JP2013189363A - Apparatus and method for molding glass tube - Google Patents

Apparatus and method for molding glass tube Download PDF

Info

Publication number
JP2013189363A
JP2013189363A JP2012058861A JP2012058861A JP2013189363A JP 2013189363 A JP2013189363 A JP 2013189363A JP 2012058861 A JP2012058861 A JP 2012058861A JP 2012058861 A JP2012058861 A JP 2012058861A JP 2013189363 A JP2013189363 A JP 2013189363A
Authority
JP
Japan
Prior art keywords
glass tube
pressure
sleeve
forming
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058861A
Other languages
Japanese (ja)
Other versions
JP5790557B2 (en
Inventor
Hidenao Masuda
英尚 益田
Kimitaka Tanaka
公貴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012058861A priority Critical patent/JP5790557B2/en
Publication of JP2013189363A publication Critical patent/JP2013189363A/en
Application granted granted Critical
Publication of JP5790557B2 publication Critical patent/JP5790557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for molding a glass tube, which can mold a glass tube having excellent dimensional accuracy and a large diameter.SOLUTION: An apparatus for molding a glass tube by a Danner method includes: a sleeve for molding molten glass into a tubular shape; a drive means for rotating the sleeve; a tube drawing means for drawing the glass tube molded into the tubular shape from a tip of the sleeve; a gas supply means for supplying gas from the sleeve side to the inside of the glass tube; a pressure measuring means for measuring the pressure in the glass tube; cutting means arranged in an air pressure adjusting chamber where indoor air pressure is adjustable, which cuts the glass tube into a predetermined length; and a control means for controlling the pressure in the air pressure adjusting chamber according to a variation in pressure in the glass tube.

Description

本発明は、ダンナー法によるガラス管の成形装置及びガラス管の成形方法に関し、特に、口径の太い(大きい)ガラス管を成形できるガラス管の成形装置及びガラス管の成形方法に関する。   The present invention relates to a glass tube forming apparatus and a glass tube forming method by the Danner method, and more particularly, to a glass tube forming apparatus and a glass tube forming method capable of forming a glass tube having a large diameter.

ガラス管の成形方法として、ダンナー法やダウンドロー法等、種々の手法が従来から提案されている。これらの手法の中で、ダンナー法は、ガラス管を連続して成形することができ、生産性に優れる。このため、ダンナー法はガラス管の成形に広く用いられている。   Various methods, such as the Danner method and the down draw method, have been proposed as glass tube forming methods. Among these methods, the Danner method can form a glass tube continuously and is excellent in productivity. For this reason, the Danner method is widely used for forming glass tubes.

ところで、近年、口径の太いガラス管が求められている。ガラス管の口径を太くするには、ガラス管内へ供給するブローエアの風量を増やす等の方法が考えられる。気体の供給量を増やすことでガラス管内の圧力を高めることができ、スリーブ先端から離れた溶融ガラスが径方向に縮小しようとする作用を抑制し、ガラス管の口径を太くすることができる。   By the way, in recent years, a glass tube having a large diameter has been demanded. In order to increase the diameter of the glass tube, a method of increasing the amount of blown air supplied into the glass tube is conceivable. By increasing the amount of gas supply, the pressure in the glass tube can be increased, the action of the molten glass that is distant from the sleeve tip in an attempt to shrink in the radial direction can be suppressed, and the diameter of the glass tube can be increased.

しかしながら、ガラス管の口径を太くした場合、ガラス管内の排気抵抗が小さくなるため、ブローエアの流量を指数関数的に増やす必要があり、ブローエアの圧力を安定させることが困難となる。また、ブローエアの流量を増やすと、ガラス管が急冷されるためガラス管の寸法が不安定となるおそれがある。そこで、ガラス管を切断する切断機と、ブローエアを供給するブロアとを加圧された気圧調節室内に配置することで、ブローエアの流量を増やすことなく口径の太いガラス管を成形することが提案されている(例えば、特許文献1参照)。   However, when the diameter of the glass tube is increased, the exhaust resistance in the glass tube is reduced, so that it is necessary to increase the flow rate of the blow air exponentially, and it becomes difficult to stabilize the pressure of the blow air. Further, when the flow rate of blow air is increased, the glass tube is rapidly cooled, so that the dimensions of the glass tube may become unstable. Therefore, it has been proposed to form a glass tube with a large diameter without increasing the flow rate of the blow air by arranging a cutting machine for cutting the glass tube and a blower for supplying the blow air in a pressurized pressure control chamber. (For example, refer to Patent Document 1).

また、ダンナー法では、スリーブに巻き付いた溶融ガラスの偏りなどが原因となり、ガラス管の寸法(外径、内径、肉厚)が周期的に変動する現象が生じる。そこで、この変動を抑制するために、成形されるガラス管の寸法を測定し、該測定値に応じてブローエアの圧力を変化させることが提案されている(例えば、特許文献2参照)。   Further, in the Danner method, a phenomenon that the dimensions (outer diameter, inner diameter, wall thickness) of the glass tube fluctuate periodically occurs due to the unevenness of the molten glass wound around the sleeve. Therefore, in order to suppress this variation, it has been proposed to measure the dimensions of the glass tube to be molded and change the pressure of the blow air according to the measured value (see, for example, Patent Document 2).

特開平7−172853号公報JP-A-7-172853 特開平8−165128号公報JP-A-8-165128

以上のように、近年では、口径の太いガラス管が求められている。しかしながら、口径の太いガラス管を成形する場合、上述したように、ブローエアの流量を増やす必要があるので、ガラス管の寸法精度が安定しないという問題がある。特許文献1では、ガラス管を切断する切断機と、ブローエアを供給するブロアとを加圧された気圧調節室内に配置することで、ブローエアの流量を増やすことなく口径の太いガラス管を成形することが提案されているが、ガラス管の寸法が変動するという問題を解決することはできない。   As described above, in recent years, a glass tube having a large diameter has been demanded. However, when a glass tube having a large diameter is formed, there is a problem that the dimensional accuracy of the glass tube is not stable because it is necessary to increase the flow rate of blow air as described above. In Patent Document 1, a glass tube having a large diameter is formed without increasing the flow rate of blow air by disposing a cutting machine for cutting glass tubes and a blower for supplying blow air in a pressurized air pressure control chamber. However, the problem that the dimensions of the glass tube fluctuate cannot be solved.

