JP2013188700A - Organic solvent dehydration device - Google Patents
Organic solvent dehydration device Download PDFInfo
- Publication number
- JP2013188700A JP2013188700A JP2012057426A JP2012057426A JP2013188700A JP 2013188700 A JP2013188700 A JP 2013188700A JP 2012057426 A JP2012057426 A JP 2012057426A JP 2012057426 A JP2012057426 A JP 2012057426A JP 2013188700 A JP2013188700 A JP 2013188700A
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- dehydration
- dehydrating
- tank
- cation exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003960 organic solvent Substances 0.000 title claims abstract description 186
- 230000018044 dehydration Effects 0.000 title claims abstract description 146
- 238000006297 dehydration reaction Methods 0.000 title claims abstract description 146
- 239000000463 material Substances 0.000 claims abstract description 104
- 239000002245 particle Substances 0.000 claims abstract description 66
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 238000003795 desorption Methods 0.000 claims description 75
- 239000003729 cation exchange resin Substances 0.000 claims description 58
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 17
- 229920001577 copolymer Polymers 0.000 claims description 15
- 229940023913 cation exchange resins Drugs 0.000 claims description 10
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 3
- 239000003456 ion exchange resin Substances 0.000 abstract description 4
- 229920003303 ion-exchange polymer Polymers 0.000 abstract description 4
- 238000000746 purification Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 50
- 239000007789 gas Substances 0.000 description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- 239000002904 solvent Substances 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 239000012046 mixed solvent Substances 0.000 description 12
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011084 recovery Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 238000007561 laser diffraction method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000003921 particle size analysis Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 241000220317 Rosa Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
- B01D15/361—Ion-exchange
- B01D15/362—Cation-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/20—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
本発明は、有機溶剤から水分を除去する装置に関し、特に各種工場や研究施設等から発生した有機溶剤含有ガスから溶剤回収装置を用いて回収した有機溶剤の脱水に用いられる有機溶剤脱水装置である。 The present invention relates to an apparatus for removing moisture from an organic solvent, and more particularly to an organic solvent dehydration apparatus used for dehydration of an organic solvent recovered from an organic solvent-containing gas generated from various factories or research facilities using a solvent recovery apparatus. .
従来から、有機溶剤から水分を除去して有機溶剤を脱水する装置としては、蒸留精製装置が広く用いられている。すなわち、有機溶剤を加熱蒸発させ、沸点の違いを利用して有機溶剤と水分を分留することで、純度の高い有機溶剤を取得することができる装置である。 Conventionally, a distillation purification apparatus has been widely used as an apparatus for removing water from an organic solvent to dehydrate the organic solvent. That is, the organic solvent can be obtained by heating and evaporating the organic solvent and fractionating the organic solvent and moisture using the difference in boiling point.
蒸留精製装置は大型な装置であるために広い設置スペースが必要であり、かつイニシャルコスト、ランニングコスト共に高いことが問題となっている。かかる問題を解決するために、ゼオライト、イオン交換樹脂、モレキュラーシーブス、活性アルミナ等の脱水材を充填させた脱水槽に有機溶剤を通液させて水分を取り除く方法が知られている(たとえば、特許文献1参照)。 Since the distillation purification apparatus is a large apparatus, a large installation space is required, and both initial cost and running cost are high. In order to solve such a problem, a method of removing water by passing an organic solvent through a dehydration tank filled with a dehydrating material such as zeolite, ion exchange resin, molecular sieves, and activated alumina is known (for example, patents). Reference 1).
しかし、多量の有機溶剤から水分を分離する場合は多量の脱水材が必要であり、脱水材が破過状態になると脱水材の交換が必要であることから、脱水材の交換労力とランニングコストが増大する。そのため、研究室レベルでは有効な手段であるが、工場や研究施設等から回収される多量の有機溶剤から水分の分離を行なうには満足できるものではなかった。 However, when separating water from a large amount of organic solvent, a large amount of dehydrating material is required, and when the dehydrating material is broken, it is necessary to replace the dehydrating material. Increase. Therefore, although it is an effective means at the laboratory level, it is not satisfactory for separating water from a large amount of organic solvent recovered from factories or research facilities.
そこで、下記の特許文献2には、有機溶剤を脱水槽に充填された脱水材に通流させることにより、有機溶剤中に含有している水分を該脱水材に吸着させる脱水工程と、脱水材に不活性化ガスまたは空気を通流させて脱水材に吸水された水分を脱着する脱着工程とを有し、脱水材に陽イオン交換樹脂を用いる有機溶剤脱水装置が提案されている。 Therefore, the following Patent Document 2 discloses a dehydration step in which an organic solvent is caused to flow through a dehydrating material filled in a dehydrating tank so that moisture contained in the organic solvent is adsorbed to the dehydrating material, and a dehydrating material. In addition, an organic solvent dehydration apparatus using a cation exchange resin as a dehydrating material has been proposed, which has a desorption step of desorbing moisture absorbed by the dehydrating material by passing an inert gas or air.
しかしながら、脱水材にイオン交換樹脂等を用いた場合には、脱水工程後の脱水材の脱着(乾燥)時に、脱着速度を上げると脱水材の内外層の水分含有量の違いにより脱水材が破壊される。その結果、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生し、さらに脱水材が最密充填されていくため圧力損失が増大して脱着効率が低下し、有機溶剤脱水装置の脱水能力を低下させる恐れがある。 However, when an ion exchange resin or the like is used as the dehydrating material, if the desorption rate is increased during desorption (drying) of the dehydrating material after the dehydration process, the dehydrating material breaks due to the difference in the water content between the inner and outer layers of the dehydrating material. Is done. As a result, clogging occurs in the filter provided in the dehydration tank due to debris from the dehydrating material, and the dehydrating material is closely packed, resulting in increased pressure loss and reduced desorption efficiency. May reduce ability.
本発明は、従来技術の課題を背景になされたもので、有機溶剤脱水装置の脱水能力を低下させることのない構成を備える有機溶剤脱水装置を提供することを課題とするものである。 An object of the present invention is to provide an organic solvent dehydrating apparatus having a configuration that does not reduce the dehydrating ability of the organic solvent dehydrating apparatus.
この発明に基づいた有機溶剤脱水装置においては、水分を含有した被処理有機溶剤を脱水材に導入させ接触させることにより、前記被処理有機溶剤に含有している水分を脱水除去する有機溶剤脱水装置であって、前記脱水材は、球状の形状を有する陽イオン交換樹脂を複数含み、前記陽イオン交換樹脂の粒径が0.4mm以下の粒子率が90%以上であり、前記脱水材が充填される脱水槽と、前記脱水槽に前記被処理有機溶剤を導入する被処理有機溶剤導入ラインと、前記脱水槽内を減圧させる減圧機と、前記脱水槽で脱着したガスを脱水槽から排出して減圧機に導入する脱着ガス排出ラインを含む。 In the organic solvent dehydrating apparatus based on this invention, the organic solvent dehydrating apparatus for dehydrating and removing the water contained in the organic solvent to be treated by introducing the organic solvent to be treated containing water into the dehydrating material and bringing it into contact therewith The dehydrating material includes a plurality of cation exchange resins having a spherical shape, the cation exchange resin has a particle size of 0.4% or less and a particle ratio of 90% or more, and is filled with the dehydrating material. A dehydration tank, an organic solvent introduction line for introducing the organic solvent to be treated into the dehydration tank, a decompressor for depressurizing the dehydration tank, and a gas desorbed in the dehydration tank are discharged from the dehydration tank. And a desorption gas discharge line to be introduced into the decompressor.
他の形態においては、前記陽イオン交換樹脂の母体構造がスチレン−ジビニルベンゼンコポリマーであり、カルボン酸基またはスルホン酸基が付与されている。 In another embodiment, the base structure of the cation exchange resin is a styrene-divinylbenzene copolymer, and is provided with a carboxylic acid group or a sulfonic acid group.
他の形態においては、前記脱水材を加熱する脱水材加熱手段および/または前記脱水材を冷却する脱水材冷却手段を含む。 In another form, the dehydrating material heating means for heating the dehydrating material and / or the dehydrating material cooling means for cooling the dehydrating material are included.
他の形態においては、前記脱着ガス排出ラインおよび/または減圧機からのガス排出ラインに冷却凝縮設備を備えている。 In another embodiment, the desorption gas discharge line and / or the gas discharge line from the decompressor is provided with a cooling condensation facility.
他の形態においては、前記脱水槽を少なくとも2槽有し、その脱水槽の内の少なくとも1槽が、脱着ガス排出ラインから減圧機によって脱水槽が減圧状態となり、脱水槽に充填された脱水材に付着した有機溶剤と脱水材によって吸水された水分が蒸発し、脱着ガス排出ラインから前記蒸発した有機溶剤ガスと水蒸気が排出されている時、それ以外の脱水槽では被処理有機溶剤導入ラインから被処理有機溶剤を導入することで、連続的に有機溶剤の脱水処理を可能とする。 In another embodiment, the dehydrating tank has at least two dehydrating tanks, and at least one of the dehydrating tanks is depressurized by a decompressor from a desorption gas discharge line, and the dehydrating material is filled in the dehydrating tank. When the water absorbed by the organic solvent and the dehydrating material adhering to the solvent evaporates and the evaporated organic solvent gas and water vapor are discharged from the desorption gas discharge line, in other dehydration tanks, from the organic solvent introduction line to be treated By introducing the organic solvent to be treated, the organic solvent can be continuously dehydrated.
この発明に基づいた有機溶剤脱水装置によれば、脱水能力を低下させることのない構成を備える有機溶剤脱水装置を提供することを可能とする。 According to the organic solvent dehydrating apparatus based on the present invention, it is possible to provide an organic solvent dehydrating apparatus having a configuration that does not reduce the dehydrating ability.
以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一または対応する部分について図中同一の符号を付し、その説明は繰り返さない場合がある。また、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same or corresponding parts are denoted by the same reference numerals in the drawings, and the description thereof may not be repeated. In the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified.
本発明に基づいた有機溶剤脱水装置は、水分を含有する有機溶剤を脱水槽に充填された脱水材に通流させてこの脱水材に水分を吸水させる脱水工程設備と、脱水材が充填されている脱水槽内を減圧機を用いて減圧することで、脱水材に吸水された水分を脱着する脱着工程設備を備え、かかる工程を交互に行う有機溶剤脱水装置である。かかる構造を採用することにより、処理を連続的に行なうことができるからである。 An organic solvent dehydrating apparatus based on the present invention is configured such that an organic solvent containing moisture is passed through a dehydrating material filled in a dehydrating tank and the dehydrating material absorbs moisture, and the dehydrating material is filled. This is an organic solvent dehydrating apparatus that includes a desorption process facility that desorbs moisture absorbed by the dehydrating material by depressurizing the inside of the dehydrating tank using a pressure reducer, and alternately performs such a process. This is because the processing can be continuously performed by adopting such a structure.
より好ましい装置の構造としては、脱水材が幾つかに分割されており、それらの脱水工程と脱着工程をダンパ等にて切替操作を行い、脱水と脱着とを連続的に行う有機溶剤脱水装置であり、または、脱水材が回転することができ、脱水工程で水分を吸水した脱水材の部位が、脱水材の回転により、脱着工程へ移動する構造を有する有機溶剤脱水装置である。 A more preferable device structure is an organic solvent dehydrating device in which the dehydrating material is divided into several parts, the dehydrating process and the desorbing process are switched by a damper or the like, and dehydration and desorption are continuously performed. In addition, the organic solvent dehydrating apparatus has a structure in which the dehydrating material can rotate and the portion of the dehydrating material that has absorbed moisture in the dehydrating process moves to the desorption process by the rotation of the dehydrating material.
以下、図面を参照して、本発明にかかる有機溶剤脱水装置について詳細に説明する。図1は本発明の好ましい実施の形態の一例である。図1に例示した有機溶剤脱水装置は、被処理有機溶剤タンク12に貯蔵されている水分を含有した有機溶剤が、溶剤送液ポンプ17を介して被処理有機溶剤導入ライン13を通じて脱水材11が充填された脱水槽15に送られ、脱水処理済み有機溶剤排出ライン10を通じて脱水処理済み有機溶剤タンク14に脱水処理された有機溶剤が送られることで、脱水材11により水分を除去して有機溶剤を脱水する脱水工程を有する。 Hereinafter, an organic solvent dehydrating apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an example of a preferred embodiment of the present invention. In the organic solvent dehydrating apparatus illustrated in FIG. 1, the organic solvent containing water stored in the organic solvent tank 12 to be processed is supplied to the dehydrating material 11 through the organic solvent introduction line 13 via the solvent feed pump 17. The dehydrated organic solvent is sent to the filled dehydration tank 15 and sent to the dehydrated organic solvent tank 14 through the dehydrated organic solvent discharge line 10. A dehydration step of dehydrating the water.
本実施の形態における脱水材11は、球状の形状を有する陽イオン交換樹脂を複数含み、脱水材11は、陽イオン交換樹脂の粒径が0.4mm以下の粒子率が90%以上であることが好ましい。陽イオン交換樹脂は水分を吸収すると体積膨張し、減圧下にすると水分が脱着されて体積収縮する性質があり、このときの体積変化のストレスで陽イオン交換樹脂が物理破砕する可能性があるが、この物理破砕ストレスは粒子径が小さいほど低下する。本発明における溶剤中の水分の吸水と減圧による脱着を連続的に行う有機溶剤脱水装置の条件においては、陽イオン交換樹脂の粒径が0.4mm以下であれば破砕がほとんど起こらない。ここでいう球状とは、幾何学的な真球状のみを意味しているのではなく、楕円体でもよいが、真球状に近いものがより好ましい。楕円体である場合は、互いに直交する3つの径のうち、最も長い径(長軸径)と最も短い径(短軸径)の比が2以下のものが好ましく、1.3以下のものがより好ましい。なお、粒子率とは、脱水材を構成するすべての陽イオン交換樹脂(脱水槽15に充填される陽イオン交換樹脂)を100%とした場合の、その中に含まれる特定の粒子が存在する割合をいう。 The dehydrating material 11 in the present embodiment includes a plurality of cation exchange resins having a spherical shape, and the dehydrating material 11 has a particle ratio of 90% or more when the particle size of the cation exchange resin is 0.4 mm or less. Is preferred. The cation exchange resin expands in volume when it absorbs moisture, and has a property that the moisture desorbs and shrinks in volume when the pressure is reduced, and the cation exchange resin may physically crush due to the stress of volume change. This physical crushing stress decreases as the particle size decreases. Under the conditions of the organic solvent dehydrator that continuously absorbs water in the solvent and desorbs it under reduced pressure in the present invention, if the particle size of the cation exchange resin is 0.4 mm or less, crushing hardly occurs. The spherical shape here does not mean only a geometrical spherical shape, but may be an ellipsoid, but a shape close to a true spherical shape is more preferable. In the case of an ellipsoid, the ratio of the longest diameter (major axis diameter) to the shortest diameter (minor axis diameter) of three diameters orthogonal to each other is preferably 2 or less, and 1.3 or less. More preferred. Note that the particle ratio means that all the cation exchange resins constituting the dehydration material (cation exchange resin filled in the dehydration tank 15) are 100%, and there are specific particles contained therein. Say percentage.
陽イオン交換樹脂の母体構造はスチレン−ジビニルベンゼンコポリマーにカルボン酸基またはスルホン酸基が付与されていることが好ましい。特に、OH基との親和性が高いスルホン酸Na基が多く付与されていることがより好ましい。該ポリマーは溶剤耐性が高く、ポリマー構造が強固であるため吸水・乾燥時の体積変化率が小さいことから、陽イオン交換樹脂の破砕が起こりにくいためである。 The base structure of the cation exchange resin is preferably a styrene-divinylbenzene copolymer having a carboxylic acid group or a sulfonic acid group. In particular, it is more preferable that many sulfonic acid Na groups having high affinity with OH groups are provided. This is because the polymer has high solvent resistance and a strong polymer structure, so that the volume change rate at the time of water absorption and drying is small, so that the cation exchange resin is not easily crushed.
脱水材11が水分を吸水した後、減圧機24を用いて脱水槽15を減圧にし、脱水材11に付着していた有機溶剤と脱水材11に吸水されていた水分の混合ガスを脱着ガス排出ライン22より減圧機24を介して減圧機脱着ガス排出ライン27にて排出する脱着工程を有する。 After the dehydrating material 11 absorbs moisture, the dehydrating tank 15 is depressurized using the decompressor 24, and the mixed gas of the organic solvent adhering to the dehydrating material 11 and the water absorbed by the dehydrating material 11 is discharged as a desorption gas. There is a desorption step of discharging from the line 22 via the pressure reducer 24 through the pressure reducer desorption gas discharge line 27.
脱着工程の前に、脱水槽15に貯まっている被処理有機溶剤を返送ライン23より被処理有機溶剤タンク12に返送することが好ましい。脱水槽15に有機溶剤が貯まったまま脱着工程に移ると、減圧機24に多量の有機溶剤が流入する可能性があるだけでなく、脱水槽15に多量に残った有機溶剤を蒸発させる必要があり、脱着工程にエネルギーと時間がかかるためである。また、脱着工程の前に脱水槽15に貯まっている被処理有機溶剤は、全て脱水材11を所定流速で通過しないために水分が比較的高い濃度であることから、脱水処理済み有機溶剤タンク14ではなく、被処理有機溶剤タンク12に返送することが好ましい。 Prior to the desorption step, it is preferable to return the organic solvent to be processed stored in the dehydration tank 15 to the organic solvent tank 12 to be processed from the return line 23. If the organic solvent is stored in the dewatering tank 15 and the process proceeds to the desorption process, not only a large amount of organic solvent may flow into the decompressor 24 but also a large amount of the organic solvent remaining in the dewatering tank 15 needs to be evaporated. This is because the desorption process takes energy and time. Further, since all of the organic solvent to be treated stored in the dehydration tank 15 before the desorption step does not pass through the dehydrating material 11 at a predetermined flow rate, the moisture content is relatively high. Instead, it is preferably returned to the organic solvent tank 12 to be treated.
脱着工程において、脱水材11を加熱する脱水材加熱手段を備えていることが好ましい。脱水槽15を減圧下にすることで水分、有機溶剤は蒸発するが、このときに気化熱として熱エネルギーが脱水材から奪われて蒸発速度が遅くなるため、脱水材加熱手段で脱水材11を加熱することで蒸発速度が上がり、脱着工程の時間を短縮することができる。 In the desorption process, it is preferable to include a dehydrating material heating means for heating the dehydrating material 11. By dehydrating the dehydration tank 15 under reduced pressure, the water and organic solvent evaporate. At this time, the heat energy is taken away from the dehydrating material as the heat of vaporization, and the evaporation rate is slowed. By heating, the evaporation rate is increased, and the time of the desorption process can be shortened.
脱水材加熱手段だが、特に限定するものではないが、爆発性がある有機溶剤の特性を考慮すると、安全性の高い間接加熱方式が好ましい。例えば、図2に示すようなシェル&チューブ方式熱交換器を応用した脱水槽15の構造が考えられる。チューブ内に脱水材11を充填した場合、脱水槽15下部より被処理有機溶剤を導入してチューブ内の脱水材11に接触させ、脱水槽15上部から排出する(脱水工程)。その後、脱水槽15に貯まっている有機溶剤を下部より被処理有機溶剤タンク12に返送し、脱水槽15下部より減圧機を用いて脱水槽15内を減圧にする(脱着工程)。このとき、同時にスチームを熱媒導入ライン18より導入してスチームドレンは熱媒排出ライン19より排出することで、脱水材11を効率的に間接加熱することができる。また、脱水材11をシェル内のチューブの外側に充填することも可能で、その場合、被処理有機溶剤が導入、排出されるラインと減圧機24で減圧されるラインは前記で説明した熱媒導入ライン18と熱媒排出ライン19を用い、スチームは脱水槽15の上部よりチューブに導入して下部より排出することができ、逆構造にすることで同じ効果を得ることも可能である。なお、間接加熱方法であれば、特に図2の構造に限定するものではない。 Although it is a dehydrating material heating means, it is not particularly limited, but in consideration of the characteristics of an explosive organic solvent, an indirect heating method with high safety is preferable. For example, the structure of the dehydration tank 15 using a shell and tube type heat exchanger as shown in FIG. 2 can be considered. When the dehydrating material 11 is filled in the tube, an organic solvent to be treated is introduced from the lower part of the dehydrating tank 15 to be brought into contact with the dehydrating material 11 in the tube and discharged from the upper part of the dehydrating tank 15 (dehydration process). Thereafter, the organic solvent stored in the dehydration tank 15 is returned to the treated organic solvent tank 12 from below, and the inside of the dehydration tank 15 is depressurized from the bottom of the dehydration tank 15 using a decompressor (desorption process). At this time, the dehydrating material 11 can be indirectly heated efficiently by simultaneously introducing steam from the heat medium introduction line 18 and discharging steam drain from the heat medium discharge line 19. It is also possible to fill the dehydrating material 11 outside the tube in the shell. In this case, the line through which the organic solvent to be treated is introduced and discharged and the line where the pressure is reduced by the decompressor 24 are the heat medium described above. Steam can be introduced into the tube from the upper part of the dewatering tank 15 and discharged from the lower part using the introduction line 18 and the heat medium discharge line 19, and the same effect can be obtained by using an inverse structure. In addition, if it is an indirect heating method, it will not specifically limit to the structure of FIG.
脱着工程において、脱着ガス排出ライン22および/または減圧機ガス排出ライン27に冷却凝縮設備を備えていることが好ましい。
脱水槽15が減圧されて蒸発した有機溶剤と水分の混合ガスが脱着ガス排出ライン22において、冷却凝縮設備により混合ガスの一部を凝縮させることで、減圧機24に導入されるガス量が減少させることができ、脱着効率が高まり、脱着工程を短縮することができる。また、減圧機ガス排出ライン27に冷却凝縮設備を備えることで、蒸発した有機溶剤を回収することができ、これを水分と分離することで被処理有機溶剤タンク12へ返送することで、被処理有機溶剤の歩留まりを向上することが可能である。
脱着ガス排出ライン22および/または減圧機ガス排出ライン27に冷却凝縮設備を備えている場合、凝縮した水と溶剤の混合液は凝縮液タンク26に貯まり、任意に水と溶剤に分離した後に被処理溶剤タンク12に返送することが可能である。
脱着ガス排出ライン22および減圧機ガス排出ライン27に冷却凝縮設備を備えていることがより好ましい。
In the desorption process, the desorption gas discharge line 22 and / or the decompressor gas discharge line 27 are preferably provided with a cooling condensation facility.
The mixed gas of the organic solvent and water evaporated by depressurizing the dehydration tank 15 condenses a part of the mixed gas in the desorption gas discharge line 22, thereby reducing the amount of gas introduced into the decompressor 24. The desorption efficiency can be increased and the desorption process can be shortened. In addition, by providing a cooling and condensing facility in the decompressor gas discharge line 27, it is possible to recover the evaporated organic solvent, and by separating it from moisture, returning it to the organic solvent tank 12 to be processed, It is possible to improve the yield of the organic solvent.
When the desorption gas discharge line 22 and / or the decompressor gas discharge line 27 is provided with a cooling condensing facility, the condensed water / solvent mixture is stored in the condensate tank 26 and optionally separated into water and solvent. It can be returned to the processing solvent tank 12.
More preferably, the desorption gas discharge line 22 and the decompressor gas discharge line 27 are provided with a cooling condensing facility.
脱着工程により発生したガスは微量の有機溶剤を含有しており、減圧機ガス排出ライン27より排出されたガスを、直接燃焼装置や触媒燃焼装置、蓄熱式燃焼装置等の燃焼装置や活性炭素繊維を使用した溶剤回収装置等の一般的に用いられるガス処理装置にて処理することができる。 The gas generated by the desorption process contains a trace amount of an organic solvent, and the gas discharged from the decompressor gas discharge line 27 is used as a combustion device such as a direct combustion device, a catalytic combustion device, a regenerative combustion device, or an activated carbon fiber. It can process with the gas processing apparatus generally used, such as the solvent recovery apparatus which used this.
脱着工程において、窒素20を窒素導入ライン21より脱水槽15に導入することが好ましい。窒素20を導入することで脱水槽15内の酸素濃度を低下させて爆発の危険性を低下させることができ、さらに脱水槽内に気流が生じて間接加熱時の熱伝導効果が高まるため、脱着効率を向上させることができ、脱着工程の時間を短縮することができるためである。 In the desorption step, nitrogen 20 is preferably introduced into the dehydration tank 15 through the nitrogen introduction line 21. By introducing nitrogen 20, the oxygen concentration in the dehydration tank 15 can be reduced to reduce the risk of explosion, and further, an air flow is generated in the dehydration tank and the heat conduction effect during indirect heating is increased. This is because the efficiency can be improved and the time of the desorption process can be shortened.
前記の脱水工程→脱着工程を連続的に繰り返すことで、水分を含有する有機溶剤から水分を効果的、かつ経済的に脱水除去できる装置となる。かかる連続的な脱水−減圧脱着により、低コストで、安定に、高い能力で有機溶剤中の水分を除去することができる。さらに、脱着工程から脱水工程に移る際、脱水材11を冷却する脱水材冷却手段を有することが好ましい。高温状態の脱水槽15に有機溶剤を導入すると短時間に多量の有機溶剤が気化して脱水槽15に加圧状態を引き起こし、爆発の危険性が高まるためである。また、水分を含む被処理有機溶剤の温度が高いほど、脱水材11による脱水効果が低くなるためである。脱水材冷却手段は特に限定されるものではないが、安全性の高い間接冷却方法が好ましい。例えば、図2に示すようなシェル&チューブ方式熱交換器を応用した脱水槽15の構造が考えられる。チューブ内に脱水材11を充填した場合、脱水槽15下部より被処理有機溶剤を導入してチューブ内の脱水材11に接触させ、脱水槽15上部から排出する(脱水工程)。その後、脱水槽15に貯まっている有機溶剤を下部より被処理有機溶剤タンク12に返送し、脱水槽15下部より減圧機を用いて脱水槽15内を減圧にする(脱着工程)。その後、冷却水、冷水または冷却風を熱媒導入ライン18より導入し、熱媒排出ライン19より排出することで、脱水材11を効率的に間接冷却することができる。また、脱水材11をシェル内のチューブの外側に充填することも可能で、その場合、被処理有機溶剤が導入、排出されるラインと減圧機24で減圧されるラインは前記で説明した熱媒導入ライン18と熱媒排出ライン19を用い、冷却水、冷水または冷却風は脱水槽15の上部または下部よりチューブに導入して下部または上部より排出することができ、逆構造にすることで同じ効果を得ることも可能である。 By repeating the above dehydration step → desorption step continuously, the apparatus can effectively and economically dehydrate and remove water from the organic solvent containing water. By such continuous dehydration-desorption under reduced pressure, moisture in the organic solvent can be removed stably at a low cost with a high capacity. Furthermore, it is preferable to have a dehydrating material cooling means for cooling the dehydrating material 11 when moving from the desorption process to the dehydrating process. This is because when an organic solvent is introduced into the dehydrating tank 15 in a high temperature state, a large amount of the organic solvent is vaporized in a short time, causing a pressurized state in the dehydrating tank 15 and increasing the risk of explosion. Moreover, it is because the dehydration effect by the dehydrating material 11 becomes low, so that the temperature of the to-be-processed organic solvent containing water is high. The dehydrating material cooling means is not particularly limited, but a highly safe indirect cooling method is preferable. For example, the structure of the dehydration tank 15 using a shell and tube type heat exchanger as shown in FIG. 2 can be considered. When the dehydrating material 11 is filled in the tube, an organic solvent to be treated is introduced from the lower part of the dehydrating tank 15 to be brought into contact with the dehydrating material 11 in the tube and discharged from the upper part of the dehydrating tank 15 (dehydration process). Thereafter, the organic solvent stored in the dehydration tank 15 is returned to the treated organic solvent tank 12 from below, and the inside of the dehydration tank 15 is depressurized from the bottom of the dehydration tank 15 using a decompressor (desorption process). Thereafter, cooling water, cold water or cooling air is introduced from the heat medium introduction line 18 and discharged from the heat medium discharge line 19, whereby the dehydrating material 11 can be indirectly cooled efficiently. It is also possible to fill the dehydrating material 11 outside the tube in the shell. In this case, the line through which the organic solvent to be treated is introduced and discharged and the line where the pressure is reduced by the decompressor 24 are the heat medium described above. Using the introduction line 18 and the heat medium discharge line 19, cooling water, cold water or cooling air can be introduced into the tube from the upper or lower part of the dewatering tank 15 and discharged from the lower part or upper part. It is also possible to obtain an effect.
本実施の形態にかかる脱水材11の運転は、図1のように脱水槽15を2つ以上設けた連続除去可能なシステムを採用することが好ましいが、除去すべき含有水分の量、被処理有機溶剤の量等を勘案して、間欠運転としても良いし、脱水槽を1槽にしても良い。含有水分の量あるいは被処理有機溶剤の量が少ない条件では、連続運転であることまで要求されず、運転コストを削減できるからである。 The operation of the dehydrating material 11 according to the present embodiment preferably employs a continuously removable system provided with two or more dewatering tanks 15 as shown in FIG. Considering the amount of the organic solvent and the like, intermittent operation may be performed, or one dehydration tank may be used. This is because, under conditions where the amount of moisture contained or the amount of the organic solvent to be treated is small, it is not required that the operation is continuous, and the operation cost can be reduced.
本実施の形態において脱水可能な有機溶剤は、酢酸エチル、酢酸メチル、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、塩化メチレン、クロロホルム、ジクロロメタン等、またその混合物と特に限定されるものではなく、多種の有機溶剤において適応可能である。 The organic solvent capable of dehydration in the present embodiment is not particularly limited to ethyl acetate, methyl acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride, chloroform, dichloromethane and the like, and mixtures thereof. Applicable in organic solvents.
本実施の形態において脱水可能な有機溶剤は、フィルムを積層させるドライラミネート工程等、多分野における工場等から排出される有機溶剤を含有したガスを、有機溶剤回収処理装置を用いて回収される有機溶剤にも適応可能である。 The organic solvent that can be dehydrated in the present embodiment is an organic solvent that recovers a gas containing an organic solvent discharged from factories in various fields, such as a dry laminating process for laminating films, using an organic solvent recovery processing device. It can also be applied to solvents.
例えば、図3に示すような溶剤回収処理装置は、被処理ガス41がファン42より導入されて吸着塔43に充填されている活性炭素繊維エレメント44で有機溶剤を吸着し、清浄ガス46として外気に排出される吸着工程と、活性炭素繊維エレメント44にスチーム45を導入することで有機溶剤を脱着し、コンデンサー48で冷却凝縮してセパレータ49で溶剤と水を分離し、回収溶剤50を回収する脱着工程があり、吸着工程と脱着工程を交互に行うことで連続的に処理可能なシステムである。 For example, in the solvent recovery processing apparatus as shown in FIG. 3, the organic solvent is adsorbed by the activated carbon fiber element 44 in which the gas 41 to be treated is introduced from the fan 42 and filled in the adsorption tower 43, and the outside air is used as the clean gas 46. The organic solvent is desorbed by introducing the steam 45 into the activated carbon fiber element 44, and the condenser 48 is cooled and condensed by the condenser 48, and the solvent and water are separated by the separator 49, and the recovered solvent 50 is recovered. There is a desorption process, and it is a system that can be continuously processed by alternately performing an adsorption process and a desorption process.
このタイプの溶剤回収処理装置は脱着にスチームを用いることや、冷却凝縮をすることから回収溶剤中に水分が混入することから、本実施の形態における有機溶剤脱水装置を適用することで、回収溶剤から水分を効果的に除去することが可能である。 Since this type of solvent recovery processing apparatus uses steam for desorption or cooling and condenses, moisture is mixed into the recovered solvent. Therefore, by applying the organic solvent dehydrating apparatus in the present embodiment, the recovered solvent It is possible to effectively remove moisture from the water.
なお、図3に示す有機溶剤回収処理装置によって回収された有機溶剤を図1に示す有機溶剤脱水装置で脱水処理する場合において、図1に示す有機溶剤脱水装置の減圧機ガス排出ライン27より排出された有機溶剤ガスと水蒸気の混合ガスは、図3に記載の被処理ガス41に返送することで、有機溶剤の歩留まりが向上し、より経済的である。 When the organic solvent recovered by the organic solvent recovery processing apparatus shown in FIG. 3 is dehydrated by the organic solvent dehydrating apparatus shown in FIG. 1, it is discharged from the decompressor gas discharge line 27 of the organic solvent dehydrating apparatus shown in FIG. The mixed gas of the organic solvent gas and water vapor is returned to the gas 41 to be processed shown in FIG. 3 to improve the yield of the organic solvent and is more economical.
以下、各実施例1から3、および比較例1から3により本発明に基づいた実施の形態における有機溶剤脱水装置の詳細をさらに説明するが、本発明はこれら実施例に限定されるものではない。なお、表1に、実施例1から実施例3、および比較例1から比較例3に用いられる脱水材の諸条件を示す。 Hereinafter, the details of the organic solvent dehydrating apparatus in the embodiment based on the present invention will be further described by Examples 1 to 3 and Comparative Examples 1 to 3, but the present invention is not limited to these Examples. . Table 1 shows various conditions of the dehydrating materials used in Examples 1 to 3 and Comparative Examples 1 to 3.
(実施例1)
図1に示す有機溶剤脱水装置において、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂が複数用いられ、粒径範囲は0.2mmから0.5mmで粒径0.4mm以下の粒子率は90%であった。なお、球状の陽イオン交換樹脂の測定は、日本工業規格(JIS Z 8825−1)に規定される「粒子径解析 レーザー回折法」に基づき、粒度分布測定機器(HORIBA LA−950V2)を用いて行なった。
Example 1
In the organic solvent dehydrating apparatus shown in FIG. 1, a plurality of spherical cation exchange resins in which the dehydrating material 11 is modified with a sulfonic acid Na group having a base structure of a styrene-divinylbenzene copolymer having a rack strength of 8% are used. The particle ratio of 0.2 to 0.5 mm and a particle size of 0.4 mm or less was 90%. The spherical cation exchange resin was measured using a particle size distribution measuring instrument (HORIBA LA-950V2) based on “Particle Size Analysis Laser Diffraction Method” defined in Japanese Industrial Standard (JIS Z 8825-1). I did it.
この陽イオン交換樹脂1.9kgを脱水槽15に充填させ、脱水工程として、水分3重量%、酢酸エチル97重量%の混合液を20L/hrで被処理有機溶剤導入ライン13より脱水槽15に導入し、脱水処理済み有機溶剤タンク14に脱水した有機溶剤を得た。この脱水工程2.5hr中の脱水材11の周囲の有機溶剤温度は30℃であった。 1.9 kg of this cation exchange resin is filled in the dehydration tank 15, and as a dehydration process, a mixed liquid of 3% by weight of water and 97% by weight of ethyl acetate is fed into the dehydration tank 15 from the treated organic solvent introduction line 13 at 20 L / hr. The organic solvent which was introduced and dehydrated in the dehydrated organic solvent tank 14 was obtained. The temperature of the organic solvent around the dehydrating material 11 during the dehydration step 2.5 hr was 30 ° C.
次に、脱水槽15に充填された有機溶剤を被処理有機溶剤タンク12に排出した後、脱着工程として、減圧機24を用いて脱水槽15内を150Torr下の減圧にした。脱着工程5hr中、窒素20を1L/hrで窒素導入ライン21より導入させた。 Next, after the organic solvent filled in the dehydration tank 15 was discharged to the organic solvent tank 12 to be treated, the dehydration tank 15 was depressurized at 150 Torr using the decompressor 24 as a desorption process. During the desorption process 5 hr, nitrogen 20 was introduced from the nitrogen introduction line 21 at 1 L / hr.
脱水工程→脱着工程は合わせて7.5hr要し、この工程を20サイクル繰り返したところ、脱水工程において脱水処理された有機溶剤中の出口の平均水分濃度は0.9重量%まで低減された。 The dehydration step → desorption step takes 7.5 hours in total. When this step was repeated 20 cycles, the average water concentration at the outlet in the organic solvent dehydrated in the dehydration step was reduced to 0.9 wt%.
さらに、この工程を200サイクル繰り返したところ、前記20サイクル時と同じく、脱水工程において脱水処理された混合溶剤中の出口の平均水分濃度は0.9重量%まで低減された。このとき、脱水材11の陽イオン交換樹脂の平均粒径は0サイクルと比較して0.35mmから0.33mmとなり、粒径0.4mm以下の粒子率も90%から91%となり、ほとんど変化がなかった。これより、本実施例1において有機溶剤脱水装置により脱水処理された有機溶剤は、脱水工程→脱着工程を繰り返しても、脱水処理された混合溶剤中の出口平均水分濃度は0.9重量%を維持することが可能であり、性能低下がなく、安定して高効率で脱水処理が可能であった。 Furthermore, when this step was repeated 200 cycles, the average water concentration at the outlet in the mixed solvent dehydrated in the dehydration step was reduced to 0.9% by weight, as in the 20th cycle. At this time, the average particle size of the cation exchange resin of the dehydrating material 11 is 0.35 mm to 0.33 mm as compared with 0 cycle, and the particle ratio of the particle size of 0.4 mm or less is also changed from 90% to 91%, almost changing. There was no. Thus, the organic solvent dehydrated by the organic solvent dehydrating apparatus in Example 1 has an average water concentration at the outlet of 0.9% by weight in the dehydrated mixed solvent even if the dehydration step → desorption step is repeated. It was possible to maintain it, and there was no degradation in performance, and dewatering treatment was possible stably and with high efficiency.
これは、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂であり、粒径範囲は0.2から0.5mmで粒径0.4mm以下の粒子率は90%であったことから、脱着工程においても陽イオン交換樹脂がほとんど破壊されず、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生したり、また脱水材11の破片により陽イオン交換樹脂が最密充填されたりして圧力損失が増大することで脱着効率が低下することなく、有機溶剤脱水装置の脱水能力が維持された結果である。 This is a spherical cation exchange resin in which the dehydrating material 11 is modified with a sulfonic acid Na group having a base structure of a styrene-divinylbenzene copolymer having a rack strength of 8%, and the particle size range is 0.2 to 0.5 mm. Since the particle ratio of the particle size of 0.4 mm or less was 90%, the cation exchange resin was hardly destroyed even in the desorption process, and the filter provided in the dehydration tank was clogged with debris. Further, the dehydration ability of the organic solvent dehydrating apparatus is maintained without decreasing the desorption efficiency due to the pressure loss increasing due to the cation exchange resin being closely packed with the dehydrated material 11 fragments.
(実施例2)
図1に示す有機溶剤脱水装置において、脱水材が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂が複数用いられ、粒径範囲は0.1mmから1.0mmで粒径0.4mm以下の粒子率は90%であった。なお、球状の陽イオン交換樹脂の測定は、日本工業規格(JIS Z 8825−1)に規定される「粒子径解析 レーザー回折法」に基づき、粒度分布測定機器(HORIBA LA−950V2)を用いて行なった。
(Example 2)
In the organic solvent dehydrating apparatus shown in FIG. 1, a plurality of spherical cation exchange resins modified with Na sulfonate group having a base structure of styrene-divinylbenzene copolymer with a dehydrating strength of 8% are used. The particle ratio of 0.1 mm to 1.0 mm and a particle size of 0.4 mm or less was 90%. The spherical cation exchange resin was measured using a particle size distribution measuring instrument (HORIBA LA-950V2) based on “Particle Size Analysis Laser Diffraction Method” defined in Japanese Industrial Standard (JIS Z 8825-1). I did it.
この陽イオン交換樹脂1.9kgを脱水槽15に充填させ、脱水工程として、水分3重量%、酢酸エチル80重量%、酢酸n−プロピル17重量%の混合液を20L/hrで被処理有機溶剤導入ライン13より脱水槽15に導入し、脱水処理済み有機溶剤タンク14に脱水した有機溶剤を得た。この脱水工程2.5hr中の脱水材11の周囲の有機溶剤温度は30℃であった。 1.9 kg of this cation exchange resin is filled in the dehydration tank 15, and as a dehydration step, a mixed liquid of 3% by weight of water, 80% by weight of ethyl acetate, and 17% by weight of n-propyl acetate is treated with an organic solvent at 20 L / hr. The organic solvent introduced into the dehydration tank 15 from the introduction line 13 and dehydrated in the dehydrated organic solvent tank 14 was obtained. The temperature of the organic solvent around the dehydrating material 11 during the dehydration step 2.5 hr was 30 ° C.
次に、脱水槽15に充填された有機溶剤を被処理有機溶剤タンク12に排出した後、脱着工程として、減圧機24を用いて脱水槽15内を150Torr下の減圧にした。このとき、脱水槽15は図2に示す構造物を用い、チューブ内に充填されている脱水材11を加温させるために、熱媒供給ライン18より0.1MPaのスチームを供給し、窒素20を1L/hrで窒素導入ライン21より導入させた。2hr後、熱媒供給ライン18より供給していたスチームを止め、冷却水を導入して脱水槽15を0.5hr冷却した。 Next, after the organic solvent filled in the dehydration tank 15 was discharged to the organic solvent tank 12 to be treated, the dehydration tank 15 was depressurized at 150 Torr using the decompressor 24 as a desorption process. At this time, the dehydration tank 15 uses the structure shown in FIG. 2, in order to heat the dehydrating material 11 filled in the tube, steam of 0.1 MPa is supplied from the heating medium supply line 18, and nitrogen 20 Was introduced from the nitrogen introduction line 21 at 1 L / hr. After 2 hours, the steam supplied from the heating medium supply line 18 was stopped, cooling water was introduced, and the dehydration tank 15 was cooled for 0.5 hours.
脱水工程→脱着工程は合わせて5hr要し、この工程を20サイクル繰り返したところ、脱水工程において脱水処理された有機溶剤中の出口の平均水分濃度は0.95重量%まで低減された。 The dehydration step → desorption step required 5 hr in total, and when this step was repeated 20 cycles, the average moisture concentration at the outlet in the organic solvent dehydrated in the dehydration step was reduced to 0.95 wt%.
さらに、この工程を200サイクル繰り返したところ、前記20サイクル時と同じく、脱水工程において脱水処理された混合溶剤中の出口の平均水分濃度は0.95重量%まで低減された。このとき、脱水材11の陽イオン交換樹脂の平均粒径は0サイクルと比較して0.3mmから0.28mmとなり、粒径0.4mm以下の粒子率も90%から93%となり、ほとんど変化がなかった。これより、本実施例2において有機溶剤脱水装置により脱水処理された有機溶剤は、脱水工程→脱着工程を繰り返しても、脱水処理された混合溶剤中の出口平均水分濃度は0.95重量%を維持することが可能であり、性能低下がなく、安定して高効率で脱水処理が可能であった。 Furthermore, when this process was repeated 200 cycles, the average water concentration at the outlet in the mixed solvent dehydrated in the dehydration process was reduced to 0.95 wt%, as in the 20th cycle. At this time, the average particle size of the cation exchange resin of the dehydrating material 11 is 0.3 mm to 0.28 mm compared to 0 cycle, and the particle ratio of the particle size of 0.4 mm or less is also changed from 90% to 93%, almost changing. There was no. As a result, the organic solvent dehydrated by the organic solvent dehydrating apparatus in Example 2 has an average outlet water concentration of 0.95 wt% in the dehydrated mixed solvent even if the dehydration step → desorption step is repeated. It was possible to maintain it, and there was no degradation in performance, and dewatering treatment was possible stably and with high efficiency.
これは、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂であり、粒径範囲は0.1から1.0mmで粒径0.4mm以下の粒子率は90%であったことから、脱着工程においても陽イオン交換樹脂がほとんど破壊されず、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生したり、また脱水材11の破片により陽イオン交換樹脂が最密充填されたりして圧力損失が増大することで脱着効率が低下することなく、有機溶剤脱水装置の脱水能力が維持された結果である。 This is a spherical cation exchange resin in which the dehydrating material 11 is modified with a sulfonic acid Na group whose base structure is a styrene-divinylbenzene copolymer having a rack strength of 8%, and the particle size range is 0.1 to 1.0 mm. Since the particle ratio of the particle size of 0.4 mm or less was 90%, the cation exchange resin was hardly destroyed even in the desorption process, and the filter provided in the dehydration tank was clogged with debris. Further, the dehydration ability of the organic solvent dehydrating apparatus is maintained without decreasing the desorption efficiency due to the pressure loss increasing due to the cation exchange resin being closely packed with the dehydrated material 11 fragments.
(実施例3)
図1に示す有機溶剤脱水装置において、脱水材が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂が複数用いられ、粒径範囲は0.38mmから0.4mmで粒径0.4mm以下の粒子率は100%であった。なお、球状の陽イオン交換樹脂の測定は、日本工業規格(JIS Z 8825−1)に規定される「粒子径解析 レーザー回折法」に基づき、粒度分布測定機器(HORIBA LA−950V2)を用いて行なった。
(Example 3)
In the organic solvent dehydrating apparatus shown in FIG. 1, a plurality of spherical cation exchange resins modified with Na sulfonate group having a base structure of styrene-divinylbenzene copolymer with a dehydrating strength of 8% are used. The particle ratio of 0.38 mm to 0.4 mm and a particle size of 0.4 mm or less was 100%. The spherical cation exchange resin was measured using a particle size distribution measuring instrument (HORIBA LA-950V2) based on “Particle Size Analysis Laser Diffraction Method” defined in Japanese Industrial Standard (JIS Z 8825-1). I did it.
この陽イオン交換樹脂1.9kgを脱水槽15に充填させ、脱水工程として、水分2重量%、塩化メチレン88重量%、メタノール10重量%の混合液を20L/hrで被処理有機溶剤導入ライン13より脱水槽15に導入し、脱水処理済み有機溶剤タンク14に脱水した有機溶剤を得た。この脱水工程2.5hr中の脱水材11の周囲の有機溶剤温度は30℃であった。 1.9 kg of this cation exchange resin is filled in the dehydration tank 15, and as a dehydration step, a mixed liquid of 2% by weight of water, 88% by weight of methylene chloride and 10% by weight of methanol is treated with an organic solvent introduction line 13 at 20 L / hr. The organic solvent was further introduced into the dehydration tank 15 and dehydrated into the dehydrated organic solvent tank 14. The temperature of the organic solvent around the dehydrating material 11 during the dehydration step 2.5 hr was 30 ° C.
次に、脱水槽15に充填された有機溶剤を被処理有機溶剤タンク12に排出した後、脱着工程として、減圧機24を用いて脱水槽15内を150Torr下の減圧にした。このとき、脱水槽15は図2に示す構造物を用い、チューブ内に充填されている脱水材11を加温させるために、熱媒供給ライン18より0.1MPaのスチームを供給し、窒素20を1L/hrで窒素導入ライン21より導入させた。2hr後、熱媒供給ライン18より供給していたスチームを止め、冷却水を導入して脱水槽15を0.5hr冷却した。 Next, after the organic solvent filled in the dehydration tank 15 was discharged to the organic solvent tank 12 to be treated, the dehydration tank 15 was depressurized at 150 Torr using the decompressor 24 as a desorption process. At this time, the dehydration tank 15 uses the structure shown in FIG. 2, in order to heat the dehydrating material 11 filled in the tube, steam of 0.1 MPa is supplied from the heating medium supply line 18, and nitrogen 20 Was introduced from the nitrogen introduction line 21 at 1 L / hr. After 2 hours, the steam supplied from the heating medium supply line 18 was stopped, cooling water was introduced, and the dehydration tank 15 was cooled for 0.5 hours.
脱水工程→脱着工程は合わせて5hr要し、この工程を20サイクル繰り返したところ、脱水工程において脱水処理された有機溶剤中の出口の平均水分濃度は0.5重量%まで低減された。 The dehydration step → desorption step takes 5 hours in total, and when this step was repeated 20 cycles, the average water concentration at the outlet in the organic solvent dehydrated in the dehydration step was reduced to 0.5% by weight.
さらに、この工程を200サイクル繰り返したところ、前記20サイクル時と同じく、脱水工程において脱水処理された混合溶剤中の出口の平均水分濃度は0.5重量%まで低減された。このとき、脱水材11の陽イオン交換樹脂の平均粒径は0サイクルと比較して0.39mmから0.38mmとなり、ほとんど変化がなかった。これより、本実施例3において有機溶剤脱水装置により脱水処理された有機溶剤は、脱水工程→脱着工程を繰り返しても、脱水処理された混合溶剤中の出口平均水分濃度は0.5重量%を維持することが可能であり、性能低下がなく、安定して高効率で脱水処理が可能であった。 Furthermore, when this step was repeated 200 cycles, the average water concentration at the outlet in the mixed solvent dehydrated in the dehydration step was reduced to 0.5% by weight as in the case of the 20 cycles. At this time, the average particle diameter of the cation exchange resin of the dehydrating material 11 was 0.39 mm to 0.38 mm as compared with 0 cycle, and there was almost no change. Thus, the organic solvent dehydrated by the organic solvent dehydrating apparatus in Example 3 has an average water concentration of 0.5% by weight at the outlet in the dehydrated mixed solvent even when the dehydration step → desorption step is repeated. It was possible to maintain it, and there was no degradation in performance, and dewatering treatment was possible stably and with high efficiency.
これは、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂であり、粒径範囲は0.38から0.4mmで粒径0.4mm以下の粒子率は100%であったことから、脱着工程においても陽イオン交換樹脂がほとんど破壊されず、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生したり、また脱水材11の破片により陽イオン交換樹脂が最密充填されたりして圧力損失が増大することで脱着効率が低下することなく、有機溶剤脱水装置の脱水能力が維持された結果である。 This is a spherical cation exchange resin in which the dehydrating material 11 is modified with a sulfonic acid Na group having a base structure of a styrene-divinylbenzene copolymer having a rack strength of 8%, and the particle size range is 0.38 to 0.4 mm. Since the particle ratio of the particle size of 0.4 mm or less was 100%, the cation exchange resin was hardly destroyed even in the desorption process, and the filter provided in the dehydration tank was clogged with debris. Further, the dehydration ability of the organic solvent dehydrating apparatus is maintained without decreasing the desorption efficiency due to the pressure loss increasing due to the cation exchange resin being closely packed with the dehydrated material 11 fragments.
(比較例1)
図1に示す有機溶剤脱水装置において、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂が複数用いられ、粒径範囲は0.6mmから0.7mmで粒径0.4mm以下の粒子率は0%であった。なお、球状の陽イオン交換樹脂の測定は、日本工業規格(JIS Z 8825−1)に規定される「粒子径解析 レーザー回折法」に基づき、粒度分布測定機器(HORIBA LA−950V2)を用いて行なった。
(Comparative Example 1)
In the organic solvent dehydrating apparatus shown in FIG. 1, a plurality of spherical cation exchange resins in which the dehydrating material 11 is modified with a sulfonic acid Na group having a base structure of a styrene-divinylbenzene copolymer having a rack strength of 8% are used. The particle ratio of 0.6 to 0.7 mm and a particle size of 0.4 mm or less was 0%. The spherical cation exchange resin was measured using a particle size distribution measuring instrument (HORIBA LA-950V2) based on “Particle Size Analysis Laser Diffraction Method” defined in Japanese Industrial Standard (JIS Z 8825-1). I did it.
この陽イオン交換樹脂1.9kgを脱水槽15に充填させ、脱水工程として、水分3重量%、酢酸エチル97重量%の混合液を20L/hrで被処理有機溶剤導入ライン13より脱水槽15に導入し、脱水処理済み有機溶剤タンク14に脱水した有機溶剤を得た。この脱水工程2.5hr中の脱水材11の周囲の有機溶剤温度は30℃であった。 1.9 kg of this cation exchange resin is filled in the dehydration tank 15, and as a dehydration process, a mixed liquid of 3% by weight of water and 97% by weight of ethyl acetate is fed into the dehydration tank 15 from the treated organic solvent introduction line 13 at 20 L / hr. The organic solvent which was introduced and dehydrated in the dehydrated organic solvent tank 14 was obtained. The temperature of the organic solvent around the dehydrating material 11 during the dehydration step 2.5 hr was 30 ° C.
次に、脱水槽15に充填された有機溶剤を被処理有機溶剤タンク12に排出した後、脱着工程として、減圧機24を用いて脱水槽15内を150Torr下の減圧にした。脱着工程5hr中、窒素20を1L/hrで窒素導入ライン21より導入させた。 Next, after the organic solvent filled in the dehydration tank 15 was discharged to the organic solvent tank 12 to be treated, the dehydration tank 15 was depressurized at 150 Torr using the decompressor 24 as a desorption process. During the desorption process 5 hr, nitrogen 20 was introduced from the nitrogen introduction line 21 at 1 L / hr.
脱水工程→脱着工程は合わせて7.5hr要し、この工程を20サイクル繰り返したところ、脱水工程において脱水処理された有機溶剤中の出口の平均水分濃度は0.9重量%まで低減された。 The dehydration step → desorption step takes 7.5 hours in total. When this step was repeated 20 cycles, the average water concentration at the outlet in the organic solvent dehydrated in the dehydration step was reduced to 0.9 wt%.
さらに、この工程を200サイクル繰り返したところ、20サイクル時の平均水分濃度と比較して増加しており、脱水工程において脱水処理された混合溶剤中の出口の平均水分濃度は1.7重量%まで上昇した。このとき、脱水材11の陽イオン交換樹脂の平均粒径は0サイクルと比較して0.65mmから0.41mmとなり、粒径0.4mm以下の粒子率も0%から80%と粒子サイズが小さくなっていることが確認された。これより、本比較例1において有機溶剤脱水装置により脱水処理された有機溶剤は、脱水工程→脱着工程を繰り返すことで、脱水処理された混合溶剤中の出口平均水分濃度は上昇しており、性能低下が確認された。 Furthermore, when this process was repeated 200 cycles, it increased compared to the average moisture concentration at 20 cycles, and the average moisture concentration at the outlet in the mixed solvent dehydrated in the dehydration step was up to 1.7% by weight. Rose. At this time, the average particle size of the cation exchange resin of the dehydrating material 11 is 0.65 mm to 0.41 mm compared to 0 cycle, and the particle size of the particle size of 0.4 mm or less is also 0% to 80%. It was confirmed that it was getting smaller. As a result, the organic solvent dehydrated by the organic solvent dehydrating apparatus in Comparative Example 1 increased the average water concentration at the outlet in the dehydrated mixed solvent by repeating the dehydration step → the desorption step. Decline was confirmed.
これは、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂であるが、粒径範囲は0.6から0.7mmで粒径0.4mm以下の粒子率は0%であったことから、粒径が比較的大きいことで、脱着工程においても陽イオン交換樹脂が経時的に破壊されていき、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生したり、また脱水材11の破片により陽イオン交換樹脂が最密充填されたりして圧力損失が増大したことで脱着効率が低下したためである。 This is a spherical cation exchange resin in which the dehydrating material 11 is modified with a sulfonic acid Na group whose base structure is a styrene-divinylbenzene copolymer having a rack strength of 8%, but the particle size range is 0.6 to 0.7 mm. Since the particle ratio of 0.4 mm or less was 0%, the cation exchange resin was destroyed over time even in the desorption process due to the relatively large particle size, which was caused by dehydrated debris. This is because clogging occurs in the filter provided in the dehydration tank, or the cation exchange resin is closely packed with the debris 11 to increase the pressure loss, thereby reducing the desorption efficiency.
(比較例2)
図1に示す有機溶剤脱水装置において、脱水材が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂が複数用いられ、粒径範囲は0.35mmから0.5mmで粒径0.4mm以下の粒子率は50%であった。なお、球状の陽イオン交換樹脂の測定は、日本工業規格(JIS Z 8825−1)に規定される「粒子径解析 レーザー回折法」に基づき、粒度分布測定機器(HORIBA LA−950V2)を用いて行なった。
(Comparative Example 2)
In the organic solvent dehydrating apparatus shown in FIG. 1, a plurality of spherical cation exchange resins modified with Na sulfonate group having a base structure of styrene-divinylbenzene copolymer with a dehydrating strength of 8% are used. The particle ratio of 0.35 mm to 0.5 mm and a particle size of 0.4 mm or less was 50%. The spherical cation exchange resin was measured using a particle size distribution measuring instrument (HORIBA LA-950V2) based on “Particle Size Analysis Laser Diffraction Method” defined in Japanese Industrial Standard (JIS Z 8825-1). I did it.
この陽イオン交換樹脂1.9kgを脱水槽15に充填させ、脱水工程として、水分3重量%、酢酸エチル80重量%、酢酸n−プロピル17重量%の混合液を20L/hrで被処理有機溶剤導入ライン13より脱水槽15に導入し、脱水処理済み有機溶剤タンク14に脱水した有機溶剤を得た。この脱水工程2.5hr中の脱水材11の周囲の有機溶剤温度は30℃であった。 1.9 kg of this cation exchange resin is filled in the dehydration tank 15, and as a dehydration step, a mixed liquid of 3% by weight of water, 80% by weight of ethyl acetate, and 17% by weight of n-propyl acetate is treated with an organic solvent at 20 L / hr. The organic solvent introduced into the dehydration tank 15 from the introduction line 13 and dehydrated in the dehydrated organic solvent tank 14 was obtained. The temperature of the organic solvent around the dehydrating material 11 during the dehydration step 2.5 hr was 30 ° C.
次に、脱水槽15に充填された有機溶剤を被処理有機溶剤タンク12に排出した後、脱着工程として、減圧機24を用いて脱水槽15内を150Torr下の減圧にした。このとき、脱水槽15は図2に示す構造物を用い、チューブ内に充填されている脱水材11を加温させるために、熱媒供給ライン18より0.1MPaのスチームを供給し、窒素20を1L/hrで窒素導入ライン21より導入させた。2hr後、熱媒供給ライン18より供給していたスチームを止め、冷却水を導入して脱水槽15を0.5hr冷却した。 Next, after the organic solvent filled in the dehydration tank 15 was discharged to the organic solvent tank 12 to be treated, the dehydration tank 15 was depressurized at 150 Torr using the decompressor 24 as a desorption process. At this time, the dehydration tank 15 uses the structure shown in FIG. 2, in order to heat the dehydrating material 11 filled in the tube, steam of 0.1 MPa is supplied from the heating medium supply line 18, and nitrogen 20 Was introduced from the nitrogen introduction line 21 at 1 L / hr. After 2 hours, the steam supplied from the heating medium supply line 18 was stopped, cooling water was introduced, and the dehydration tank 15 was cooled for 0.5 hours.
脱水工程→脱着工程は合わせて5hr要し、この工程を20サイクル繰り返したところ、脱水工程において脱水処理された有機溶剤中の出口の平均水分濃度は0.95重量%まで低減された。 The dehydration step → desorption step required 5 hr in total, and when this step was repeated 20 cycles, the average moisture concentration at the outlet in the organic solvent dehydrated in the dehydration step was reduced to 0.95 wt%.
さらに、この工程を200サイクル繰り返したところ、20サイクル時の平均水分濃度と比較して増加しており、脱水工程において脱水処理された混合溶剤中の出口の平均水分濃度は1.35重量%まで上昇した。このとき、脱水材11の陽イオン交換樹脂の平均粒径は0サイクルと比較して0.4mmから0.35mmとなり、粒径0.4mm以下の粒子率も50%から75%と粒子サイズが小さくなっていることが確認された。これより、本比較例2において有機溶剤脱水装置により脱水処理された有機溶剤は、脱水工程→脱着工程を繰り返すことで、脱水処理された混合溶剤中の出口平均水分濃度は上昇しており、性能低下が確認された。 Furthermore, when this process was repeated 200 cycles, it increased compared to the average moisture concentration at the time of 20 cycles, and the average moisture concentration at the outlet in the mixed solvent dehydrated in the dehydration step was 1.35% by weight. Rose. At this time, the average particle size of the cation exchange resin of the dehydrating material 11 is 0.4 mm to 0.35 mm as compared to 0 cycle, and the particle size of the particle size of 0.4 mm or less is also 50% to 75%. It was confirmed that it was getting smaller. As a result, the organic solvent dehydrated by the organic solvent dehydrating apparatus in Comparative Example 2 increased the average water concentration at the outlet in the dehydrated mixed solvent by repeating the dehydration step → the desorption step. Decline was confirmed.
これは、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂であるが、粒径範囲は0.35から0.5mmで粒径0.4mm以下の粒子率は50%であったことから、粒径が比較的大きいことで、脱着工程においても陽イオン交換樹脂が経時的に破壊されていき、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生したり、また脱水材11の破片により陽イオン交換樹脂が最密充填されたりして圧力損失が増大したことで脱着効率が低下したためである。 This is a spherical cation exchange resin in which the dehydrating material 11 is modified with a sulfonic acid Na group having a base structure of a styrene-divinylbenzene copolymer having a rack strength of 8%, but the particle size range is 0.35 to 0.5 mm. In the desorption step, the cation exchange resin was destroyed over time due to the relatively large particle size because the particle ratio of the particle size of 0.4 mm or less was 50%. This is because clogging occurs in the filter provided in the dehydration tank, or the cation exchange resin is closely packed with the debris 11 to increase the pressure loss, thereby reducing the desorption efficiency.
(比較例3)
図1に示す有機溶剤脱水装置において、脱水材が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂が複数用いられ、粒径範囲は0.1mmから1.0mmで粒径0.4mm以下の粒子率は80%であった。なお、球状の陽イオン交換樹脂の測定は、日本工業規格(JIS Z 8825−1)に規定される「粒子径解析 レーザー回折法」に基づき、粒度分布測定機器(HORIBA LA−950V2)を用いて行なった。
(Comparative Example 3)
In the organic solvent dehydrating apparatus shown in FIG. 1, a plurality of spherical cation exchange resins modified with Na sulfonate group having a base structure of styrene-divinylbenzene copolymer with a dehydrating strength of 8% are used. The particle ratio of 0.1 mm to 1.0 mm and a particle size of 0.4 mm or less was 80%. The spherical cation exchange resin was measured using a particle size distribution measuring instrument (HORIBA LA-950V2) based on “Particle Size Analysis Laser Diffraction Method” defined in Japanese Industrial Standard (JIS Z 8825-1). I did it.
この陽イオン交換樹脂1.9kgを脱水槽15に充填させ、脱水工程として、水分2重量%、塩化メチレン88重量%、メタノール10重量%の混合液を20L/hrで被処理有機溶剤導入ライン13より脱水槽15に導入し、脱水処理済み有機溶剤タンク14に脱水した有機溶剤を得た。この脱水工程2.5hr中の脱水材11の周囲の有機溶剤温度は30℃であった。 1.9 kg of this cation exchange resin is filled in the dehydration tank 15, and as a dehydration step, a mixed liquid of 2% by weight of water, 88% by weight of methylene chloride and 10% by weight of methanol is treated with an organic solvent introduction line 13 at 20 L / hr. The organic solvent was further introduced into the dehydration tank 15 and dehydrated into the dehydrated organic solvent tank 14. The temperature of the organic solvent around the dehydrating material 11 during the dehydration step 2.5 hr was 30 ° C.
次に、脱水槽15に充填された有機溶剤を被処理有機溶剤タンク12に排出した後、脱着工程として、減圧機24を用いて脱水槽15内を150Torr下の減圧にした。このとき、脱水槽15は図2に示す構造物を用い、チューブ内に充填されている脱水材11を加温させるために、熱媒供給ライン18より0.1MPaのスチームを供給し、窒素20を1L/hrで窒素導入ライン21より導入させた。2hr後、熱媒供給ライン18より供給していたスチームを止め、冷却水を導入して脱水槽15を0.5hr冷却した。 Next, after the organic solvent filled in the dehydration tank 15 was discharged to the organic solvent tank 12 to be treated, the dehydration tank 15 was depressurized at 150 Torr using the decompressor 24 as a desorption process. At this time, the dehydration tank 15 uses the structure shown in FIG. 2, in order to heat the dehydrating material 11 filled in the tube, steam of 0.1 MPa is supplied from the heating medium supply line 18, and nitrogen 20 Was introduced from the nitrogen introduction line 21 at 1 L / hr. After 2 hours, the steam supplied from the heating medium supply line 18 was stopped, cooling water was introduced, and the dehydration tank 15 was cooled for 0.5 hours.
脱水工程→脱着工程は合わせて5hr要し、この工程を20サイクル繰り返したところ、脱水工程において脱水処理された有機溶剤中の出口の平均水分濃度は0.5重量%まで低減された。 The dehydration step → desorption step takes 5 hours in total, and when this step was repeated 20 cycles, the average water concentration at the outlet in the organic solvent dehydrated in the dehydration step was reduced to 0.5% by weight.
さらに、この工程を200サイクル繰り返したところ、20サイクル時の平均水分濃度と比較して増加しており、脱水工程において脱水処理された混合溶剤中の出口の平均水分濃度は0.75重量%まで上昇した。このとき、脱水材11の陽イオン交換樹脂の平均粒径は0サイクルと比較して0.5mmから0.39mmとなり、粒径0.4mm以下の粒子率も80%から90%と粒子サイズが小さくなっていることが確認された。これより、本比較例3において有機溶剤脱水装置により脱水処理された有機溶剤は、脱水工程→脱着工程を繰り返すことで、脱水処理された混合溶剤中の出口平均水分濃度は上昇しており、性能低下が確認された。 Furthermore, when this process was repeated 200 cycles, it increased compared to the average moisture concentration at the time of 20 cycles, and the average moisture concentration at the outlet in the mixed solvent dehydrated in the dehydration step was up to 0.75% by weight. Rose. At this time, the average particle size of the cation exchange resin of the dehydrating material 11 is from 0.5 mm to 0.39 mm as compared with 0 cycle, and the particle size of the particle size of 0.4 mm or less is 80% to 90%. It was confirmed that it was getting smaller. As a result, the organic solvent dehydrated by the organic solvent dehydrating apparatus in Comparative Example 3 increased the average water concentration at the outlet in the dehydrated mixed solvent by repeating the dehydration step → the desorption step. Decline was confirmed.
これは、脱水材11が架強度8%のスチレン-ジビニルベンゼンコポリマーを母体構造とするスルホン酸Na基を修飾した球状の陽イオン交換樹脂であるが、粒径範囲は0.15から1.0mmで粒径0.4mm以下の粒子率は80%であったことから、粒径が比較的大きいことで、脱着工程においても陽イオン交換樹脂が経時的に破壊されていき、脱水材の破片により脱水槽に設けられるフィルタに目詰まりが発生したり、また脱水材11の破片により陽イオン交換樹脂が最密充填されたりして圧力損失が増大したことで脱着効率が低下したためである。 This is a spherical cation exchange resin in which the dehydrating material 11 is modified with a sulfonic acid Na group having a base structure of a styrene-divinylbenzene copolymer having a rack strength of 8%, but the particle size range is 0.15 to 1.0 mm. In the desorption process, the cation exchange resin was destroyed over time due to the relatively large particle size, and the particle ratio of 0.4 mm or less was 80%. This is because clogging occurs in the filter provided in the dehydration tank, or the cation exchange resin is closely packed with the debris 11 to increase the pressure loss, thereby reducing the desorption efficiency.
本発明の有機溶剤脱水装置は、溶剤の連続精製を実現し、基本的に脱水材の交換が必要なく、多量の水分を高効率かつ安定に除去することができる有機溶剤脱水装置であるため、設備増大を必要とせずに、脱水材交換作業を省略でき、コスト低減、水分安定除去できる。これより、特に研究所や工場等の幅広い分野から発生する排ガスから溶剤回収処理装置を用いて回収される溶剤の脱水に利用することができ、産業界に寄与することが大である。 The organic solvent dehydrating apparatus of the present invention is an organic solvent dehydrating apparatus that realizes continuous purification of the solvent, basically does not require replacement of the dehydrating material, and can remove a large amount of water with high efficiency and stability. Without requiring an increase in equipment, the dehydrating material replacement operation can be omitted, and costs can be reduced and moisture can be removed stably. As a result, it can be used for dehydration of the solvent recovered from exhaust gas generated from a wide range of fields such as laboratories and factories using a solvent recovery processing apparatus, and contributes greatly to the industry.
10 脱水処理済み有機溶剤排出ライン
11 脱水材
12 被処理有機溶剤タンク
13 被処理有機溶剤導入ライン
14 脱水処理済み有機溶剤タンク
15 脱水槽
16 脱水槽加熱・冷却設備
17 溶剤送液ポンプ
18 熱媒導入ライン
19 熱媒排出ライン
20 窒素
21 窒素導入ライン
22 脱着ガス排出ライン
23 返送ライン
24 減圧機
25 コンデンサー
26 凝縮液タンク
27 減圧機ガス排出ライン
41 被処理ガス
42 ファン
43 吸着塔
44 活性炭素繊維エレメント
45 スチーム
46 清浄ガス
47 ダンパー
48 コンデンサー
49 セパレータ
50 回収溶剤
DESCRIPTION OF SYMBOLS 10 Dehydrated organic solvent discharge line 11 Dehydrated material 12 Processed organic solvent tank 13 Processed organic solvent introduction line 14 Dehydrated organic solvent tank 15 Dehydration tank 16 Dehydration tank heating / cooling equipment 17 Solvent feed pump 18 Heat medium introduction Line 19 Heat medium discharge line 20 Nitrogen 21 Nitrogen introduction line 22 Desorption gas discharge line 23 Return line 24 Decompression machine 25 Condensate tank 27 Decompression machine gas discharge line 41 Gas to be treated 42 Fan 43 Adsorption tower 44 Activated carbon fiber element 45 Steam 46 Clean gas 47 Damper 48 Condenser 49 Separator 50 Recovered solvent
Claims (5)
前記脱水材は、球状の形状を有する陽イオン交換樹脂を複数含み、
前記脱水材は、前記陽イオン交換樹脂の粒径が0.4mm以下の粒子率が90%以上であり、
前記脱水材が充填される脱水槽と、
前記脱水槽に前記被処理有機溶剤を導入する被処理有機溶剤導入ラインと、
前記脱水槽内を減圧させる減圧機と、
前記脱水槽内で脱着したガスを脱水槽から排出して減圧機に導入する脱着ガス排出ラインを有する、
有機溶剤脱水装置。 An organic solvent dehydrating apparatus for dehydrating and removing moisture contained in the organic solvent to be treated by introducing and contacting the organic solvent to be treated containing moisture to the dehydrating material,
The dehydrating material includes a plurality of cation exchange resins having a spherical shape,
The dehydrating material has a particle ratio of 90% or more when the particle size of the cation exchange resin is 0.4 mm or less,
A dehydrating tank filled with the dehydrating material;
A treated organic solvent introduction line for introducing the treated organic solvent into the dewatering tank;
A decompressor for decompressing the inside of the dehydration tank;
A desorption gas discharge line for discharging the gas desorbed in the dehydration tank from the dehydration tank and introducing it into the decompressor;
Organic solvent dehydrator.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012057426A JP6024131B2 (en) | 2012-03-14 | 2012-03-14 | Organic solvent dehydrator |
PCT/JP2013/056617 WO2013137186A1 (en) | 2012-03-14 | 2013-03-11 | Organic solvent dehydration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012057426A JP6024131B2 (en) | 2012-03-14 | 2012-03-14 | Organic solvent dehydrator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013188700A true JP2013188700A (en) | 2013-09-26 |
JP6024131B2 JP6024131B2 (en) | 2016-11-09 |
Family
ID=49161095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012057426A Active JP6024131B2 (en) | 2012-03-14 | 2012-03-14 | Organic solvent dehydrator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6024131B2 (en) |
WO (1) | WO2013137186A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140764A1 (en) * | 2020-01-07 | 2021-07-15 | オルガノ株式会社 | Method for purifying non-aqueous solvent, and method for pretreating ion exchange resin for purification of non-aqueous solvent |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110255659A (en) * | 2019-07-23 | 2019-09-20 | 山东先声生物制药有限公司 | A kind of device and method thereof of concentration medicine waste liquid |
CN111905409B (en) * | 2020-08-18 | 2022-07-08 | 河北利仕化学科技有限公司 | Deep dehydration method for industrial organic solvent |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378980A (en) * | 1976-12-23 | 1978-07-12 | Haibiruka Kk | Method of absorption and separation of mixed fluid components |
US4351732A (en) * | 1980-12-12 | 1982-09-28 | The C. M. Kemp Manufacturing Co. | Dehydration of ethanol |
JP2012081443A (en) * | 2010-10-14 | 2012-04-26 | Toyobo Co Ltd | Solvent dehydrator |
JP2012081411A (en) * | 2010-10-12 | 2012-04-26 | Toyobo Co Ltd | Solvent dehydrator |
JP2013188701A (en) * | 2012-03-14 | 2013-09-26 | Toyobo Co Ltd | Organic solvent dehydration device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2581558B1 (en) * | 1985-05-10 | 1987-06-26 | Elf France | PROCESS FOR TREATING A FUEL COMPRISING A MIXTURE OF HYDROCARBONS AND ALCOHOLS, AND SELECTIVE WATER ADSORPTION PRODUCT |
JP2009291676A (en) * | 2008-06-03 | 2009-12-17 | Toyobo Co Ltd | Solvent refining apparatus |
-
2012
- 2012-03-14 JP JP2012057426A patent/JP6024131B2/en active Active
-
2013
- 2013-03-11 WO PCT/JP2013/056617 patent/WO2013137186A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378980A (en) * | 1976-12-23 | 1978-07-12 | Haibiruka Kk | Method of absorption and separation of mixed fluid components |
US4351732A (en) * | 1980-12-12 | 1982-09-28 | The C. M. Kemp Manufacturing Co. | Dehydration of ethanol |
JP2012081411A (en) * | 2010-10-12 | 2012-04-26 | Toyobo Co Ltd | Solvent dehydrator |
JP2012081443A (en) * | 2010-10-14 | 2012-04-26 | Toyobo Co Ltd | Solvent dehydrator |
JP2013188701A (en) * | 2012-03-14 | 2013-09-26 | Toyobo Co Ltd | Organic solvent dehydration device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140764A1 (en) * | 2020-01-07 | 2021-07-15 | オルガノ株式会社 | Method for purifying non-aqueous solvent, and method for pretreating ion exchange resin for purification of non-aqueous solvent |
JP2021109833A (en) * | 2020-01-07 | 2021-08-02 | オルガノ株式会社 | Purification method for non-aqueous solvent and pre-treatment method for ion exchange resin for purification of non-aqueous solvent |
JP7379170B2 (en) | 2020-01-07 | 2023-11-14 | オルガノ株式会社 | Method for purifying nonaqueous solvents and pretreatment method for ion exchange resins for purifying nonaqueous solvents |
Also Published As
Publication number | Publication date |
---|---|
WO2013137186A1 (en) | 2013-09-19 |
JP6024131B2 (en) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yaumi et al. | Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed | |
JPS61263642A (en) | Regeneration of adsorbent | |
JP2013188701A (en) | Organic solvent dehydration device | |
WO2012120948A1 (en) | Method for removing organic solvent, and removal device | |
WO2016108731A1 (en) | Method of complex extraction of valuable impurities from helium-rich hydrocarbon natural gas with high nitrogen content | |
RU2602908C9 (en) | Method of natural gas cleaning from impurities during its preparation for production of liquefied methane, ethane and hydrocarbons wide fraction | |
JP2010149040A (en) | Organic solvent-containing gas treating system | |
JP6024131B2 (en) | Organic solvent dehydrator | |
JP2012091096A (en) | Solvent dehydration device | |
CN100537501C (en) | Process for purifying 1,1,1,3,3-pentafluoropropane | |
JPH11276801A (en) | Method and device for refining mixed liquid | |
JP2009066530A (en) | Voc recovery apparatus | |
JP2012081411A (en) | Solvent dehydrator | |
RU2136651C1 (en) | Vinyl chloride production process and installation | |
CN101496978A (en) | Method for recycling halogenated hydrocarbon compound in gas using hydrophobic high-crosslinking adsorption resin | |
JP7106474B2 (en) | N-methyl-2-pyrrolidone purification method, purification device, recovery purification method, and recovery purification system | |
JP6373701B2 (en) | Solid-liquid separator | |
KR101762474B1 (en) | Organic solvent dehydrating device | |
JP2012081412A (en) | Solvent dehydrator | |
JP2024504583A (en) | Method for removing water from iodine (I2) | |
JP2012081443A (en) | Solvent dehydrator | |
JP6740818B2 (en) | Organic solvent recovery system | |
CN212282895U (en) | Organic solvent dehydration device and organic solvent dehydration system | |
EP3954449A1 (en) | Device and process for the dehydration of organic solvents | |
RU2731274C1 (en) | Toluene deep drying method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160926 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6024131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |