyte membrane, and a membrane electrode assembly (Membrane Electrode Assembly) composed of an anode-side and cathode-side electrode catalyst layer sandwiching the electrolyte membrane from both sides. (Hereinafter abbreviated as MEA), a gas diffusion layer (hereinafter abbreviated as GDL) is provided outside each catalyst layer, and a separator is further provided outside.
Conventionally, platinum-supported carbon has been mainly used as an electrode layer catalyst, but platinum is limited in its reserves and is expensive, so as a cathode-side electrode catalyst, research on platinum alternative catalysts using carbon as the main raw material has been conducted. Has been done. This carbon-based catalyst is advantageous in that it has no risk of being ignited during production unlike a platinum catalyst and is inexpensive. However, the performance is still not sufficient as compared with a noble metal catalyst using platinum or the like, and it is necessary to use a large amount of the catalyst in order to improve the catalyst performance.

白金担持カーボン粒子を触媒として用いた場合は、特許文献1に開示されるように、沸点が120〜150℃の溶剤を用いることで、ひび割れを防止できるとしている。しかし、炭素系触媒を用いた場合は、白金触媒と比較して触媒量、すなわち塗布量を多くしなければならないため、ひび割れの発生する度合いが増し、またMEA作成時に、固体高分子電解質膜上への転写性が劣ってしまうという問題がある。   When platinum-supported carbon particles are used as a catalyst, as disclosed in Patent Document 1, cracking can be prevented by using a solvent having a boiling point of 120 to 150 ° C. However, when a carbon-based catalyst is used, the amount of catalyst, that is, the coating amount must be increased as compared with the platinum catalyst, so that the degree of occurrence of cracking increases, and when the MEA is produced, the solid polymer electrolyte membrane There is a problem that the transferability to is poor.

特許文献2、3及び4には、炭素触媒を用いた例が開示されているが、量産性を考慮した場合、炭素触媒被膜を通常の塗布方法で形成できるのか否かについては明らかにされていない。   Patent Documents 2, 3 and 4 disclose examples using a carbon catalyst. However, in consideration of mass productivity, it has been clarified whether or not a carbon catalyst film can be formed by a normal coating method. Absent.

特開2010−140699号公報JP 2010-140699 A 特開2009−295441号公報JP 2009-295441 A 特開2010−221126号公報JP 2010-221126 A 特開2011−195351号公報JP 2011-195351 A

本発明が解決しようとする課題は、白金系触媒と比較して安全で安価な炭素系触媒を用いて、良好なカソード燃料電池用触媒層を形成可能であり、かつプロトン電導性高分子固体電解質膜に対する塗布性の優れた触媒インキを提供することである。   The problem to be solved by the present invention is that a good catalyst layer for a cathode fuel cell can be formed by using a carbon-based catalyst that is safer and cheaper than a platinum-based catalyst, and a proton conductive polymer solid electrolyte It is an object of the present invention to provide a catalyst ink excellent in applicability to a film.

本発明は、固体高分子型燃料電池の電極形成に用いられる触媒インキであって、窒素原子を含む炭素触媒と、プロトン伝導性高分子電解質と、沸点70〜130℃の溶剤と、水とを含んでなる燃料電池用炭素触媒インキに関する。
また、本発明は、インキ中の水の含有量が1〜30重量%であり、インキ中の総固形分が15〜50重量%である請求項1記載の燃料電池用炭素触媒インキに関する。
更に、本発明は、プロトン伝導性高分子電解質膜上に、請求項1ないし2のいずれか1項に記載のインキを塗布、乾燥してなる触媒塗布シートに関する。
The present invention is a catalyst ink used for forming an electrode of a polymer electrolyte fuel cell, comprising a carbon catalyst containing a nitrogen atom, a proton conductive polymer electrolyte, a solvent having a boiling point of 70 to 130 ° C., and water. The present invention relates to a carbon catalyst ink for a fuel cell.
The present invention also relates to the carbon catalyst ink for a fuel cell according to claim 1, wherein the water content in the ink is 1 to 30% by weight and the total solid content in the ink is 15 to 50% by weight.
Furthermore, the present invention relates to a catalyst-coated sheet obtained by coating and drying the ink according to any one of claims 1 to 2 on a proton conductive polymer electrolyte membrane.

本発明により、燃料電池用触媒として窒素原子含有炭素触媒を用いることで、触媒活性を得ると同時に、高分子電解質溶液への分散性も良好となる。
更に本発明では、沸点70〜130℃の溶剤を用いることで、固体高分子電解質上への触媒インキ塗布、乾燥が容易となり、インキ中に含まれる水分量を10重量%以下とすることで更に触媒被膜層の形成が容易となる。
According to the present invention, by using a nitrogen atom-containing carbon catalyst as a fuel cell catalyst, the catalyst activity is obtained and the dispersibility in the polymer electrolyte solution is also improved.
Furthermore, in the present invention, by using a solvent having a boiling point of 70 to 130 ° C., it becomes easy to apply and dry the catalyst ink on the solid polymer electrolyte, and the water content in the ink is further reduced to 10% by weight or less. Formation of the catalyst coating layer is facilitated.

理由として触媒塗布量を増加させると、含まれる水分の絶対量も増加するため、基材として用いたプロトン伝導性高分子電解質の劣化や、該基材への濡れ性の低下が懸念されるが、水分量を1〜30重量%以下とすることで、プロトン伝導性高分子電解質の膨潤、劣化を防ぐことと、良好な濡れ性を維持することができる。更に、インキの総固形分を15〜50重量%とすることで、触媒塗布量を増した時に、溶媒による不要なインキの広がりを防止し、被膜のひび割れを防ぐことが可能となる。   The reason is that when the amount of the catalyst applied is increased, the absolute amount of water contained is also increased, and there is a concern that the proton conductive polymer electrolyte used as the base material may deteriorate or the wettability to the base material may decrease. By setting the water content to 1 to 30% by weight or less, swelling and deterioration of the proton conductive polymer electrolyte can be prevented and good wettability can be maintained. Furthermore, by setting the total solid content of the ink to 15 to 50% by weight, it is possible to prevent the ink from spreading unnecessarily due to the solvent and to prevent the coating from cracking when the catalyst coating amount is increased.

結果として、塗布量増加時の転写不良による問題を、プロトン伝導性高分子電解質膜上への直接塗布によって回避することが可能となった。従って、本発明により、貴金属を用いない安価で安全な、良好な塗工性能を有する触媒インキを用いて、触媒塗布シートを提供することができた。   As a result, it is possible to avoid the problem due to transfer failure when the coating amount is increased by direct coating on the proton conductive polymer electrolyte membrane. Therefore, according to the present invention, it is possible to provide a catalyst-coated sheet using a catalyst ink having a good coating performance, which is inexpensive, safe and does not use a noble metal.

以下、本発明の実施の形態について説明する。尚、本明細書では、「燃料電池用炭素触媒インキ」を「炭素触媒インキ」、「触媒塗布シート」を「塗布シート」と略記することがある。   Embodiments of the present invention will be described below. In the present specification, “carbon catalyst ink for fuel cell” may be abbreviated as “carbon catalyst ink”, and “catalyst coated sheet” may be abbreviated as “coated sheet”.

(1)窒素原子を含む炭素触媒
窒素原子を含む炭素触媒は、炭素材料と、少なくとも有機顔料を一種以上含む窒素原子の前駆体を熱処理して得られる。
(1) Carbon catalyst containing nitrogen atom The carbon catalyst containing nitrogen atom is obtained by heat-treating a carbon material and a precursor of nitrogen atom containing at least one organic pigment.

また、有機顔料の替わりに、貴金属元素を含有しない大環状化合物の一種以上を含む窒素原子の前駆体を溶解、分散させた後、炭素材料表面に析出させて、洗浄、乾燥させ、前記乾燥物を熱処理することによっても炭素触媒を得られる。   Further, instead of the organic pigment, after dissolving and dispersing a precursor of a nitrogen atom containing one or more macrocyclic compounds not containing a noble metal element, it is deposited on the surface of the carbon material, washed and dried, and the dried product A carbon catalyst can also be obtained by heat-treating.

有機顔料や貴金属元素を含有しない大環状化合物は、本発明における炭素触媒の持つ触媒活性において、重要な要因と考えられる窒素原子や金属元素を一分子中に1個以上含んでいるため、それらを原料として用いることで、効率的に炭素材料表面に触媒活性機能を導入可能となる。   Macrocyclic compounds that do not contain organic pigments or noble metal elements contain one or more nitrogen atoms or metal elements that are considered to be important factors in the catalytic activity of the carbon catalyst in the present invention. By using it as a raw material, a catalytic activity function can be efficiently introduced on the surface of the carbon material.

更に、本発明における炭素触媒は、上記窒素原子の前駆体以外に、樹脂成分、または天然材料なども含有可能であり、それらを含んだ状態で熱処理すると、より複雑な熱分解挙動を示し、熱によって昇華しやすい有機顔料や貴金属元素を含有しない大環状化合物も、熱処理において残存しやすくなり、炭素触媒の原料として好適に使用できるようになる。   Furthermore, the carbon catalyst in the present invention can contain a resin component or a natural material in addition to the nitrogen atom precursor. Therefore, organic pigments that easily sublimate and macrocyclic compounds that do not contain a noble metal element are also likely to remain in the heat treatment and can be suitably used as a raw material for the carbon catalyst.

(炭素材料)
本発明の炭素触媒に用いられる炭素材料としては、カーボンブラック(ファーネスブラック、アセチレンブラック、ケッチェンブラック、ミディアムサーマルカーボンブラック)、活性炭、黒鉛、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、グラフェンナノプレートレット、ナノポーラスカーボン等が挙げられる。
(Carbon material)
The carbon material used in the carbon catalyst of the present invention includes carbon black (furnace black, acetylene black, ketjen black, medium thermal carbon black), activated carbon, graphite, carbon nanotube, carbon nanofiber, carbon nanohorn, graphene nanoplatelet And nanoporous carbon.

前期炭素材料は、種類やメーカーによって、粒子径、形状、BET比表面積、細孔容積、細孔径、嵩密度、DBP吸油量、表面酸塩基度、表面親水度、導電性など様々な物性やコストが異なるため、使用する用途や要求性能に合わせて最適な材料を選択する。   The carbon material in the previous period has various physical properties and costs such as particle diameter, shape, BET specific surface area, pore volume, pore diameter, bulk density, DBP oil absorption, surface acid basicity, surface hydrophilicity, and conductivity depending on the type and manufacturer. Therefore, select the most suitable material according to the intended use and required performance.

本発明に用いられる市販の炭素材料としては、例えば、ケッチェンブラックEC−300J、及びEC−600JD等のアクゾ社製ケッチェンブラック;
トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;
プリンテックスL等のデグサ社製ファーネスブラック;
Raven7000、5750、5250、5000ULTRAIII、5000ULT
RA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;
#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;
MONARCH1400、1300、900、VulcanXC−72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;
Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP−Li等のTIMCAL社製ファーネスブラック;
デンカブラック、デンカブラックHS−100、FX−35等の電気化学工業社製アセチレンブラック;
VGCF、VGCF−H、VGCF−X等の昭和電工社製カーボンナノチューブ;
名城ナノカーボン社製カーボンナノチューブ;
xGnP−C−750、xGnP−M−5等のXGSciences社製グラフェンナノプレートレット;
Easy−N社製ナノポーラスカーボン;
等が挙げられるが、これらに限定されるものではない。
Examples of commercially available carbon materials used in the present invention include Ketjen Black manufactured by Akzo Corporation such as Ketjen Black EC-300J and EC-600JD;
Furnace blacks manufactured by Tokai Carbon, such as Toka Black # 4300, # 4400, # 4500, and # 5500;
Furnace Black made by Degussa such as Printex L;
Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULT
Furnace black made by Colombian, such as RA, Conductex SC ULTRA, 975 ULTRA, PUER BLACK100, 115, and 205;
# 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3230B, # 3350B, # 3400B, and # 5400B furnace black manufactured by Mitsubishi Chemical Corporation;
Furnace black from Cabot, such as MONARCH 1400, 1300, 900, Vulcan XC-72R, and Black Pearls 2000;
Furnace black manufactured by TIMCAL, such as Ensaco 250G, Ensaco 260G, Ensaco 350G, and SuperP-Li;
Acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd. such as Denka Black, Denka Black HS-100 and FX-35;
Carbon nanotubes manufactured by Showa Denko KK such as VGCF, VGCF-H, VGCF-X;
Carbon nanotubes manufactured by Meijo Nanocarbon Co., Ltd .;
graphene nanoplatelets made by XGSciences such as xGnP-C-750, xGnP-M-5;
Nano-carbon produced by Easy-N;
However, it is not limited to these.

(有機顔料)
炭素触媒に用いられる有機顔料としては、印刷インキ、インクジェット用インキ、カラーフィルター用レジストインキ等に使用される種々の顔料が挙げられる。このような顔料としては溶性アゾ顔料、不溶性アゾ顔料、フタロシアニン顔料、キナクリドン顔料、イソインドリノン顔料、イソインドリン顔料、ペリレン顔料、ペリノン顔料、ジオキサジン顔料、アントラキノン顔料、ジアンスラキノニル顔料、アンスラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ピランスロン顔料、ジケトピロロピロール顔料等があり、上記貴金属元素を含有しない大環状化合物としてはフタロシアニン顔料が該当する。
(Organic pigment)
Examples of the organic pigment used in the carbon catalyst include various pigments used in printing inks, inkjet inks, color filter resist inks, and the like. Such pigments include soluble azo pigments, insoluble azo pigments, phthalocyanine pigments, quinacridone pigments, isoindolinone pigments, isoindoline pigments, perylene pigments, perinone pigments, dioxazine pigments, anthraquinone pigments, dianthraquinonyl pigments, anthrapyrimidine pigments. , Anthanthrone pigments, indanthrone pigments, flavanthrone pigments, pyranthrone pigments, diketopyrrolopyrrole pigments, and the like, and phthalocyanine pigments correspond to the macrocyclic compounds containing no noble metal element.

(貴金属元素を含有しない大環状化合物)
大環状化合物とは、9又はそれ以上の原子(全てが異原子である場合を含む)、及び、3又はそれ以上の結合原子を有する化合物と定義されている(Coordination Chemistry of Macrocyclic Compounds, G.A.Melson, Plenum Pres, New York & London, 1979)。本発明において、大環状化合物とは、基本骨格の中に4個の窒素原子が平面上に並んだN4構造を有するものをいう。
(Macrocyclic compounds that do not contain precious metal elements)
Macrocyclic compounds are defined as compounds having 9 or more atoms (including the case where all are heteroatoms) and 3 or more bonded atoms (Coordination Chemistry of Macrocyclic Compounds, GAMelson, Plenum Pres, New York & London, 1979). In the present invention, a macrocyclic compound means a compound having an N4 structure in which four nitrogen atoms are arranged on a plane in a basic skeleton.

貴金属元素を含有しない大環状化合物としては、中心金属がコバルト、鉄、ニッケル、マンガン、銅、チタン、バナジウム、クロム、亜鉛、スズ、アルミニウム、マグネシウムから選ばれる一種であり、それらに有機系配位子が結合したフタロシアニン系化合物、ナフタロシアニン系化合物、ポルフィリン系化合物、テトラアザアヌレン系化合物が挙げられる。また、貴金属元素を含有しない大環状化合物は、電子吸引性官能基や電子供与性官能基を導入されていても問題ない。中でも、コバルトフタロシアニン系化合物、ニッケルフタロシアニン系化合物、鉄フタロシアニン系化合物は、安価で、高い酸素還元活性も有することで知られていることから、それらを用いて合成した炭素触媒は、安価で高い酸素還元活性を有する炭素触媒となるため原料としてより好ましい。   The macrocyclic compound containing no precious metal element is a kind whose central metal is selected from cobalt, iron, nickel, manganese, copper, titanium, vanadium, chromium, zinc, tin, aluminum, magnesium, and organic coordination Examples thereof include a phthalocyanine compound, a naphthalocyanine compound, a porphyrin compound, and a tetraazaannulene compound to which a child is bonded. Further, a macrocyclic compound not containing a noble metal element has no problem even if an electron-withdrawing functional group or an electron-donating functional group is introduced. Among them, cobalt phthalocyanine compounds, nickel phthalocyanine compounds, and iron phthalocyanine compounds are known to be inexpensive and have high oxygen reduction activity. Therefore, carbon catalysts synthesized using them are inexpensive and have high oxygen content. Since it becomes a carbon catalyst which has a reduction activity, it is more preferable as a raw material.

(樹脂成分)
炭素触媒に用いられる樹脂成分としては、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ブチラール樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、ポリスチレン樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、ポリアクリルアミド、シリコーン樹脂、フッ素樹脂、ポリ酢酸ビニル樹脂、エチレン/酢酸ビニル樹脂、ケトン樹脂、石油樹脂、カゼイン、シェラック、ゼラチン、ギルソナイト、ロジン、ロジンエステル、ポリビニルアルコール、ポリビニルピロリドン、ニトロセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース等のセルロース樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等が挙げられる。また、これらの樹脂の変性体、混合物、または共重合体であっても良い。
(Resin component)
Resin components used for carbon catalysts include acrylic resin, polyurethane resin, polyester resin, butyral resin, phenol resin, epoxy resin, phenoxy resin, polystyrene resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, polyacrylamide, silicone Resin, fluororesin, polyvinyl acetate resin, ethylene / vinyl acetate resin, ketone resin, petroleum resin, casein, shellac, gelatin, gilsonite, rosin, rosin ester, polyvinyl alcohol, polyvinyl pyrrolidone, nitrocellulose, hydroxyethyl cellulose, carboxymethyl cellulose, etc. Cellulose resins, synthetic rubbers such as styrene-butadiene rubber and fluorine rubber, and conductive resins such as polyaniline and polyacetylene. Moreover, the modified body of these resin, a mixture, or a copolymer may be sufficient.

(天然材料)
炭素触媒に用いられる天然材料としては、未変性又は変性の、多糖類、天然ワックス、及び植物油からなる群から選ばれる天然材料等が挙げられる
(Natural materials)
Examples of natural materials used for the carbon catalyst include natural materials selected from the group consisting of unmodified or modified polysaccharides, natural waxes, and vegetable oils.

炭素触媒の製造方法の一例について説明する。
炭素触媒の製造方法としては、少なくとも有機顔料を一種以上含む前駆体を作製する工程と、前記前駆体を熱処理する工程とを含む方法が挙げられる。
前駆体を作製する方法としては、1種類の有機顔料を単独で用いる場合もあるが、2種類以上の有機顔料を用いる場合や、炭素材料、樹脂成分、または天然材料などと併用する場合もある。2種類以上の成分を混合、または複合化させる場合、乾式混合や湿式混合などの方法があり、乾式処理機や湿式処理機が使用できる。
An example of a method for producing a carbon catalyst will be described.
Examples of the method for producing a carbon catalyst include a method including a step of producing a precursor containing at least one organic pigment and a step of heat-treating the precursor.
As a method for producing the precursor, one type of organic pigment may be used alone, but there are also cases where two or more types of organic pigments are used, or in combination with a carbon material, a resin component, or a natural material. . When two or more types of components are mixed or combined, there are methods such as dry mixing and wet mixing, and a dry processing machine or a wet processing machine can be used.

乾式処理機としては、例えば、2本ロールや3本ロール等のロールミル、ヘンシェルミキサーやスーパーミキサー等の高速攪拌機、マイクロナイザーやジェットミル等の流体エネルギー粉砕機、アトライター、ホソカワミクロン社製粒子複合化装置「ナノキュア」、「ノビルタ」、「メカノフュージョン」、奈良機械製作所社製粉体表面改質装置「ハイブリダイゼーションシステム」、「メカノマイクロス」、「ミラーロ」等が挙げられる。   Examples of dry processing machines include roll mills such as 2 rolls and 3 rolls, high-speed stirrers such as Henschel mixers and super mixers, fluid energy crushers such as micronizers and jet mills, attritors, and particle composites manufactured by Hosokawa Micron. Examples of the apparatus include “Nanocure”, “Nobilta”, “Mechanofusion”, Nara Machinery Co., Ltd. powder surface modification device “Hybridization system”, “Mechanomicros”, “Miraro”, and the like.

湿式処理機としては、例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類、ホモジナイザー類、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター等のメディア型分散機、湿式ジェットミル等のメディアレス分散機、または、その他ロールミル、ニーダー等が挙げられるが、これらに限定されるものではない。   Examples of wet processing machines include mixers such as dispersers, homomixers, or planetary mixers, homogenizers, paint conditioners (manufactured by Red Devil), ball mills, sand mills (“Dynomill” manufactured by Shinmaru Enterprises, etc.), Examples thereof include, but are not limited to, media-type dispersers such as an attritor, medialess dispersers such as a wet jet mill, and other roll mills and kneaders.

また、湿式混合の場合、湿式処理機を用いて作製した分散体を乾燥させる工程が必要となる。この場合、用いる乾燥装置としては、棚式乾燥機、回転乾燥機、気流乾燥機、噴霧乾燥機、撹拌乾燥機、凍結乾燥機などが挙げられる。   Moreover, in the case of wet mixing, the process of drying the dispersion produced using the wet processing machine is needed. In this case, examples of the drying device to be used include a shelf dryer, a rotary dryer, a flash dryer, a spray dryer, a stirring dryer, and a freeze dryer.

一種以上の有機顔料を含んだ前駆体を熱処理する工程においては、加熱温度は処理される有機顔料によって異なるが、通常500〜1000℃、好ましくは600〜900℃の範囲である。
熱処理工程における加熱温度が500℃を下回る場合、有機顔料の融解や熱分解が生じにくく、炭素触媒活性も低くなる可能性がある。一方、加熱温度が1000℃を超える場合、窒素原子の前駆体の熱分解や昇華が激しくなり、炭素材料表面に触媒活性要因の一つとして考えられている窒素原子や金属元素などが残存しにくくなり、触媒活性が低いことがあるためである。
In the step of heat-treating a precursor containing one or more organic pigments, the heating temperature varies depending on the organic pigment to be treated, but is usually in the range of 500 to 1000 ° C, preferably 600 to 900 ° C.
When the heating temperature in the heat treatment step is lower than 500 ° C., the organic pigment is hardly melted or thermally decomposed, and the carbon catalyst activity may be lowered. On the other hand, when the heating temperature exceeds 1000 ° C., the thermal decomposition and sublimation of the precursor of nitrogen atoms becomes intense, and nitrogen atoms and metal elements that are considered as one of the catalytic activity factors hardly remain on the carbon material surface. This is because the catalytic activity may be low.

更に、熱処理工程における雰囲気に関しては、窒素原子の前駆体をできるだけ不完全燃焼により炭化させ、窒素元素や金属元素などを炭素材料表面近傍に残存させる必要性があるため、窒素やアルゴンなどの不活性ガス雰囲気や、窒素やアルゴンに水素が混合された還元性ガス雰囲気などが好ましい。また、熱処理時の炭素触媒中の窒素元素量低減を抑制するために、窒素元素を多量に含むアンモニアガス雰囲気で熱処理を行なうことも可能である。   Furthermore, regarding the atmosphere in the heat treatment process, it is necessary to carbonize the precursor of nitrogen atoms by incomplete combustion as much as possible, and to leave nitrogen elements and metal elements in the vicinity of the surface of the carbon material. A gas atmosphere or a reducing gas atmosphere in which hydrogen is mixed in nitrogen or argon is preferable. Further, in order to suppress a reduction in the amount of nitrogen element in the carbon catalyst during the heat treatment, the heat treatment can be performed in an ammonia gas atmosphere containing a large amount of nitrogen element.

(2)プロトン電導性高分子電解質
プロトン伝導性高分子電解質としては、有機含フッ素高分子化合物であるイオン交換樹脂等が挙げられる。例えば、パーフルオロカーボンスルホン酸樹脂、スルホン化ポリエーテルケトン、スルホン化ポリスルフィド、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリスルフィド等が挙げられる。市販品としては、「Mafion」(登録商標、デュポン社製)、「Flemion」(登録商標、旭硝子株式会社製)等が挙げられる。
(2) Proton Conducting Polymer Electrolyte Examples of the proton conducting polymer electrolyte include ion exchange resins that are organic fluorine-containing polymer compounds. For example, perfluorocarbon sulfonic acid resin, sulfonated polyether ketone, sulfonated polysulfide, sulfoalkylated polyethersulfone, sulfoalkylated polysulfide and the like can be mentioned. Examples of commercially available products include “Mafion” (registered trademark, manufactured by DuPont), “Flemion” (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.

(3)沸点70〜130℃の溶剤
本発明において用いられる溶剤は、沸点70〜130℃の溶剤を挙げることができる。更に、水と自由に混和する溶剤がより好ましい。70℃未満では乾燥が早いため、被膜を厚く塗工した際にひび割れを生じやすい。一方、130℃を超えると、乾燥条件によっては溶剤が被膜中に残留しやすく、プロトン伝導性高分子電解質膜の軟化、変形を招きやすい。また、水と自由に混和する溶剤を使用することで、プロトン伝導性高分子電解質の分散粒子が液中で形成されやすくなるためである。ここで、水と自由に混和するとは、任意の混合比率で混和することを示す。
(3) Solvent having a boiling point of 70 to 130 ° C. Examples of the solvent used in the present invention include a solvent having a boiling point of 70 to 130 ° C. Furthermore, a solvent that is freely miscible with water is more preferable. When the coating temperature is less than 70 ° C., drying is fast, and thus cracking is likely to occur when the coating is applied thick. On the other hand, if it exceeds 130 ° C., the solvent tends to remain in the coating depending on the drying conditions, and the proton conductive polymer electrolyte membrane tends to be softened and deformed. Moreover, it is because the dispersion | distribution particle | grains of a proton conductive polymer electrolyte will be easy to be formed in a liquid by using the solvent freely mixed with water. Here, mixing freely with water means mixing with an arbitrary mixing ratio.

沸点70〜130℃の溶剤としては、例えば、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、芳香族系溶剤、アルコール系溶剤、グリコール系溶剤、エーテル系溶剤等を使用することができ、2種類以上を混合して使用することもできる。   Examples of the solvent having a boiling point of 70 to 130 ° C. include ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, aromatic solvents, alcohol solvents, glycol solvents, ether solvents, and the like. It is also possible to mix two or more types.

アルコール系溶剤としては、例えば、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、t−ブチルアルコール、sec−アミルアルコール、2−メチル−1−ブタノール、t−アミルアルコール、sec−イソアミルアルコール、ネオアミルアルコール等が挙げられる。   Examples of the alcohol solvent include ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, sec-amyl alcohol, 2-methyl-1-butanol, t -Amyl alcohol, sec-isoamyl alcohol, neoamyl alcohol, etc. are mentioned.

グリコールエーテル系溶剤としては、例えば、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルが挙げられる。   Examples of the glycol ether solvent include ethylene glycol monomethyl ether and propylene glycol monomethyl ether.

エステル系溶剤としては、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ブチル等が挙げられる。   Examples of the ester solvent include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate and the like.

ケトン系溶剤としては、メチルエチルケトン、メチルプロピルケトン、ジエチルケトン、ブチルメチルケトン、メチルイソブチルケトン、等が挙げられる。   Examples of the ketone solvent include methyl ethyl ketone, methyl propyl ketone, diethyl ketone, butyl methyl ketone, and methyl isobutyl ketone.

脂肪族系としては、n−ヘプタン、オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサンが挙げられ、芳香族系としては、トルエンが挙げられ、その他に、ジメチルカーボネートが挙げられる。 Examples of the aliphatic type include n-heptane, octane, isooctane, cyclohexane, and methylcyclohexane. Examples of the aromatic type include toluene, and other examples include dimethyl carbonate.

上記溶剤の中ではアルコール系、グリコール系、及びケトン系溶剤が好ましく、更にその中では、乾燥性、被膜形成性の点から、エタノール、プロピレングリコールモノメチルエーテル、メチルエチルケトンが好ましい。   Among the above solvents, alcohol-based, glycol-based and ketone-based solvents are preferable, and among them, ethanol, propylene glycol monomethyl ether, and methyl ethyl ketone are preferable from the viewpoint of drying property and film-forming property.

(4)炭素触媒インキの製造
本発明の炭素触媒インキは、窒素原子を含む炭素触媒粒子を、プロトン伝導性高分子電解質と、沸点70〜130℃の溶剤と、水とを混合し、分散することにより製造することができる。また、必要に応じて、可塑剤、滑剤、分散剤、消泡剤、表面張力調整剤、帯電防止剤、酸化防止剤、キレート剤等の通常用いられる各種添加剤を含ませることができる。さらに、本発明の目的に反しない範囲で、その他の通常用いられている有機・無機充填剤を含ませてもよい。分散は、従来公知の方法で、例えば、ボールミル、アトライター、サンドミル、ジェットミル、3本ロールミル、ペイントシェーカー等を用いて分散する。
(4) Production of carbon catalyst ink In the carbon catalyst ink of the present invention, carbon catalyst particles containing nitrogen atoms are mixed by dispersing a proton conductive polymer electrolyte, a solvent having a boiling point of 70 to 130 ° C., and water. Can be manufactured. Further, if necessary, various commonly used additives such as a plasticizer, a lubricant, a dispersant, an antifoaming agent, a surface tension adjusting agent, an antistatic agent, an antioxidant, and a chelating agent can be included. Furthermore, other commonly used organic / inorganic fillers may be included within the range not contrary to the object of the present invention. The dispersion is performed by a conventionally known method, for example, using a ball mill, an attritor, a sand mill, a jet mill, a three roll mill, a paint shaker or the like.

本発明の炭素触媒インキには、水を含有する。含有量は、インキ中で1〜30重量%の範囲が好ましい。30重量%を超えて水を含有すると、塗工乾燥後の被膜のひび割れや炭素触媒粒子の凝集を招く場合があり、1重量%未満の場合、インキ製造の際、プロトン伝導性高分子電解質のハンドリングが悪くなるためである。   The carbon catalyst ink of the present invention contains water. The content is preferably in the range of 1 to 30% by weight in the ink. If it contains more than 30% by weight of water, it may cause cracking of the coating after coating and agglomeration of the carbon catalyst particles. If it is less than 1% by weight, the proton conductive polymer electrolyte may This is because handling becomes worse.

また、本発明の炭素触媒インキの総固形分は、15〜50重量%が好ましい。更に好ましくは20〜40重量%である。15重量%未満の場合は、乾燥過程で触媒粒子の不要な広がりを招きやすく、被膜のひび割れを生じやすい。一方、50重量%を超える場合は、炭素触媒インキの流動性が低下し、取り扱いし難くなるためである。   The total solid content of the carbon catalyst ink of the present invention is preferably 15 to 50% by weight. More preferably, it is 20 to 40% by weight. When it is less than 15% by weight, unnecessary spreading of the catalyst particles is likely to occur during the drying process, and cracking of the coating tends to occur. On the other hand, when it exceeds 50% by weight, the fluidity of the carbon catalyst ink is lowered and it becomes difficult to handle.

(5)炭素触媒インキの塗布
本発明の炭素触媒インキは、例えば「Nafion」(登録商標、デュポン社製)等のフィルムの少なくとも片面に、従来公知の方法、例えばグラビア印刷、フレキソ印刷、スクリーン印刷、ロータリースクリーン印刷、スプレーコート、ダイコート、リップコート、ナイフコート、ディップコート、カーテンコート、ロールコート等で塗布後、通常40〜100℃、好ましくは50〜70℃で乾燥されて、プラスチックフィルムの少なくとも片面に炭素触媒層を有する塗布シートが得られる。
(5) Application of carbon catalyst ink The carbon catalyst ink of the present invention is a conventionally known method such as gravure printing, flexographic printing, or screen printing on at least one surface of a film such as “Nafion” (registered trademark, manufactured by DuPont). After being applied by rotary screen printing, spray coating, die coating, lip coating, knife coating, dip coating, curtain coating, roll coating, etc., it is usually dried at 40 to 100 ° C., preferably 50 to 70 ° C. A coated sheet having a carbon catalyst layer on one side is obtained.

また、本発明の炭素触媒インキは、水の含有量が触媒インキ中10重量%以下、インキの総固形分が重量比で30〜70重量%であり、更に沸点70〜130℃の溶剤を含んでいるので、被膜形性能に優れているため、塗工方法によっても異なるが、乾燥後の重量で0.5〜8.0mg/cm2程度の範囲で直接塗布可能となり、転写の工程を経ることがなくMEAを作製できる。   The carbon catalyst ink of the present invention has a water content of 10% by weight or less in the catalyst ink, a total solid content of the ink of 30 to 70% by weight, and further contains a solvent having a boiling point of 70 to 130 ° C. Therefore, since it has excellent film form performance, it varies depending on the coating method, but it can be directly applied in the range of 0.5 to 8.0 mg / cm 2 by weight after drying, and undergoes a transfer process. The MEA can be manufactured without any problem.

以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例中の「部」は「重量部」を、「%」は「重量%」をそれぞれ表すものとする。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples. In the examples, “part” represents “part by weight” and “%” represents “% by weight”.

炭素触媒、及び前駆体である表面処理炭素材料の分析は、以下の測定機器を使用した。
・XRD(X線回折測定);PANalytical社製 X‘Pert PRO MPD
・CHN元素分析;パーキンエルマー社製 2400型CHN元素分析
・ICP発光分光分析;SPECTRO社製 SPECTRO ARCOS FHS12
・SEM(走査型電子顕微鏡);日立製作所社製 SEM S−4300
The following measuring instruments were used for the analysis of the carbon catalyst and the surface-treated carbon material as a precursor.
-XRD (X-ray diffraction measurement); X'Pert PRO MPD manufactured by PANalytical
CHN elemental analysis: Perkin Elmer 2400 type CHN elemental analysis ICP emission spectroscopic analysis: SPECTRO SPECTRO ARCOS FHS12
SEM (scanning electron microscope); SEM S-4300 manufactured by Hitachi, Ltd.

[炭素触媒合成例(1)]
ピグメントブラック1(BASF社製)とケッチェンブラック(ライオン社製EC−600JD)を、重量比1:1で秤量し、乳鉢にて乾式混合を行い前駆体とした。
上記前駆体粉末を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で1時間熱処理を行い、得られた炭化物を乳鉢にて粉砕し炭素触媒(1)を得た。
得られた炭素触媒は、CHN元素分析より、モル比N(窒素)/C(炭素)は0.01であった。
[Example of carbon catalyst synthesis (1)]
Pigment Black 1 (BASF) and Ketjen Black (Lion EC-600JD) were weighed at a weight ratio of 1: 1, and dry mixed in a mortar to obtain a precursor.
The precursor powder was filled in an alumina crucible, heat-treated at 800 ° C. for 1 hour in a nitrogen atmosphere in an electric furnace, and the resulting carbide was pulverized in a mortar to obtain a carbon catalyst (1).
The obtained carbon catalyst had a molar ratio N (nitrogen) / C (carbon) of 0.01 based on CHN elemental analysis.

[プロトン伝導性高分子電解質分散液の調製例]
本発明に用いるプロトン伝導性高分子電解質分散液は以下のように調製した。市販Nafion溶液(和光純薬工業社製、Nafion20重量%分散液)を、ロータリーエバポレーターを用いて溶媒を留去、及び溶媒置換を行い、固形分35重量%分散液(溶媒:水/エタノール=15/50、重量比)を得た。
[Preparation Example of Proton Conductive Polymer Electrolyte Dispersion]
The proton conductive polymer electrolyte dispersion used in the present invention was prepared as follows. A commercially available Nafion solution (manufactured by Wako Pure Chemical Industries, Ltd., Nafion 20% by weight dispersion) was distilled off using a rotary evaporator and the solvent was replaced, and a solid content 35% by weight dispersion (solvent: water / ethanol = 15). / 50, weight ratio).

[実施例1]
表1に示した処方に従って、上記合成例1で得られた炭素触媒(1)10重量部、上記調製例で得られたプロトン伝導性高分子電解質分散液14.3重量部、エタノール25.3重量部、水0.4重量部を混合し、ペイントシェーカーを用いて10分間分散して炭素触媒インキを得た。
[Example 1]
In accordance with the formulation shown in Table 1, 10 parts by weight of the carbon catalyst (1) obtained in Synthesis Example 1 above, 14.3 parts by weight of the proton conductive polymer electrolyte dispersion obtained in the above Preparation Example, and 25.3 ethanol. Part by weight and 0.4 part by weight of water were mixed and dispersed for 10 minutes using a paint shaker to obtain a carbon catalyst ink.

[実施例2〜10]
表1の処方に変更した以外は、実施例1の場合と同様に炭素触媒インキを得た。
[Examples 2 to 10]
A carbon catalyst ink was obtained in the same manner as in Example 1 except that the formulation in Table 1 was changed.

Figure 2013191475
Figure 2013191475

Figure 2013191475
Figure 2013191475

実施例で得られた炭素触媒インキの評価は下記の方法で行った。
[被膜状態の評価]
上記炭素触媒インキをプロトン伝導性高分子フィルム、Nafion NR212(デュポン社製、厚さ約51μm)上に、10milのドクターブレードを用いて3m/分の速度で塗工した。塗工後80℃、30分間熱風乾燥オーブンを用いて乾燥し、塗工シートを得た。得られた塗工シートを、デジタルマイクロスコープ(キーエンス製、VHX−900型)を用いて500倍で観察した。塗布シートの評価は、下記評価基準に従った。

○: ひび割れ、塗膜ムラがない(極めて良好)
△: ひび割れ、塗膜ムラがある(良好)
×: ひび割れ、塗膜ムラが非常に多い(不良)
The carbon catalyst ink obtained in the examples was evaluated by the following method.
[Evaluation of coating state]
The carbon catalyst ink was applied onto a proton conductive polymer film, Nafion NR212 (manufactured by DuPont, thickness of about 51 μm) at a speed of 3 m / min using a 10 mil doctor blade. After coating, it was dried at 80 ° C. for 30 minutes using a hot air drying oven to obtain a coated sheet. The obtained coated sheet was observed at 500 times using a digital microscope (manufactured by Keyence, VHX-900 type). The evaluation of the coated sheet was in accordance with the following evaluation criteria.

○: No cracks or uneven coating (very good)
Δ: Cracks and coating unevenness (good)
×: Very many cracks and coating unevenness (defect)

上記塗布シートを用いて燃料電池を作成したところ、いずれも良好な特性を示した。   When the fuel cell was created using the said application | coating sheet, all showed the favorable characteristic.

Claims (3)

固体高分子型燃料電池の電極形成に用いられる触媒インキであって、窒素原子を含む炭素触媒と、プロトン伝導性高分子電解質と、沸点70〜130℃の溶剤と、水とを含んでなる燃料電池用炭素触媒インキ。   A catalyst ink used for forming an electrode of a polymer electrolyte fuel cell, comprising: a carbon catalyst containing nitrogen atoms; a proton conductive polymer electrolyte; a solvent having a boiling point of 70 to 130 ° C .; and water. Carbon catalyst ink for batteries. インキ中の水の含有量が1〜30重量%であり、インキ中の総固形分が15〜50重量%である請求項1記載の燃料電池用炭素触媒インキ。   The carbon catalyst ink for fuel cells according to claim 1, wherein the content of water in the ink is 1 to 30% by weight and the total solid content in the ink is 15 to 50% by weight. プロトン伝導性高分子電解質膜上に、請求項1ないし2のいずれか1項に記載のインキを塗布、乾燥してなる触媒塗布シート。   A catalyst-coated sheet obtained by coating and drying the ink according to claim 1 on a proton-conductive polymer electrolyte membrane.
JP2012058106A 2012-03-15 2012-03-15 Catalyst ink for fuel cell and coating sheet Pending JP2013191475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058106A JP2013191475A (en) 2012-03-15 2012-03-15 Catalyst ink for fuel cell and coating sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058106A JP2013191475A (en) 2012-03-15 2012-03-15 Catalyst ink for fuel cell and coating sheet

Publications (1)

Publication Number Publication Date
JP2013191475A true JP2013191475A (en) 2013-09-26

Family

ID=49391507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058106A Pending JP2013191475A (en) 2012-03-15 2012-03-15 Catalyst ink for fuel cell and coating sheet

Country Status (1)

Country Link
JP (1) JP2013191475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098180A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Electrode catalyst ink composition
JP2017212176A (en) * 2016-05-27 2017-11-30 日清紡ホールディングス株式会社 Battery cathode, battery cathode catalyst layer composition, and battery
KR20200119203A (en) * 2019-04-09 2020-10-19 도요타지도샤가부시키가이샤 Method for manufacturing membrane electrode assembly for fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098180A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Electrode catalyst ink composition
JP5813257B1 (en) * 2013-12-27 2015-11-17 昭和電工株式会社 Electrocatalyst ink composition
US10205174B2 (en) 2013-12-27 2019-02-12 Showa Denko K.K. Electrode catalyst ink composition
JP2017212176A (en) * 2016-05-27 2017-11-30 日清紡ホールディングス株式会社 Battery cathode, battery cathode catalyst layer composition, and battery
US11177484B2 (en) 2016-05-27 2021-11-16 Nisshinbo Holdings Inc. Battery cathode, composition for battery cathode catalytic layer, and battery
KR20200119203A (en) * 2019-04-09 2020-10-19 도요타지도샤가부시키가이샤 Method for manufacturing membrane electrode assembly for fuel cell
KR102325913B1 (en) 2019-04-09 2021-11-12 도요타지도샤가부시키가이샤 Method for manufacturing membrane electrode assembly for fuel cell

Similar Documents

Publication Publication Date Title
JP6225545B2 (en) Carbon catalyst granule, method for producing carbon catalyst granule, catalyst ink using the carbon catalyst granule, and fuel cell
Shao et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction
JP4452889B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
JP4471174B2 (en) Mesoporous carbon body and production method thereof, supported catalyst and fuel cell
Ji et al. Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell
JP6244936B2 (en) Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
JP6354393B2 (en) Aqueous catalyst paste composition for fuel cell and fuel cell
TW201940423A (en) Carbon-based composite for oxygen reduction catalyst, method for manufacturing the same and use thereof
JP6736929B2 (en) Fuel cell paste composition and fuel cell
WO2019176511A1 (en) Carbon-based composite for oxygen reduction catalyst, method for producing carbon-based composite for oxygen reduction catalyst, and use of carbon-based composite for oxygen reduction catalyst
Chen et al. PtCoN supported on TiN-modified carbon nanotubes (PtCoN/TiN–CNT) as efficient oxygen reduction reaction catalysts in acidic medium
JP2017210638A (en) Carbon catalyst for water electrolysis and production method of the same, catalyst ink for water electrolysis using the carbon catalyst, and water electrolysis device
Liang et al. Microwave-assisted polyol preparation of reduced graphene oxide nanoribbons supported platinum as a highly active electrocatalyst for oxygen reduction reaction
JP6672935B2 (en) Carbon catalyst, method for producing the same, catalyst ink, and fuel cell
JP2013191475A (en) Catalyst ink for fuel cell and coating sheet
JP2006302644A (en) Catalyst paste for fuel cell electrode and its manufacturing method as well as electrode for fuel cells
JP6237338B2 (en) Sulfonated carbon catalyst and process for producing the same, catalyst ink using the sulfonated carbon catalyst, and fuel cell
JP5387791B1 (en) Carbon catalyst, method for producing carbon catalyst, catalyst ink using the carbon catalyst, and fuel cell
JP2013206638A (en) Electrode-electrolyte membrane assembly forming sheet
Somani et al. Platinum and Ruthenium nanoparticles decorated multi walled carbon nanotubes as electrodes for polymer electrolyte membrane fuel cells
CN102687319A (en) Ink, catalyst layer for fuel cell produced using the ink, and use of the catalyst layer
JP6186959B2 (en) Method for producing catalyst ink, catalyst ink, catalyst electrode, fuel cell, and air cell
Jiang et al. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation
JP2013158674A (en) Method of manufacturing carbon catalyst and fuel cell using the catalyst
JP6028650B2 (en) Carbon catalyst, method for producing carbon catalyst, catalyst ink using the carbon catalyst, and fuel cell