また、特許文献2では、ガラス管の外径に応じてブローエアの圧力を変化させることにより、ガラス管の寸法変動を抑制することが記載されている。しかしながら、口径の太いガラス管を成形する場合、ブローエアの流量を増やす必要があるため、口径の太いガラス管を成形するために必要なブローエアの圧力に対して、ガラス管の寸法変動を抑制するために必要なブローエアの圧力の割合が相対的に小さくなる。つまり、ガラス管の寸法変動を抑制するために必要なブローエアの圧力が、ガラス管成形のために必要なブローエアの圧力に比べて非常に小さな値となるため、ブローエアの圧力制御が非常に困難となる。   Japanese Patent Application Laid-Open No. H10-228707 describes that the dimensional fluctuation of the glass tube is suppressed by changing the pressure of the blow air according to the outer diameter of the glass tube. However, when forming a glass tube with a large diameter, it is necessary to increase the flow rate of the blow air. Therefore, in order to suppress the dimensional fluctuation of the glass tube against the pressure of the blow air necessary to form a glass tube with a large diameter. The ratio of the pressure of the blow air necessary for this is relatively small. In other words, the pressure of the blow air necessary to suppress the dimensional fluctuation of the glass tube is very small compared to the pressure of the blow air necessary for forming the glass tube, so that it is very difficult to control the pressure of the blow air. Become.

本発明は、寸法精度に優れた大口径のガラス管を成形できるガラス管の成形装置及びガラス管の成形方法を提供することを目的とする。   An object of the present invention is to provide a glass tube forming apparatus and a glass tube forming method capable of forming a large-diameter glass tube excellent in dimensional accuracy.

本発明のガラス管の成形装置は、ダンナー法によるガラス管の成形装置であって、溶融ガラスを管状に成形するスリーブと、スリーブを回転させる駆動手段と、スリーブの先端から管状に成形されたガラス管を引く管引き手段と、スリーブ側からガラス管内へ気体を供給する気体供給手段と、ガラス管内の圧力を測定する圧力測定手段と、室内気圧を調整可能な気圧調整室内に配置され、ガラス管を所定長に切断する切断手段と、ガラス管内の圧力の変動に応じて、気圧調整室内の圧力を制御する制御手段と、を備える。   The glass tube forming apparatus of the present invention is a glass tube forming apparatus by the Danner method, a sleeve for forming molten glass into a tubular shape, a driving means for rotating the sleeve, and a glass formed into a tubular shape from the tip of the sleeve. A tube pulling means for pulling the tube, a gas supply means for supplying gas from the sleeve side into the glass tube, a pressure measuring means for measuring the pressure in the glass tube, and a pressure adjusting chamber capable of adjusting the indoor pressure, and the glass tube And a control means for controlling the pressure in the atmospheric pressure adjustment chamber according to the fluctuation of the pressure in the glass tube.

本発明のガラス管の成形方法は、ダンナー法によるガラス管の成形方法であって、回転するスリーブに溶融ガラスを巻き付けて管状に成形する工程と、スリーブの先端から管状に成形されたガラス管を引く工程と、スリーブ側からガラス管内へ気体を供給する工程と、室内気圧を調整可能な気圧調整室内においてガラス管を所定長に切断する工程と、ガラス管内の圧力の変動に応じて、気圧調整室内の圧力を制御する工程と、を有する。   The glass tube forming method of the present invention is a glass tube forming method by the Danner method, in which a molten glass is wound around a rotating sleeve and formed into a tubular shape, and the glass tube formed into a tubular shape from the tip of the sleeve is formed. A step of pulling, a step of supplying a gas from the sleeve side into the glass tube, a step of cutting the glass tube into a predetermined length in an atmospheric pressure adjustment chamber capable of adjusting the indoor atmospheric pressure, and an atmospheric pressure adjustment according to fluctuations in the pressure in the glass tube Controlling the pressure in the room.

本発明によれば、寸法精度に優れた大口径のガラス管を成形することができる。   According to the present invention, a large-diameter glass tube having excellent dimensional accuracy can be formed.

第1の実施形態に係るガラス管の成形装置の断面模式図である。It is a cross-sectional schematic diagram of the glass tube shaping | molding apparatus which concerns on 1st Embodiment. 第2の実施形態に係るガラス管の成形装置の断面模式図である。It is a cross-sectional schematic diagram of the shaping | molding apparatus of the glass tube which concerns on 2nd Embodiment.

(第1の実施形態)
図1は、第1の実施形態に係るガラス管の成形装置100の断面模式図である。ガラス管の成形装置100は、ダンナー法により口径の太いガラス管を成形する装置である。より具体的には、ガラス管の成形装置100は、成形されるガラス管Sの内径が、後述するスリーブ先端の外径の1/10以上の大口径のガラス管Sを成形する。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a glass tube forming apparatus 100 according to the first embodiment. The glass tube forming apparatus 100 is an apparatus for forming a glass tube having a large diameter by the Danner method. More specifically, the glass tube forming apparatus 100 forms a glass tube S having a large diameter in which the inner diameter of the glass tube S to be formed is 1/10 or more of the outer diameter of the sleeve tip described later.

図1に示すように、ガラス管の成形装置100は、成形機構110と、管引き機構120A,120Bと、圧力測定機構130と、検査機構140と、切断カッター150と、気圧調整室160と、制御機構170と、搬送機構180とを備える。   As shown in FIG. 1, a glass tube forming apparatus 100 includes a forming mechanism 110, tube drawing mechanisms 120A and 120B, a pressure measuring mechanism 130, an inspection mechanism 140, a cutting cutter 150, an atmospheric pressure adjusting chamber 160, A control mechanism 170 and a transport mechanism 180 are provided.

(成形機構110の構成)
成形機構110は、マッフル炉111と、ガラス管成形用スリーブ112(以下、スリーブ112と記載する)と、ブローパイプ113と、エア供給機114(例えば、ブロア)と、回転機構115とを備える。
(Configuration of molding mechanism 110)
The forming mechanism 110 includes a muffle furnace 111, a glass tube forming sleeve 112 (hereinafter referred to as a sleeve 112), a blow pipe 113, an air supply unit 114 (for example, a blower), and a rotating mechanism 115.

スリーブ112は、先端を下向きに傾斜させた状態でマッフル炉111内に配置される。スリーブ112の外周面には、ノズル(不図示)から供給される溶融ガラスGが巻き付けられてガラス管Sの形状に成形される。   The sleeve 112 is disposed in the muffle furnace 111 with the tip inclined downward. A molten glass G supplied from a nozzle (not shown) is wound around the outer peripheral surface of the sleeve 112 and formed into a glass tube S shape.

スリーブ112は、耐火物(例えば、耐火煉瓦)で構成することが好ましい。また、必要に応じてスリーブ112の表面を耐火性の金属(白金(Pt)もしくは白金合金(例えば、白金とロジウム(Rh)との合金))で被覆することがより好ましい。   The sleeve 112 is preferably made of a refractory material (for example, refractory brick). Further, it is more preferable to cover the surface of the sleeve 112 with a refractory metal (platinum (Pt) or a platinum alloy (for example, an alloy of platinum and rhodium (Rh))) as necessary.

ブローパイプ113は、スリーブ112の軸心を貫通する孔に挿入されている。ブローパイプの一端には、エア供給機114が接続されている。エア供給機114から一定流量のエア(空気)を送りこむことで、ブローパイプ113の先端からエアが、管状に成形されたガラス管S内に供給される。なお、空気以外の気体(例えば、ArやN等の不活性ガス)をブローパイプ113から供給するようにしてもよい。 The blow pipe 113 is inserted into a hole that penetrates the axis of the sleeve 112. An air supply machine 114 is connected to one end of the blow pipe. By sending air (air) at a constant flow rate from the air supply device 114, air is supplied from the tip of the blow pipe 113 into the glass tube S formed into a tubular shape. A gas other than air (for example, an inert gas such as Ar or N 2 ) may be supplied from the blow pipe 113.

回転機構115は、スリーブ112と連結されたモータ(不図示)と、このモータの回転速度等を制御するモータドライバ(不図示)とを備える。回転機構115は、スリーブ112を所望の回転数で回転させる。   The rotation mechanism 115 includes a motor (not shown) connected to the sleeve 112 and a motor driver (not shown) that controls the rotation speed of the motor. The rotation mechanism 115 rotates the sleeve 112 at a desired number of rotations.

(管引き機構120A,120Bの構成)
管引き機構120A,120Bは、それぞれ第1,第2のローラ121,122を備える。第1,第2のローラ121,122は、管状に成形されたガラス管Sと当接した状態でモータ(不図示)により回転駆動され、ガラス管Sを所望の速度で管引きする。
(Configuration of pipe drawing mechanism 120A, 120B)
The tube drawing mechanisms 120A and 120B include first and second rollers 121 and 122, respectively. The first and second rollers 121 and 122 are rotationally driven by a motor (not shown) in contact with the glass tube S formed into a tubular shape, and draw the glass tube S at a desired speed.

(圧力測定機構130の構成)
圧力測定機構130は、圧力計である。圧力測定機構130は、スリーブ112の先端に設けられ、ガラス管S内の圧力を測定する。圧力測定機構130は、測定した圧力データを後述の制御機構170へ出力する。なお、ブローパイプ113を挿入しているスリーブ112の軸心を貫通する孔を介してガラス管S内の圧力を測定するようにしてもよい。
(Configuration of pressure measuring mechanism 130)
The pressure measurement mechanism 130 is a pressure gauge. The pressure measurement mechanism 130 is provided at the tip of the sleeve 112 and measures the pressure in the glass tube S. The pressure measurement mechanism 130 outputs the measured pressure data to the control mechanism 170 described later. In addition, you may make it measure the pressure in the glass tube S through the hole which penetrates the axial center of the sleeve 112 which has inserted the blow pipe 113. FIG.

(検査機構140の構成)
検査機構140は、ガラス管Sの外観(例えば、曇り、きず、気泡)の有無を検査する。検査機構140は、例えば、撮像装置と光源と画像処理装置とからなる画像検査装置である。
(Configuration of inspection mechanism 140)
The inspection mechanism 140 inspects for the appearance of the glass tube S (for example, cloudiness, scratches, bubbles). The inspection mechanism 140 is, for example, an image inspection device that includes an imaging device, a light source, and an image processing device.

(切断カッター150の構成)
切断カッター150は、ガラス管Sを所望の長さに切断する。
(Configuration of cutting cutter 150)
The cutting cutter 150 cuts the glass tube S into a desired length.

(気圧調整室160の構成)
気圧調整室160は、内部の圧力を加圧状態(大気圧よりも圧力が高い状態)に保持できるように構成されている。気圧調整室160には、送風機161(例えば、ブロア)が接続されている。送風機161は、気圧調整室160内へ空気を送り込み、気圧調整室160内を加圧状態(大気圧よりも気圧が高い状態)とする。
(Configuration of atmospheric pressure adjustment chamber 160)
The atmospheric pressure adjustment chamber 160 is configured to maintain the internal pressure in a pressurized state (a state where the pressure is higher than the atmospheric pressure). A blower 161 (for example, a blower) is connected to the atmospheric pressure adjustment chamber 160. The air blower 161 sends air into the atmospheric pressure adjustment chamber 160 to place the atmospheric pressure adjustment chamber 160 in a pressurized state (a state where the atmospheric pressure is higher than the atmospheric pressure).

また、気圧調整室160には、電磁弁162が設けられており、電磁弁162は、後述の制御機構170からの指示に基づいてOpen/Close(開閉)し、気圧調整室160内の圧力を変動させる。この第1の実施形態では、電磁弁162は、ノーマルClose型のバルブを使用する。すなわち、電磁弁162は、通常は、Close(閉)状態であり、制御機構170から指示がある場合にOpen(開)状態となり、気圧調整室160内の圧力を低下させる。   In addition, an electromagnetic valve 162 is provided in the atmospheric pressure adjustment chamber 160, and the electromagnetic valve 162 opens / closes (opens / closes) based on an instruction from the control mechanism 170 described later, and the pressure in the atmospheric pressure adjustment chamber 160 is changed. Fluctuate. In the first embodiment, the electromagnetic valve 162 uses a normal close type valve. That is, the electromagnetic valve 162 is normally in a Closed state, and when instructed by the control mechanism 170, the Electromagnetic valve 162 is in an Open (opened) state, and the pressure in the atmospheric pressure adjustment chamber 160 is reduced.

(制御機構170の構成)
制御機構170は、例えば、コンピュータであり、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、NVRAM(Non Volatile RAM)等を備える。ROMには、CPUの動作プログラムが記憶されている。RAMは、CPUの作業領域を提供する。NVRAMには、閾値が記憶されている。
(Configuration of control mechanism 170)
The control mechanism 170 is, for example, a computer, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an NVRAM (Non Volatile RAM), and the like. The ROM stores a CPU operation program. The RAM provides a work area for the CPU. The NVRAM stores a threshold value.

制御機構170は、圧力測定機構130で測定されるガラス管S内の圧力に基づいて、電磁弁162を開閉し、ガラス管S内の圧力変動を打ち消すように気圧調整室160内の圧力を制御する。   The control mechanism 170 opens and closes the electromagnetic valve 162 based on the pressure in the glass tube S measured by the pressure measurement mechanism 130, and controls the pressure in the atmospheric pressure adjustment chamber 160 so as to cancel the pressure fluctuation in the glass tube S. To do.

具体的には、制御機構170は、ガラス管S内の圧力を測定する圧力測定機構130から出力される圧力が、NVRAMに記憶されている閾値を超えると電磁弁162を開いて気圧調整室160内を減圧させる。また、制御機構170は、ガラス管S内の圧力を測定する圧力測定機構130から出力される圧力が、NVRAMに記憶されている閾値以下である場合は、電磁弁162をCloseし、気圧調整室160内を昇圧もしくは一定に維持する。   Specifically, when the pressure output from the pressure measuring mechanism 130 that measures the pressure in the glass tube S exceeds the threshold value stored in the NVRAM, the control mechanism 170 opens the electromagnetic valve 162 and the atmospheric pressure adjustment chamber 160. The inside is depressurized. In addition, when the pressure output from the pressure measuring mechanism 130 that measures the pressure in the glass tube S is equal to or less than the threshold value stored in the NVRAM, the control mechanism 170 closes the electromagnetic valve 162 and the atmospheric pressure adjustment chamber. The pressure inside 160 is increased or kept constant.

従来のブローエアの圧力を変化させる方法では、ブローエアの変化により、ガラス管Sの冷却が変化するため、ガラス管Sの粘性状態が不安定となり、却ってガラス管Sの寸法精度が安定しなかった。しかしながら、本第1の実施形態に係るガラス管の成形装置100は、ガラス管Sが既に冷えており、圧力の変化によりガラス管Sの寸法が変化する虞のない管端側(下流側)において圧力を調整している。このため、ガラス管Sの冷却プロセスへの影響を抑えつつガラス管Sの寸法を制御することできる。この結果、ガラス管Sの寸法精度を向上させることができる。よって、管曲り等の不具合が発生する虞も少ない。   In the conventional method of changing the pressure of the blow air, the cooling of the glass tube S changes due to the change of the blow air, so that the viscous state of the glass tube S becomes unstable, and the dimensional accuracy of the glass tube S is not stable. However, in the glass tube forming apparatus 100 according to the first embodiment, the glass tube S is already cooled, and on the tube end side (downstream side) where there is no possibility that the size of the glass tube S changes due to a change in pressure. The pressure is adjusted. For this reason, the dimension of the glass tube S can be controlled while suppressing the influence on the cooling process of the glass tube S. As a result, the dimensional accuracy of the glass tube S can be improved. Therefore, there is little possibility that troubles, such as pipe bending, will occur.

なお、気圧調整室160内を減圧する際は、電磁弁162をOpenするのに加え、送風機161の送風量を低減するようにしてもよい。また、気圧調整室160内を昇圧する際は、電磁弁162をCloseするのに加え、送風機161の送風量を増加するようにしてもよい。送風機161の制御は、制御機構170で行えばよい。   In addition, when decompressing the inside of the atmospheric pressure regulation chamber 160, in addition to opening the electromagnetic valve 162, the air volume of the blower 161 may be reduced. Further, when the pressure inside the atmospheric pressure adjustment chamber 160 is increased, in addition to closing the electromagnetic valve 162, the air volume of the blower 161 may be increased. The blower 161 may be controlled by the control mechanism 170.

(搬送機構180の構成)
搬送機構180は、例えば、ベルトコンベアである。搬送機構180は、切断カッター150により所望の長さに切断されたガラス管Sを気圧調整室160内から搬出する。
(Configuration of the transport mechanism 180)
The transport mechanism 180 is, for example, a belt conveyor. The transport mechanism 180 carries out the glass tube S cut to a desired length by the cutting cutter 150 from the atmospheric pressure adjustment chamber 160.

以上のように、第1の実施形態に係るガラス管の成形装置100は、圧力測定機構130で測定されるガラス管S内の圧力に基づいて、電磁弁162を開閉し、ガラス管S内の圧力変動を打ち消すように気圧調整室160内の圧力を制御している。   As described above, the glass tube forming apparatus 100 according to the first embodiment opens and closes the electromagnetic valve 162 based on the pressure in the glass tube S measured by the pressure measurement mechanism 130, and the glass tube S The pressure in the atmospheric pressure adjustment chamber 160 is controlled so as to cancel out the pressure fluctuation.

つまり、ガラス管の成形装置100は、ガラス管Sが既に冷えており、圧力の変化によりガラス管Sの寸法が変化する虞のない管端側(下流側)において圧力を調整しているため、ガラス管Sの冷却プロセスへの影響を抑えつつガラス管Sの寸法を制御することできる。この結果、ガラス管Sの寸法精度を向上させることができる。また、ガラス管Sの冷却プロセスへの影響が抑制されるので、管曲り等、ガラス管Sの冷却プロセスが変化することにより発生する不具合が生じる虞も少ない。   In other words, the glass tube forming apparatus 100 adjusts the pressure on the tube end side (downstream side) where the glass tube S is already cooled and the size of the glass tube S is not likely to change due to a change in pressure. The dimension of the glass tube S can be controlled while suppressing the influence on the cooling process of the glass tube S. As a result, the dimensional accuracy of the glass tube S can be improved. In addition, since the influence on the cooling process of the glass tube S is suppressed, there is little possibility that a problem such as bending of the tube occurs due to a change in the cooling process of the glass tube S.

なお、上記説明では、ガラス管S内の圧力と、制御機構170のNVRAMに記憶された閾値との比較に基づいて、気圧調整室160内の圧力を制御しているが、ガラス管S内の圧力変化とガラス管Sの寸法変化との相関関係を予め調べて制御機構170のVRAMへ記憶しておき、この記憶された相関関係及びガラス管S内の圧力に基づいてガラス管Sの寸法変化を予測し、気圧調整室160内の圧力を制御するように構成してもよい。   In the above description, the pressure in the atmospheric pressure adjustment chamber 160 is controlled based on the comparison between the pressure in the glass tube S and the threshold value stored in the NVRAM of the control mechanism 170. The correlation between the pressure change and the dimensional change of the glass tube S is examined in advance and stored in the VRAM of the control mechanism 170, and the dimensional change of the glass tube S based on the stored correlation and the pressure in the glass tube S. And the pressure in the atmospheric pressure adjustment chamber 160 may be controlled.

(第1の実施形態の変形例)
上記第1の実施形態に係るガラス管の成形装置100では、ガラス管S内の圧力変動を打ち消すために、ガラス管S内の圧力が閾値を超えた場合に、電磁弁162をOpenして、気圧調整室160内を減圧している。しかしながら、ガラス管S内の圧力変動を打ち消すために、ガラス管S内の圧力が閾値の範囲外となった場合に、気圧調整室160内を加減圧する構成としてもよい。この場合、ガラス管S内の圧力が閾値の範囲外となった場合に、送風機161の送風量を増減させればよい。具体的には、送風機161の回転数をインバータにより制御する方法や送風機161と気圧調整室160との間の送風管の開口面積を可変制御することでも可能である。このように構成しても、第1の実施形態に係るガラス管の成形装置100と同様の効果を得ることができる。
(Modification of the first embodiment)
In the glass tube forming apparatus 100 according to the first embodiment, in order to cancel the pressure fluctuation in the glass tube S, when the pressure in the glass tube S exceeds a threshold value, the electromagnetic valve 162 is opened, The pressure adjustment chamber 160 is depressurized. However, in order to cancel out the pressure fluctuation in the glass tube S, the inside of the atmospheric pressure adjustment chamber 160 may be increased or decreased when the pressure in the glass tube S falls outside the threshold range. In this case, what is necessary is just to increase / decrease the ventilation volume of the air blower 161, when the pressure in the glass tube S becomes out of the range of a threshold value. Specifically, it is possible to control the number of rotations of the blower 161 with an inverter or to variably control the opening area of the blower pipe between the blower 161 and the pressure adjustment chamber 160. Even if comprised in this way, the effect similar to the shaping | molding apparatus 100 of the glass tube which concerns on 1st Embodiment can be acquired.

(第2の実施形態)
図2は、第2の実施形態に係るガラス管の成形装置200の断面模式図である。ガラス管の成形装置200は、ダンナー法により口径の太いガラス管を成形する装置である。より具体的には、ガラス管の成形装置200は、成形されるガラス管Sの内径が、スリーブの外径の1/10以上の大口径のガラス管Sを成形する。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view of a glass tube forming apparatus 200 according to the second embodiment. The glass tube forming apparatus 200 is an apparatus for forming a glass tube having a large diameter by the Danner method. More specifically, the glass tube forming apparatus 200 forms a glass tube S having a large diameter in which the inner diameter of the glass tube S to be formed is 1/10 or more of the outer diameter of the sleeve.

この第2の実施形態では、ガラス管Sの外径に基づいて、電磁弁162を開閉し、ガラス管S内の圧力変動を打ち消す形態について説明する。以下、図2を参照して、ガラス管の成形装置200の構成について説明する。なお、図1を参照して説明したガラス管の成形装置100と同一の構成には、同一の符号を付して重複した説明を省略する。   In the second embodiment, a mode in which the electromagnetic valve 162 is opened / closed to cancel the pressure fluctuation in the glass tube S based on the outer diameter of the glass tube S will be described. The configuration of the glass tube forming apparatus 200 will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as the glass tube shaping | molding apparatus 100 demonstrated with reference to FIG. 1, and the overlapping description is abbreviate | omitted.

第2の実施形態に係るガラス管の成形装置200は、圧力測定機構130の代わりに、ガラス管Sの外径を測定する外径測定機構130Aを備える。外径測定機構130Aは、例えば、寸法測定器(キーエンス社製:LS−7000シリーズやTM−3000シリーズ)である。外径測定機構130Aは、ガラス管Sの外径を測定する。外径測定機構130Aは、測定した外径データを後述の制御機構170へ出力する。なお、外径測定機構130Aは、ガラス管Sのカテナリ部(ガラス管Sが重力により垂れ下がり、カテナリ曲線を描く領域)のできる限り近くに配置することが好ましい。具体的には、ガラス管Sが形状変化しない歪点以下の温度状態の場所に配置することが好ましい。   The glass tube forming apparatus 200 according to the second embodiment includes an outer diameter measuring mechanism 130 </ b> A that measures the outer diameter of the glass tube S instead of the pressure measuring mechanism 130. The outer diameter measuring mechanism 130A is, for example, a dimension measuring instrument (manufactured by Keyence Corporation: LS-7000 series or TM-3000 series). The outer diameter measuring mechanism 130A measures the outer diameter of the glass tube S. The outer diameter measuring mechanism 130A outputs the measured outer diameter data to the control mechanism 170 described later. The outer diameter measuring mechanism 130A is preferably arranged as close as possible to the catenary part of the glass tube S (the region in which the glass tube S hangs down due to gravity and draws a catenary curve). Specifically, it is preferable to arrange the glass tube S in a place where the temperature is below the strain point at which the shape does not change.

制御機構170は、外径測定機構130Aで測定されるガラス管Sの外径に基づいて、電磁弁162を開閉し、ガラス管S内の圧力変動を打ち消すように気圧調整室160内の圧力を制御する。   The control mechanism 170 opens and closes the electromagnetic valve 162 based on the outer diameter of the glass tube S measured by the outer diameter measuring mechanism 130A, and controls the pressure in the atmospheric pressure adjustment chamber 160 so as to cancel the pressure fluctuation in the glass tube S. Control.

ガラス管Sの外径とガラス管S内の圧力は、相関関係にある。つまり、ガラス管S内の圧力が高いと、ガラス管Sの外径が太くなり、ガラス管S内の圧力が低いと、ガラス管Sの外径が細くなる関係にある。つまり、ガラス管Sの外径を測定することで、ガラス管S内の圧力の変動を知ることができる。この第2の実施形態では、このガラス管Sの外径とガラス管S内の圧力との相関関係を利用して、ガラス管S内の圧力変動を打ち消すように気圧調整室160内の圧力を制御する。   The outer diameter of the glass tube S and the pressure in the glass tube S have a correlation. That is, when the pressure in the glass tube S is high, the outer diameter of the glass tube S is thick, and when the pressure in the glass tube S is low, the outer diameter of the glass tube S is thin. That is, by measuring the outer diameter of the glass tube S, the fluctuation of the pressure in the glass tube S can be known. In the second embodiment, using the correlation between the outer diameter of the glass tube S and the pressure in the glass tube S, the pressure in the atmospheric pressure adjustment chamber 160 is adjusted so as to cancel the pressure fluctuation in the glass tube S. Control.

具体的には、制御機構170は、ガラス管Sの外径を測定する外径測定機構130Aから出力される外径が、NVRAMに記憶されている閾値を超えると電磁弁162を開いて気圧調整室160内を減圧させる。また、制御機構170は、ガラス管Sの外径を測定する外径測定機構130Aから出力される外径が、NVRAMに記憶されている閾値以下である場合は、電磁弁162をCloseし、気圧調整室160内を昇圧する。   Specifically, the control mechanism 170 opens the electromagnetic valve 162 and adjusts the atmospheric pressure when the outer diameter output from the outer diameter measuring mechanism 130A that measures the outer diameter of the glass tube S exceeds the threshold stored in the NVRAM. The inside of the chamber 160 is depressurized. Further, when the outer diameter output from the outer diameter measuring mechanism 130A that measures the outer diameter of the glass tube S is equal to or less than the threshold value stored in the NVRAM, the control mechanism 170 closes the electromagnetic valve 162 to adjust the atmospheric pressure. The pressure in the adjustment chamber 160 is increased.

なお、気圧調整室160内を減圧する際は、電磁弁162をOpenするだけでなく、送風機161の送風量を低減するようにしてもよい。また、気圧調整室160内を昇圧する際は、電磁弁162をCloseするだけでなく、送風機161の送風量を増加するようにしてもよい。送風機161の制御は、制御機構170で行えばよい。   In addition, when decompressing the inside of the atmospheric pressure adjustment chamber 160, not only the solenoid valve 162 is opened, but the air flow rate of the blower 161 may be reduced. Further, when the pressure inside the atmospheric pressure adjustment chamber 160 is increased, not only the electromagnetic valve 162 is closed, but the air flow rate of the blower 161 may be increased. The blower 161 may be controlled by the control mechanism 170.

以上のように、第2の実施形態に係るガラス管の成形装置200は、外径測定機構130Aで測定されるガラス管Sの外径に基づいて、電磁弁162を開閉し、ガラス管S内の圧力変動を打ち消すように気圧調整室160内の圧力を制御している。このため、ガラス管Sの冷却プロセスへの影響を抑えつつガラス管Sの寸法をコントロールすることできる。この結果、ガラス管Sの寸法精度を向上させることができる。その他の効果は、第1の実施形態に係るガラス管の成形装置100と同じである。   As described above, the glass tube forming apparatus 200 according to the second embodiment opens and closes the electromagnetic valve 162 based on the outer diameter of the glass tube S measured by the outer diameter measuring mechanism 130A, The pressure in the atmospheric pressure adjustment chamber 160 is controlled so as to cancel the pressure fluctuation. For this reason, the dimension of the glass tube S can be controlled while suppressing the influence on the cooling process of the glass tube S. As a result, the dimensional accuracy of the glass tube S can be improved. Other effects are the same as those of the glass tube forming apparatus 100 according to the first embodiment.

なお、上記説明では、ガラス管S内の外径と、制御機構170のNVRAMに記憶された閾値との比較に基づいて、気圧調整室160内の圧力を制御しているが、ガラス管S内の圧力変化とガラス管Sの寸法変化との相関関係を予め調べて制御機構170のVRAMへ記憶しておき、この記憶された相関関係及びガラス管S内の圧力に基づいてガラス管Sの寸法変化を予測し、気圧調整室160内の圧力を制御するように構成してもよい。   In the above description, the pressure in the atmospheric pressure adjustment chamber 160 is controlled based on the comparison between the outer diameter in the glass tube S and the threshold value stored in the NVRAM of the control mechanism 170. The correlation between the pressure change of the glass tube S and the dimensional change of the glass tube S is examined in advance and stored in the VRAM of the control mechanism 170, and the size of the glass tube S is determined based on the stored correlation and the pressure in the glass tube S. A change may be predicted and the pressure in the atmospheric pressure adjustment chamber 160 may be controlled.

(第2の実施形態の変形例)
上記第2の実施形態に係るガラス管の成形装置200では、ガラス管S内の圧力変動を打ち消すために、ガラス管Sの外径が閾値を超えた場合に、電磁弁162をOpenして、気圧調整室160内を減圧している。しかしながら、ガラス管S内の圧力変動を打ち消すために、ガラス管Sの外径が閾値の範囲外となった場合に、気圧調整室160内を加減圧する構成としてもよい。この場合、ガラス管Sの外径が閾値の範囲外となった場合に、送風機161の送風量を増減加させればよい。具体的には、送風機161の回転数をインバータにより制御する方法や送風機161と気圧調整室160との間の送風管の開口面積を可変制御することでも可能である。このように構成しても、第2の実施形態に係るガラス管の成形装置200と同様の効果を得ることができる。
(Modification of the second embodiment)
In the glass tube forming apparatus 200 according to the second embodiment, in order to cancel the pressure fluctuation in the glass tube S, when the outer diameter of the glass tube S exceeds a threshold value, the electromagnetic valve 162 is opened, The pressure adjustment chamber 160 is depressurized. However, in order to cancel the pressure fluctuation in the glass tube S, the inside of the atmospheric pressure adjustment chamber 160 may be increased or decreased when the outer diameter of the glass tube S is out of the threshold range. In this case, what is necessary is just to increase / decrease the ventilation volume of the air blower 161, when the outer diameter of the glass tube S becomes out of the range of a threshold value. Specifically, it is possible to control the number of rotations of the blower 161 with an inverter or to variably control the opening area of the blower pipe between the blower 161 and the pressure adjustment chamber 160. Even if comprised in this way, the effect similar to the shaping | molding apparatus 200 of the glass tube which concerns on 2nd Embodiment can be acquired.

(その他の実施形態)
以上のように、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。例えば、上記第1,第2の実施形態では、それぞれガラス管S内の圧力と、ガラス管Sの外径に基づいて、気圧調整室160内の圧力を制御しているが、ガラス管S内の圧力及びガラス管Sの外径に基づいて、気圧調整室160内の圧力を制御するように構成してもよい。
(Other embodiments)
As described above, the present invention has been described in detail based on the above specific examples. However, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention. is there. For example, in the first and second embodiments, the pressure in the atmospheric pressure adjustment chamber 160 is controlled based on the pressure in the glass tube S and the outer diameter of the glass tube S, respectively. The pressure in the atmospheric pressure adjustment chamber 160 may be controlled based on the pressure and the outer diameter of the glass tube S.

本発明のガラス管の成形装置及び成形方法は、寸法精度に優れた大口径のガラス管を成形することができる。   The glass tube forming apparatus and the forming method of the present invention can form a large-diameter glass tube excellent in dimensional accuracy.

100,200…ガラス管の成形装置、110…成形機構、111…マッフル炉、112…ガラス管成形用スリーブ、113…ブローパイプ、114…エア供給機、115…回転機構、120A,120B…管引き機構、121,122…ローラ、130…圧力測定機構、130A…外径測定機構、140…検査機構、150…切断カッター、160…気圧調整室、161…送風機、162…電磁弁、170…制御機構、180…搬送機構、G…溶融ガラス、S…ガラス管。   DESCRIPTION OF SYMBOLS 100,200 ... Glass tube shaping | molding apparatus, 110 ... Molding mechanism, 111 ... Muffle furnace, 112 ... Glass tube shaping | molding sleeve, 113 ... Blow pipe, 114 ... Air supply machine, 115 ... Rotation mechanism, 120A, 120B ... Pipe drawing Mechanism 121, 122 ... Roller 130 ... Pressure measuring mechanism 130A ... Outer diameter measuring mechanism 140 ... Inspection mechanism 150 ... Cutting cutter 160 ... Air pressure adjusting chamber 161 ... Air blower 162 ... Solenoid valve 170 ... Control mechanism , 180 ... conveying mechanism, G ... molten glass, S ... glass tube.

Claims (16)

ダンナー法によるガラス管の成形装置であって、
溶融ガラスを管状に成形するスリーブと、
前記スリーブを回転させる駆動手段と、
前記スリーブの先端から管状に成形されたガラス管を引く管引き手段と、
前記スリーブ側から前記ガラス管内へ気体を供給する気体供給手段と、
前記ガラス管内の圧力を測定する圧力測定手段と、
室内気圧を調整可能な気圧調整室内に配置され、前記ガラス管を所定長に切断する切断手段と、
前記ガラス管内の圧力の変動に応じて、前記気圧調整室内の圧力を制御する制御手段と、
を備えることを特徴とするガラス管の成形装置。
A glass tube molding apparatus using the Danner method,
A sleeve for forming molten glass into a tubular shape;
Drive means for rotating the sleeve;
A pulling means for pulling a glass tube formed into a tubular shape from the tip of the sleeve;
Gas supply means for supplying gas from the sleeve side into the glass tube;
Pressure measuring means for measuring the pressure in the glass tube;
A cutting means arranged in a pressure adjusting chamber capable of adjusting the indoor pressure, and cutting the glass tube into a predetermined length;
Control means for controlling the pressure in the atmospheric pressure adjustment chamber according to the fluctuation of the pressure in the glass tube;
An apparatus for forming a glass tube, comprising:
前記ガラス管の内径が、前記スリーブの先端の外径の10分の1以上であることを特徴とする請求項1に記載のガラス管の成形装置。   2. The glass tube forming apparatus according to claim 1, wherein an inner diameter of the glass tube is one tenth or more of an outer diameter of a tip of the sleeve. 前記制御手段は、
前記ガラス管内の圧力が所定の値を超えると、前記気圧調整室内の圧力を低くすることを特徴とする請求項1又は請求項2に記載のガラス管の成形装置。
The control means includes
The apparatus for forming a glass tube according to claim 1 or 2, wherein when the pressure in the glass tube exceeds a predetermined value, the pressure in the atmospheric pressure adjusting chamber is lowered.
前記制御手段は、
前記ガラス管内の圧力が所定の値以下であると、前記気圧調整室内の圧力を高くすることを特徴とする請求項1乃至請求項3のいずれかに記載のガラス管の成形装置。
The control means includes
The apparatus for forming a glass tube according to any one of claims 1 to 3, wherein when the pressure in the glass tube is equal to or lower than a predetermined value, the pressure in the atmospheric pressure adjustment chamber is increased.
ダンナー法によるガラス管の成形装置であって、
溶融ガラスを管状に成形するスリーブと、
前記スリーブを回転させる駆動手段と、
前記スリーブの先端から管状に成形されたガラス管を引く管引き手段と、
前記スリーブ側から前記ガラス管内へ気体を供給する気体供給手段と、
前記ガラス管の外径を測定する外径測定手段と、
室内気圧を調整可能な気圧調整室内に配置され、前記ガラス管を所定長に切断する切断手段と、
前記ガラス管の外径の変動に応じて、前記気圧調整室内の圧力を制御する制御手段と、
を備えることを特徴とするガラス管の成形装置。
A glass tube molding apparatus using the Danner method,
A sleeve for forming molten glass into a tubular shape;
Drive means for rotating the sleeve;
A pulling means for pulling a glass tube formed into a tubular shape from the tip of the sleeve;
Gas supply means for supplying gas from the sleeve side into the glass tube;
An outer diameter measuring means for measuring the outer diameter of the glass tube;
A cutting means arranged in a pressure adjusting chamber capable of adjusting the indoor pressure, and cutting the glass tube into a predetermined length;
Control means for controlling the pressure in the atmospheric pressure adjustment chamber according to the fluctuation of the outer diameter of the glass tube;
An apparatus for forming a glass tube, comprising:
前記ガラス管の内径が、前記スリーブの先端の外径の10分の1以上であることを特徴とする請求項5に記載のガラス管の成形装置。   6. The glass tube forming apparatus according to claim 5, wherein an inner diameter of the glass tube is one tenth or more of an outer diameter of a tip of the sleeve. 前記制御手段は、
前記ガラス管の外径が所定の値以下を超えると、前記気圧調整室内の圧力を低くすることを特徴とする請求項5又は請求項6に記載のガラス管の成形装置。
The control means includes
The glass tube forming apparatus according to claim 5 or 6, wherein when the outer diameter of the glass tube exceeds a predetermined value or less, the pressure in the atmospheric pressure adjusting chamber is lowered.
前記制御手段は、
前記ガラス管の外径が所定の値以下であると、前記気圧調整室内の圧力を高くすることを特徴とする請求項5乃至請求項7のいずれかに記載のガラス管の成形装置。
The control means includes
The apparatus for forming a glass tube according to any one of claims 5 to 7, wherein when the outer diameter of the glass tube is equal to or less than a predetermined value, the pressure in the atmospheric pressure adjustment chamber is increased.
ダンナー法によるガラス管の成形方法であって、
回転するスリーブに溶融ガラスを巻き付けて管状に成形する工程と、
前記スリーブの先端から管状に成形されたガラス管を引く工程と、
前記スリーブ側から前記ガラス管内へ気体を供給する工程と、
室内気圧を調整可能な気圧調整室内において前記ガラス管を所定長に切断する工程と、
前記ガラス管内の圧力の変動に応じて、前記気圧調整室内の圧力を制御する工程と、
を有することを特徴とするガラス管の成形方法。
A glass tube forming method by the Danner method,
Wrapping molten glass around a rotating sleeve and forming it into a tubular shape;
Drawing a glass tube formed into a tubular shape from the tip of the sleeve;
Supplying gas from the sleeve side into the glass tube;
Cutting the glass tube into a predetermined length in a pressure control chamber capable of adjusting the indoor pressure;
A step of controlling the pressure in the atmospheric pressure adjustment chamber according to the fluctuation of the pressure in the glass tube;
A method of forming a glass tube, comprising:
前記ガラス管の内径が、前記スリーブの先端の外径の10分の1以上であることを特徴とする請求項9に記載のガラス管の成形方法。   The glass tube forming method according to claim 9, wherein an inner diameter of the glass tube is one tenth or more of an outer diameter of a tip of the sleeve. 前記圧力を制御する工程は、
前記ガラス管内の圧力が所定の値を超えると、前記気圧調整室内の圧力を低くすることを特徴とする請求項9又は請求項10に記載のガラス管の成形方法。
The step of controlling the pressure includes
The method for forming a glass tube according to claim 9 or 10, wherein when the pressure in the glass tube exceeds a predetermined value, the pressure in the atmospheric pressure adjustment chamber is lowered.
前記圧力を制御する工程は、
前記ガラス管内の圧力が所定の値以下であると、前記気圧調整室内の圧力を高くすることを特徴とする請求項9乃至請求項11のいずれかに記載のガラス管の成形方法。
The step of controlling the pressure includes
The method for forming a glass tube according to any one of claims 9 to 11, wherein when the pressure in the glass tube is equal to or lower than a predetermined value, the pressure in the atmospheric pressure adjustment chamber is increased.
ダンナー法によるガラス管の成形方法であって、
回転するスリーブに溶融ガラスを巻き付けて管状に成形する工程と、
前記スリーブの先端から管状に成形されたガラス管を引く工程と、
前記スリーブ側から前記ガラス管内へ気体を供給する工程と、
室内気圧を調整可能な気圧調整室内において前記ガラス管を所定長に切断する工程と、
前記ガラス管の外径の変動に応じて、前記気圧調整室内の圧力を制御する工程と、
を有することを特徴とするガラス管の成形方法。
A glass tube forming method by the Danner method,
Wrapping molten glass around a rotating sleeve and forming it into a tubular shape;
Drawing a glass tube formed into a tubular shape from the tip of the sleeve;
Supplying gas from the sleeve side into the glass tube;
Cutting the glass tube into a predetermined length in a pressure control chamber capable of adjusting the indoor pressure;
A step of controlling the pressure in the atmospheric pressure adjustment chamber according to a change in the outer diameter of the glass tube;
A method of forming a glass tube, comprising:
前記ガラス管の内径が、前記スリーブの先端の外径の10分の1以上であることを特徴とする請求項13に記載のガラス管の成形方法。   The method for forming a glass tube according to claim 13, wherein an inner diameter of the glass tube is one tenth or more of an outer diameter of a tip of the sleeve. 前記圧力を制御する工程は、
前記ガラス管の外径が所定の値を超えると、前記気圧調整室内の圧力を低くすることを特徴とする請求項13又は請求項14に記載のガラス管の成形方法。
The step of controlling the pressure includes
The method for forming a glass tube according to claim 13 or 14, wherein when the outer diameter of the glass tube exceeds a predetermined value, the pressure in the atmospheric pressure adjusting chamber is lowered.
前記圧力を制御する工程は、
前記ガラス管の外径が所定の値以下であると、前記気圧調整室内の圧力を高くすることを特徴とする請求項13乃至請求項15のいずれかに記載のガラス管の成形方法。
The step of controlling the pressure includes
The method for forming a glass tube according to any one of claims 13 to 15, wherein the pressure in the atmospheric pressure adjusting chamber is increased when the outer diameter of the glass tube is equal to or less than a predetermined value.
JP2012058861A 2012-03-15 2012-03-15 Glass tube forming apparatus and glass tube forming method Expired - Fee Related JP5790557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058861A JP5790557B2 (en) 2012-03-15 2012-03-15 Glass tube forming apparatus and glass tube forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058861A JP5790557B2 (en) 2012-03-15 2012-03-15 Glass tube forming apparatus and glass tube forming method

Publications (2)

Publication Number Publication Date
JP2013189363A true JP2013189363A (en) 2013-09-26
JP5790557B2 JP5790557B2 (en) 2015-10-07

Family

ID=49390041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058861A Expired - Fee Related JP5790557B2 (en) 2012-03-15 2012-03-15 Glass tube forming apparatus and glass tube forming method

Country Status (1)

Country Link
JP (1) JP5790557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495450A (en) * 2016-10-19 2017-03-15 北京祁聚兴玻璃技术有限公司 Diameter glass tube adjusting means in the production of DANNER horizontal pulling pipes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296740A (en) * 1989-04-27 1990-12-07 Heraeus Quarzglas Gmbh Method for making tube with silica glass or high silica content glass
JPH07172853A (en) * 1993-12-15 1995-07-11 Nippon Electric Glass Co Ltd Producing device for glass tube
JPH07172851A (en) * 1993-12-15 1995-07-11 Nippon Electric Glass Co Ltd Producing device for glass tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296740A (en) * 1989-04-27 1990-12-07 Heraeus Quarzglas Gmbh Method for making tube with silica glass or high silica content glass
JPH07172853A (en) * 1993-12-15 1995-07-11 Nippon Electric Glass Co Ltd Producing device for glass tube
JPH07172851A (en) * 1993-12-15 1995-07-11 Nippon Electric Glass Co Ltd Producing device for glass tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495450A (en) * 2016-10-19 2017-03-15 北京祁聚兴玻璃技术有限公司 Diameter glass tube adjusting means in the production of DANNER horizontal pulling pipes
CN106495450B (en) * 2016-10-19 2019-04-30 君恒河北药用玻璃制品有限公司 Diameter glass tube regulating device in the production of DANNER horizontal pulling pipe

Also Published As

Publication number Publication date
JP5790557B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
US8875543B2 (en) Methods and systems for forming continuous glass sheets
JP5113904B2 (en) One press manufacturing method for glass containers
JP5675766B2 (en) Drawing method for producing quartz glass cylindrical parts
US9221712B2 (en) Process for producing a cylindrical component made of glass by elongation
JP5790557B2 (en) Glass tube forming apparatus and glass tube forming method
CN110312686A (en) The manufacturing method of the manufacturing process of melten glass, forming device and glassware
JPH02296740A (en) Method for making tube with silica glass or high silica content glass
JP2017530085A (en) Glass manufacturing apparatus and method
JP5664420B2 (en) Optical fiber drawing furnace and drawing method
KR101594710B1 (en) Apparatus for cooling wire rod coil
JP2012167004A (en) Method and apparatus for manufacturing glass tube
JP5102591B2 (en) Synthetic silica glass production equipment
JPWO2009133761A1 (en) One press manufacturing method for glass containers
JP2008247617A (en) Method of drawing glass tube
CN111016124B (en) Device and method for accurately controlling diameter of film bubble
JPH08283031A (en) Production of glass tube
JP6244880B2 (en) Glass tube forming method
JP2006131427A (en) Method for manufacturing optical fiber
JPH07138038A (en) Method for controlling dimension of glass tube
JP5615314B2 (en) Synthetic silica glass manufacturing apparatus and synthetic silica glass manufacturing method
JP3188404B2 (en) Preform outer diameter control method and preform stretching device
WO2020250909A1 (en) Method of manufacturing glass body and apparatus for manufacturing glass body
JP2013000767A (en) Wire drawing method for metal wire
JPH07172851A (en) Producing device for glass tube
JP2020203820A (en) Method for manufacturing glass body and device for manufacturing glass body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5790557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees