JP2013188726A - Recovery agent for ammoniacal nitrogen and phosphorus and method for producing the same - Google Patents

Recovery agent for ammoniacal nitrogen and phosphorus and method for producing the same Download PDF

Info

Publication number
JP2013188726A
JP2013188726A JP2012058603A JP2012058603A JP2013188726A JP 2013188726 A JP2013188726 A JP 2013188726A JP 2012058603 A JP2012058603 A JP 2012058603A JP 2012058603 A JP2012058603 A JP 2012058603A JP 2013188726 A JP2013188726 A JP 2013188726A
Authority
JP
Japan
Prior art keywords
recovery agent
phosphorus
source
magnesium
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058603A
Other languages
Japanese (ja)
Other versions
JP5562994B2 (en
Inventor
Masakuni Isogawa
昌邦 五十川
Mari Iwashita
真理 岩下
Toshihiro Imada
敏弘 今田
Sachiko Yoshida
祥子 吉田
Satoshi Haraguchi
智 原口
Tokusuke Hayami
徳介 早見
Shinobu Shigeniwa
忍 茂庭
Satomi Ebihara
聡美 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012058603A priority Critical patent/JP5562994B2/en
Priority to PCT/JP2013/000981 priority patent/WO2013136677A1/en
Publication of JP2013188726A publication Critical patent/JP2013188726A/en
Application granted granted Critical
Publication of JP5562994B2 publication Critical patent/JP5562994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Abstract

PROBLEM TO BE SOLVED: To efficiently recover phosphorus that is contained in drainage including sewer in a large amount and whose depleting as a resource is pointed out, and to reuse it as a chemical fertilizer.SOLUTION: A recovery agent for ammoniacal nitrogen and phosphorus is for recovering ammoniacal nitrogen and phosphorus from wastewater containing at least ammoniacal nitrogen and phosphorus, and comprises a composition represented by the general formula: (MO(MCO)) γSiOδKO (0≤α≤1, 0≤β≤1, α+β=1, 0.1≤γ≤20, 0<δ≤10, M: at least one of magnesium and calcium).

Description

本発明の実施形態は、アンモニア性窒素及びリンの回収剤及びその製造方法に関する。   Embodiments described herein relate generally to an ammoniacal nitrogen and phosphorus recovery agent and a method for producing the same.

近年、経済活動の急速なグローバル化によって、世界規模での環境汚染・水質汚染が深刻な問題となっている。また、世界規模での生産活動は同時に資源枯渇を招き、希少元素として認識される元素の種類も増加する傾向にある。最近では世界規模でのリン鉱石の減少が進んでおり、近年では、リンも希少元素として認識されてきている。   In recent years, due to the rapid globalization of economic activities, global environmental pollution and water pollution have become serious problems. In addition, worldwide production activities simultaneously lead to resource depletion, and the types of elements recognized as rare elements tend to increase. Recently, the reduction of phosphorus ore on a global scale has progressed, and in recent years phosphorus has also been recognized as a rare element.

一方、従来から湖沼や湾内など閉鎖性水域における富栄養化問題への対策として、リンに対する厳格な排出基準が設けられている。水中からのリン(実際には、リン酸イオンの形態となっている)の除去手段としては、鉄、マグネシウム、アルミニウム、カルシウム等の多価金属のイオンを排水中に供給し、これとリン酸イオンとを反応させることにより固体化または粒子化して沈殿、浮上又はろ過等によって除去する反応凝集法が多く用いられている。多価金属イオンを排水中に供給する方法としては、塩化第二鉄、ポリ硫酸第二鉄、ポリ塩化アルミニウム等の水溶液状の凝集剤を注入ポンプにより供給する凝集剤添加法がある(特許文献1)。   On the other hand, strict emission standards for phosphorus have been established as measures against eutrophication problems in closed waters such as lakes and bays. As means for removing phosphorus from water (actually in the form of phosphate ions), ions of polyvalent metals such as iron, magnesium, aluminum, and calcium are supplied into waste water, and this is combined with phosphate. A reactive agglomeration method is often used in which a solid or particle is formed by reacting with ions and then removed by precipitation, flotation, filtration, or the like. As a method for supplying polyvalent metal ions into wastewater, there is a coagulant addition method in which an aqueous coagulant such as ferric chloride, polyferric sulfate, or polyaluminum chloride is supplied by an injection pump (Patent Document). 1).

このような薬剤添加による凝集法の他にはイオン交換樹脂、ハイドロタルサイト様粘土鉱物、酸化ジルコニウム等を使用した吸着法等が知られている。これは、リン吸着剤を充填した充填層にリン含有処理水を通水してリンを除去する方法である(特許文献2)。他には、粒状のリン酸カルシウム系のリン鉱石を種晶として、これを反応槽内に充填し、カルシウム塩の存在下で、排水中のリン酸塩をリン酸カルシウムとしてリン鉱石の表面に析出させる方法や、粒状のリン酸アンモニウムマグネシウムを種晶として、これを反応槽内に充填し、アンモニア性窒素及びリンを含有する排水から、種晶表面にリン酸アンモニウムマグネシウムを晶析させ、リンを除去する晶析法がある(特許文献3)。   In addition to the agglomeration method by addition of such chemicals, adsorption methods using ion exchange resins, hydrotalcite-like clay minerals, zirconium oxide and the like are known. This is a method of removing phosphorus by passing phosphorus-containing treated water through a packed bed filled with a phosphorus adsorbent (Patent Document 2). In addition, a method in which granular calcium phosphate-based phosphate ore is used as a seed crystal, filled in a reaction tank, and in the presence of calcium salt, phosphate in waste water is precipitated as calcium phosphate on the surface of the phosphate ore. A crystal that removes phosphorus by using granular ammonium magnesium phosphate as a seed crystal, filling it into a reaction tank, crystallizing ammonium magnesium phosphate on the seed crystal surface from wastewater containing ammoniacal nitrogen and phosphorus There is an analysis method (Patent Document 3).

上述のように、リンは希少元素として認識されており、また、リンを吸着した後の吸着剤は、産業廃棄物として処理してしまうと、結果的に余分なコストがかかってしまうことから再利用させることが必須の要件となる。リンは化成肥料の構成元素として利用できることから、水中から回収したリンは化成肥料として再利用することができる。   As described above, phosphorus is recognized as a rare element, and the adsorbent after adsorbing phosphorus is treated as industrial waste, resulting in additional costs. It is an essential requirement to use it. Since phosphorus can be used as a constituent element of chemical fertilizer, phosphorus recovered from water can be reused as chemical fertilizer.

しかしながら、化成肥料はリン、窒素及びカリウムの2種類以上を含むことが必要であることから、回収したリンのみでは化成肥料を製造することができない。上述したリン酸アンモニウムマグネシウムを種晶として用いる晶析法では、種晶表面にリン酸アンモニウムマグネシウムを晶析させることができるので、化成肥料を構成するリンに加えて窒素を確保することができる。但し、この方法では、カリウムを含有させることができず、回収したリン酸アンモニウムマグネシウムにカリウムを添加して化成肥料とするような試みがなされている。しかしながら、カリウムを後添加した場合は、施肥後直ちにカリウムのみが土壌に溶け出してしまい、実用に供する化成肥料を得ることができなかった。   However, the chemical fertilizer needs to contain two or more types of phosphorus, nitrogen, and potassium, and therefore the chemical fertilizer cannot be produced only with the recovered phosphorus. In the above-described crystallization method using ammonium magnesium phosphate as a seed crystal, ammonium magnesium phosphate can be crystallized on the surface of the seed crystal, so that nitrogen can be secured in addition to phosphorus constituting the chemical fertilizer. However, in this method, potassium cannot be contained, and attempts have been made to add potassium to the recovered ammonium magnesium phosphate to obtain a chemical fertilizer. However, when potassium was added later, only potassium was dissolved into the soil immediately after fertilization, and a chemical fertilizer for practical use could not be obtained.

換言すれば、従来の方法では、吸着したリンの化成肥料としての実用的な再利用の技術は確立されていない。   In other words, in the conventional method, a practical reuse technique of adsorbed phosphorus as a chemical fertilizer has not been established.

特開2001−48791号JP 2001-48791 A 特開2009−113034号JP 2009-113034 A 特開2004−89931号JP 2004-89931A

本発明は、下水などの排水中に大量に含まれ、資源としての枯渇性が指摘されるリンを効率良く回収するとともに、化成肥料として再利用することを目的とする。   An object of the present invention is to efficiently recover phosphorus that is contained in a large amount in wastewater such as sewage and that is depleted as a resource, and to reuse it as a chemical fertilizer.

実施形態のアンモニア性窒素及びリンの回収剤は、少なくともアンモニア性窒素及びリンを含む排水中からアンモニア性窒素及びリンを回収する回収剤であって、一般式(MOα(MCOβ)・γSiO・δKO(0≦α≦1、0≦β≦1、α+β=1、0.1≦γ≦20、0<δ≦10、M:マグネシウム及びカルシウムの少なくとも一方)で表わされる組成物を含む。 The recovery agent for ammonia nitrogen and phosphorus of the embodiment is a recovery agent for recovering ammonia nitrogen and phosphorus from waste water containing at least ammonia nitrogen and phosphorus, and has the general formula (MO α (MCO 3 ) β ). γSiO 2 · δK 2 O (0 ≦ α ≦ 1, 0 ≦ β ≦ 1, α + β = 1, 0.1 ≦ γ ≦ 20, 0 <δ ≦ 10, M: at least one of magnesium and calcium) Including things.

(アンモニア性窒素及びリンの回収剤)
本実施形態におけるアンモニア性窒素及びリンの回収剤は、一般式(MOα(MCOβ)・γSiO・δKO(0≦α≦1、0≦β≦1、α+β=1、0.1≦γ≦20、0<δ≦10、M:マグネシウム及びカルシウムの少なくとも一方)で表わされる組成物を含む。
(Ammonia nitrogen and phosphorus recovery agent)
The recovery agent of ammonia nitrogen and phosphorus in this embodiment is a general formula (MO α (MCO 3 ) β ) · γSiO 2 · δK 2 O (0 ≦ α ≦ 1, 0 ≦ β ≦ 1, α + β = 1, 0). 1 ≦ γ ≦ 20, 0 <δ ≦ 10, M: at least one of magnesium and calcium).

上記回収剤において、当該回収剤を排水中に浸漬させた場合、マグネシウム及びカルシウムはイオンとして溶存し、以下に示すような反応式に基づいて、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)と反応し、リン酸マグネシウムアンモニウム、ハイドロキシアパタイト及びリン酸マグネシウム等の反応生成物を得る。   In the above recovery agent, when the recovery agent is immersed in the wastewater, magnesium and calcium are dissolved as ions, and ammonium ions (ammonia nitrogen) and phosphoric acid in the wastewater are based on the reaction formula as shown below. Reaction with ions (phosphorus) yields reaction products such as magnesium ammonium phosphate, hydroxyapatite, and magnesium phosphate.

Mg2++NH4++PO 3−+6HO→MgNHPO・6HO (1)
10Ca2++2OH+6PO 3−→Ca10(OH)(PO (2)
Mg2++PO 3−→Mg(PO (3)
Mg 2+ + NH 4+ + PO 4 3− + 6H 2 O → MgNH 4 PO 4 .6H 2 O (1)
10Ca 2+ + 2OH + 6PO 4 3− → Ca 10 (OH) 2 (PO 4 ) 6 (2)
Mg 2+ + PO 4 3− → Mg 3 (PO 4 ) 3 (3)

排水中では、逐次的にマグネシウムイオン、カルシウムイオンが溶出され、溶出は回収剤の表面で生じるため、上述した反応生成物であるリン酸マグネシウムアンモニウム、ハイドロキシアパタイト及びリン酸マグネシウム等は回収剤の表面に吸着され、堆積するようになる。   In the waste water, magnesium ions and calcium ions are eluted sequentially, and the elution occurs on the surface of the recovery agent. Therefore, the above reaction products such as magnesium ammonium phosphate, hydroxyapatite, and magnesium phosphate are the surface of the recovery agent. It will be adsorbed and deposited.

なお、上述したようにイオン化することによって排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を吸着するマグネシウム及びカルシウムは、上記一般式中で(MOα(MCOβ)の組成物として含まれるが、このような組成物は、以下に説明する製造方法において使用する原料に依存するものであって、その組成物の形態が上述した回収剤のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着性に対して何ら影響をもたらすものではない。 In addition, magnesium and calcium that adsorb ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in waste water by ionization as described above are (MO α (MCO 3 ) β ) in the above general formula. Although included as a composition, such a composition is dependent on the raw material used in the manufacturing method demonstrated below, Comprising: The form of the composition is ammonium ion (ammonia nitrogen) of the collection | recovery agent mentioned above. And has no effect on the adsorption of phosphate ions (phosphorus).

したがって、α及びβの範囲に基づいて、上記組成物がMO(α=1、β=0)、(MOα(MCOβ)及びMCO(α=0、β=1)の組成を有するとしても、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着性に対して何ら影響をもたらすものではない。 Therefore, based on the range of α and β, the composition has a composition of MO (α = 1, β = 0), (MO α (MCO 3 ) β ) and MCO 3 (α = 0, β = 1). Even if it has, it does not have any influence on the adsorptivity of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water.

上記一般式のケイ素化合物(無水ケイ酸、シリカ;SiO)は、一般式中で(MOα(MCOβ)によって表わされるマグネシウム化合物及びカルシウム化合物の少なくとも一方を保持するための物質である。この場合、上記一般式で表わされるγは0.1≦γ≦20の範囲であることが必要である。γが0.1未満であると、マグネシウム化合物及びカルシウム化合物を十分に保持することができず、γが20よりも大きくなると、回収剤中におけるマグネシウム化合物及びカルシウム化合物の量が相対的に減少し、排水中に供給できるマグネシウム(イオン)及びカルシウム(イオン)の量が相対的に減少するので、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の回収効率が低下する。 The silicon compound of the above general formula (anhydrous silica, silica; SiO 2 ) is a substance for retaining at least one of a magnesium compound and a calcium compound represented by (MO α (MCO 3 ) β ) in the general formula. . In this case, γ represented by the above general formula needs to be in a range of 0.1 ≦ γ ≦ 20. When γ is less than 0.1, the magnesium compound and calcium compound cannot be sufficiently retained, and when γ is greater than 20, the amount of magnesium compound and calcium compound in the recovery agent is relatively decreased. Since the amounts of magnesium (ion) and calcium (ion) that can be supplied into the wastewater are relatively reduced, the recovery efficiency of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the wastewater is lowered.

また、上記一般式の酸化カリウム(KO)は、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着及び回収に寄与するものではなく、上述のようにして本実施形態の回収剤が排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を吸着した後の前記回収剤を、そのまま化成肥料として使用できるようにするために、化成肥料の元素であるカリウムを予め回収剤中に組成物として含有させておくものである。したがって、カリウムを後添加した場合と異なり、施肥後直ちにカリウムのみが土壌に溶け出してしまうような問題を回避することができる。 In addition, potassium oxide (K 2 O) of the above general formula does not contribute to the adsorption and recovery of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water, and is carried out as described above. The recovery agent in the form is an element of chemical fertilizer so that the recovery agent after adsorbing ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water can be used as it is as a chemical fertilizer. Potassium is previously contained in the recovery agent as a composition. Therefore, unlike the case where potassium is added later, it is possible to avoid the problem that only potassium is dissolved into the soil immediately after fertilization.

また、δKOは、上記ケイ素化合物と同様に、一般式中で(MOα(MCOβ)によって表わされるマグネシウム化合物及びカルシウム化合物の少なくとも一方を保持する役割をも有している。 ΔK 2 O also has a role of holding at least one of a magnesium compound and a calcium compound represented by (MO α (MCO 3 ) β ) in the general formula, as in the case of the silicon compound.

したがって、KOの含有割合を決定するδは、0<δ≦10の範囲内であることが必要である。すなわち、KOを微量でも含んでいれば、上述した排水からのアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着操作と相伴って、化成肥料の構成元素であるリン、窒素、カリウムを含むようになるが、δが10を超えて大きくなると、上記回収剤におけるマグネシウム化合物及びカルシウム化合物の量が相対的に減少し、排水中に供給できるマグネシウム(イオン)及びカルシウム(イオン)の量が相対的に減少するので、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の回収効率が低下する。 Therefore, δ that determines the content ratio of K 2 O needs to be in the range of 0 <δ ≦ 10. That is, if K 2 O is contained even in a trace amount, phosphorus and nitrogen that are constituent elements of the chemical fertilizer in conjunction with the adsorption operation of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) from the waste water described above. However, if δ exceeds 10 and the amount of magnesium compound and calcium compound in the recovery agent is relatively reduced, magnesium (ion) and calcium (ion) that can be supplied into the waste water. Therefore, the recovery efficiency of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water is lowered.

結果として、上述した反応生成物を吸着(堆積)した回収剤は、化成肥料の構成元素であるリン、窒素及びカリウムを含むことになり、吸着したリン等を回収することなく、そのまま化成肥料として用いることができる。   As a result, the recovery agent that adsorbs (deposits) the reaction product described above contains phosphorus, nitrogen and potassium, which are constituent elements of the chemical fertilizer, and as it is as a chemical fertilizer without recovering the adsorbed phosphorus and the like. Can be used.

このように、本実施形態では、回収剤から吸着したリン等を分離除去して当該回収剤を再利用することはできないが、上述のようにリン等を含む回収剤自体を化成肥料として再利用することができる。回収剤からリン等を分離するには別途分離工程等の操作が必要になるので、本実施形態のように、上記回収剤から吸着したリン等を分離することなく、そのまま化成肥料として用いることにより、再利用の形態は異なるものの、回収剤の再利用を低コストで行うことができる。   Thus, in this embodiment, it is not possible to separate and remove phosphorus adsorbed from the recovery agent and reuse the recovery agent. However, as described above, the recovery agent itself containing phosphorus or the like is reused as a chemical fertilizer. can do. Separation of phosphorus and the like from the recovery agent requires a separate operation such as a separation step. Therefore, as in this embodiment, without separating phosphorus or the like adsorbed from the recovery agent, it can be used as a chemical fertilizer as it is. Although the form of reuse is different, the recovery agent can be reused at low cost.

なお、回収剤の形状は特に限定されるものではなく、必要に応じて、球状物、粒状物、角状物、繊維状物、糸状物、棒状物、管状物、シート状物、膜状物、板状物等、任意の形状とすることができる。   The shape of the recovery agent is not particularly limited, and if necessary, spherical, granular, angular, fibrous, thread-like, rod-like, tubular, sheet-like, film-like Any shape such as a plate-like material can be used.

また、その大きさも適宜必要に応じて設定することができる。但し、回収剤の大きさが小さすぎると、回収剤を排水中に浸漬させてマグネシウムイオン及びカルシウムイオンが排水中に溶存し、上述した反応式(1)〜(3)にしたがって得たリン酸マグネシウムアンモニウム等の反応生成物を得た場合に、当該反応生成物の大きさが微細になりすぎ、排水中に遊離してしまう傾向がある。また回収剤を肥料として散布する場合に好ましくない。したがって、このような問題を回避すべく、回収剤の大きさはサブミクロンオーダーからミリメートルのオーダとすることが好ましく、特に0.1〜5mmであることが好ましい。なお、このような大きさの回収剤は、以下に説明する製造方法によれば比較的簡易に形成することができる。   Moreover, the magnitude | size can also be set suitably as needed. However, if the size of the recovery agent is too small, the recovery agent is immersed in the waste water and magnesium ions and calcium ions are dissolved in the waste water, and phosphoric acid obtained according to the above reaction formulas (1) to (3) When a reaction product such as magnesium ammonium is obtained, the size of the reaction product becomes too fine and tends to be liberated in waste water. Moreover, it is not preferable when the recovered agent is sprayed as fertilizer. Therefore, in order to avoid such a problem, the size of the recovery agent is preferably on the order of submicron to millimeter, and more preferably 0.1 to 5 mm. In addition, the collection | recovery agent of such a magnitude | size can be formed comparatively easily according to the manufacturing method demonstrated below.

本実施形態のアンモニア性窒素及びリンの回収剤は、多孔質の粒子であることが好ましい。この場合、回収剤の表面積が増大するので、上述のようにして得た反応生成物の、回収剤表面に吸着し堆積できる量が増大することになる。また、回収剤の空孔内においても、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を吸着して回収することができるようになる。したがって、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)をより効率的かつ効果的に吸着し、回収することができる。   The ammonia nitrogen and phosphorus recovery agent of the present embodiment is preferably porous particles. In this case, since the surface area of the recovery agent increases, the amount of the reaction product obtained as described above that can be adsorbed and deposited on the surface of the recovery agent increases. In addition, the ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water can be adsorbed and recovered also in the holes of the recovery agent. Therefore, ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the wastewater can be adsorbed and recovered more efficiently and effectively.

回収剤の気孔率は30%以上80%以下であることが好ましい。回収剤の気孔率が80%を超えて大きくなると、回収剤の強度が低下し、実用に耐え得るような強度の回収剤を得ることができない場合がある。なお、前述した理由から、回収剤の気孔率の上限は60%であることがより好ましい。また、回収剤の気孔率が30%未満であると、回収剤の表面積増大の効果を十分に得ることができず、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着効率及び回収効率を十分に向上させることができない。このような観点から、回収剤の気孔率の下限値は35%以上であることがより好ましく、40%以上であることがさらに好ましい。   The porosity of the recovery agent is preferably 30% or more and 80% or less. When the porosity of the recovery agent exceeds 80%, the strength of the recovery agent decreases, and it may not be possible to obtain a recovery agent having a strength that can withstand practical use. For the reasons described above, the upper limit of the porosity of the recovery agent is more preferably 60%. Further, if the porosity of the recovery agent is less than 30%, the effect of increasing the surface area of the recovery agent cannot be obtained sufficiently, and adsorption of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water Efficiency and recovery efficiency cannot be improved sufficiently. From such a viewpoint, the lower limit of the porosity of the recovery agent is more preferably 35% or more, and further preferably 40% or more.

また、回収剤の孔径は小さくなるほど回収剤と排水との接触面積が増大するため好ましいが、小さくなりすぎると、回収剤の空孔内への排水の流入が困難となる。したがって、回収剤の空孔内に吸着されるイオンの量が減少し、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の回収効率が低下してしまう場合がある。このような観点から、回収剤の孔径は、0.1μm以上500μm以下の範囲であることが好ましく、0.5μm以上500μm以下の範囲であることがより好ましく、10μm以上500μm以下の範囲であることが特に好ましい。なお、上記気孔率及び孔径は、例えば水銀圧入法による細孔分布測定により測定することができる。   Further, the smaller the pore size of the recovery agent, the larger the contact area between the recovery agent and the waste water, which is preferable. However, if the pore size is too small, it becomes difficult for the recovery agent to flow into the pores. Therefore, the amount of ions adsorbed in the holes of the recovery agent is reduced, and the recovery efficiency of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water may be reduced. From such a viewpoint, the pore diameter of the recovery agent is preferably in the range of 0.1 μm to 500 μm, more preferably in the range of 0.5 μm to 500 μm, and in the range of 10 μm to 500 μm. Is particularly preferred. The porosity and pore diameter can be measured, for example, by measuring the pore distribution by mercury porosimetry.

回収剤が上述のような気孔率及び孔径を有することにより、その比表面積は0.1m/g以上500m/g以下となり、上述のように、反応生成物の吸着及び堆積量が増大する。なお、比表面積は、BET法によって求めたものである。 When the recovery agent has the porosity and the pore diameter as described above, the specific surface area becomes 0.1 m 2 / g or more and 500 m 2 / g or less, and the amount of adsorption and deposition of the reaction product increases as described above. . The specific surface area is determined by the BET method.

なお、上述した多孔質かつ粒子状の回収剤は、以下に説明する製造方法にしたがって製造することにより自ずから製造されるものである。   In addition, the porous and particulate recovery agent described above is naturally manufactured by manufacturing according to the manufacturing method described below.

(アンモニア性窒素及びリンの回収剤の製造方法)
次に、本実施形態のアンモニア窒素及びリンの回収剤の製造方法について説明する。
(Method for producing ammonia nitrogen and phosphorus recovery agent)
Next, the manufacturing method of the recovery agent of ammonia nitrogen and phosphorus of this embodiment is demonstrated.

(リン回収剤の製造方法)
次に、本実施形態のリン回収剤の製造方法について説明する。
(Method for producing phosphorus recovery agent)
Next, the manufacturing method of the phosphorus collection | recovery agent of this embodiment is demonstrated.

(混合工程)
最初に、本実施形態の回収剤を構成する上記一般式で表わされる組成物の原料を準備する。なお、原料の種類に応じて、準備する原料の種類は以下のような4つの形態に分けることができる。
(i) マグネシウム源及びカルシウム源の少なくとも一方、ケイ素源並びにカリウム源
(ii)マグネシウム−カルシウム源、ケイ素源及びカリウム源
(iii)マグネシウム源及びカルシウム源の少なくとも一方、並びにケイ素−カリウム源
(iv) マグネシウム−カルシウム源、ケイ素−カリウム源
(Mixing process)
First, a raw material for the composition represented by the above general formula constituting the recovery agent of this embodiment is prepared. In addition, according to the kind of raw material, the kind of raw material to prepare can be divided into the following four forms.
(i) at least one of a magnesium source and a calcium source, a silicon source and a potassium source
(ii) Magnesium-calcium source, silicon source and potassium source
(iii) at least one of a magnesium source and a calcium source, and a silicon-potassium source
(iv) Magnesium-calcium source, silicon-potassium source

マグネシウム源は、入手が容易であって、安価であることから、水酸化マグネシウム、酸化マグネシウム及び炭酸マグネシウムからなる群より選ばれる少なくとも一種とすることができる。また、カルシウム源は、同様の理由から、水酸化カルシウム、酸化カルシウム及び炭酸カルシウムからなる群より選ばれる少なくとも一種とすることができる。   Since the magnesium source is easily available and inexpensive, it can be at least one selected from the group consisting of magnesium hydroxide, magnesium oxide and magnesium carbonate. The calcium source can be at least one selected from the group consisting of calcium hydroxide, calcium oxide and calcium carbonate for the same reason.

ケイ素源は、ケイ砂、珪藻土、廃ガラス、フライアッシュ、籾殻、籾殻灰、及び鉄鋼スラグからなる群より選ばれる少なくとも一種とすることができる。これらの中でも、特にフライアッシュ、籾殻、籾殻灰及び鉄鋼スラグ等は、石炭の焼成、米の脱穀及び鉄の精錬などから生じた廃棄物であるが、これらの廃棄物は無水ケイ酸(シリカ;SiO)を主成分として含むため、これら廃棄物をケイ素源として用いることにより廃棄物の有効利用が可能となる。 The silicon source can be at least one selected from the group consisting of quartz sand, diatomaceous earth, waste glass, fly ash, rice husk, rice husk ash, and steel slag. Among these, fly ash, rice husk, rice husk ash, steel slag, and the like, in particular, are wastes generated from coal firing, rice threshing, iron refining, etc., but these wastes are silicic acid (silica; Since SiO 2 ) is contained as a main component, the waste can be effectively used by using these wastes as a silicon source.

また、カリウム源は、水酸化カリウム及び炭酸カリウムの少なくとも一方とすることができ、マグネシウム―カルシウム源は、ドロマイト(CaMg(CO)及び半焼ドロマイト(MgO・CaCO)の少なくとも一方とすることができ、ケイ素−カリウム源は、ケイ酸カリウムとすることができる。 Further, the potassium source can be at least one of potassium hydroxide and potassium carbonate, and the magnesium-calcium source can be at least one of dolomite (CaMg (CO 3 ) 2 ) and half-burned dolomite (MgO · CaCO 3 ). The silicon-potassium source can be potassium silicate.

なお、上述した(i)〜(iv)から明らかなように、(i)に比較して(ii)〜(iv)は、使用する原料の種類が少ないので回収剤の製造工程を簡易化することができる。   As is clear from the above (i) to (iv), (ii) to (iv) simplify the manufacturing process of the recovery agent because the types of raw materials used are small compared to (i). be able to.

上述した原料を準備した後は、それぞれの原料を一般式で表わされる組成物の元素割合を満足するように秤量し、混合する。混合に際しては、適宜溶媒を用い、当該溶媒中に上記原料を分散撹拌してスラリーとする。   After preparing the raw materials described above, each raw material is weighed and mixed so as to satisfy the element ratio of the composition represented by the general formula. In mixing, a solvent is appropriately used, and the raw materials are dispersed and stirred in the solvent to form a slurry.

(成形工程)
次いで、上述のようにして得たスラリー(混合物)を乾燥し、造粒機等を用いて得られた粒状物を様々な形状に成形することができ、例えば、ストランドカット、シートカット等の押し出し造粒法を含む押出成形法、圧縮成形法、加圧成形造粒法、転動造粒法および製丸法等任意の造粒法を用いて成形することができる。但し、成形工程は必須の要件ではなく、上述したスラリー(混合物)を以下に説明する焼成工程に直接供することもできる。
(Molding process)
Next, the slurry (mixture) obtained as described above can be dried, and the granular material obtained using a granulator or the like can be formed into various shapes, for example, extrusion such as strand cutting, sheet cutting, etc. It can shape | mold using arbitrary granulation methods, such as the extrusion molding method including a granulation method, a compression molding method, a pressure molding granulation method, a rolling granulation method, and a rounding method. However, the molding step is not an essential requirement, and the above-described slurry (mixture) can be directly subjected to the firing step described below.

(焼成工程)
次に、成形工程にて得た成形物あるいは混合工程で得たスラリーを所定の型に入れ、必要に応じて乾燥処理を施した後、例えば大気中で300℃以上1200℃以下の温度、好ましくは550℃以上1000℃以下の温度で焼成する。温度については、ケイ素源の融点に応じて適宜設定する。これによって、混合物(成形物)中の原料同士が互いに反応し、上述した一般式で表わされる組成物を構成するようになる。この際、混合物(成形物)中の原料が分解等(例えば、炭酸マグネシウム等が分解して炭酸ガスが外部に放出される)し、さらには原料の一部が部分的に液化等することによって、得られた組成物が多孔質の粒子となる。
(Baking process)
Next, the molded product obtained in the molding step or the slurry obtained in the mixing step is put in a predetermined mold and subjected to a drying treatment as necessary, and then, for example, a temperature of 300 ° C. or higher and 1200 ° C. or lower, preferably in the atmosphere. Is fired at a temperature of 550 ° C. or higher and 1000 ° C. or lower. About temperature, it sets suitably according to melting | fusing point of a silicon source. As a result, the raw materials in the mixture (molded product) react with each other to form the composition represented by the above general formula. At this time, the raw material in the mixture (molded product) is decomposed (for example, magnesium carbonate is decomposed and carbon dioxide gas is released to the outside), and further, a part of the raw material is partially liquefied. The resulting composition becomes porous particles.

(粉砕工程)
次いで、上述のようにして得た組成物を、粉砕機や整粒機などを用いて所望の大きさの回収剤とする。なお、上述のように成形工程を経た場合は、上記組成物は予め所望の大きさとなっているので、本工程を経ることなく、焼成工程で得た組成物をそのまま回収剤として用いることができる。
(Crushing process)
Next, the composition obtained as described above is used as a recovery agent having a desired size using a pulverizer or a granulator. In addition, when the molding process is performed as described above, the composition has a desired size in advance, and thus the composition obtained in the firing process can be used as it is as a recovery agent without passing through this process. .

また、必要に応じて、粉砕後の回収剤あるいは粉砕前の組成物に対して酸処理あるいは洗浄処理を行うことができる。これによって、回収剤あるいは組成物の表面に残留物(カリウム塩等)を除去することができ、回収剤の回収能を向上させることができる。   If necessary, an acid treatment or a washing treatment can be performed on the recovered agent after pulverization or the composition before pulverization. Thereby, residues (potassium salts and the like) can be removed from the recovery agent or the surface of the composition, and the recovery ability of the recovery agent can be improved.

(アンモニア性窒素及びリンの回収剤の使用方法)
本実施形態のアンモニア性窒素及びリンの回収剤の使用方法について説明する。
(Usage method of ammonia nitrogen and phosphorus recovery agent)
A method of using the ammonia nitrogen and phosphorus recovery agent of this embodiment will be described.

本実施形態におけるリン回収剤の使用方法は極めて簡易であって、上述のようにして得た回収剤を排水に接触させることによって行う。これによって、上述した原理、すなわち、回収剤に含まれるマグネシウムイオンまたはカルシウムイオンが排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)と結合することにより、排水中のアンモニア性窒素及びリンを回収できるものである。さらに、空孔内に排水が取り込まれることにより、空孔内においてもアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)のが吸着するようになり、排水中のアンモニア性窒素及びリンを回収できるものである。   The usage method of the phosphorus collection | recovery agent in this embodiment is very simple, Comprising: It carries out by making the collection | recovery agent obtained as mentioned above contact waste water. Accordingly, the above-described principle, that is, magnesium ions or calcium ions contained in the recovery agent are combined with ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water, so that ammonia nitrogen in the waste water and It can recover phosphorus. Furthermore, when drainage is taken into the pores, ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) are adsorbed in the pores, and ammonia nitrogen and phosphorus in the drainage are recovered. It can be done.

上記回収剤を排水と接触させる具体的な方法としては、例えば、上記回収剤を排水中に投入し、必要に応じて撹拌などをしてアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を回収したあと、沈降させる方法が挙げられる。この方法は、比較的大量の排水を処理する場合に有効な方法である。この方法によると、水質浄化設備が比較的大型になることが懸念点であるが、大量の排水を一度に処理できるという利点がある。   As a specific method of bringing the recovery agent into contact with the waste water, for example, the recovery agent is put into the waste water, and stirred as necessary to ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus). And a method of sedimentation after recovery. This method is effective when treating a relatively large amount of waste water. According to this method, there is a concern that the water purification equipment becomes relatively large, but there is an advantage that a large amount of waste water can be treated at one time.

また、上記回収剤をカラムに充填し、このカラム中に排水を導入することで接触させ、排水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を回収することもできる。この方法は、処理装置が比較的小規模となるが、排水処理量も限定されるので、少量の排水を処理するのに好適である。   In addition, it is possible to collect ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water by filling the recovery agent into a column and bringing the waste water into contact with the column. This method is suitable for treating a small amount of wastewater because the amount of wastewater treatment is limited although the treatment apparatus is relatively small.

なお、本実施形態における回収剤は、任意のpHの排水に対して適用することができる。しかしながら、強酸酸性下においては回収剤の溶解が生じる可能性がある。したがって、本実施形態によるイオン回収剤を適用するのに好ましいpH範囲は5.0以上12.0以下であり、更に好ましいpH範囲は7.0以上10.0以下である。   In addition, the collection | recovery agent in this embodiment can be applied with respect to the waste_water | drain of arbitrary pH. However, there is a possibility that the recovery agent dissolves under strong acidity. Therefore, a preferable pH range for applying the ion recovery agent according to the present embodiment is 5.0 or more and 12.0 or less, and a more preferable pH range is 7.0 or more and 10.0 or less.

(実施例1)
原料として、水酸化マグネシウムとケイ酸カリウム溶液(SiO:27.5%以上29%以下、KO:21%以上23%以下)と蒸留水とを1:0.5:5の重量比で混合した(混合工程)。その後、混合物をテフロン(登録商標)ビーカーに流し込み、50℃の乾燥機中で24時間乾燥させた。その後、さらに電気炉にて、300℃で3時間焼成した(焼成工程)。次いで、粉砕機を用いて熱処理した混合物を0.5mm以上2mm以下に粉砕し、目的とする回収剤を得た。
Example 1
As a raw material, magnesium hydroxide and potassium silicate solution (SiO 2 : 27.5% to 29%, K 2 O: 21% to 23%) and distilled water in a weight ratio of 1: 0.5: 5 (Mixing process). Thereafter, the mixture was poured into a Teflon (registered trademark) beaker and dried in a dryer at 50 ° C. for 24 hours. Then, it further baked at 300 degreeC for 3 hours with the electric furnace (baking process). Subsequently, the heat-treated mixture was pulverized to 0.5 mm or more and 2 mm or less using a pulverizer to obtain a target recovery agent.

次いで、リン酸イオン濃度60mg/l、マグネシウムイオン濃度24mg/l、炭酸イオン濃度3000mg/l、アンモニウムイオン500mg/lとなるよう調整された混合水溶液を排水模擬液として準備した。この排水模擬液250mLに62.5mgの回収剤を投入し、24時間混合撹絆して水質浄化処理を行った。処理後、回収剤を回収し、回収した回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量を評価した。   Subsequently, a mixed aqueous solution prepared to have a phosphate ion concentration of 60 mg / l, a magnesium ion concentration of 24 mg / l, a carbonate ion concentration of 3000 mg / l, and an ammonium ion of 500 mg / l was prepared as a drainage simulation solution. 62.5 mg of the recovery agent was added to 250 mL of this drainage simulation liquid, and mixed and stirred for 24 hours for water purification treatment. After the treatment, the recovered agent was recovered, and the soluble phosphoric acid, nitrogen content and potassium content in the recovered recovered agent were evaluated.

ク溶性リン酸は以下に示す測定方法により導出し、窒素含有量及びカリウム含有量は、以下に示す組成評価方法により導出した。また、回収剤の組成は、前述の組成評価方法による組成の分析結果と、XPS、IR測定及びX線回折等による構造解析とを適宜併用することによって同定した。   The soluble phosphoric acid was derived by the measurement method shown below, and the nitrogen content and the potassium content were derived by the composition evaluation method shown below. Further, the composition of the recovery agent was identified by appropriately combining the analysis result of the composition by the above-described composition evaluation method and the structural analysis by XPS, IR measurement, X-ray diffraction and the like.

なお、ク溶性リン酸とはリン酸質肥料に求められる特性であり、以下に示す測定方法で測定したリン濃度(P)を測定し、それをリン酸(P)に換算した後、回収物あたりの溶出量の割合を算出したものを指す。リン酸質肥料は、ク溶性リン酸が高いことが求められるため、クエン酸によって溶出されるリンの割合が少しでも高いほうが好ましい。 In addition, quasi-soluble phosphoric acid is a characteristic required for phosphate fertilizers, and after measuring the phosphorus concentration (P) measured by the measurement method shown below and converting it to phosphoric acid (P 2 O 5 ) , Refers to the calculated ratio of the amount of elution per recovered product. Since the phosphate fertilizer is required to have a high solubility of phosphoric acid, it is preferable that the proportion of phosphorus eluted by citric acid is as high as possible.

(ク溶性リン酸量の測定方法)
水質浄化試験後の回収物を液温30℃の2wt%クエン酸溶液に60分浸漬させた後、回収物を取り出し、必要に応じてろ過した後、クエン酸溶液中のリン濃度をICP発光分光分析装置(SII ナノテクノロジー製 SP−1500V)で測定した。
(Method for measuring the amount of soluble phosphoric acid)
The recovered material after the water purification test was immersed in a 2 wt% citric acid solution with a liquid temperature of 30 ° C. for 60 minutes, then the recovered material was taken out and filtered as necessary, and then the phosphorus concentration in the citric acid solution was measured by ICP emission spectroscopy. It measured with the analyzer (SP-1500V made from SII nanotechnology).

(組成評価方法)
含水量はTGで測定し、蛍光X線及び化学分析を用いて定量した。
具体的には、蛍光X線は、定性は、蛍光X線スペクトル中のピークの各元素への帰属を決定した。定量は、蛍光X線スペクトルの強度測定(FP法と検量線法)によって行った。FP法は測定強度から理論的に各元素ごとの感度係数を求め、検出された元素の合計で濃度を100%とする計算方法である。また検量線法は、濃度の分かっているサンプルを濃度を変えて数点測定し検量線を作成し、その後、未知試料を測定して濃度を定量する方法である。
(Composition evaluation method)
The water content was measured by TG and quantified using fluorescent X-ray and chemical analysis.
Specifically, for fluorescent X-rays, qualitatively determined the assignment of peaks to each element in the fluorescent X-ray spectrum. Quantification was performed by measuring the intensity of the fluorescent X-ray spectrum (FP method and calibration curve method). The FP method is a calculation method in which the sensitivity coefficient for each element is theoretically obtained from the measured intensity, and the concentration is 100% in the total of detected elements. The calibration curve method is a method in which a sample with a known concentration is measured at several points to create a calibration curve, and then an unknown sample is measured to quantify the concentration.

次に、化学分析は、イオンクロマトグラフやICP発光分光分析装置を用いた。試料を例えば硝酸で完全溶解させ、各種イオン濃度を測定し定量した。   Next, the chemical analysis used an ion chromatograph or an ICP emission spectroscopic analyzer. The sample was completely dissolved with, for example, nitric acid, and various ion concentrations were measured and quantified.

なお、回収剤の具体的な組成については、上述した組成分析に加えて、適宜XPS、IR分析、X線回折等の構造解析を併用して行った。   In addition, about the specific composition of the collection | recovery agent, in addition to the composition analysis mentioned above, structural analysis, such as XPS, IR analysis, and X-ray diffraction, was suitably used together.

回収剤の組成成分、回収剤の排水模擬液浸漬後のク溶性リン酸、窒素含有量及びカリウム含有量の結果を表1に示す。   Table 1 shows the results of the composition components of the recovery agent, the soluble phosphoric acid, the nitrogen content and the potassium content after immersion of the recovery agent drainage simulation liquid.

(実施例2)
水酸化マグネシウムに代えて酸化マグネシウムを使用した以外は実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 2)
A recovery agent was produced in the same manner as in Example 1 except that magnesium oxide was used instead of magnesium hydroxide. Moreover, the drainage simulation liquid was prepared like Example 1, and the water quality purification process was performed on the same conditions. Further, the composition of the recovery agent, the soluble phosphoric acid, the nitrogen content, and the potassium content in the recovered recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
水酸化マグネシウムに代えて酸化カルシウムを使用した以外は実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 3)
A recovery agent was produced in the same manner as in Example 1 except that calcium oxide was used instead of magnesium hydroxide. Moreover, the drainage simulation liquid was prepared like Example 1, and the water quality purification process was performed on the same conditions. Further, the composition of the recovery agent, the soluble phosphoric acid, the nitrogen content, and the potassium content in the recovered recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、焼成温度を550℃とした以外は実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
Example 4
A recovery agent was produced in the same manner as in Example 1 except that dolomite ((CaMg (CO 3 ) 2 ) was used instead of magnesium hydroxide and the calcination temperature was 550 ° C. Further, in the same manner as in Example 1. A drainage simulation liquid was prepared and subjected to water purification treatment under the same conditions, and the composition of the recovery agent, the soluble phosphoric acid, the nitrogen content and the potassium content in the recovery agent after the treatment were also as in Example 1. Identification and evaluation were conducted in the same manner, and the results are shown in Table 1.

(実施例5)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、これらを1:0.1:1の重量比で混合して混合物を得、焼成温度を550℃とした以外は、実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 5)
Dolomite ((CaMg (CO 3 ) 2 ) was used instead of magnesium hydroxide, and these were mixed at a weight ratio of 1: 0.1: 1 to obtain a mixture, and the firing temperature was 550 ° C. A recovery agent was produced in the same manner as in Example 1. A drainage simulation liquid was prepared in the same manner as in Example 1, and water purification treatment was performed under the same conditions. The soluble phosphoric acid, nitrogen content and potassium content in the recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、これらを1:4:40の重量比で混合して混合物を得、焼成温度を550℃とした以外は、実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 6)
Example 1 except that dolomite ((CaMg (CO 3 ) 2 ) was used instead of magnesium hydroxide and these were mixed at a weight ratio of 1: 4: 40 to obtain a mixture and the firing temperature was 550 ° C. A recovery agent was produced in the same manner as in Example 1. In addition, a simulated drainage solution was prepared in the same manner as in Example 1, and water purification treatment was performed under the same conditions as that of the recovery agent. The soluble phosphate, nitrogen content and potassium content were identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例7)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、ケイ酸カリウム溶液に代えてケイ砂及び水酸化カリウムを使用し、これら原料と蒸留水とを1:1.6:1.25:16の重量比で混合して混合物を得、焼成温度を1000℃で行った以外は、実施例1と同様にして回収剤を得た。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 7)
Dolomite ((CaMg (CO 3 ) 2 ) is used in place of magnesium hydroxide, and silica sand and potassium hydroxide are used in place of the potassium silicate solution. A mixture was obtained by mixing at a weight ratio of 1.25: 16, and a recovery agent was obtained in the same manner as in Example 1 except that the firing temperature was 1000 ° C. Further, the composition of the recovery agent and the post-treatment The soluble phosphoric acid, nitrogen content and potassium content in the recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
水酸化マグネシウムに代えて酸化マグネシウムを使用し、ケイ酸カリウム溶液に代えてフライアッシュ及び水酸化カリウムを使用し、これら原料と蒸留水とを1:1.6:1.25:16の重量比で混合して混合物を得、焼成温度を1000℃で行った以外は、実施例1と同様にして回収剤を得た。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 8)
Magnesium oxide is used instead of magnesium hydroxide, fly ash and potassium hydroxide are used instead of potassium silicate solution, and the weight ratio of these raw materials and distilled water is 1: 1.6: 1.25: 16 A recovery agent was obtained in the same manner as in Example 1, except that the mixture was obtained by mixing at a temperature of 1000 ° C. Further, the composition of the recovery agent, the soluble phosphoric acid, the nitrogen content, and the potassium content in the recovered recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例9)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、ケイ酸カリウム溶液に代えて籾殻及び水酸化カリウムを使用し、これら原料と蒸留水とを1:1.6:1.25:16の重量比で混合して混合物を得、焼成温度を800℃で行った以外は、実施例1と同様にして回収剤を得た。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
Example 9
Dolomite ((CaMg (CO 3 ) 2 ) is used in place of magnesium hydroxide, rice husk and potassium hydroxide are used in place of the potassium silicate solution, and these raw materials and distilled water are mixed at 1: 1.6: 1. A mixture was obtained by mixing at a weight ratio of 25:16, and a recovery agent was obtained in the same manner as in Example 1 except that the firing temperature was 800 ° C. Further, the composition of the recovery agent and the recovery after the treatment The soluble phosphoric acid, nitrogen content and potassium content in the agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例10)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、ケイ酸カリウム溶液に代えて鉄鋼スラグ及び水酸化カリウムを使用し、これら原料と蒸留水とを1:1.6:1.25:16の重量比で混合して混合物を得、焼成温度を1000℃で行った以外は、実施例1と同様にして回収剤を得た。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Example 10)
Dolomite ((CaMg (CO 3 ) 2 ) is used instead of magnesium hydroxide, steel slag and potassium hydroxide are used instead of potassium silicate solution, and these raw materials and distilled water are used at 1: 1.6: A mixture was obtained by mixing at a weight ratio of 1.25: 16, and a recovery agent was obtained in the same manner as in Example 1 except that the firing temperature was 1000 ° C. Further, the composition of the recovery agent and the post-treatment The soluble phosphoric acid, nitrogen content and potassium content in the recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、これらを1:0.05:0.5の重量比で混合して混合物を得、焼成温度を550℃とした以外は、実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Comparative Example 1)
Dolomite ((CaMg (CO 3 ) 2 ) was used instead of magnesium hydroxide, and these were mixed at a weight ratio of 1: 0.05: 0.5 to obtain a mixture, except that the firing temperature was set to 550 ° C. Produced a recovery agent in the same manner as in Example 1. In addition, a drainage simulation liquid was prepared in the same manner as in Example 1, and water purification treatment was performed under the same conditions. The soluble phosphonic acid, nitrogen content and potassium content in the later recovery agent were also identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
水酸化マグネシウムに代えてドロマイト((CaMg(CO)を使用し、これらを1:10:100の重量比で混合して混合物を得、焼成温度を550℃とした以外は、実施例1と同様にして回収剤を製造した。また、実施例1と同様にして排水模擬液を準備し、同様の条件で水質浄化処理を行った。さらに、回収剤の組成、処理後の回収剤におけるク溶性リン酸、窒素含有量及びカリウム含有量についても実施例1と同様にして同定し、評価した。結果を表1に示す。
(Comparative Example 2)
Example except that dolomite ((CaMg (CO 3 ) 2 ) was used instead of magnesium hydroxide and these were mixed at a weight ratio of 1: 10: 100 to obtain a mixture and the firing temperature was 550 ° C. A recovery agent was produced in the same manner as in Example 1. In addition, a simulated drainage solution was prepared in the same manner as in Example 1, and water purification treatment was performed under the same conditions as that of the recovery agent. The soluble phosphate, nitrogen content and potassium content were identified and evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 2013188726
Figure 2013188726

表1から明らかなように、実施例で得た回収剤は、ク溶性リン酸、窒素全量、カリウム全量の合計が10wt%以上であり、またそれぞれの濃度が1%以上であることから、肥料取締法の化成肥料の規格を満足している。したがって、これら回収剤は、そのまま化成肥料として使用できることが分かる。   As is clear from Table 1, the recovery agent obtained in the examples is a fertilizer because the total of the soluble phosphonic acid, the total amount of nitrogen and the total amount of potassium is 10 wt% or more, and each concentration is 1% or more. Satisfies the chemical fertilizer standards of the Control Law. Therefore, it turns out that these collection | recovery agents can be used as a chemical fertilizer as it is.

一方、比較例1では、回収剤の酸化カリウム(KO)の量が低すぎるために、アンモニア性窒素及びリンを回収した後で、カリウムを検出することができなかった。また比較例2ではシリカ(SiO)と酸化カリウム(KO)比が高すぎるため、マグネシウム化合物とカルシウム化合物の量が相対的に減少したため、アンモニア性窒素及びリンを回収できず、ク溶性リン酸、窒素全量を検出できなかった。 On the other hand, in Comparative Example 1, since the amount of potassium oxide (K 2 O) as a recovery agent was too low, potassium could not be detected after recovering ammonia nitrogen and phosphorus. In Comparative Example 2, since the ratio of silica (SiO 2 ) and potassium oxide (K 2 O) is too high, the amounts of magnesium compound and calcium compound are relatively reduced, so ammoniacal nitrogen and phosphorus cannot be recovered, and the solubility is high. The total amount of phosphoric acid and nitrogen could not be detected.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment was posted as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (13)

少なくともアンモニア性窒素及びリンを含む排水中からアンモニア性窒素及びリンを回収する回収剤であって、
一般式(MOα(MCOβ)・γSiO・δK
(0≦α≦1、0≦β≦1、α+β=1、0.1≦γ≦20、0<δ≦10、M:マグネシウム及びカルシウムの少なくとも一方)
で表わされる組成物を含む、アンモニア性窒素及びリンの回収剤。
A recovery agent for recovering ammonia nitrogen and phosphorus from waste water containing at least ammonia nitrogen and phosphorus,
General formula (MO α (MCO 3 ) β ) · γSiO 2 · δK 2 O
(0 ≦ α ≦ 1, 0 ≦ β ≦ 1, α + β = 1, 0.1 ≦ γ ≦ 20, 0 <δ ≦ 10, M: at least one of magnesium and calcium)
A recovery agent for ammoniacal nitrogen and phosphorus, comprising a composition represented by:
前記回収剤は多孔質の粒子であることを特徴とする、請求項1に記載のアンモニア性窒素及びリンの回収剤。   The ammonia nitrogen and phosphorus recovery agent according to claim 1, wherein the recovery agent is porous particles. 前記回収剤の気孔率は、30%以上80%以下であり、
前記回収剤の孔径は、0.1μm以上500μm以下であり、
前記回収剤の比表面積は、0.1m/g以上500m/g以下であることを特徴とする、請求項2に記載のアンモニア性窒素及びリンの回収剤。
The porosity of the recovery agent is 30% or more and 80% or less,
The pore diameter of the recovery agent is 0.1 μm or more and 500 μm or less,
The ammonia nitrogen and phosphorus recovery agent according to claim 2, wherein a specific surface area of the recovery agent is 0.1 m 2 / g or more and 500 m 2 / g or less.
マグネシウム源及びカルシウム源の少なくとも一方、ケイ素源並びにカリウム源を混合して混合物を得る工程と、
前記混合物を焼成する工程と、
を具えることを特徴とする、アンモニア性窒素及びリンの回収剤の製造方法。
Mixing at least one of a magnesium source and a calcium source, a silicon source and a potassium source to obtain a mixture;
Firing the mixture;
A method for producing a recovery agent for ammoniacal nitrogen and phosphorus, comprising:
マグネシウム−カルシウム源、ケイ素源及びカリウム源を混合して混合物を得る工程と、
前記混合物を焼成する工程と、
を具えることを特徴とする、アンモニア性窒素及びリンの回収剤の製造方法。
Mixing a magnesium-calcium source, a silicon source and a potassium source to obtain a mixture;
Firing the mixture;
A method for producing a recovery agent for ammoniacal nitrogen and phosphorus, comprising:
マグネシウム−カルシウム源、及びケイ素−カリウム源を混合して混合物を得る工程と、
前記混合物を焼成する工程と、
を具えることを特徴とする、アンモニア性窒素及びリンの回収剤の製造方法。
Mixing a magnesium-calcium source and a silicon-potassium source to obtain a mixture;
Firing the mixture;
A method for producing a recovery agent for ammoniacal nitrogen and phosphorus, comprising:
マグネシウム源及びカルシウム源の少なくとも一方、並びにケイ素−カリウム源を混合して混合物を得る工程と、
前記混合物を焼成する工程と、
を具えることを特徴とする、アンモニア性窒素及びリンの回収剤の製造方法。
Mixing at least one of a magnesium source and a calcium source and a silicon-potassium source to obtain a mixture;
Firing the mixture;
A method for producing a recovery agent for ammoniacal nitrogen and phosphorus, comprising:
前記マグネシウム源は、水酸化マグネシウム、酸化マグネシウム及び炭酸マグネシウムからなる群より選ばれる少なくとも一種であることを特徴とする、請求項4又は7に記載のアンモニア性窒素及びリンの回収剤の製造方法。   The method for producing an ammonia nitrogen and phosphorus recovery agent according to claim 4 or 7, wherein the magnesium source is at least one selected from the group consisting of magnesium hydroxide, magnesium oxide and magnesium carbonate. 前記カルシウム源は、水酸化カルシウム、酸化カルシウム及び炭酸カルシウムからなる群より選ばれる少なくとも一種であることを特徴とする、請求項4又は7に記載のアンモニア性窒素及びリンの回収剤の製造方法。   The method for producing an ammonia nitrogen and phosphorus recovery agent according to claim 4 or 7, wherein the calcium source is at least one selected from the group consisting of calcium hydroxide, calcium oxide and calcium carbonate. 前記ケイ素源は、ケイ砂、珪藻土、廃ガラス、フライアッシュ、籾殻、籾殻灰、及び鉄鋼スラグからなる群より選ばれる少なくとも一種であることを特徴とする、請求項4又は5に記載のアンモニア性窒素及びリンの回収剤の製造方法。   6. The ammoniacal material according to claim 4, wherein the silicon source is at least one selected from the group consisting of quartz sand, diatomaceous earth, waste glass, fly ash, rice husk, rice husk ash, and steel slag. A method for producing a nitrogen and phosphorus recovery agent. 前記カリウム源は、水酸化カリウム及び炭酸カリウムの少なくとも一方であることを特徴とする、請求項4又は5に記載のアンモニア性窒素及びリンの回収剤の製造方法。   The method for producing an ammonia nitrogen and phosphorus recovery agent according to claim 4 or 5, wherein the potassium source is at least one of potassium hydroxide and potassium carbonate. 前記マグネシウム―カルシウム源は、ドロマイト及び半焼ドロマイトの少なくとも一方であることを特徴とする、請求項5又は6に記載のアンモニア性窒素及びリンの回収剤の製造方法。   The method for producing an ammonia nitrogen and phosphorus recovery agent according to claim 5 or 6, wherein the magnesium-calcium source is at least one of dolomite and semi-burned dolomite. 前記ケイ素−カリウム源は、ケイ酸カリウムであることを特徴とする、請求項6又は7に記載のアンモニア性窒素及びリンの回収剤の製造方法。   The method for producing an ammonia nitrogen and phosphorus recovery agent according to claim 6 or 7, wherein the silicon-potassium source is potassium silicate.
JP2012058603A 2012-03-15 2012-03-15 Ammonia nitrogen and phosphorus recovery agent and method for producing the same Expired - Fee Related JP5562994B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012058603A JP5562994B2 (en) 2012-03-15 2012-03-15 Ammonia nitrogen and phosphorus recovery agent and method for producing the same
PCT/JP2013/000981 WO2013136677A1 (en) 2012-03-15 2013-02-21 Ammoniacal nitrogen and phosphorus recovery agent and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058603A JP5562994B2 (en) 2012-03-15 2012-03-15 Ammonia nitrogen and phosphorus recovery agent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013188726A true JP2013188726A (en) 2013-09-26
JP5562994B2 JP5562994B2 (en) 2014-07-30

Family

ID=49160629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058603A Expired - Fee Related JP5562994B2 (en) 2012-03-15 2012-03-15 Ammonia nitrogen and phosphorus recovery agent and method for producing the same

Country Status (2)

Country Link
JP (1) JP5562994B2 (en)
WO (1) WO2013136677A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959108A (en) * 2015-06-29 2015-10-07 蔡恩扬 Attapulgite and bryozoatum compound filter material for purification adsorption of waste water ammonia nitrogen and preparing method of attapulgite and bryozoatum compound filter material
CN105582896A (en) * 2016-01-07 2016-05-18 苏州法斯特信息科技有限公司 Novel ammonia-nitrogen wastewater treatment material and preparation method thereof
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
JP2020157247A (en) * 2019-03-27 2020-10-01 太平洋セメント株式会社 Water purification material
CN113952922A (en) * 2021-10-09 2022-01-21 山东黄海科技创新研究院有限责任公司 Magnesium hydroxide/diatomite composite material and method for recycling nitrogen and phosphorus in wastewater by using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182840A (en) * 1984-09-29 1986-04-26 Agency Of Ind Science & Technol Phosphorus removing agent
JPH03295884A (en) * 1990-04-10 1991-12-26 Akio Onda Production of citric soluble fertilizer
JP2000226285A (en) * 1999-02-05 2000-08-15 Nkk Corp Slow acting potassic fertilizer
JP2000264763A (en) * 1999-03-18 2000-09-26 Nkk Corp K2O-CaO-SiO2 CRYSTAL MATERIAL AND SLOW RELEASABLE POTASH FERTILIZER
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182840A (en) * 1984-09-29 1986-04-26 Agency Of Ind Science & Technol Phosphorus removing agent
JPH03295884A (en) * 1990-04-10 1991-12-26 Akio Onda Production of citric soluble fertilizer
JP2000226285A (en) * 1999-02-05 2000-08-15 Nkk Corp Slow acting potassic fertilizer
JP2000264763A (en) * 1999-03-18 2000-09-26 Nkk Corp K2O-CaO-SiO2 CRYSTAL MATERIAL AND SLOW RELEASABLE POTASH FERTILIZER
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959108A (en) * 2015-06-29 2015-10-07 蔡恩扬 Attapulgite and bryozoatum compound filter material for purification adsorption of waste water ammonia nitrogen and preparing method of attapulgite and bryozoatum compound filter material
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
CN105582896A (en) * 2016-01-07 2016-05-18 苏州法斯特信息科技有限公司 Novel ammonia-nitrogen wastewater treatment material and preparation method thereof
JP2020157247A (en) * 2019-03-27 2020-10-01 太平洋セメント株式会社 Water purification material
JP7287813B2 (en) 2019-03-27 2023-06-06 太平洋セメント株式会社 Water purification material
CN113952922A (en) * 2021-10-09 2022-01-21 山东黄海科技创新研究院有限责任公司 Magnesium hydroxide/diatomite composite material and method for recycling nitrogen and phosphorus in wastewater by using same

Also Published As

Publication number Publication date
WO2013136677A1 (en) 2013-09-19
JP5562994B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
Lan et al. Highly efficient removal of As (V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent
Li et al. A novel conversion process for waste residue: Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals
Yan et al. Removal of phosphate from wastewater using alkaline residue
Yuan et al. Kinetic and thermodynamic studies on the phosphate adsorption removal by dolomite mineral
Xue et al. Adsorption characterization of Cu (II) from aqueous solution onto basic oxygen furnace slag
ES2909061T3 (en) Process for producing a calcium phosphate type reagent
JP5562994B2 (en) Ammonia nitrogen and phosphorus recovery agent and method for producing the same
JP2006205154A (en) Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
Zhao et al. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents
WO2011132770A1 (en) Agent for eliminating heavy metal ions and phosphate ions in wastewater, and method for eliminating heavy metal ions and phosphate ions using same
Oguz Equilibrium isotherms and kinetics studies for the sorption of fluoride on light weight concrete materials
Zhao et al. Influence of sintering temperature on orthophosphate and pyrophosphate removal behaviors of red mud granular adsorbents (RMGA)
Xiao et al. Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles
Lee et al. Phosphate removal from aqueous solutions using slag microspheres
Chen et al. Simultaneous immobilization of NH 4+ and Mn 2+ from electrolytic manganese residue using phosphate and magnesium sources
Deng et al. Defluoridation by fluorapatite crystallization in a fluidized bed reactor under alkaline groundwater condition
Czech et al. Impact of thermal treatment of calcium silicate-rich slag on the removal of cadmium from aqueous solution
Lian et al. A comprehensive study of phosphorus removal and recovery with a Fe-loaded sulfoaluminate cement (FSC) adsorbent
JP4920007B2 (en) Method for producing glass foam, glass foam and method for regenerating glass foam
Bouzar et al. Fluorine soil stabilization using hydroxyapatite synthesized from minerals wastes
Oladoja et al. Gastropod shell column reactor as on-site system for phosphate capture and recovery from aqua system
JP5665891B2 (en) Phosphorus recovery agent and method for producing the same
Jing et al. Sustainable utilization of a recovered struvite/diatomite compound for lead immobilization in contaminated soil: potential, mechanism, efficiency, and risk assessment
Toshiyuki et al. Influence of Mg components in hydroxylated calcined dolomite to (co-) precipitation of fluoride with apatites
JP2014151310A (en) Water treatment method and water treatment equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

LAPS Cancellation because of no payment of annual fees