JP2013188959A - Method for manufacturing seismic isolating device - Google Patents

Method for manufacturing seismic isolating device Download PDF

Info

Publication number
JP2013188959A
JP2013188959A JP2012057299A JP2012057299A JP2013188959A JP 2013188959 A JP2013188959 A JP 2013188959A JP 2012057299 A JP2012057299 A JP 2012057299A JP 2012057299 A JP2012057299 A JP 2012057299A JP 2013188959 A JP2013188959 A JP 2013188959A
Authority
JP
Japan
Prior art keywords
plug member
temperature
plug
seismic isolation
stacking direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012057299A
Other languages
Japanese (ja)
Other versions
JP5891078B2 (en
Inventor
Yuji Kobayashi
裕二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012057299A priority Critical patent/JP5891078B2/en
Publication of JP2013188959A publication Critical patent/JP2013188959A/en
Application granted granted Critical
Publication of JP5891078B2 publication Critical patent/JP5891078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To lower a pressurization force in a compression step.SOLUTION: A method for manufacturing a seismic isolating device includes: a compression step of pressurizing and compressing a plug member 16 in a hole 15 in a layered direction D; a temperature difference applying step of relatively enhancing a temperature of a layered body 13 with respect to a temperature of the plug member 16; and an insertion step of fixing a lid member 17 to a body member 14 after the compression step and the temperature difference applying step, and inserting the plug member 16 into a pair of the lid members 17 from both ends in the layered direction D. The insertion step is performed while a temperature of the layered body 13 is higher than the temperature of the plug member 16.

Description

本発明は、免震装置の製造方法に関する。   The present invention relates to a method for manufacturing a seismic isolation device.

従来から、例えば下記特許文献1に示されるような、弾性板と剛性板とが交互に積層された積層体を有する本体部材と、該本体部材に、積層体の積層方向に貫設された孔部内に収容されたプラグ部材と、該プラグ部材を前記積層方向の両側から挟み込むとともに、本体部材に各別に固定された一対の蓋部材と、を備える免震装置が知られている。   Conventionally, for example, as shown in Patent Document 1 below, a body member having a laminate in which elastic plates and rigid plates are alternately laminated, and a hole penetrating the body member in the stacking direction of the laminate 2. Description of the Related Art A seismic isolation device is known that includes a plug member housed in a section and a pair of lid members that are sandwiched from both sides in the stacking direction and are separately fixed to a main body member.

特開2010−221679号公報JP 2010-221679 A

ところで前記免震装置では、プラグ部材が、粉体材料が加圧されて成形されていることから、プラグ部材内に空隙が形成され易くなっている。そこで、前記免震装置を形成する免震装置の製造方法において、孔部内に位置するプラグ部材を前記積層方向に加圧して圧縮する圧縮工程を実施し、プラグ部材内の空隙を減少、消滅させることで、孔部内にプラグ部材を高密度に収容させることが考えられる。   By the way, in the said seismic isolation apparatus, since the plug member is shape | molded by pressurizing powder material, it is easy to form a space | gap in a plug member. Therefore, in the method for manufacturing a seismic isolation device for forming the seismic isolation device, a compression process is performed in which the plug member located in the hole is pressed and compressed in the stacking direction to reduce and eliminate the gap in the plug member. Thus, it can be considered that the plug member is accommodated in the hole portion at a high density.

しかしながら、前記免震装置の製造方法では、圧縮工程の際、プラグ部材に加える加圧力が大きくなり易く、例えばプラグ部材や積層体が損傷する等のおそれがあった。   However, in the manufacturing method of the seismic isolation device, the pressure applied to the plug member is likely to increase during the compression process, and there is a risk that the plug member or the laminate may be damaged, for example.

本発明は、前述した事情に鑑みてなされたものであって、その目的は、圧縮工程の際の加圧力を低く抑えることができる免震装置の製造方法を提供することである。   This invention is made | formed in view of the situation mentioned above, The objective is to provide the manufacturing method of the seismic isolation apparatus which can suppress the applied pressure in the case of a compression process low.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る免震装置の製造方法は、弾性板と剛性板とが交互に積層された積層体を有する本体部材と、該本体部材に、前記積層体の積層方向に貫設された孔部内に収容されたプラグ部材と、該プラグ部材を前記積層方向の両側から挟み込むとともに、前記本体部材に各別に固定された一対の蓋部材と、を備える免震装置を形成する免震装置の製造方法であって、前記孔部内に位置する前記プラグ部材を前記積層方向に加圧して圧縮する圧縮工程と、前記積層体の温度を前記プラグ部材の温度に対し相対的に高める温度差付与工程と、これらの圧縮工程および温度差付与工程の後、前記蓋部材を前記本体部材に固定し、前記一対の蓋部材に前記プラグ部材を前記積層方向の両側から挟み込ませる挟み込み工程と、を有し、該挟み込み工程は、前記積層体の温度が前記プラグ部材の温度よりも高い状態で実施することを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The manufacturing method of the seismic isolation device according to the present invention includes a main body member having a laminate in which elastic plates and rigid plates are alternately laminated, and a hole in the main body member that penetrates in the stacking direction of the laminate. A method of manufacturing a seismic isolation device comprising: a plug member housed in a base member; and a pair of lid members sandwiched between the plug members from both sides in the stacking direction and separately fixed to the main body member A compression step of pressing and compressing the plug member positioned in the hole in the stacking direction, and a temperature difference applying step of increasing the temperature of the stacked body relative to the temperature of the plug member; After the compression step and the temperature difference applying step, the lid member is fixed to the body member, and the plug member is sandwiched between the pair of lid members from both sides in the stacking direction, The sandwiching process is Temperature of the serial laminate which comprises carrying out at higher than the temperature of the plug member.

この発明では、挟み込み工程を、積層体の温度がプラグ部材の温度よりも高い状態で実施することで、一対の蓋部材にプラグ部材を前記積層方向の両側から挟み込ませた状態で、積層体からプラグ部材および周辺環境に熱が移動する。すると、積層体の弾性板が前記積層方向に収縮することで、当該本体部材が前記積層方向に縮み、一対の蓋部材が、プラグ部材を前記積層方向に挟み込んだ状態で接近移動して該プラグ部材を圧縮することとなる。
以上のように、圧縮工程の後、弾性板の収縮を利用して、一対の蓋部材にプラグ部材を前記積層方向に圧縮させることができるので、圧縮工程の際、プラグ部材に加える加圧力を低く抑えることが可能になり、例えばプラグ部材や積層体が損傷すること等を抑制することができる。
In the present invention, the sandwiching step is performed in a state where the temperature of the laminated body is higher than the temperature of the plug member, so that the plug member is sandwiched from both sides in the stacking direction by the pair of lid members. Heat is transferred to the plug member and the surrounding environment. Then, the elastic plate of the laminated body contracts in the laminating direction, so that the main body member contracts in the laminating direction, and a pair of lid members move close to each other with the plug member sandwiched in the laminating direction. The member will be compressed.
As described above, after the compression process, the plug member can be compressed in the stacking direction to the pair of lid members by utilizing the contraction of the elastic plate. For example, the plug member or the laminated body can be prevented from being damaged.

また、前記圧縮工程は、前記温度差付与工程の際に実施してもよい。   Moreover, you may implement the said compression process in the case of the said temperature difference provision process.

この場合、圧縮工程を温度差付与工程の際に実施するので、例えばこれらの両工程を異なるタイミングで実施する場合などに比べて、作業効率を向上させることができる。
さらに、圧縮工程を温度差付与工程の際に実施するので、例えば圧縮工程を温度差付与工程の後に実施する場合などに比べて、積層体とプラグ部材との温度差を大きく維持した状態で挟み込み工程を実施することができる。これにより、弾性板の収縮を利用してプラグ部材に大きな圧縮力を加え易くすることが可能になり、圧縮工程の際、プラグ部材に加える加圧力をより低く抑えることができる。
In this case, since the compression step is performed during the temperature difference applying step, the working efficiency can be improved as compared with, for example, the case where these steps are performed at different timings.
Furthermore, since the compression process is performed during the temperature difference application process, for example, the compression process is performed after the temperature difference application process, so that the temperature difference between the laminated body and the plug member is maintained large. A process can be performed. Accordingly, it is possible to easily apply a large compressive force to the plug member by utilizing the contraction of the elastic plate, and the pressure applied to the plug member can be further suppressed during the compression process.

また、前記温度差付与工程は、前記積層体を加温することで、前記積層体の温度を前記プラグ部材の温度に対し相対的に高めてもよい。   Moreover, the said temperature difference provision process may raise the temperature of the said laminated body relatively with respect to the temperature of the said plug member by heating the said laminated body.

この場合、温度差付与工程が、積層体を加温することで、積層体の温度をプラグ部材の温度に対し相対的に高めるので、例えば積層体を、孔部側からではなく外周側から加温すること等により温度差付与工程を実施することが可能になり、当該温度差付与工程の作業性を向上させることができる。   In this case, the temperature difference applying step increases the temperature of the laminated body relative to the temperature of the plug member by heating the laminated body. For example, the laminated body is heated not from the hole side but from the outer peripheral side. It becomes possible to implement a temperature difference provision process by heating etc., and the workability | operativity of the said temperature difference provision process can be improved.

本発明に係る免震装置の製造方法によれば、圧縮工程の際の加圧力を低く抑えることができる。   According to the method for manufacturing a seismic isolation device of the present invention, the applied pressure during the compression process can be kept low.

本発明の一実施形態に係る免震装置の製造方法を使用して生産される免震装置の縦断面図である。It is a longitudinal cross-sectional view of the seismic isolation apparatus produced using the manufacturing method of the seismic isolation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る免震装置の製造方法を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the manufacturing method of the seismic isolation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る免震装置の製造方法を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the manufacturing method of the seismic isolation apparatus which concerns on one Embodiment of this invention. 検証試験の結果を表すグラフである。It is a graph showing the result of a verification test.

以下、図面を参照し、本発明の一実施形態に係る免震装置の製造方法を使用して生産される免震装置を説明する。
図1に示すように、免震装置10は、弾性板11と剛性板12とが交互に積層された積層体13を有する本体部材14と、該本体部材14に、積層体13の積層方向Dに貫設された孔部15内に収容されたプラグ部材16と、該プラグ部材16を前記積層方向Dの両側から挟み込むとともに、本体部材14に各別に固定された一対の蓋部材17と、を備えている。
なお前記積層方向Dは、鉛直方向と同等とされており、当該免震装置10は、基礎等の図示しない下部構造と建物本体等の図示しない上部構造との間に介装され、前記上部構造を前記下部構造に対して相対的に水平移動可能に支持する。
Hereinafter, with reference to drawings, the seismic isolation apparatus produced using the manufacturing method of the seismic isolation apparatus concerning one embodiment of the present invention is explained.
As shown in FIG. 1, the seismic isolation device 10 includes a main body member 14 having a laminated body 13 in which elastic plates 11 and rigid plates 12 are alternately laminated, and a laminating direction D of the laminated body 13 on the main body member 14. A plug member 16 accommodated in a hole portion 15 penetrating into the body, and a pair of lid members 17 sandwiched between the plug member 16 from both sides in the stacking direction D and fixed to the body member 14 separately. I have.
The stacking direction D is equivalent to the vertical direction, and the seismic isolation device 10 is interposed between a lower structure (not shown) such as a foundation and an upper structure (not shown) such as a building body, and the upper structure Is supported so as to be horizontally movable relative to the lower structure.

弾性板11は、例えばゴム材料などの弾性材料により形成された弾性変形可能な軟質板である。剛性板12は、例えば鋼板などからなる硬質板であり、弾性板11よりも前記積層方向Dおよび水平方向の各剛性が高くなっている。弾性板11および剛性板12は、円盤状に形成されるとともに同軸上に配置されており、積層体13は、前記積層方向Dに延在する円柱状とされている。   The elastic plate 11 is an elastically deformable soft plate made of an elastic material such as a rubber material. The rigid plate 12 is a hard plate made of, for example, a steel plate, and has higher rigidity in the stacking direction D and the horizontal direction than the elastic plate 11. The elastic plate 11 and the rigid plate 12 are formed in a disk shape and are arranged coaxially, and the laminated body 13 has a cylindrical shape extending in the laminating direction D.

積層体13は、水平方向にせん断変形可能となっている。積層体13の上面および下面は、弾性板11により構成されている。積層体13の外周面は、弾性板11および剛性板12の外周を全周にわたって被覆する被覆部18により構成されている。被覆部18は、弾性板11と同一材料で一体に形成されている。   The laminate 13 can be sheared in the horizontal direction. The upper surface and the lower surface of the laminate 13 are constituted by the elastic plate 11. The outer peripheral surface of the laminated body 13 is configured by a covering portion 18 that covers the outer periphery of the elastic plate 11 and the rigid plate 12 over the entire periphery. The covering portion 18 is integrally formed of the same material as the elastic plate 11.

ここで本体部材14には、積層体13を前記積層方向Dに挟み込む一対のフランジ板19が備えられている。これらのフランジ板19は、剛性板12よりも前記積層方向Dおよび水平方向の各剛性が高い円盤状の硬質板とされ、例えば鋼板などからなる。フランジ板19は、積層体13と同軸に配置されるとともに積層体13よりも大径となっている。フランジ板19は、例えばアンカーボルト等により前記下部構造または前記上部構造に固定される。   Here, the main body member 14 is provided with a pair of flange plates 19 that sandwich the laminated body 13 in the laminating direction D. These flange plates 19 are disk-like hard plates having higher rigidity in the laminating direction D and the horizontal direction than the rigid plate 12, and are made of, for example, a steel plate. The flange plate 19 is arranged coaxially with the laminated body 13 and has a larger diameter than the laminated body 13. The flange plate 19 is fixed to the lower structure or the upper structure by, for example, anchor bolts.

孔部15は、当該本体部材14と同軸に配置された円柱状に形成されている。孔部15は、一対のフランジ板19それぞれに形成され前記積層方向Dの外側に向けて開口する一対の大径部15aと、これらの大径部15a同士を連通する小径部15bと、からなる多段の円柱状とされている。大径部15aは、当該孔部15の前記積層方向Dの開口端部を構成している。大径部15aは、フランジ板19に限定的に配置されており、積層体13には配置されていない。   The hole 15 is formed in a columnar shape arranged coaxially with the main body member 14. The hole portion 15 includes a pair of large-diameter portions 15a formed in each of the pair of flange plates 19 and opening toward the outside in the stacking direction D, and a small-diameter portion 15b communicating these large-diameter portions 15a. It is a multistage columnar shape. The large diameter portion 15a constitutes an opening end portion of the hole portion 15 in the stacking direction D. The large diameter portion 15 a is disposed on the flange plate 19 in a limited manner and is not disposed on the laminate 13.

以上のような本体部材14は、弾性板11が熱膨張することで、前記積層方向Dに沿った大きさが大きくなる。
ここで本体部材14は、例えば、未加硫の弾性板11および被覆部18を、複数の剛性板12およびフランジ板19とともに加硫させることで、これらが互いに加硫接着されて形成される。なお、弾性板11および被覆部18はゴム材料以外であってもよく、例えば軟質樹脂材料で形成してもよい。また、フランジ板19および剛性板12は、鋼板以外であってもよく、例えば硬質樹脂材料からなる板材であってもよい。
The size of the main body member 14 along the stacking direction D increases as the elastic plate 11 thermally expands.
Here, the main body member 14 is formed, for example, by vulcanizing the unvulcanized elastic plate 11 and the covering portion 18 together with the plurality of rigid plates 12 and the flange plate 19 so as to be vulcanized and bonded to each other. The elastic plate 11 and the covering portion 18 may be made of a material other than a rubber material, for example, a soft resin material. Further, the flange plate 19 and the rigid plate 12 may be other than a steel plate, for example, a plate material made of a hard resin material.

蓋部材17は、孔部15の大径部15a内に配置されフランジ板19に固定されており、大径部15aを閉塞している。蓋部材17は、前記積層方向Dの内側部分17aが外側部分17bよりも縮径するとともに本体部材14と同軸に配置された2段の円盤状に形成されている。蓋部材17の前記外側部分17bは大径部15a内に嵌合され、前記内側部分17aは小径部15b内に嵌合されている。なお前記内側部分17aは、小径部15bのうち、フランジ板19の内側に位置する部分に限定的に配置されており、積層体13の内側に位置する部分には配置されていない。
蓋部材17は、前記外側部分17bに前記積層方向Dの外側から差し込まれたボルトによりフランジ板19に締結されている。蓋部材17において前記積層方向Dの外側を向く外面は、フランジ板19の外面と面一となっている。なお蓋部材17は、例えば溶接など他の方法によりフランジ板19に固定されていてもよい。
The lid member 17 is disposed in the large-diameter portion 15a of the hole portion 15 and is fixed to the flange plate 19, and closes the large-diameter portion 15a. The lid member 17 is formed in a two-stage disk shape in which the inner portion 17 a in the stacking direction D has a diameter smaller than that of the outer portion 17 b and is disposed coaxially with the main body member 14. The outer portion 17b of the lid member 17 is fitted into the large diameter portion 15a, and the inner portion 17a is fitted into the small diameter portion 15b. The inner portion 17a is limitedly arranged in a portion located inside the flange plate 19 in the small diameter portion 15b, and is not arranged in a portion located inside the laminated body 13.
The lid member 17 is fastened to the flange plate 19 by a bolt inserted into the outer portion 17b from the outer side in the stacking direction D. The outer surface of the lid member 17 facing the outside in the stacking direction D is flush with the outer surface of the flange plate 19. The lid member 17 may be fixed to the flange plate 19 by other methods such as welding.

プラグ部材16は、積層体13のせん断変形時に塑性変形することで振動エネルギーを吸収する減衰プラグである。プラグ部材16は、孔部15内において前記一対の蓋部材17の間に位置するプラグ空間20に収容されている。プラグ部材16は、プラグ空間20内に圧入されて隙間無く充填されている。プラグ部材16は、表面がプラグ空間20の内面に圧接するとともに本体部材14と同軸に配置された円柱状に形成されている。プラグ部材16の前記積層方向Dの両端面は、積層体13よりも前記積層方向Dの外側に位置している。なお図示の例では、プラグ部材16は、前記積層方向Dに分割された2つのプラグ分割体21からなるが、分割されていなくてもよく、3つ以上のプラグ分割体21により構成されていてもよい。   The plug member 16 is a damping plug that absorbs vibration energy by plastic deformation during the shear deformation of the laminate 13. The plug member 16 is accommodated in the plug space 20 located between the pair of lid members 17 in the hole portion 15. The plug member 16 is press-fitted into the plug space 20 and filled without a gap. The plug member 16 is formed in a cylindrical shape whose surface is in pressure contact with the inner surface of the plug space 20 and arranged coaxially with the main body member 14. Both end surfaces of the plug member 16 in the stacking direction D are positioned outside the stack 13 in the stacking direction D. In the example shown in the figure, the plug member 16 is composed of two plug divided bodies 21 divided in the stacking direction D. However, the plug member 16 may not be divided and is constituted by three or more plug divided bodies 21. Also good.

ここでプラグ部材16は、粉体材料が加圧されて成形されてなる。プラグ部材16は、例えば前記粉体材料を、図示しない金型内に充填して加圧することで成形される。前記粉体材料は、例えば硬質充填材と、該硬質充填材間の隙間を充填する塑性流動材と、が混合されてなる。前記硬質充填材としては、例えば、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。前記塑性流動材としては、例えばエストラマー成分、樹脂、カーボンブラック、可塑剤、軟化材などが挙げられる。前記エラストマー成分には、例えば天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどがある。前記樹脂には、ロジン樹脂、フェノール樹脂などがある。前記可塑剤には、フタル酸、マレイン酸、クエン酸などがある。前記軟化材には、ヒマシ油、アマニ油、ナタネ油などがある。
なお、硬質充填材および塑性流動材の組成、含有率、組み合わせ等は、プラグ部材16に所望される性能に応じて適宜変更することができる。
Here, the plug member 16 is formed by pressing a powder material. The plug member 16 is formed, for example, by filling and pressing the powder material in a mold (not shown). The powder material is, for example, a mixture of a hard filler and a plastic fluidizing material that fills a gap between the hard fillers. Examples of the hard filler include metal powders and metal compounds such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, and iron powder. . Examples of the plastic fluid material include an elastomer component, a resin, carbon black, a plasticizer, and a softening material. Examples of the elastomer component include natural rubber, polybutadiene rubber, acrylic rubber, silicone rubber, polyurethane, and urethane elastomer. Examples of the resin include rosin resin and phenol resin. Examples of the plasticizer include phthalic acid, maleic acid, and citric acid. Examples of the softening material include castor oil, linseed oil, and rapeseed oil.
Note that the composition, content, combination, and the like of the hard filler and the plastic fluidizing material can be appropriately changed according to the performance desired for the plug member 16.

以上のように構成された免震装置10を形成する免震装置の製造方法では、まず、本体部材14、プラグ部材16および蓋部材17を各別に形成する部材形成工程を実施する。
このときプラグ部材16の外径が、孔部15の小径部15bの内径と同等となるように、プラグ部材16を形成する。またプラグ部材16の重量が、プラグ空間20の容積に前記粉体材料の密度を乗じて算出される必要重量に基づいて算出された重量になるように、プラグ部材16を形成する。プラグ部材16は、例えば互いに大きさが異なる複数のプラグ分割体21を組み合わせて重量を調整することで形成してもよい。複数のプラグ分割体21には、重量調整用のプラグ分割体21(スペーサ)が含まれていてもよい。
In the seismic isolation device manufacturing method for forming the seismic isolation device 10 configured as described above, first, a member forming step for separately forming the main body member 14, the plug member 16, and the lid member 17 is performed.
At this time, the plug member 16 is formed so that the outer diameter of the plug member 16 is equal to the inner diameter of the small diameter portion 15 b of the hole portion 15. Further, the plug member 16 is formed so that the weight of the plug member 16 becomes a weight calculated based on a necessary weight calculated by multiplying the volume of the plug space 20 by the density of the powder material. For example, the plug member 16 may be formed by combining a plurality of plug division bodies 21 having different sizes and adjusting the weight. The plurality of plug division bodies 21 may include plug division bodies 21 (spacers) for weight adjustment.

なお本実施形態では、例えば、前記必要重量に対するプラグ部材16の重量の比である充填率が0.98〜1.00となるように、プラグ部材16を形成する。前記プラグ空間20の容積は、例えば、本体部材14の温度が、当該免震装置10が実使用されるときの設計温度(例えば20℃)とされた場合におけるプラグ空間20の容積とする。
ここでプラグ部材16は、粉体材料が加圧されて成形されてなることから、プラグ部材16内には空隙が形成され易くなっており、このようにプラグ部材16の重量を調整すると、プラグ部材16の体積がプラグ空間20の容積よりも大きくなる。
In the present embodiment, for example, the plug member 16 is formed so that the filling rate, which is the ratio of the weight of the plug member 16 to the necessary weight, is 0.98 to 1.00. The volume of the plug space 20 is, for example, the volume of the plug space 20 when the temperature of the main body member 14 is a design temperature (for example, 20 ° C.) when the seismic isolation device 10 is actually used.
Here, since the plug member 16 is formed by pressurizing the powder material, a gap is easily formed in the plug member 16. When the weight of the plug member 16 is adjusted in this way, the plug member 16 is plugged. The volume of the member 16 is larger than the volume of the plug space 20.

次に図2に示すように、一対の蓋部材17のうちの下側(積層方向の一方側)の蓋部材17を本体部材14に固定する固定工程を実施する。このとき、下側の蓋部材17を下側のフランジ板19に固定し、下側の蓋部材17および本体部材14により、上方(積層方向の他方側)に向けて開口するプラグ空間の形成予定部20Aを前記孔部15内に画成する。その後、前記形成予定部20Aの内面を、例えば乾燥したウエス等により清掃してもよい。
なお、前記固定工程および以下各工程では、本体部材14、プラグ部材16および蓋部材17それぞれについて、意図しない膨らみや傷などの損傷の有無を、例えば目視などにより確認してもよい。
Next, as shown in FIG. 2, a fixing step of fixing the lower lid member 17 (one side in the stacking direction) of the pair of lid members 17 to the main body member 14 is performed. At this time, the lower lid member 17 is fixed to the lower flange plate 19, and the lower lid member 17 and the body member 14 form a plug space that opens upward (the other side in the stacking direction). A portion 20 </ b> A is defined in the hole 15. Thereafter, the inner surface of the planned forming portion 20A may be cleaned with, for example, a dry waste.
In the fixing step and the following steps, the main body member 14, the plug member 16 and the lid member 17 may be checked for visual damage, for example, for unintended bulges and scratches.

その後、プラグ部材16を孔部15内に位置させる配置工程を実施する。このときプラグ部材16を、孔部15における上側の大径部15aを通して孔部15内に圧入し、前記形成予定部20A内に上方から押し込む。すると、プラグ部材16の下側の端面が、下側の蓋部材17に突き当たり、プラグ部材16の上側の端面が、前記形成予定部20Aの上側の開口面22よりも上側に位置する。   Then, the arrangement | positioning process which positions the plug member 16 in the hole 15 is implemented. At this time, the plug member 16 is press-fitted into the hole portion 15 through the upper large-diameter portion 15a in the hole portion 15 and pushed into the formation scheduled portion 20A from above. Then, the lower end surface of the plug member 16 abuts on the lower lid member 17, and the upper end surface of the plug member 16 is positioned above the opening surface 22 on the upper side of the formation planned portion 20A.

また、積層体13の温度をプラグ部材16の温度に対し相対的に高める温度差付与工程を実施する。このとき積層体13を、図示しない加温手段により前記被覆部18から加温することで、積層体13の温度をプラグ部材16の温度に対し相対的に高める。すると、弾性板11が熱膨張することで、本体部材14の前記積層方向Dに沿った大きさが大きくなる。   In addition, a temperature difference applying step for increasing the temperature of the laminated body 13 relative to the temperature of the plug member 16 is performed. At this time, the laminated body 13 is heated from the covering portion 18 by a heating means (not shown), so that the temperature of the laminated body 13 is relatively increased with respect to the temperature of the plug member 16. Then, the elastic plate 11 is thermally expanded, so that the size of the main body member 14 along the stacking direction D increases.

また温度差付与工程の際、図3に示すように、孔部15内に位置するプラグ部材16を、加圧手段23により前記積層方向Dに加圧して圧縮する圧縮工程を実施する。圧縮工程では、前記加圧手段23によるプラグ部材16への加圧を解除したときに、プラグ部材16の端面が前記形成予定部20Aの上側の開口面22上に位置するように、プラグ部材16を前記積層方向Dに加圧する。
なお本実施形態では、前記加圧手段23による加圧が解除されると、積層体13の弾性板11の復元力により、プラグ部材16が外周側から押し込まれ、上方に向けて僅かに押し戻されてプッシュバックさせられる。そのため圧縮工程の際、前記プッシュバックを考慮して、プラグ部材16の端面が前記開口面22よりも下方に至るようにプラグ部材16を加圧する。
Further, in the temperature difference applying step, as shown in FIG. 3, a compression step is performed in which the plug member 16 positioned in the hole 15 is pressed and compressed in the stacking direction D by the pressing means 23. In the compression step, the plug member 16 is positioned so that the end surface of the plug member 16 is positioned on the upper opening surface 22 of the planned formation portion 20A when the pressure applied to the plug member 16 by the pressurizing means 23 is released. Is pressed in the stacking direction D.
In the present embodiment, when the pressurization by the pressurizing means 23 is released, the plug member 16 is pushed in from the outer peripheral side by the restoring force of the elastic plate 11 of the laminated body 13 and slightly pushed back upward. Can be pushed back. Therefore, in the compression step, the plug member 16 is pressurized so that the end surface of the plug member 16 is below the opening surface 22 in consideration of the pushback.

これらの圧縮工程および温度差付与工程の後、上側の蓋部材17を本体部材14に固定し、一対の蓋部材17にプラグ部材16を前記積層方向Dの両側から挟み込ませる挟み込み工程を行う。
そして本実施形態では、この挟み込み工程を、積層体13の温度がプラグ部材16の温度よりも高い状態で実施する。
After the compression process and the temperature difference application process, the upper lid member 17 is fixed to the main body member 14, and a sandwiching process is performed in which the plug member 16 is sandwiched between the pair of lid members 17 from both sides in the stacking direction D.
In the present embodiment, this sandwiching step is performed in a state where the temperature of the stacked body 13 is higher than the temperature of the plug member 16.

このように挟み込み工程を、積層体13の温度がプラグ部材16の温度よりも高い状態で実施することで、一対の蓋部材17にプラグ部材16を前記積層方向Dの両側から挟み込ませた状態で、積層体13からプラグ部材16および周辺環境に熱が移動する。すると、積層体13の弾性板11が前記積層方向Dに収縮することで、当該本体部材14が前記積層方向Dに縮み、一対の蓋部材17が、プラグ部材16を前記積層方向Dに挟み込んだ状態で接近移動して該プラグ部材16を圧縮することとなる。
以上により、図1に示すような免震装置10が形成される。
In this way, the sandwiching process is performed in a state where the temperature of the laminated body 13 is higher than the temperature of the plug member 16, so that the plug member 16 is sandwiched from both sides in the stacking direction D by the pair of lid members 17. Then, heat is transferred from the laminate 13 to the plug member 16 and the surrounding environment. Then, the elastic plate 11 of the laminate 13 contracts in the stacking direction D, so that the main body member 14 contracts in the stacking direction D, and the pair of lid members 17 sandwich the plug member 16 in the stacking direction D. The plug member 16 is compressed by moving closer in the state.
Thus, the seismic isolation device 10 as shown in FIG. 1 is formed.

以上説明したように、本実施形態に係る免震装置の製造方法によれば、圧縮工程の後、弾性板11の収縮を利用して、一対の蓋部材17にプラグ部材16を前記積層方向Dに圧縮させることができるので、圧縮工程の際、プラグ部材16に加える加圧力を低く抑えることが可能になり、例えばプラグ部材16や積層体13が損傷すること等を抑制することができる。   As described above, according to the manufacturing method of the seismic isolation device according to the present embodiment, the plug member 16 is attached to the pair of lid members 17 by using the contraction of the elastic plate 11 after the compression step. Therefore, it is possible to suppress the pressure applied to the plug member 16 during the compression process, and for example, damage to the plug member 16 and the laminated body 13 can be suppressed.

また、圧縮工程を温度差付与工程の際に実施するので、例えばこれらの両工程を異なるタイミングで実施する場合などに比べて、作業効率を向上させることができる。
さらに、圧縮工程を温度差付与工程の際に実施するので、例えば圧縮工程を温度差付与工程の後に実施する場合などに比べて、積層体13とプラグ部材16との温度差を大きく維持した状態で挟み込み工程を実施することができる。これにより、弾性板11の収縮を利用してプラグ部材16に大きな圧縮力を加え易くすることが可能になり、圧縮工程の際、プラグ部材16に加える加圧力をより低く抑えることができる。
In addition, since the compression process is performed at the time of the temperature difference application process, it is possible to improve work efficiency compared to, for example, the case where these processes are performed at different timings.
Furthermore, since the compression step is performed during the temperature difference application step, for example, a state in which the temperature difference between the stacked body 13 and the plug member 16 is largely maintained as compared with the case where the compression step is performed after the temperature difference application step. The sandwiching step can be carried out. Thereby, it is possible to easily apply a large compressive force to the plug member 16 by utilizing the contraction of the elastic plate 11, and the pressure applied to the plug member 16 can be further suppressed during the compression process.

また温度差付与工程の際、積層体13を加温することで、積層体13の温度をプラグ部材16の温度に対し相対的に高めるので、例えば本実施形態のように、積層体13を、孔部15側からではなく被覆部18側(外周側)から加温すること等により温度差付与工程を実施することが可能になり、当該温度差付与工程の作業性を向上させることができる。   Moreover, since the temperature of the laminated body 13 is relatively increased with respect to the temperature of the plug member 16 by heating the laminated body 13 in the temperature difference applying step, for example, as in the present embodiment, the laminated body 13 is It becomes possible to carry out the temperature difference applying step by heating from the covering portion 18 side (outer peripheral side) instead of from the hole 15 side, and the workability of the temperature difference applying step can be improved.

また部材形成工程の際、プラグ部材16の重量が前記必要重量に基づいて算出された重量になるように、プラグ部材16を形成するので、プラグ部材16内の空隙量によらず、プラグ部材16をプラグ空間20内に確実に高密度に収容させることが可能になり、当該免震装置10の例えば二次剛性や降伏後負荷などの水平性能を確保し易くすることができる。   In addition, since the plug member 16 is formed so that the weight of the plug member 16 becomes a weight calculated based on the necessary weight in the member forming step, the plug member 16 is independent of the gap amount in the plug member 16. Can be reliably accommodated in the plug space 20 with a high density, and the horizontal performance of the seismic isolation device 10 such as the secondary rigidity and the post-yield load can be easily ensured.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前記粉体材料は、硬質充填材および塑性流動材を混合したものに限られず、本発明を、構成が異なる他のプラグ部材を有する免震装置の製造方法に適用してもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the powder material is not limited to a mixture of a hard filler and a plastic fluid material, and the present invention may be applied to a method for manufacturing a seismic isolation device having other plug members having different configurations.

また前記実施形態では、部材形成工程の際、プラグ部材16の重量が前記必要重量に基づいて算出された重量になるように、プラグ部材16を形成するものとしたが、これに限られるものではない。例えば、プラグ部材の体積が、プラグ空間の容積に基づいて算出された体積になるように、プラグ部材を形成してもよい。   In the embodiment, the plug member 16 is formed so that the weight of the plug member 16 is calculated based on the necessary weight in the member forming step. However, the present invention is not limited to this. Absent. For example, the plug member may be formed so that the volume of the plug member becomes a volume calculated based on the volume of the plug space.

また前記実施形態では、配置工程の後、圧縮工程を実施するものとしたが、これに限られるものではなく、配置工程と圧縮工程とを並行に実施してもよい。つまり、プラグ部材を、孔部内に挿入しながら前記積層方向に加圧して圧縮してもよい。
さらに前記実施形態では、固定工程を実施するものとしたが、これに限られない。例えば、固定工程を実施せず、圧縮工程の際、プラグ部材を、前記加圧手段により前記積層方向の両側から加圧し、挟み込み工程の際、一対の蓋部材の両方を本体部材に各別に固定してもよい。さらにまた、下側の蓋部材が本体部材と一体に成形され、下側の蓋部材が予め本体部材に固定されていてもよい。
Moreover, in the said embodiment, although the compression process shall be implemented after an arrangement | positioning process, it is not restricted to this, You may implement an arrangement | positioning process and a compression process in parallel. That is, the plug member may be compressed by pressing in the stacking direction while being inserted into the hole.
Furthermore, in the said embodiment, although the fixing process shall be implemented, it is not restricted to this. For example, without performing the fixing step, the plug member is pressed from both sides in the stacking direction by the pressing means during the compression step, and both the pair of lid members are fixed to the main body member separately during the sandwiching step. May be. Furthermore, the lower lid member may be formed integrally with the main body member, and the lower lid member may be fixed to the main body member in advance.

また前記実施形態では、温度差付与工程の際、積層体13を加温することで、積層体13の温度をプラグ部材16の温度に対し相対的に高めるものとしたが、これに限られない。例えば、プラグ部材の温度を冷却してもよい。
さらに前記実施形態では、温度差付与工程の際、圧縮工程を実施するものとしたが、これに限られない。
Moreover, in the said embodiment, in the temperature difference provision process, by heating the laminated body 13, the temperature of the laminated body 13 was made relatively high with respect to the temperature of the plug member 16, but it is not restricted to this. . For example, the temperature of the plug member may be cooled.
Furthermore, in the said embodiment, although the compression process shall be implemented in the case of a temperature difference provision process, it is not restricted to this.

また前記実施形態では、蓋部材17は、大径部15a内に配置され、蓋部材17の外面がフランジ板19の外面と面一になっているものとしたが、これに限られない。例えば、蓋部材が、フランジ板よりも前記積層方向の外側に位置していてもよい。
さらに、フランジ板19はなくてもよい。
Moreover, in the said embodiment, although the cover member 17 shall be arrange | positioned in the large diameter part 15a and the outer surface of the cover member 17 shall be flush with the outer surface of the flange board 19, it is not restricted to this. For example, the lid member may be located outside the flange plate in the stacking direction.
Further, the flange plate 19 may be omitted.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.

次に、以上説明した作用効果についての検証試験を実施した。   Next, the verification test about the effect demonstrated above was implemented.

本検証試験では、前記実施形態で示した免震装置の製造方法において、温度差付与工程における条件を異ならせ、各条件下において圧縮工程の際に必要な加圧力を測定した。
なお温度差付与工程では、プラグ部材の温度をいずれも15℃で共通とし、積層体の温度を異ならせた。また、圧縮工程の際に必要な加圧力とは、前記加圧装置によるプラグ部材への加圧を解除したときに、プラグ部材の端面を前記形成予定部の上側の開口面上に位置させるために、プラグ部材を前記積層方向に加圧する必要がある加圧力をいう。
In this verification test, in the manufacturing method of the seismic isolation device shown in the above embodiment, the conditions in the temperature difference application process were varied, and the applied pressure required in the compression process was measured under each condition.
In the temperature difference application step, the temperature of the plug members was made common at 15 ° C., and the temperature of the laminate was varied. Further, the pressurizing force required in the compression step is that the end surface of the plug member is positioned on the upper opening surface of the planned formation portion when the pressurization to the plug member by the pressurizing device is released. In addition, it means a pressing force that needs to pressurize the plug member in the stacking direction.

結果を図4に示す。図4に示すグラフでは、横軸が、温度差付与工程における積層体の温度(℃)を示す。また縦軸は、プラグ部材の成形時に当該プラグ部材に加えられた加圧力に対する圧縮工程の際に必要な加圧力の比(%)(以下、加圧力の比という)を示す。加圧力の比は、一般的に低いほど弾性板を損傷させ難く、例えば約60%程度であると好ましい。   The results are shown in FIG. In the graph shown in FIG. 4, the horizontal axis indicates the temperature (° C.) of the laminated body in the temperature difference applying step. The vertical axis represents the ratio (%) of the applied pressure required in the compression step to the applied pressure applied to the plug member during molding of the plug member (hereinafter referred to as the applied pressure ratio). In general, the lower the ratio of the applied pressures, the harder the elastic plate is damaged. For example, it is preferably about 60%.

図4より、積層体の温度が高いほど前記加圧力の比が小さくなり、圧縮工程の際に必要な加圧力が小さくなる傾向があることが確認された。また、積層体の温度が25℃以上であり、積層体の温度がプラグ部材の温度よりも10℃以上高いと、前記加圧力の比が約60%程度となることが確認された。   From FIG. 4, it was confirmed that the higher the temperature of the laminate, the smaller the ratio of the applied pressures, and the more the applied pressure required during the compression process tends to be reduced. Moreover, when the temperature of the laminated body was 25 ° C. or higher and the temperature of the laminated body was higher by 10 ° C. or higher than the temperature of the plug member, it was confirmed that the ratio of the applied pressure was about 60%.

D 積層方向
10 免震装置
11 弾性板
12 剛性板
13 積層体
14 本体部材
15 孔部
16 プラグ部材
17 蓋部材
D Laminating direction 10 Seismic isolation device 11 Elastic plate 12 Rigid plate 13 Laminated body 14 Body member 15 Hole 16 Plug member 17 Lid member

Claims (3)

弾性板と剛性板とが交互に積層された積層体を有する本体部材と、
該本体部材に、前記積層体の積層方向に貫設された孔部内に収容されたプラグ部材と、
該プラグ部材を前記積層方向の両側から挟み込むとともに、前記本体部材に各別に固定された一対の蓋部材と、を備える免震装置を形成する免震装置の製造方法であって、
前記孔部内に位置する前記プラグ部材を前記積層方向に加圧して圧縮する圧縮工程と、
前記積層体の温度を前記プラグ部材の温度に対し相対的に高める温度差付与工程と、
これらの圧縮工程および温度差付与工程の後、前記蓋部材を前記本体部材に固定し、前記一対の蓋部材に前記プラグ部材を前記積層方向の両側から挟み込ませる挟み込み工程と、を有し、
該挟み込み工程は、前記積層体の温度が前記プラグ部材の温度よりも高い状態で実施することを特徴とする免震装置の製造方法。
A body member having a laminate in which elastic plates and rigid plates are alternately laminated;
A plug member housed in a hole formed in the body member in the stacking direction of the laminate;
A method of manufacturing a seismic isolation device that forms a seismic isolation device including the plug member sandwiched from both sides in the stacking direction and a pair of lid members separately fixed to the main body member,
A compression step of compressing the plug member positioned in the hole by pressing in the stacking direction;
A temperature difference application step of increasing the temperature of the laminate relative to the temperature of the plug member;
After the compression step and the temperature difference application step, the lid member is fixed to the body member, and the plug member is sandwiched between the pair of lid members from both sides in the stacking direction, and
The sandwiching step is performed in a state where the temperature of the laminated body is higher than the temperature of the plug member.
請求項1記載の免震装置の製造方法であって、
前記圧縮工程は、前記温度差付与工程の際に実施することを特徴とする免震装置の製造方法。
A method of manufacturing a seismic isolation device according to claim 1,
The said compression process is implemented in the case of the said temperature difference provision process, The manufacturing method of the seismic isolation apparatus characterized by the above-mentioned.
請求項2記載の免震装置の製造方法であって、
前記温度差付与工程は、前記積層体を加温することで、前記積層体の温度を前記プラグ部材の温度に対し相対的に高めることを特徴とする免震装置の製造方法。
A method of manufacturing a seismic isolation device according to claim 2,
The said temperature difference provision process heats the said laminated body, and raises the temperature of the said laminated body relatively with respect to the temperature of the said plug member, The manufacturing method of the seismic isolation apparatus characterized by the above-mentioned.
JP2012057299A 2012-03-14 2012-03-14 Manufacturing method of seismic isolation device Expired - Fee Related JP5891078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057299A JP5891078B2 (en) 2012-03-14 2012-03-14 Manufacturing method of seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057299A JP5891078B2 (en) 2012-03-14 2012-03-14 Manufacturing method of seismic isolation device

Publications (2)

Publication Number Publication Date
JP2013188959A true JP2013188959A (en) 2013-09-26
JP5891078B2 JP5891078B2 (en) 2016-03-22

Family

ID=49389734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057299A Expired - Fee Related JP5891078B2 (en) 2012-03-14 2012-03-14 Manufacturing method of seismic isolation device

Country Status (1)

Country Link
JP (1) JP5891078B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568675B1 (en) * 2013-10-07 2014-08-06 株式会社ダイナミックデザイン Seismic isolation device
JP2017194098A (en) * 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201227A (en) * 1998-01-16 1999-07-27 Sumitomo Constr Co Ltd Base isolation rubber body for base isolation device and manufacture thereof
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2001074096A (en) * 1999-09-07 2001-03-23 Fujita Corp Manufacture of laminated rubber device for base isolation
JP2008121799A (en) * 2006-11-13 2008-05-29 Nitta Ind Corp Base isolation structure
JP2009008181A (en) * 2007-06-28 2009-01-15 Bridgestone Corp Manufacturing method for base isolation device embedded with plug
JP2010221679A (en) * 2009-03-25 2010-10-07 Bridgestone Corp Method and device for manufacturing quake-absorbing plug for quake-absorbing device
JP2010255782A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Plug for seismic isolator and manufacturing method thereof
JP2011144839A (en) * 2010-01-12 2011-07-28 Bridgestone Corp Production method of base isolation plug for base isolation device, and production equipment therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201227A (en) * 1998-01-16 1999-07-27 Sumitomo Constr Co Ltd Base isolation rubber body for base isolation device and manufacture thereof
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2001074096A (en) * 1999-09-07 2001-03-23 Fujita Corp Manufacture of laminated rubber device for base isolation
JP2008121799A (en) * 2006-11-13 2008-05-29 Nitta Ind Corp Base isolation structure
JP2009008181A (en) * 2007-06-28 2009-01-15 Bridgestone Corp Manufacturing method for base isolation device embedded with plug
JP2010221679A (en) * 2009-03-25 2010-10-07 Bridgestone Corp Method and device for manufacturing quake-absorbing plug for quake-absorbing device
JP2010255782A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Plug for seismic isolator and manufacturing method thereof
JP2011144839A (en) * 2010-01-12 2011-07-28 Bridgestone Corp Production method of base isolation plug for base isolation device, and production equipment therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568675B1 (en) * 2013-10-07 2014-08-06 株式会社ダイナミックデザイン Seismic isolation device
JP2017194098A (en) * 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator
WO2017183542A1 (en) * 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator apparatus
US10619700B2 (en) 2016-04-19 2020-04-14 Oiles Corporation Seismic isolation apparatus

Also Published As

Publication number Publication date
JP5891078B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6334659B2 (en) Fuel cell stack
JP5787142B2 (en) Spring member
JP5587806B2 (en) Spring member
JP5891078B2 (en) Manufacturing method of seismic isolation device
JP6720534B2 (en) Assembly manufacturing method, pressure joining container and pressure joining apparatus
CN103723287B (en) A kind of aerospacecraft in-orbit and launching phase shock attenuation unit
KR20180124086A (en) Isolation device
JP5678534B2 (en) Seismic isolation device and its installation method
JP2009008181A (en) Manufacturing method for base isolation device embedded with plug
JP5577808B2 (en) Seismic isolation device and its installation method
JP6432271B2 (en) Seismic isolation support device
JP4548509B2 (en) Printed circuit board manufacturing equipment
US20180208329A1 (en) Deformable shim and mounting arrangement
KR100994370B1 (en) Lead rubber bearing and manufacture method thereof
KR101957395B1 (en) Ceramic-laminate welding apparatus for sea-water battery cell
JP5250467B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5543893B2 (en) Seismic isolation structure and manufacturing method thereof
KR101957425B1 (en) Ceramic-laminate welding apparatus with hemispherical connection bracket
JP5552880B2 (en) Manufacturing method of rubber bearing
JP5678533B2 (en) Seismic isolation device and its installation method
JP2017172733A (en) Seismic isolation device and lamination layer rubber supporting deformation amount adjusting method
JP2010118483A5 (en) Substrate holding member, bonding apparatus and bonding method
JP5625661B2 (en) Seismic isolation device and its installation method
JP2006316955A (en) Base isolation rubber supporting body and its manufacturing method
JP2008200889A (en) Degassing method, degassing apparatus, core manufacturing method and laminated support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5891078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees