JP2013191465A - Recycling apparatus of secondary batteries - Google Patents

Recycling apparatus of secondary batteries Download PDF

Info

Publication number
JP2013191465A
JP2013191465A JP2012057869A JP2012057869A JP2013191465A JP 2013191465 A JP2013191465 A JP 2013191465A JP 2012057869 A JP2012057869 A JP 2012057869A JP 2012057869 A JP2012057869 A JP 2012057869A JP 2013191465 A JP2013191465 A JP 2013191465A
Authority
JP
Japan
Prior art keywords
thermal decomposition
secondary battery
flow path
tank
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012057869A
Other languages
Japanese (ja)
Other versions
JP5790553B2 (en
Inventor
Keiji Shukutani
啓二 宿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012057869A priority Critical patent/JP5790553B2/en
Publication of JP2013191465A publication Critical patent/JP2013191465A/en
Application granted granted Critical
Publication of JP5790553B2 publication Critical patent/JP5790553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recycling apparatus of secondary batteries in which the thermal decomposition products discharged during heat treatment can be efficiently recovered as waste fluid and waste gas.SOLUTION: The recycling apparatus of secondary batteries includes a heat treatment tank 12 for heating secondary batteries 10, a cooling device 18 for cooling thermal decomposition products discharged from the secondary batteries 10 thus heated, piping 22c through which the thermal decomposition products thus cooled flow and piping 22d branched from the piping 22c, a waste liquid tank 20 installed on the discharge side of the piping 22c and storing the thermal decomposition products, and a purifier 24 installed on the discharge side of the piping 22d and purifying the thermal decomposition products. The piping 22c between the branch position of the piping 22d and the waste liquid tank 20 is provided with a holding section 30 for holding the liquid 30a, and the passage of the piping 22c is closed by the liquid 30a in the holding section 30.

Description

本発明は、二次電池のリサイクル処理装置の技術に関する。   The present invention relates to a technology of a secondary battery recycling apparatus.

リチウムイオン二次電池やニッケル水素二次電池等の二次電池は、例えば、ハイブリッド車等の車両用部品として使用されている場合、車両が廃車等になった際には、二次電池が車両から取り外された後、解体され、有用な金属が回収される。   When a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery is used as a vehicle component such as a hybrid vehicle, for example, when the vehicle is disused, the secondary battery is After being removed from, it is disassembled and useful metals are recovered.

一般的に、自動車用部品として使用される二次電池は、高電圧を発生(例えば、300V以上)するものであり、車両が廃車となって取り外される際にも、高電圧を保っている場合が多い。通常、二次電池を解体する作業は、作業者が絶縁手袋等の保護具を着用して、手作業で行われるため、作業の安全性確保に十分な配慮が必要である。   Generally, a secondary battery used as an automobile part generates a high voltage (for example, 300 V or more), and maintains a high voltage even when the vehicle is removed as a scrap car. There are many. Usually, the work of disassembling the secondary battery is performed manually by an operator wearing protective equipment such as an insulating glove. Therefore, sufficient consideration must be given to ensuring the safety of the work.

また、二次電池の解体作業等の安全性を高めるために、二次電池を放電させることも考えられるが、この場合、二次電池を長期間保管して自然放電させるか、または抵抗器等を用いて強制的に放電させる必要があり、二次電池のリサイクル処理の作業が長時間化するか若しくは手間を要するため、リサイクル処理の作業を効率的に行うことができない。   In order to enhance the safety of the secondary battery disassembly work, etc., it is conceivable to discharge the secondary battery. In this case, the secondary battery is stored for a long period of time and discharged naturally, or a resistor, etc. Therefore, it is necessary to forcibly discharge the battery, and the recycling process of the secondary battery takes a long time or takes time, so that the recycling process cannot be performed efficiently.

従来から、二次電池から有価物を回収する様々な方法が提案され(例えば、特許文献1〜3参照)、リサイクル処理の作業効率化が図られている。   Conventionally, various methods for recovering valuable materials from secondary batteries have been proposed (for example, see Patent Documents 1 to 3), and work efficiency of the recycling process has been improved.

特開2005−26088号公報JP-A-2005-26088 特開2010−3512号公報JP 2010-3512 A 特開2010−165569号公報JP 2010-165568 A

ところで、特許文献1〜3のリサイクル処理方法では、二次電池を加熱処理するため、加熱処理の際には、加熱分解生成物のガスが排出される。加熱分解生成物は、液化して廃液としてタンクにより回収し、液化しなかったガスは廃ガスとして浄化装置により浄化することが望ましい。しかし、従来では、廃液、廃ガスの分別まで考慮されておらず、廃液の一部が浄化装置に流れ、廃ガスがタンクに流れ込む場合があり、廃液、廃ガスを効率的に回収、浄化することが困難となっていた。   By the way, in the recycling method of patent documents 1-3, in order to heat-process a secondary battery, in the case of heat processing, the gas of a thermal decomposition product is discharged | emitted. It is desirable that the pyrolysis product is liquefied and recovered by a tank as waste liquid, and the gas that has not been liquefied is purified by a purification device as waste gas. However, conventionally, separation of waste liquid and waste gas is not taken into consideration, and part of the waste liquid may flow into the purification device, and the waste gas may flow into the tank, and efficiently recover and purify the waste liquid and waste gas. It was difficult.

そこで、本発明は、加熱処理の際に排出される加熱分解生成物を廃液、廃ガスとして効率的に回収することができる二次電池のリサイクル処理装置を提供することを目的とする。   Then, an object of this invention is to provide the recycle processing apparatus of a secondary battery which can collect | recover efficiently the thermal decomposition product discharged | emitted in the case of heat processing as a waste liquid and waste gas.

本発明の二次電池のリサイクル処理装置は、二次電池を加熱する加熱処理槽と、加熱された二次電池から放出される加熱分解生成物を冷却する冷却部と、前記冷却された加熱分解生成物が流れる第1流路及び前記第1流路から分岐された第2流路と、前記第1流路の排出側に設置され、前記加熱分解生成物を貯留するタンクと、前記第2流路の排出側に設置され、前記加熱分解生成物を浄化する浄化装置と、を備え、前記第2流路の分岐位置と前記タンクの間の前記第1流路には、液体を保持する保持部が設けられ、前記保持部では、前記液体により第1流路が塞がれている。   The secondary battery recycling apparatus of the present invention includes a heat treatment tank for heating a secondary battery, a cooling unit for cooling a thermal decomposition product discharged from the heated secondary battery, and the cooled thermal decomposition. A first flow path through which the product flows, a second flow path branched from the first flow path, a tank installed on the discharge side of the first flow path and storing the pyrolysis product, and the second A purification device that is disposed on the discharge side of the flow path and purifies the thermal decomposition product, and holds liquid in the first flow path between the branch position of the second flow path and the tank. A holding portion is provided, and the first flow path is blocked by the liquid in the holding portion.

また、前記二次電池のリサイクル処理装置において、前記第1流路に設けられる保持部はU字状の流路形状となっていることが好ましい。   In the secondary battery recycling apparatus, it is preferable that the holding portion provided in the first flow path has a U-shaped flow path shape.

本発明によれば、加熱処理の際に排出される加熱分解生成物を廃液、廃ガスとして効率的に回収することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal decomposition product discharged | emitted in the case of heat processing can be efficiently collect | recovered as a waste liquid and waste gas.

本実施形態に係る二次電池のリサイクル処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the recycling processing apparatus of the secondary battery which concerns on this embodiment. 本実施形態に係る二次電池のリサイクル処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the recycling processing apparatus of the secondary battery which concerns on this embodiment. 電池パックの解体及び有価物の回収工程を説明するためのフロー図である。It is a flowchart for demonstrating the disassembly of a battery pack, and the collection process of valuables.

以下、電池パックをリサイクルする方法及び処理装置の一例を図面に基づいて説明する。ここで、「二次電池」なる用語は、ニッケル水素二次電池やリチウムイオン二次電池等の電池単体として電池セルに限定されるものではなく、電池セルを複数(例えば6個か8個程度)直列に接続して1つの部品単位とした電池モジュール、又は該電池モジュールを複数直列に接続して構成された組電池、又は該組電池と、電池モジュールの充電状態を監視制御する制御装置や電気回路を切断するためのリレーや機械的に回路を切断するためのセーフティプラグや組電池を冷却する冷却ブロア等の電子部品と、各部品を接続する信号線や動力線と、これらを密閉収納するケース等から構成される電池パック等も含まれる。   Hereinafter, an example of a method and a processing apparatus for recycling a battery pack will be described with reference to the drawings. Here, the term “secondary battery” is not limited to a battery cell as a single battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but a plurality of battery cells (for example, about six or eight batteries). ) A battery module connected in series as one component unit, or a battery pack configured by connecting a plurality of battery modules in series, or a control device for monitoring and controlling the battery pack and the charging state of the battery module, Electronic components such as relays for disconnecting electrical circuits, safety plugs for mechanically disconnecting circuits and cooling blowers for cooling assembled batteries, signal lines and power lines connecting each component, and airtight storage The battery pack etc. comprised from the case etc. which carry out are also included.

図1は、本実施形態に係る二次電池のリサイクル処理装置の構成の一例を示す模式図である。図1に示すリサイクル処理装置1は、加熱処理槽12、置換ガス供給装置14、冷却装置18、廃液タンク20、浄化装置24、配管22a,22b,22c,22dを備える。図1において、配管22c,22d及び浄化装置24については、断面図で表している。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a secondary battery recycling apparatus according to the present embodiment. 1 includes a heat treatment tank 12, a replacement gas supply device 14, a cooling device 18, a waste liquid tank 20, a purification device 24, and pipes 22a, 22b, 22c, and 22d. In FIG. 1, the pipes 22 c and 22 d and the purification device 24 are shown in a sectional view.

加熱処理槽12は、主に、二次電池10を加熱処理するためのものであり、本実施形態の加熱処理槽12内には電気ヒータ26、二次電池10を載置する載置台28、を備える。二次電池10を加熱する熱源としては電気ヒータ26に制限されるものではなく、ラジアントチューブ等の間接加熱型のガスヒータ等でもよい。   The heat treatment tank 12 is mainly for heat treatment of the secondary battery 10, and an electric heater 26 and a mounting table 28 on which the secondary battery 10 is placed in the heat treatment tank 12 of the present embodiment, Is provided. The heat source for heating the secondary battery 10 is not limited to the electric heater 26, and may be an indirect heating type gas heater such as a radiant tube.

置換ガス供給装置14は、例えば、水蒸気(以下、単に蒸気と呼ぶ)を発生させる貫流ボイラー等の蒸気ボイラー、不活性ガスを充填したガスボンベ等が挙げられる。   Examples of the replacement gas supply device 14 include a steam boiler such as a once-through boiler that generates water vapor (hereinafter simply referred to as steam), a gas cylinder filled with an inert gas, and the like.

冷却装置18は、主に二次電池10から放出された加熱分解生成物等を冷却するためのものであり、例えば、シェルアンドチューブタイプ等の間接式水冷型熱交換器、プレートフィンタイプ等の表面式熱交換器等が挙げられる。   The cooling device 18 is mainly for cooling a thermal decomposition product and the like released from the secondary battery 10, and for example, an indirect water-cooled heat exchanger such as a shell and tube type, a plate fin type, or the like. A surface heat exchanger and the like can be mentioned.

廃液タンク20は、主に冷却装置18により冷却され、凝縮・液化した加熱分解生成物を貯留するためのものである。また、浄化装置24は、主に冷却装置18により凝縮されなかったガス状の加熱分解生成物を浄化するためのものである。   The waste liquid tank 20 is mainly used for storing the condensed thermal decomposition products that are cooled by the cooling device 18 and condensed and liquefied. The purification device 24 is for purifying gaseous thermal decomposition products that have not been condensed mainly by the cooling device 18.

配管22aの一端は置換ガス供給装置14に接続され、配管22aの他端は加熱処理槽12の供給管12aに接続されている。配管22bの一端は、加熱処理槽12の排出管12bに接続され、配管22bの他端は冷却装置18の供給口(不図示)に接続されている。配管(第1流路)22cの一端は冷却装置18の排出口(不図示)に接続され、配管22cの他端は、廃液タンク20の廃液入口(不図示)に接続されている。配管22d(第2流路)の一端は、後述する保持部30より、加熱分解生成物の流れの上流側(以下、単に上流側と呼ぶ場合がある)の配管22cに接続され、配管22dの他端は、浄化装置24の供給口(不図示)に接続されている。   One end of the pipe 22 a is connected to the replacement gas supply device 14, and the other end of the pipe 22 a is connected to the supply pipe 12 a of the heat treatment tank 12. One end of the pipe 22b is connected to the discharge pipe 12b of the heat treatment tank 12, and the other end of the pipe 22b is connected to a supply port (not shown) of the cooling device 18. One end of the pipe (first flow path) 22c is connected to a discharge port (not shown) of the cooling device 18, and the other end of the pipe 22c is connected to a waste liquid inlet (not shown) of the waste liquid tank 20. One end of the pipe 22d (second flow path) is connected to a pipe 22c on the upstream side (hereinafter sometimes simply referred to as the upstream side) of the flow of the thermal decomposition product from the holding unit 30 described later. The other end is connected to a supply port (not shown) of the purification device 24.

配管22cには、液体を保持する保持部30が設けられている。保持部30は、配管22dより加熱分解生成物の流れの下流側(以下、単に下流側と呼ぶ場合がある)の配管22cに配置、すなわち、配管22dの分岐位置と廃液タンク20との間の配管22cに配置されている。本実施形態の保持部30は、U字状の流路形状となっており、このU字部分に液体30aが溜められ、保持部30において配管22cの流路が塞がれている。本実施形態では、U字状の保持部30より下流側の配管22cは、後述するように保持部30から越流した液体30aが廃液タンク20に流れるようにU字状に折り返された形状になっている。また、本実施形態では、保持部30に溜められた液体30aの液面及び底面から液体30aを引き抜くための配管22e,22fが配管22cに接続されている。   The pipe 22c is provided with a holding unit 30 that holds the liquid. The holding unit 30 is disposed on the pipe 22c on the downstream side of the flow of the pyrolysis product from the pipe 22d (hereinafter sometimes referred to simply as the downstream side), that is, between the branch position of the pipe 22d and the waste liquid tank 20. It arrange | positions at the piping 22c. The holding part 30 of the present embodiment has a U-shaped flow path shape. The liquid 30a is stored in the U-shaped part, and the flow path of the pipe 22c is blocked in the holding part 30. In the present embodiment, the pipe 22c on the downstream side of the U-shaped holding portion 30 is folded in a U shape so that the liquid 30a overflowed from the holding portion 30 flows into the waste liquid tank 20 as will be described later. It has become. In the present embodiment, pipes 22e and 22f for drawing the liquid 30a from the liquid surface and bottom surface of the liquid 30a stored in the holding unit 30 are connected to the pipe 22c.

次に、本実施形態に係る処理装置1の動作を説明する。   Next, the operation of the processing apparatus 1 according to this embodiment will be described.

まず、加熱処理槽12の開閉扉12cを開け、二次電池10を槽内の載置台28にセットし、開閉扉12cを閉めて密閉し、電気ヒータ26のスイッチを入れ、二次電池10を加熱する。なお、加熱処理槽12内の温度制御は、槽内に温度センサ(不図示)等を設置して、槽内の温度を検出し、検出した温度に基づいて電気ヒータ26の出力を調節することにより行われる。   First, the door 12c of the heat treatment tank 12 is opened, the secondary battery 10 is set on the mounting table 28 in the tank, the door 12c is closed and sealed, the electric heater 26 is turned on, and the secondary battery 10 is turned on. Heat. The temperature control in the heat treatment tank 12 is performed by installing a temperature sensor (not shown) in the tank, detecting the temperature in the tank, and adjusting the output of the electric heater 26 based on the detected temperature. Is done.

加熱処理槽12内で二次電池10を加熱し、二次電池10の温度が、二次電池10を構成する電池セル内の電解液の沸点以上に達すると、電池セル内部の圧力が上昇して、電池セルに設けられる安全弁等から電解液等の加熱分解生成物がガスとして放出され、電圧が変動し始める。そして、さらに加熱を続けると、電圧がゼロになり電池機能が破壊される。例えば、有機系電解液を使用するリチウムイオン二次電池及び水系電解液を使用するニッケル水素二次電池では、150℃以上で加熱することにより、二次電池10の電池機能を破壊し電圧をゼロにすることが可能となる。このような加熱処理後の二次電池10は電圧ゼロのスクラップとして安全に取り扱うことができるため、後工程である二次電池10の解体等を安全に容易に実施することも可能となる。   When the secondary battery 10 is heated in the heat treatment tank 12 and the temperature of the secondary battery 10 reaches or exceeds the boiling point of the electrolyte in the battery cell constituting the secondary battery 10, the pressure inside the battery cell increases. Thus, a thermal decomposition product such as an electrolytic solution is released as a gas from a safety valve or the like provided in the battery cell, and the voltage starts to fluctuate. If the heating is further continued, the voltage becomes zero and the battery function is destroyed. For example, in a lithium ion secondary battery using an organic electrolyte and a nickel metal hydride secondary battery using an aqueous electrolyte, the battery function of the secondary battery 10 is destroyed and the voltage is reduced to zero by heating at 150 ° C. or higher. It becomes possible to. Since the secondary battery 10 after such a heat treatment can be safely handled as zero-voltage scrap, it is possible to safely and easily perform disassembly of the secondary battery 10 as a post-process.

本実施形態の加熱処理においては、図1に示すように、置換ガス供給装置14から配管22aを介して水蒸気又は不活性ガス等の置換ガスを加熱処理槽12内に供給して、加熱処理槽12内空間を水蒸気又は不活性ガス等の置換ガスにより置換し、無酸素状態にすることが好ましい。例えば、リチウムイオン二次電池に使用される電解液のうち、炭酸ジメチル等の有機電解質は可燃性材料であるが、加熱処理槽12内を置換ガスにより置換し、無酸素状態にすることにより、加熱処理によって有機電解質が二次電池10外へ放出されたとしても、加熱処理槽12内で燃焼することが抑制され、加熱処理槽12内から排出される。特に、加熱処理においては、蒸気を供給することが好ましい。例えば、リチウムイオン二次電池の電解液に使用される6フッ化リン酸リチウム等の電解質塩は、加熱処理によって、加熱分解してフッ化リチウムやフッ化水素等に変化するが、蒸気を加熱処理槽12内に供給することにより、フッ化水素(ガス)をフッ酸として容易に回収することができる。   In the heat treatment of the present embodiment, as shown in FIG. 1, a replacement gas such as water vapor or an inert gas is supplied from the replacement gas supply device 14 through the pipe 22a into the heat treatment tank 12, and the heat treatment tank It is preferable to replace the inner space 12 with a replacement gas such as water vapor or an inert gas to make it oxygen-free. For example, among electrolytes used for lithium ion secondary batteries, an organic electrolyte such as dimethyl carbonate is a flammable material, but the inside of the heat treatment tank 12 is replaced with a replacement gas to make an oxygen-free state. Even if the organic electrolyte is released from the secondary battery 10 by the heat treatment, combustion in the heat treatment tank 12 is suppressed and the organic electrolyte is discharged from the heat treatment tank 12. In particular, it is preferable to supply steam in the heat treatment. For example, an electrolyte salt such as lithium hexafluorophosphate used for an electrolyte of a lithium ion secondary battery is thermally decomposed and changed into lithium fluoride, hydrogen fluoride, or the like by heat treatment, but the vapor is heated. By supplying it into the treatment tank 12, hydrogen fluoride (gas) can be easily recovered as hydrofluoric acid.

次に、加熱処理により二次電池10から放出されるガス状の加熱分解生成物は、配管22bを通り冷却装置18に供給される。二次電池10から放出される加熱分解生成物には、二次電池10を構成する電解液、セパレータ等の樹脂等が挙げられる。例えば、リチウムイオン二次電池の場合には、炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)、炭酸エチレン(EC)、フッ化水素、フッ化リチウム等の電解液由来の加熱分解生成物、ポリエチレン(PE)、ポリプロピレン(PP)等を材料とするセパレータ等の樹脂由来の加熱分解生成物等がガスとなって放出される。また、炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)、炭酸エチレン(EC)、ポリエチレン(PE)、ポリプロピレン(PP)等が放出されると、それらの構成元素であるH、C、O等から、水素(H)、一酸化炭素(CO)、二酸化炭素(CO)等のガスも生成されるが、本明細書ではこれらも加熱分解生成物と呼ぶ。 Next, the gaseous thermal decomposition product released from the secondary battery 10 by the heat treatment is supplied to the cooling device 18 through the pipe 22b. Examples of the thermal decomposition product released from the secondary battery 10 include an electrolyte solution constituting the secondary battery 10 and a resin such as a separator. For example, in the case of a lithium ion secondary battery, a thermal decomposition product derived from an electrolyte such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), hydrogen fluoride, lithium fluoride, polyethylene, etc. A thermal decomposition product derived from a resin such as a separator made of (PE), polypropylene (PP) or the like is released as a gas. Also, when dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), polyethylene (PE), polypropylene (PP), etc. are released, from their constituent elements H, C, O, etc. Gases such as hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ) are also generated, and these are also referred to as thermal decomposition products in this specification.

これらの加熱分解生成物が冷却装置18に供給されると、加熱分解生成物が冷却され液化される。そして、冷却装置18から液化した加熱分解生成物が排出されると共に、冷却装置18で液化(凝縮)しなかったガス状の加熱分解生成物も排出される。なお、液化した加熱分解生成物は、例えば、リチウムイオン二次電池の場合には、炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)、炭酸エチレン(EC)、フッ化水素、フッ化リチウム等の電解液である。また、凝縮しなかったガス状の加熱分解生成物は、水素(H)、一酸化炭素(CO)、二酸化炭素(CO)等であるが、凝縮できなかった上記の電解液も含まれる場合がある。 When these thermal decomposition products are supplied to the cooling device 18, the thermal decomposition products are cooled and liquefied. And the liquefied thermal decomposition product is discharged | emitted from the cooling device 18, and the gaseous thermal decomposition product which was not liquefied (condensed) by the cooling device 18 is also discharged | emitted. In the case of a lithium ion secondary battery, the liquefied thermal decomposition product is, for example, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), hydrogen fluoride, lithium fluoride or the like. Electrolytic solution. Also, the gaseous heat decomposition products which has not condensed is hydrogen (H 2), carbon monoxide (CO), is a carbon dioxide (CO 2) or the like, also includes the above electrolyte solution which could not be condensed There is a case.

液化した加熱分解生成物は配管22cを通り、保持部30に溜められる。一方、ガス状の加熱分解生成物は、保持部30内の液体30aによって、保持部30より下流側の配管22cには流れず、配管22cから分岐した配管22dを通って、浄化装置24に供給され、そこで浄化される。浄化装置としては、例えば、活性炭等を充填したガス吸着フィルター等が用いられ、ガス状の加熱分解生成物が活性炭に吸着され、系外にガス状の加熱分解生成物が洩れることが抑制される。ガス状の加熱分解生成物が酸性雰囲気の場合には、本実施形態の浄化装置24のように、活性炭24aの前段に消石灰(水酸化カルシウム)24bを充填したガス吸着フィルター等を用いることが好ましい。このような浄化装置24によれば、酸性雰囲気のガス状の加熱分解生成物を中和した上で、加熱分解生成物を活性炭に吸着させることができる。   The liquefied pyrolysis product passes through the pipe 22 c and is stored in the holding unit 30. On the other hand, the gaseous pyrolysis product does not flow into the pipe 22c downstream of the holding unit 30 due to the liquid 30a in the holding unit 30, but is supplied to the purification device 24 through the pipe 22d branched from the pipe 22c. And purified there. As the purification device, for example, a gas adsorption filter filled with activated carbon or the like is used, and gaseous pyrolysis products are adsorbed on the activated carbon, and leakage of gaseous pyrolysis products outside the system is suppressed. . When the gaseous pyrolysis product is in an acidic atmosphere, it is preferable to use a gas adsorption filter or the like in which slaked lime (calcium hydroxide) 24b is filled in the previous stage of the activated carbon 24a as in the purification device 24 of the present embodiment. . According to such a purification device 24, the thermal decomposition product can be adsorbed to the activated carbon after neutralizing the gaseous thermal decomposition product in an acidic atmosphere.

液化した加熱分解生成物が保持部30に溜められていくと、比重の重い液化した加熱分解生成物は、保持部30の下流側に流れ、越流口31から溢れて、配管22cを介して廃液タンク20に供給され、廃液として回収される。また、比重の軽い液化した加熱分解生成物があれば、保持部30の上流側に留まるため、配管22eから排出させる。また、加熱分解生成物の中に固形分が含まれており、配管22cを通過し、保持部30に溜められた場合には、配管22fから排出させる。なお、装置の稼働前に保持部に充填される液体は特に制限されるものではないが、水等の揮発性の低い液体であることが好ましい。   When the liquefied pyrolysis product is stored in the holding unit 30, the liquefied pyrolysis product having a high specific gravity flows downstream from the holding unit 30, overflows from the overflow port 31, and passes through the pipe 22c. It is supplied to the waste liquid tank 20 and collected as waste liquid. Further, if there is a liquefied thermal decomposition product having a low specific gravity, it remains on the upstream side of the holding unit 30 and is therefore discharged from the pipe 22e. Moreover, when the solid content is contained in the thermal decomposition product and it passes through the piping 22c and is stored in the holding part 30, it is discharged from the piping 22f. In addition, the liquid with which the holding unit is filled before the operation of the apparatus is not particularly limited, but is preferably a liquid with low volatility such as water.

廃液タンク20には、通気管32及び活性炭等を充填したガス吸着フィルター34等を設置することが好ましい。廃液タンク20内に廃液が溜まっていくと、廃液タンク20内の圧力が大気圧より高くなる場合がある。そして、廃液タンク20内の圧力が大気圧より高くなった場合には、廃液タンク20に設置された通気管32からガスを大気中へ排出させる。この際、ガスは、ガス吸着フィルター34を介して大気中へ排出されるため、臭気等が装置外部に洩れることが抑制される。   The waste liquid tank 20 is preferably provided with a gas adsorption filter 34 filled with a vent pipe 32 and activated carbon. When the waste liquid accumulates in the waste liquid tank 20, the pressure in the waste liquid tank 20 may become higher than the atmospheric pressure. When the pressure in the waste liquid tank 20 becomes higher than the atmospheric pressure, the gas is discharged from the vent pipe 32 installed in the waste liquid tank 20 to the atmosphere. At this time, since the gas is discharged into the atmosphere through the gas adsorption filter 34, it is possible to prevent odors and the like from leaking outside the apparatus.

このように、上記説明した保持部30を配管22cに設置することにより、液化した加熱分解生成物は廃液タンク20へ、液化しなかったガス状の加熱分解生成物は浄化装置24へ送られるため、廃液、廃ガスを分別し、効率的に回収することができる。   Thus, by installing the holding unit 30 described above in the pipe 22c, the liquefied pyrolysis product is sent to the waste liquid tank 20, and the gaseous pyrolysis product that has not been liquefied is sent to the purification device 24. , Waste liquid and waste gas can be separated and recovered efficiently.

従来では、液化した加熱分解生成物と共に、液化しなかったガス状の加熱分解生成物も廃液タンクに流れ込むため、廃液タンク内に溜まるガス状の加熱分解生成物は廃液タンクに設置したガス吸着フィルターにより浄化していた。したがって、従来では、廃液タンクの容積は、ガス状の加熱分解生成物が流れ込むことを想定して、大型化する必要があった。しかし、本実施形態では、液化した加熱分解生成物は廃液タンク20へ、ガス状の加熱分解生成物は浄化装置24へ分配され、廃液タンク20にガス状の加熱分解生成物が流れ込み難いため、廃液タンク20の容積をコンパクトにすることが可能となる。また、水素ガス等の可燃性ガスも、廃液タンク20に溜めることなく、浄化装置24により直接浄化させることができる。   Conventionally, gaseous pyrolysis products that have not been liquefied also flow into the waste liquid tank together with the liquefied pyrolysis products, so the gaseous pyrolysis products that accumulate in the waste liquid tank are gas adsorption filters installed in the waste liquid tank. It was purifying by. Therefore, conventionally, it has been necessary to increase the volume of the waste liquid tank on the assumption that a gaseous thermal decomposition product flows. However, in this embodiment, the liquefied pyrolysis product is distributed to the waste liquid tank 20, the gaseous pyrolysis product is distributed to the purification device 24, and the gaseous pyrolysis product is difficult to flow into the waste liquid tank 20, The volume of the waste liquid tank 20 can be made compact. Further, flammable gas such as hydrogen gas can also be directly purified by the purification device 24 without accumulating in the waste liquid tank 20.

図2は、本実施形態に係る二次電池のリサイクル処理装置の構成の他の一例を示す模式図である。図2に示す二次電池のリサイクル処理装置2において、図1に示すリサイクル処理装置1と同様の構成については同一の符号を付しその説明を省略する。図2の二次電池のリサイクル処理装置2の保持部は液体を溜める貯留部36とバルブ38とを備えるものである。   FIG. 2 is a schematic diagram illustrating another example of the configuration of the secondary battery recycling apparatus according to the present embodiment. In the secondary battery recycling apparatus 2 shown in FIG. 2, the same components as those in the recycling apparatus 1 shown in FIG. The holding unit of the secondary battery recycling apparatus 2 in FIG. 2 includes a storage unit 36 for storing liquid and a valve 38.

装置の稼働前に、配管22e等から貯留部36に液体30aが充填され、保持部(実質的には貯留部36)において配管22cの流路が液体により塞がれる。この際、貯留部36内の空間の全部又は一部が液体30aにより満たされる。装置の稼働後、前述したように、冷却装置18により液化した加熱分解生成物は配管22cを通り、保持部の貯留部36に溜められ、ガス状の加熱分解生成物は、貯留部36内の液体によって、保持部より下流側の配管22cには流れず、配管22cから分岐した配管22dを通り、浄化装置24に供給され、浄化される。   Prior to the operation of the apparatus, the storage portion 36 is filled with the liquid 30a from the piping 22e or the like, and the flow path of the piping 22c is blocked by the liquid in the holding portion (substantially the storage portion 36). At this time, all or a part of the space in the reservoir 36 is filled with the liquid 30a. After the operation of the apparatus, as described above, the thermal decomposition product liquefied by the cooling device 18 passes through the pipe 22c and is stored in the storage unit 36 of the holding unit, and the gaseous thermal decomposition product is stored in the storage unit 36. The liquid does not flow into the pipe 22c on the downstream side of the holding portion, passes through the pipe 22d branched from the pipe 22c, is supplied to the purification device 24, and is purified.

一方、液化した加熱分解生成物は保持部の貯留部36に溜められる。そして、装置稼働後から所定時間経過した後、或いは貯留部36の液面が所定水位を超えた段階で、バルブ38を開き、配管22cを介して貯留部36内の液体30aの一部を廃液タンク20に供給する。なお、貯留部36内の液体30aを完全に排出させてしまうと、ガス状の加熱分解生成物も廃液タンク20に流れ込んでしまうため、一定量の液体30aは貯留部36に残しておく必要がある。   On the other hand, the liquefied pyrolysis product is stored in the storage unit 36 of the holding unit. Then, after a predetermined time has elapsed since the operation of the apparatus, or when the liquid level in the storage unit 36 has exceeded a predetermined water level, the valve 38 is opened, and a part of the liquid 30a in the storage unit 36 is drained through the pipe 22c. Supply to tank 20. If the liquid 30a in the storage unit 36 is completely discharged, the gaseous thermal decomposition product also flows into the waste liquid tank 20, so that a certain amount of the liquid 30a needs to remain in the storage unit 36. is there.

保持部の構造は、配管22c内に液体を保持して、配管22c内の流路を液体により塞ぐことができる構造であれば、図1及び2に示す保持部の構造に限定されるものではないが、装置構成の簡略化、小型化、運転管理の容易化等の観点から、保持部は図1に示すU字状の配管構造として、その中に液体を充填して(保持して)、配管22cの流路を塞ぐことが好ましい。   The structure of the holding part is not limited to the structure of the holding part shown in FIGS. 1 and 2 as long as the liquid can be held in the pipe 22c and the flow path in the pipe 22c can be blocked by the liquid. However, from the viewpoint of simplification of the device configuration, miniaturization, ease of operation management, etc., the holding unit has a U-shaped piping structure shown in FIG. 1 and is filled (held) with liquid. It is preferable to block the flow path of the pipe 22c.

以上のような加熱処理によって、電池機能が破壊され、電解液が放出された二次電池は、二次電池の解体及び有価物の回収工程に搬送される。特に、電池セルと共に電子部品、信号線、動力線、ケース等から構成されている電池パックの場合でも、電池機能は破壊され、また電解液が放出されるため、後述するように、電池パックの解体から有価物の回収までの全行程を、作業者による危険な手作業(電池パックの解体作業)を不要とし、自動化することができる。その結果、安全で安価な二次電池のリサイクルが可能となる。   The secondary battery in which the battery function is destroyed and the electrolytic solution is released by the heat treatment as described above is transported to the secondary battery disassembly and valuable material recovery process. In particular, even in the case of a battery pack composed of electronic parts, signal lines, power lines, cases, etc. together with battery cells, the battery function is destroyed and the electrolyte solution is released. The entire process from dismantling to collection of valuable materials can be automated without requiring dangerous manual work (battery pack dismantling work) by the operator. As a result, a safe and inexpensive secondary battery can be recycled.

図3は、電池パックの解体及び有価物の回収工程を説明するためのフロー図である。ここでは、リチウムイオン二次電池の電池パックを例に説明するが、ニッケル水素二次電池の電池パック等でも同様に適用することが可能である。また、以下に説明する有価物の回収工程は、主に、リチウムイオン二次電池の集電体として使用される電極箔(Al,Cu)、正極材料として使用される遷移金属(Ni,Mn,Co等)、正極材料中及び負極材料中に存在するリチウムを回収するものである。また、図3に示すフローは電池パックの解体及び有価物の回収工程の一例であって、これに制限されるものではない。   FIG. 3 is a flowchart for explaining the dismantling of the battery pack and the recovery process of the valuables. Here, a battery pack of a lithium ion secondary battery will be described as an example, but the same can be applied to a battery pack of a nickel hydride secondary battery. In addition, the recovery process of valuable materials described below mainly includes an electrode foil (Al, Cu) used as a current collector of a lithium ion secondary battery, and a transition metal (Ni, Mn, used as a positive electrode material). Co, etc.), and recovers lithium present in the positive electrode material and the negative electrode material. Further, the flow shown in FIG. 3 is an example of a process of disassembling the battery pack and collecting valuables, and is not limited thereto.

図3に示すように、ステップS10では、前述した加熱処理を実施した電池パックを破砕処理する。なお、電池パックを加熱処理すると、電池パックの構成材料である熱可塑性樹脂が熱分解して、原型とは大きく異なった状態となるが、電池セルの電解液等は外部に放出され電池機能は破壊された安全な状態であるため、破砕処理においては、作業者による手解体より、シュレッダーマシン(大型ハンマーミル等)に電池パックを直接投入して破砕処理する方が、処理時間、安全性の点で好ましい。また、シュレッダーマシン等で電池パックを破砕する前に、電池パックを水中に浸漬させ、電池セルを放電させる等の処理を行ってもよい。なお、このシュレッダーマシン等は廃自動車や廃家電製品の処理において一般的に使用されるものを用いることができる。   As shown in FIG. 3, in step S10, the battery pack that has been subjected to the heat treatment described above is crushed. When the battery pack is heat-treated, the thermoplastic resin, which is a constituent material of the battery pack, is thermally decomposed to be in a state significantly different from the original, but the battery cell electrolyte is released to the outside and the battery function is Because it is in a safe state of being destroyed, in the crushing process, it is better to throw the battery pack directly into a shredder machine (such as a large hammer mill) and perform the crushing process instead of manual dismantling by the operator. This is preferable. Moreover, before crushing a battery pack with a shredder machine etc., you may perform the process of immersing a battery pack in water and discharging a battery cell. In addition, this shredder machine etc. can use what is generally used in a process of a scrap car and a waste home appliance.

シュレッダーマシンを用いて電池パックを破砕処理することにより、樹脂等の無価物はシュレッダーダストとして排出される。一方、電池パック内の電池セルのうち、電池セルの外装であるアルミケース等は、比重の大きな金属片となり、電極箔(正極材料及び負極材料も含む)等は、比重の小さな金属屑となる。シュレッダーダストは廃棄法にしたがって管理型埋め立て処分する。また、埋め立てる条件としては、管理型埋め立て基準を満たす必要がある。   By crushing the battery pack using a shredder machine, non-priced materials such as resin are discharged as shredder dust. On the other hand, among the battery cells in the battery pack, an aluminum case or the like that is an exterior of the battery cell becomes a metal piece with a large specific gravity, and an electrode foil (including a positive electrode material and a negative electrode material) becomes a metal scrap with a small specific gravity. . Shredder dust is disposed of in a landfill according to the disposal law. Moreover, as a condition for landfill, it is necessary to satisfy the management-type landfill standard.

次に、ステップS12では、前述した比重の大きな金属片と比重の小さな金属屑とを、風力選別し、比重の大きな金属片を回収する。なお、風力選別に代えて、磁力選別により比重の大きな金属片を回収してもよい。   Next, in step S12, the above-described metal piece having a large specific gravity and metal scrap having a small specific gravity are subjected to wind sorting, and the metal piece having a large specific gravity is collected. Instead of wind sorting, metal pieces having a large specific gravity may be recovered by magnetic sorting.

次に、ステップS14では、電極箔(正極材料及び負極材料も含む)等の比重の小さな金属屑を水で洗浄して、負極材料中のリチウムや正極材料中のリチウムを水酸化リチウムに、正極材料中の遷移金属を水酸化物に変化させる。以下に、正極材料としてニッケル酸リチウムを用いた場合の反応を示す。
3LiNiO+4.5HO→3LiOH+3Ni(OH)+4/3O
Next, in step S14, metal waste having a small specific gravity such as an electrode foil (including a positive electrode material and a negative electrode material) is washed with water to convert lithium in the negative electrode material and lithium in the positive electrode material into lithium hydroxide. The transition metal in the material is changed to a hydroxide. The reaction when lithium nickelate is used as the positive electrode material is shown below.
3LiNiO 2 + 4.5H 2 O → 3LiOH + 3Ni (OH) 2 + 4 / 3O 2

水酸化リチウムは水に容易に溶解するため水溶液となり、水酸化ニッケル等の遷移金属の水酸化物は水への溶解度が非常に低いためほとんど溶解せず、固形分となる。なお、水酸化ニッケルの溶解度は0.0013g/100cmである。 Lithium hydroxide easily dissolves in water to form an aqueous solution, and transition metal hydroxides such as nickel hydroxide have very low solubility in water, and thus hardly dissolve and become solids. The solubility of nickel hydroxide is 0.0013 g / 100 cm 3 .

次に、ステップS16では、振動篩装置等によって、前述した水酸化リチウム等の水溶液と水酸化ニッケル等の固形分とに篩い分けられる。そして、ステップS18では、水酸化リチウム水溶液に炭酸ガスを導入して中和し、炭酸リチウムとし、この炭酸リチウムを沈殿ろ過して回収する。   Next, in step S16, the aqueous solution such as lithium hydroxide and the solid content such as nickel hydroxide are sieved by the vibration sieve device or the like. In step S18, carbon dioxide gas is introduced into the aqueous lithium hydroxide solution to neutralize it to obtain lithium carbonate, which is recovered by precipitation filtration.

ステップS20では、水酸化ニッケル等の遷移金属の水酸化物等の固形分を浸出槽に投入し、塩酸等の酸を添加して、遷移金属の水酸化物を水溶性の金属塩化物に変化させる。ニッケル塩化物等の金属塩化物溶液を抽出し、後述するステップS30に進み、既存の精錬工程によって、例えば、ニッケル原料として、金属や硫酸ニッケル等の製品にリサイクルされる。   In step S20, solid content such as transition metal hydroxide such as nickel hydroxide is put into the leaching tank, and acid such as hydrochloric acid is added to change the transition metal hydroxide into water-soluble metal chloride. Let A metal chloride solution such as nickel chloride is extracted, and the process proceeds to step S30 described later, and is recycled into a product such as metal or nickel sulfate as a nickel raw material by an existing refining process.

また、塩酸を添加した場合(ステップS20)、浸出槽では、未反応の水酸化ニッケル等の金属水酸化物(正極材料)、セパレータ、アルミ(電極箔)は浮上し、負極材料(カーボン)及び銅(電極箔)は沈降するため、これらを分離することができる。なお、以下では、浸出槽に浮上した浮上物を浮上分電極材と称し、浸出槽に沈降した沈降物を沈降分電極材と称する。なお、ステップS20において、塩酸の代わりに硫酸を添加すると、未反応の水酸化ニッケル等の金属水酸化物、セパレータ、アルミ(電極箔)、負極材料(カーボン)及び銅(電極箔)は全て沈降してしまう。塩酸を添加することによって浮上分電極材と沈降分電極材に分離させることができる理由としては、銅とアルミの比重差に加え、塩酸を添加した場合には、アルミを腐食する過程で発生する水素ガスの発生速度が硫酸を添加した場合に比べて大きいため、アルミの見かけ上の比重が1より低くなるためであると考えられる。したがって、その後に行う銅の回収において、銅の純度を上げてリサイクル材としての付加価値を高くすることができる点で、塩酸を添加することが好ましい。なお、硫酸を添加した場合でも、その後の工程において、Ni等の有価金属の回収を行うことはできる。   When hydrochloric acid is added (step S20), in the leaching tank, unreacted metal hydroxide such as nickel hydroxide (positive electrode material), separator, and aluminum (electrode foil) are levitated, and the negative electrode material (carbon) and Since copper (electrode foil) settles, these can be separated. In the following description, the levitated material that has floated in the leaching tank is referred to as a floating electrode material, and the sediment that has settled in the leaching tank is referred to as a sediment electrode material. In step S20, when sulfuric acid is added instead of hydrochloric acid, unreacted metal hydroxide such as nickel hydroxide, separator, aluminum (electrode foil), negative electrode material (carbon) and copper (electrode foil) are all precipitated. Resulting in. The reason why it is possible to separate the floating electrode material and the sedimented electrode material by adding hydrochloric acid is that it occurs in the process of corroding aluminum when hydrochloric acid is added in addition to the difference in specific gravity between copper and aluminum. This is considered to be because the apparent specific gravity of aluminum is lower than 1 because the generation rate of hydrogen gas is higher than when sulfuric acid is added. Therefore, in the subsequent copper recovery, it is preferable to add hydrochloric acid in terms of increasing the purity of copper and increasing the added value as a recycled material. Even when sulfuric acid is added, valuable metals such as Ni can be recovered in the subsequent steps.

次に、ステップS22では、浸出槽から分離した浮上分電極材を洗浄槽に投入し、塩酸を添加して攪拌洗浄する。これにより、アルミやセパレータに付着していた水酸化ニッケル等の遷移金属の水酸化物を水溶性の金属塩化物に変化させる。そして、ステップS24では、振動篩装置等によって、アルミやセパレータ等の固形分とニッケル塩化物等の金属塩化物溶液とに篩い分けられる。篩い分けられたアルミやセパレータはリサイクル材として回収してもよいし、廃棄処分してもよい。一方、ニッケル塩化物等の金属塩化物溶液は、ステップS30に進み、既存の精錬工程により精錬され、例えば、ニッケル原料として、金属や硫酸ニッケル等の製品にリサイクルされる。   Next, in step S22, the floating electrode material separated from the leaching tank is put into the cleaning tank, and hydrochloric acid is added and stirred and washed. Thereby, the transition metal hydroxide such as nickel hydroxide attached to the aluminum or the separator is changed to a water-soluble metal chloride. And in step S24, it sifts into solid content, such as aluminum and a separator, and metal chloride solutions, such as nickel chloride, with a vibration sieve apparatus. The sieved aluminum or separator may be collected as a recycled material or discarded. On the other hand, the metal chloride solution such as nickel chloride proceeds to step S30 and is refined by an existing refining process, and is recycled, for example, to a product such as metal or nickel sulfate as a nickel raw material.

ステップS26では、浸出槽から分離した沈降分電極材を、上記同様に洗浄槽に投入し、塩酸を添加して攪拌洗浄する。これにより、銅に付着していた水酸化ニッケル等の遷移金属の水酸化物を水溶性の金属塩化物に変化させる。そして、ステップS28では、振動篩装置等によって、銅等の固形分とニッケル塩化物等の金属塩化物溶液とに篩い分けられる。篩い分けられた銅はリサイクル材として回収される。一方、ニッケル塩化物等の金属塩化物溶液は、上記同様に、ステップS30に進み、既存の精錬工程により精錬され、例えば、ニッケル原料として、金属や硫酸ニッケル等の製品にリサイクルされる。   In step S26, the sedimentation electrode material separated from the leaching tank is put into the washing tank in the same manner as described above, and hydrochloric acid is added and washed with stirring. Thereby, the hydroxide of transition metals, such as nickel hydroxide, adhering to copper is changed into a water-soluble metal chloride. And in step S28, it sifts into solid content, such as copper, and metal chloride solutions, such as nickel chloride, with a vibration sieve apparatus. The sieved copper is recovered as recycled material. On the other hand, the metal chloride solution such as nickel chloride proceeds to step S30 in the same manner as described above, and is refined by an existing refining process. For example, it is recycled as a nickel raw material into a product such as metal or nickel sulfate.

1,2 リサイクル処理装置、10 二次電池、12 加熱処理槽、12a 供給管、12b 排出管、12c 開閉扉、14 置換ガス供給装置、18 冷却装置、20 廃液タンク、22a〜22f 配管、24 浄化装置、24a 活性炭、24b 消石灰、26 電気ヒータ、28 載置台、30 保持部、30a 液体、31 越流口、32 通気管、34 ガス吸着フィルター、36 貯留部、38 バルブ。   1, 2 Recycle treatment device, 10 Secondary battery, 12 Heat treatment tank, 12a Supply pipe, 12b Discharge pipe, 12c Open / close door, 14 Replacement gas supply device, 18 Cooling device, 20 Waste liquid tank, 22a-22f Piping, 24 Purification Apparatus, 24a Activated carbon, 24b Slaked lime, 26 Electric heater, 28 Mounting table, 30 Holding part, 30a Liquid, 31 Overflow port, 32 Vent pipe, 34 Gas adsorption filter, 36 Storage part, 38 Valve.

Claims (2)

二次電池を加熱する加熱処理槽と、
加熱された二次電池から放出される加熱分解生成物を冷却する冷却装置と、
前記冷却された加熱分解生成物が流れる第1流路及び前記第1流路から分岐された第2流路と、
前記第1流路の排出側に設置され、前記加熱分解生成物を貯留するタンクと、
前記第2流路の排出側に設置され、前記加熱分解生成物を浄化する浄化装置と、を備え、
前記第2流路の分岐位置と前記タンクの間の前記第1流路には、液体を保持する保持部が設けられ、前記保持部では、前記液体により第1流路が塞がれることを特徴とする二次電池のリサイクル処理装置。
A heat treatment tank for heating the secondary battery;
A cooling device for cooling the thermal decomposition product discharged from the heated secondary battery;
A first flow path through which the cooled pyrolysis product flows and a second flow path branched from the first flow path;
A tank installed on the discharge side of the first flow path and storing the thermal decomposition product;
A purification device installed on the discharge side of the second flow path and purifying the thermal decomposition product,
The first flow path between the branch position of the second flow path and the tank is provided with a holding unit that holds liquid, and the holding unit closes the first flow path with the liquid. A rechargeable battery recycling device.
前記第1流路に設けられる保持部はU字状の流路形状であることを特徴とする請求項1記載の二次電池のリサイクル処理装置。   The secondary battery recycling apparatus according to claim 1, wherein the holding portion provided in the first flow path has a U-shaped flow path shape.
JP2012057869A 2012-03-14 2012-03-14 Secondary battery recycling equipment Active JP5790553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057869A JP5790553B2 (en) 2012-03-14 2012-03-14 Secondary battery recycling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057869A JP5790553B2 (en) 2012-03-14 2012-03-14 Secondary battery recycling equipment

Publications (2)

Publication Number Publication Date
JP2013191465A true JP2013191465A (en) 2013-09-26
JP5790553B2 JP5790553B2 (en) 2015-10-07

Family

ID=49391501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057869A Active JP5790553B2 (en) 2012-03-14 2012-03-14 Secondary battery recycling equipment

Country Status (1)

Country Link
JP (1) JP5790553B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825063A (en) * 2014-02-27 2014-05-28 北京工业大学 Waste and old hard-case power lithium ion battery electrolyte displacement apparatus and displacement method thereof
CN106229571A (en) * 2016-08-12 2016-12-14 上海交通大学 Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery
CN108421813A (en) * 2018-04-08 2018-08-21 安徽巡鹰新能源科技有限公司 A kind of waste lithium cell processing system
JP2019039028A (en) * 2017-08-23 2019-03-14 住友大阪セメント株式会社 Recovery method of valuables from used lithium ion batteries
CN111271711A (en) * 2020-01-20 2020-06-12 上海智迭科技有限公司 Continuous carbonization pyrolysis treatment method for waste lithium batteries
CN111326810A (en) * 2018-12-13 2020-06-23 多氟多化工股份有限公司 Method for photocatalytic degradation of organic matters in waste lithium ion battery pole piece and recovery method of current collector and active substances in pole piece
CN112453027A (en) * 2020-11-07 2021-03-09 湖南宝特瑞能新能源有限责任公司 Lithium cell is retrieved with liquid decomposition device who has seal structure
CN113629309A (en) * 2021-08-03 2021-11-09 赣州赛可韦尔科技有限公司 Method for efficiently and cleanly separating cathode material and aluminum foil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920876B1 (en) * 2018-06-25 2018-11-21 김종한 Furnace
CN108550947B (en) * 2018-06-30 2021-06-29 贵州中伟资源循环产业发展有限公司 Waste lithium battery electrolyte lithium hexafluorophosphate recycling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026088A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Processing method and recycling method of lithium battery
JP2007141524A (en) * 2005-11-15 2007-06-07 Toshiba Corp Gas liquid separator and fuel cell power generation system provided with gas liquid separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026088A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Processing method and recycling method of lithium battery
JP2007141524A (en) * 2005-11-15 2007-06-07 Toshiba Corp Gas liquid separator and fuel cell power generation system provided with gas liquid separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825063A (en) * 2014-02-27 2014-05-28 北京工业大学 Waste and old hard-case power lithium ion battery electrolyte displacement apparatus and displacement method thereof
CN106229571A (en) * 2016-08-12 2016-12-14 上海交通大学 Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery
JP2019039028A (en) * 2017-08-23 2019-03-14 住友大阪セメント株式会社 Recovery method of valuables from used lithium ion batteries
CN108421813A (en) * 2018-04-08 2018-08-21 安徽巡鹰新能源科技有限公司 A kind of waste lithium cell processing system
CN111326810A (en) * 2018-12-13 2020-06-23 多氟多化工股份有限公司 Method for photocatalytic degradation of organic matters in waste lithium ion battery pole piece and recovery method of current collector and active substances in pole piece
CN111326810B (en) * 2018-12-13 2021-08-13 多氟多新材料股份有限公司 Method for photocatalytic degradation of organic matters in waste lithium ion battery pole piece and recovery method of current collector and active substances in pole piece
CN111271711A (en) * 2020-01-20 2020-06-12 上海智迭科技有限公司 Continuous carbonization pyrolysis treatment method for waste lithium batteries
CN112453027A (en) * 2020-11-07 2021-03-09 湖南宝特瑞能新能源有限责任公司 Lithium cell is retrieved with liquid decomposition device who has seal structure
CN113629309A (en) * 2021-08-03 2021-11-09 赣州赛可韦尔科技有限公司 Method for efficiently and cleanly separating cathode material and aluminum foil

Also Published As

Publication number Publication date
JP5790553B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5790553B2 (en) Secondary battery recycling equipment
JP5703884B2 (en) Battery pack recycling method and processing apparatus
Forte et al. Lithium iron phosphate batteries recycling: An assessment of current status
AU2018276326B2 (en) A process, apparatus, and system for recovering materials from batteries
JP5857811B2 (en) Secondary battery recycling equipment
KR101275849B1 (en) Pretreatment method for recycling of lithium ion batteries
FI3517641T4 (en) Method for the utilization of lithium batteries
JP5488425B2 (en) Battery crushing apparatus and crushing method
CA3075424C (en) Method for treating lithium ion battery waste
JP7195424B2 (en) Waste lithium-ion battery processing system and processing method
CN105846006A (en) Method for recycling lithium metal from batteries of waste vehicle through electric arc furnace
CN202610337U (en) Resourceful treatment device for metal pickling waste liquor
Bhar et al. A review on spent lithium-ion battery recycling: from collection to black mass recovery
Al-Asheh et al. Treatment and recycling of spent lithium-based batteries: a review
US11710867B2 (en) Method to open up electro chemical energy storage devices and thermal treatment system
CN102660751B (en) Resourceful treating method and resourceful treating device for metal pickling effluent
CN111146523A (en) Disassembling, classifying and recycling process method for waste batteries
KR20220136991A (en) How to dispose of battery waste
JP6730986B2 (en) Method for recovering lithium from a lithium-sulfur battery
CN218586075U (en) Pyrolysis waste gas resourceful treatment device and waste lithium battery treatment system
Jung et al. Current Commercial Hydrometallurgical Recycling Process
CN113555616A (en) Electrolyte recovery device and method by using ultrasonic cavitation method
KR20240026460A (en) Systems and methods for recovering plastics from battery materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5790553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151