JP2012091096A - Solvent dehydration device - Google Patents
Solvent dehydration device Download PDFInfo
- Publication number
- JP2012091096A JP2012091096A JP2010239437A JP2010239437A JP2012091096A JP 2012091096 A JP2012091096 A JP 2012091096A JP 2010239437 A JP2010239437 A JP 2010239437A JP 2010239437 A JP2010239437 A JP 2010239437A JP 2012091096 A JP2012091096 A JP 2012091096A
- Authority
- JP
- Japan
- Prior art keywords
- inert gas
- solvent
- adsorbent
- organic solvent
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、有機溶剤から水分を除去して溶剤を脱水する装置に関し、特に各種工場や研究施設等から発生した有機溶剤含有ガスから溶剤回収装置を用いて回収した溶剤の脱水に用いられる装置である。 The present invention relates to an apparatus for removing water by removing water from an organic solvent, and more particularly, an apparatus used for dehydration of a solvent recovered from an organic solvent-containing gas generated from various factories or research facilities using a solvent recovery apparatus. is there.
従来から、有機溶剤から水分を除去して溶剤を脱水する装置としては、蒸留脱水装置が広く用いられている。すなわち、溶剤を加熱蒸発させ、沸点の違いを利用して有機溶剤と不純物を分留することで、純度の高い有機溶剤を取得することができる装置である。 Conventionally, a distillation dehydration apparatus has been widely used as an apparatus for removing water from an organic solvent to dehydrate the solvent. That is, it is an apparatus that can obtain a high-purity organic solvent by evaporating the solvent by heating and fractionating the organic solvent and impurities using the difference in boiling point.
しかしながら、蒸留脱水装置は大型な装置であるために広い設置スペースが必要であり、且つイニシャルコスト、ランニングコスト共に高いことが問題となっている。 However, the distillation and dehydration apparatus is a large apparatus, so that a large installation space is required, and both initial cost and running cost are high.
かかる問題を解決するために、ゼオライト、イオン交換樹脂、モレキュラーシーブス、活性アルミナ等の吸着材を充填させた吸着塔に有機溶剤を通液させて不純物を取り除く方法が知られているが(例えば、特許文献1参照)、多量の有機溶剤を脱水する場合は多量の吸着材が必要である。吸着材が破過状態になると吸着材の交換が必要であることから、吸着材の交換労力とランニングコストが増大する面より、研究室レベルでは有効な手段であるが、工場や研究施設等から回収される多量の有機溶剤の脱水を行うには満足できるものではなかった。 In order to solve such a problem, a method is known in which an organic solvent is passed through an adsorption tower packed with an adsorbent such as zeolite, ion exchange resin, molecular sieves, and activated alumina to remove impurities (for example, In the case of dehydrating a large amount of organic solvent, a large amount of adsorbent is required. Since it is necessary to replace the adsorbent when the adsorbent breaks through, it is an effective means at the laboratory level from the viewpoint of increasing the replacement labor and running cost of the adsorbent. It was not satisfactory for dehydrating a large amount of organic solvent recovered.
本発明は、従来技術の課題を背景になされたもので、有機溶剤の連続脱水を実現し、基本的には吸着材の交換が必要なく、多量な有機溶剤中から水分を安定に除去することができる装置を提供することを課題とするものである。 The present invention has been made against the background of the problems of the prior art, achieves continuous dehydration of organic solvents, and basically eliminates the need for replacement of adsorbents and stably removes moisture from a large amount of organic solvents. It is an object of the present invention to provide an apparatus capable of performing the above.
本発明は、従来技術の課題を解決するため、鋭意検討した結果、ついに本発明を完成するに到った。即ち本発明は以下の通りである。 In order to solve the problems of the prior art, the present invention has finally been completed as a result of intensive studies. That is, the present invention is as follows.
1.水分を含有した有機溶剤を被処理有機溶剤導入経路から吸着槽に導入し、吸着槽に充填された吸着材に接触させることにより、有機溶剤中に含有している水分を吸着除去する溶剤脱水工程と、該吸着材に不活性ガスを循環導入させて該吸着材に吸着された水分を脱着する脱着工程を備えた溶剤脱水装置であって、
脱着工程で使用した不活性ガスを再生処理する不活性ガス再生設備と、
不活性ガス再生設備で再生された不活性ガスを吸着槽に導入し、吸着槽から排出された不活性ガスを不活性ガス循環再生設備に戻す不活性ガス循環経路とを、
備えた溶剤脱水装置。
2.不活性ガス再生設備が、乾燥、冷却凝縮および加温のいずれかの不活性ガス再生方法で、不活性ガスを再生する設備を少なくとも1つ以上備えた設備である上記1に記載の溶剤脱水装置。
3.不活性ガス再生設備が、不活性ガスの流れ方向の上流側から冷却凝縮処理装置、乾燥処理装置、加温処理装置の順で不活性ガス循環経路に配置されている上記1または2に記載の溶剤脱水装置。
4.不活性ガスが窒素である上記1〜3のいずれかに記載の溶剤脱水装置。
5.吸着材がゼオライト、活性アルミナ、シリカゲル、イオン交換樹脂および粘土鉱物からなる群の少なくとも1つ以上の部材である上記1〜4のいずれかに記載の溶剤脱水装置。
6.吸着材の形態が粒状、繊維状のいずれかである上記1〜5のいずれかに記載の溶剤脱水装置。
7.上記1〜6のいずれかの溶剤脱水装置において、吸着槽を少なくとも2槽有し、その内の1槽が不活性ガス循環経路から不活性ガス再生設備で再生処理された不活性ガスを導入する時、それ以外の槽が被処理有機溶剤導入経路から水分を含有した有機溶剤を吸着槽に導入し、吸着材に接触させることで、連続的に有機溶剤の脱水が可能である溶剤脱水装置。
1. A solvent dehydration process that adsorbs and removes moisture contained in organic solvents by introducing an organic solvent containing moisture into the adsorption tank from the treated organic solvent introduction path and bringing it into contact with the adsorbent filled in the adsorption tank. And a solvent dehydrating apparatus comprising a desorption step of desorbing moisture adsorbed on the adsorbent by circulating and introducing an inert gas to the adsorbent,
An inert gas regeneration facility for regenerating the inert gas used in the desorption process;
An inert gas circulation path for introducing the inert gas regenerated in the inert gas regeneration facility into the adsorption tank and returning the inert gas discharged from the adsorption tank to the inert gas circulation regeneration facility;
Solvent dehydrator equipped.
2. 2. The solvent dehydrating apparatus according to 1 above, wherein the inert gas regeneration facility comprises at least one facility for regenerating the inert gas by any one of drying, cooling condensation and heating inert gas regeneration methods. .
3. 3. The inert gas regeneration facility according to 1 or 2 above, wherein the inert gas regeneration facility is disposed in the inert gas circulation path in the order of the cooling condensation treatment device, the drying treatment device, and the heating treatment device from the upstream side in the flow direction of the inert gas. Solvent dehydrator.
4). 4. The solvent dehydrator according to any one of 1 to 3 above, wherein the inert gas is nitrogen.
5. 5. The solvent dehydrating apparatus according to any one of the above 1 to 4, wherein the adsorbent is at least one member of the group consisting of zeolite, activated alumina, silica gel, ion exchange resin and clay mineral.
6). 6. The solvent dehydrating apparatus according to any one of 1 to 5 above, wherein the adsorbent has a granular or fibrous form.
7). In the solvent dehydrating apparatus according to any one of 1 to 6, at least two adsorption tanks are provided, and one of the tanks introduces an inert gas regenerated by an inert gas regeneration facility from an inert gas circulation path. A solvent dehydration apparatus capable of continuously dehydrating the organic solvent by introducing an organic solvent containing water from the other organic solvent introduction path into the adsorption tank and bringing it into contact with the adsorbent.
本発明による溶剤脱水装置は、有機溶剤中に含有している水分が多量であっても高い効率で連続的に除去することが可能であり、基本的に吸着材の交換の必要が無いため、低コストで、安定的に、高い能力で有機溶剤中の水分を除去することができる利点がある。また、脱着ガスである不活性ガスを循環させて再利用することで、脱着時のランニングコストを大幅に減少させることができる利点がある。 The solvent dehydrating apparatus according to the present invention can be continuously removed with high efficiency even when a large amount of water is contained in the organic solvent, and basically there is no need to replace the adsorbent, There is an advantage that moisture in the organic solvent can be removed stably and with high capacity at low cost. Moreover, there is an advantage that the running cost at the time of desorption can be significantly reduced by circulating and reusing the inert gas that is the desorption gas.
本発明にかかる溶剤脱水装置は、水分を含有する有機溶剤を吸着槽に被処理有機溶剤導入経路より導入させ、吸着槽に充填された吸着材に水分を吸着させて有機溶剤から脱水処理を行う溶剤脱水工程と、該吸着材に不活性ガスを循環導入させて該吸着材に吸着された水分を脱着する脱着工程を備え、かかる工程を交互に行う溶剤脱水装置であることが好ましい。かかる構造を採用することにより、処理を連続的に行うことができるからである。 The solvent dehydrating apparatus according to the present invention introduces an organic solvent containing water into the adsorption tank from the organic solvent introduction path to be treated, and adsorbs the moisture to the adsorbent filled in the adsorption tank to perform dehydration treatment from the organic solvent. It is preferable that the solvent dehydration apparatus includes a solvent dehydration step and a desorption step of desorbing moisture adsorbed on the adsorbent by circulating and introducing an inert gas to the adsorbent, and alternately performing such steps. This is because the processing can be continuously performed by adopting such a structure.
以下、図面を参照して、本発明にかかる溶剤脱水装置について詳細に説明する。図1は本発明の好ましい実施形態の例である、吸着槽2槽連続吸脱着方式の不活性ガス循環型溶剤脱水装置である。
図1に例示した溶剤脱水装置は、一方の吸着槽15において、水分を含有した有機溶剤が貯蔵されている被処理有機溶剤タンク12より被処理有機溶剤送液ポンプ16を用いて被処理有機溶剤導入経路13を通じて吸着材11が充填された吸着槽15に導入され、吸着材11により水分を吸着除去し、脱水有機溶剤タンク14に脱水された有機溶剤が送られる溶剤脱水工程を行なう。
そして、図1に例示した溶剤脱水装置では、一方の吸着槽15で溶剤脱水工程を実施している際に、もう一方の吸着槽15で不活性ガス再生設備22で再生された不活性ガスを吸着槽15に導入することで、吸着槽15に充填された吸着材11から、吸着した水分を脱着する脱着工程を行なう。
溶剤脱水工程後の吸着材11は有機溶剤が付着しており、酸素がある状態では爆発する危険があり、脱着ガスとして不活性ガスを用いて酸素濃度を下げる必要がある。更に、不活性ガスを不活性ガス循環経路23、不活性ガス循環ファン24を通じて循環させ、不活性ガス再生設備22に導入し、不活性ガスを再生し、不活性ガスを再利用することで、不活性ガスの消費量を最小限に抑えることができ、経済的である。
Hereinafter, a solvent dehydrating apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a preferred embodiment of the present invention, which is an inert gas circulation type solvent dehydration apparatus of two adsorption tank continuous adsorption / desorption systems.
The solvent dehydrating apparatus illustrated in FIG. 1 uses a treated organic solvent feed pump 16 from a treated organic solvent tank 12 in which an organic solvent containing moisture is stored in one adsorption tank 15. A solvent dehydration step is performed in which the adsorbent 11 filled with the adsorbent 11 is introduced through the introduction path 13, the moisture is adsorbed and removed by the adsorbent 11, and the dehydrated organic solvent is sent to the dehydrated organic solvent tank 14.
In the solvent dehydrating apparatus illustrated in FIG. 1, the inert gas regenerated by the inert gas regeneration facility 22 in the other adsorption tank 15 when the solvent dehydration process is performed in one adsorption tank 15. By introducing it into the adsorption tank 15, a desorption process for desorbing the adsorbed moisture from the adsorbent 11 filled in the adsorption tank 15 is performed.
The adsorbent 11 after the solvent dehydration step has an organic solvent attached, and there is a risk of explosion in the presence of oxygen, and it is necessary to reduce the oxygen concentration using an inert gas as a desorption gas. Further, the inert gas is circulated through the inert gas circulation path 23 and the inert gas circulation fan 24, introduced into the inert gas regeneration facility 22, the inert gas is regenerated, and the inert gas is reused. It is economical because the consumption of inert gas can be minimized.
不活性ガスは汎用性の高い窒素を用いることが好ましい。また、窒素を循環する際、吸着槽15や不活性ガス循環ファン24において外気空気より酸素が混入することがあるため、窒素発生器21または窒素ボンベを用いて不活性ガス循環経路23に窒素を追加導入することで、不活性ガス循環経路23内の酸素濃度を低い状態に維持することが好ましい。 Nitrogen having high versatility is preferably used as the inert gas. Further, when nitrogen is circulated, oxygen may be mixed in from the outside air in the adsorption tank 15 or the inert gas circulation fan 24. Therefore, nitrogen is introduced into the inert gas circulation path 23 using the nitrogen generator 21 or the nitrogen cylinder. It is preferable to maintain the oxygen concentration in the inert gas circulation path 23 at a low state by additionally introducing it.
脱着工程において、吸着材11から水分を脱着するために使用する不活性ガスを再生する不活性ガス再生設備22の再生手段としては、乾燥、冷却凝縮、加熱のいずれか1つ以上の方法が必要である。吸着材11から脱着ガスを用いて水分を脱着する現象を考えると、温度が低いと水分の吸着率が多く、温度が高いと水分の吸着率が低いことから、温度差より水分を脱着することができる。この現象を利用するため、不活性ガスを加熱することで不活性ガスを再生することが好ましい。また、水蒸気濃度が高い状態のガスと水蒸気濃度が低い状態のガスを混合すると、水蒸気濃度が2つのガスの中間濃度になり、濃度が均一化する平衡現象が起こることから、水蒸気濃度差より水分を脱着することができる。この現象を利用するため、不活性ガス中の水蒸気濃度を低くするため、乾燥または冷却凝縮して不活性ガス中の水分を除去して再生することも好ましい。 In the desorption process, the regeneration means of the inert gas regeneration facility 22 that regenerates the inert gas used to desorb moisture from the adsorbent 11 requires at least one of drying, cooling condensation, and heating. It is. Considering the phenomenon in which moisture is desorbed from the adsorbent 11 using a desorption gas, the moisture adsorption rate is high when the temperature is low, and the moisture adsorption rate is low when the temperature is high. Can do. In order to utilize this phenomenon, it is preferable to regenerate the inert gas by heating the inert gas. In addition, when a gas with a high water vapor concentration is mixed with a gas with a low water vapor concentration, the water vapor concentration becomes an intermediate concentration between the two gases, and an equilibrium phenomenon occurs in which the concentration becomes uniform. Can be desorbed. In order to utilize this phenomenon, in order to reduce the water vapor concentration in the inert gas, it is also preferable to regenerate by removing moisture in the inert gas by drying or cooling condensation.
不活性ガス再生設備において、加熱温度が50℃未満のとき、脱着ガスである不活性ガスは乾燥および/または冷却凝縮処理することが好ましい。より好ましくは乾燥することで不活性ガスの露点をマイナスにすることである。低い露点のガスを作製するためには乾燥が効果的な方法であり、露点の低い乾燥した脱着ガスであるほど、吸着材11から水分を脱着する脱着時間が短くなるからである。露点を低くするためには、例えば加熱脱着式や加圧吸着式のエアードライヤーがあるが、特に限定するものではない。但し、不活性ガス循環経路23の圧力が0.3MPa以上のとき、コストパフォーマンスの観点から加圧吸着式を採用することが好ましい。 In the inert gas regeneration facility, when the heating temperature is less than 50 ° C., the inert gas as the desorption gas is preferably dried and / or cooled and condensed. More preferably, the dew point of the inert gas is made negative by drying. This is because drying is an effective method for producing a gas having a low dew point, and the desorption time for desorbing moisture from the adsorbent 11 is shortened as the desorption gas has a lower dew point. In order to lower the dew point, for example, there is a heat desorption type or pressure adsorption type air dryer, but there is no particular limitation. However, when the pressure of the inert gas circulation path 23 is 0.3 MPa or more, it is preferable to adopt the pressure adsorption type from the viewpoint of cost performance.
また、加熱温度が50℃以上のとき、脱着ガスの露点は高くても脱着効率は高いため、加熱設備だけでも脱着は可能であるが、脱着効率を更に高めるために80℃〜120℃まで加温することがより好ましい。120℃を超える温度で加温脱着すると、吸着材の劣化を引き起こして交換回数が増えるため、120℃以下が好ましい。加温方法は、例えば電気ヒーター、スチームを用いた熱交換器等があるが、特に限定するものではない。 In addition, when the heating temperature is 50 ° C. or higher, the desorption efficiency is high even if the dew point of the desorption gas is high. Therefore, desorption is possible only with heating equipment, but in order to further increase the desorption efficiency, the temperature is increased from 80 ° C. to 120 ° C. It is more preferable to warm. If heating and desorption is performed at a temperature exceeding 120 ° C., the adsorbent is deteriorated and the number of exchanges is increased. The heating method includes, for example, an electric heater and a heat exchanger using steam, but is not particularly limited.
更に、加熱温度が50℃以上のとき、冷却凝縮処理と組み合わせることで、吸着材11から水分を脱着する脱着時間を短くすることができる。加熱温度が50℃以上のとき、吸着材11に導入されて吸着槽15から排出される不活性ガスの水蒸気濃度は飽和で温度が高いため、不活性ガス中に水分を多く含んでいる。このため、冷却することで不活性ガスの温度を下げると、水蒸気が凝縮して水が不活性ガスと分離し、不活性ガス中から水分を効率的に除去することができる。より脱着効率を上げるためには、冷却温度を低くすることが好ましいが、例えば冷却凝縮設備がチラーやブラインを用いて作製した冷水を用いた熱交換器である場合、作製する冷水の温度が低いほどランニングコストが高くなる。これより、経済性を考慮に入れれば、加熱温度を80℃〜120℃まで上げ、冷水から汎用性のより高い冷却水を用いる方法も好ましい。 Furthermore, when the heating temperature is 50 ° C. or higher, the desorption time for desorbing moisture from the adsorbent 11 can be shortened by combining with the cooling condensation treatment. When the heating temperature is 50 ° C. or higher, the water vapor concentration of the inert gas introduced into the adsorbent 11 and discharged from the adsorption tank 15 is saturated and the temperature is high, and thus the inert gas contains a large amount of moisture. For this reason, when the temperature of the inert gas is lowered by cooling, the water vapor is condensed and the water is separated from the inert gas, whereby moisture can be efficiently removed from the inert gas. In order to further increase the desorption efficiency, it is preferable to lower the cooling temperature. However, for example, when the cooling condensing facility is a heat exchanger using cold water produced using a chiller or brine, the temperature of the produced cold water is low. The higher the running cost. From this point of view, considering the economy, a method of increasing the heating temperature to 80 ° C. to 120 ° C. and using cooling water having higher versatility from cold water is also preferable.
必要に応じて、脱着効率を最大限に向上させるためには、不活性ガス再生設備22の再生方法である乾燥、冷却凝縮、加熱の3種類を全て用いることが好ましい。図2に本発明の好ましい一形態の例である、吸着槽2槽連続吸脱着方式の不活性ガス循環型溶剤脱水装置であって、不活性ガス再生設備22の再生方法が乾燥、冷却凝縮、加温の3種類備えている溶剤脱水装置を示す。不活性ガス再生設備22における再生方法である乾燥、冷却凝縮、加熱の3種類を全て用いた場合、不活性ガスの流れ方向の上流側から冷却凝縮処理装置25、乾燥処理装置27、加温処理装置28の順で不活性ガス循環経路23に配置されている必要がある。乾燥された不活性ガスを加温する方が、水蒸気濃度が高い不活性ガスを加温するよりも与える熱量が少なくて済むため、早く加温できるだけでなく、経済的である。また、冷却凝縮処理は水蒸気濃度の高い状態の不活性ガスであるほど再生効果が高いため、乾燥設備の上流に設置する必要がある。更に、温度が低い不活性ガスは、例えば加熱脱着式や加圧吸着式のエアードライヤーの場合、ドライヤーの吸湿剤における吸湿性能が顕著に高いため、加温する前に乾燥設備を設置することが好ましいからである。 If necessary, in order to maximize the desorption efficiency, it is preferable to use all three types of drying, cooling condensation, and heating, which are regeneration methods for the inert gas regeneration facility 22. FIG. 2 shows an example of a preferred embodiment of the present invention, which is an inert gas circulation type solvent dehydration apparatus of two adsorption tank continuous adsorption / desorption systems, wherein the regeneration method of the inert gas regeneration facility 22 is drying, cooling condensation, The solvent dehydrator provided with three types of heating is shown. When all three types of drying, cooling condensation, and heating, which are regeneration methods in the inert gas regeneration facility 22, are used, the cooling condensation treatment device 25, the drying treatment device 27, and the heating treatment from the upstream side in the flow direction of the inert gas are used. It is necessary to arrange in the inert gas circulation path 23 in the order of the device 28. Heating the dried inert gas requires less heat than warming an inert gas having a high water vapor concentration, so it can be heated quickly and is more economical. In addition, since the cooling condensation treatment has a higher regeneration effect as the inert gas has a higher water vapor concentration, it needs to be installed upstream of the drying equipment. Furthermore, the inert gas having a low temperature, for example, in the case of a heat desorption type or pressure adsorption type air dryer, has a remarkably high hygroscopic performance in the moisture absorbent of the dryer, so a drying facility may be installed before heating. It is because it is preferable.
冷却凝縮処理装置25より不活性ガスの冷却凝縮処理の過程で排出される凝縮液は、凝縮液タンク26に導入される。この凝縮液は脱水処理量に対して少ないので産廃処理してもいいが、溶剤が含まれるため被処理有機溶剤タンク12に戻して再処理をすることが、無駄がなく経済的であるため好ましい。但し、凝縮液タンク26の凝縮液は水分を多く含むため、被処理有機溶剤タンク12の有機溶剤中の水分濃度が飽和であった場合はその限りではない。 The condensate discharged from the cooling condensing apparatus 25 in the course of the cooling and condensing process of the inert gas is introduced into the condensate tank 26. Since this condensate is small relative to the amount of dehydration, it may be industrially processed. However, since it contains a solvent, it is preferable to reprocess it by returning it to the organic solvent tank 12 to be treated because it is economical and economical. . However, since the condensate in the condensate tank 26 contains a large amount of water, this is not the case when the water concentration in the organic solvent in the organic solvent tank 12 to be treated is saturated.
本発明にかかる吸着材は、ゼオライト、活性アルミナ、シリカゲル、イオン交換樹脂等から選択すればよく、特に限定するものではないが、性能面から陽イオン交換樹脂であることが好ましい。陽イオン交換樹脂はゼオライト、シリカゲル、および活性アルミナと吸着機構が異なり、樹脂内に水分を吸収してゲル膨潤するため、水分の吸着容量が非常に大きい特長を持つ有効な水分吸着材である。 The adsorbent according to the present invention may be selected from zeolite, activated alumina, silica gel, ion exchange resin and the like, and is not particularly limited, but is preferably a cation exchange resin from the viewpoint of performance. Cation exchange resins differ from zeolite, silica gel, and activated alumina in the adsorption mechanism, and absorb moisture and gel swell, so they are effective moisture adsorbents with very large moisture adsorption capacity.
本発明にかかる吸着材の構造は、粒状、粉体状、ポーラス状、ハニカム状、繊維状等特に限定されるものではないが、粒状または繊維状が好ましい。水分を含有した有機溶剤が吸着材を通液する際、吸着材の表面面積が広いほど、吸着材と水分の接触効率が高くなり水分吸着能が高くなる構造が粒状または繊維状だからである。 The structure of the adsorbent according to the present invention is not particularly limited, such as granular, powdery, porous, honeycomb, or fibrous, but is preferably granular or fibrous. This is because when the organic solvent containing moisture passes through the adsorbent, the larger the surface area of the adsorbent, the higher the contact efficiency between the adsorbent and moisture and the higher the moisture adsorption capacity, which is granular or fibrous.
上記の溶剤脱水工程→脱着工程を連続的に繰り返すことで、有機溶剤から水分を効果的、且つ経済的に連続吸着除去できる装置となる。かかる連続的な溶剤脱水−脱着により、低コストで、安定的に、高除去能で有機溶剤中の水分を除去することができる。 By repeating the above-described solvent dehydration step → desorption step continuously, water can be effectively and economically removed from the organic solvent by continuous adsorption. By such continuous solvent dehydration-desorption, water in the organic solvent can be removed stably at a low cost and with a high removal capability.
本発明において脱水可能な有機溶剤は、酢酸エチル、酢酸メチル、酢酸プロピル、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、塩化メチレン、クロロホルム、トリクロロエタン、プロパノール、ブタノール、酢酸、プロピオン酸、またはその混合物と特に限定されるものではなく、多種の有機溶剤において適応可能である。 The organic solvent that can be dehydrated in the present invention is ethyl acetate, methyl acetate, propyl acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride, chloroform, trichloroethane, propanol, butanol, acetic acid, propionic acid, or a mixture thereof. It is not limited and can be applied in various organic solvents.
本発明において脱水可能な有機溶剤は、フィルムを積層させるドライラミネート工程等、多分野における工場等から排出される有機溶剤を含有したガスを、溶剤回収処理装置を用いて回収される有機溶剤にも適応可能である。 In the present invention, an organic solvent that can be dehydrated is a gas containing an organic solvent discharged from factories in various fields, such as a dry laminating process for laminating films, and an organic solvent recovered using a solvent recovery processing device. Adaptable.
例えば、図4に示すような溶剤回収処理装置は、溶剤含有被処理ガス31が吸着ファン32より導入されて吸着槽33に充填されている活性炭素繊維エレメント34で有機溶剤が吸着し、清浄ガス36として外気に排出される吸着工程と、活性炭素繊維エレメント34にスチーム35を導入することで有機溶剤を脱着し、コンデンサー38で冷却凝縮してセパレーター39で溶剤と水を分離し、回収溶剤40を回収する脱着工程があり、吸着工程と脱着工程を交互に行うことで連続的に処理可能なシステムである。このタイプの溶剤回収処理装置は脱着にスチームを用いることや、冷却凝縮をすることから回収溶剤中に水分が混入することから、本発明における装置を適用することで、回収溶剤から水分を効果的に除去することが可能である。 For example, in the solvent recovery processing apparatus as shown in FIG. 4, the organic solvent is adsorbed by the activated carbon fiber element 34 in which the solvent-containing gas 31 is introduced from the adsorption fan 32 and filled in the adsorption tank 33, and the clean gas 36, the organic solvent is desorbed by introducing the steam 35 into the activated carbon fiber element 34, the organic solvent is desorbed by the condenser 38, the solvent and water are separated by the separator 39, and the recovered solvent 40 There is a desorption process for recovering the water, and the system can be continuously processed by alternately performing the adsorption process and the desorption process. This type of solvent recovery processing equipment uses steam for desorption, and because water is mixed into the recovered solvent due to cooling and condensation, applying the device in the present invention effectively removes water from the recovered solvent. Can be removed.
以下、実施例から本発明の詳細を更に説明するが、本発明はこれら実施例に限定されるものではない。
なお、評価は下記の方法により行った。
EXAMPLES Hereinafter, although the detail of this invention is further demonstrated from an Example, this invention is not limited to these Examples.
The evaluation was performed by the following method.
(有機溶剤中からの水分除去の評価方法)
3重量%濃度の水分を含有する各種有機溶剤を一定流量で流し、サンプリングした脱水処理後の有機溶剤中の水分濃度を測定した。
(Evaluation method for removing water from organic solvents)
Various organic solvents containing water having a concentration of 3% by weight were flowed at a constant flow rate, and the moisture concentration in the sampled organic solvent after the dehydration treatment was measured.
(水分濃度評価方法)
吸着材入口・出口の水分濃度をカールフィッシャー水分測定法により測定した。
(Water concentration evaluation method)
The moisture concentration at the inlet and outlet of the adsorbent was measured by the Karl Fischer moisture measurement method.
[実施例1]
図1の溶剤脱水装置にて、φ550mm、高さ800mmの吸着槽に、吸着材としてイオン交換繊維不織布(東洋紡績株式会社製モイスファイン(R)97)を10Kg充填させ、水分3重量%、酢酸エチル96重量%とエタノール1%の混合液を導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.1重量%であり、出口水分濃度が2重量%に達するまでの時間が240分間であり、水分吸着量(q*)が0.6(g/g−resin)と良好な水分吸着量を示した。
[Example 1]
In the solvent dehydrator of FIG. 1, an adsorption tank having a diameter of 550 mm and a height of 800 mm is filled with 10 kg of an ion-exchange fiber nonwoven fabric (Moisfine (R) 97 manufactured by Toyobo Co., Ltd.) as an adsorbent, and contains 3% by weight of water, acetic acid A mixed solution of 96% by weight of ethyl and 1% of ethanol was introduced. The adsorption temperature was 30 ° C. As a result of confirming the time-dependent change of the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.1% by weight, and the time until the outlet moisture concentration reached 2% by weight was 240 minutes. q *) was 0.6 (g / g-resin), indicating a good amount of moisture adsorption.
次に、脱着工程における脱着ガスとして再生された不活性ガス(窒素)を30℃、−40℃DPに設定し、脱着のSVを5000(1/h)とした。溶剤脱水工程における吸着時間を4時間、脱着工程における脱着時間を4時間として脱水脱着サイクルとした。その際の混合溶剤中の出口平均水分濃度は1.0重量%以下であった。このときに不活性ガス循環経路23に補充した窒素量は10L/minで、窒素発生器21から導入した。 Next, the inert gas (nitrogen) regenerated as the desorption gas in the desorption process was set to 30 ° C. and −40 ° C. DP, and the desorption SV was set to 5000 (1 / h). The adsorption time in the solvent dehydration step was 4 hours, and the desorption time in the desorption step was 4 hours, which was a dehydration / desorption cycle. At that time, the outlet average water concentration in the mixed solvent was 1.0% by weight or less. At this time, the amount of nitrogen supplemented to the inert gas circulation path 23 was 10 L / min, and was introduced from the nitrogen generator 21.
本実施例の溶剤脱水装置により脱水処理された混合溶剤は、溶剤脱水工程→脱着工程の脱水脱着サイクルを20サイクル繰り返しても混合溶剤中の出口平均水分濃度は1.0重量%以下を維持することが可能であった。吸着と脱着を連続して脱水処理するため、性能低下がなく、安定して高効率で脱水処理が可能である。 In the mixed solvent dehydrated by the solvent dehydrating apparatus of this example, the average water concentration at the outlet in the mixed solvent is maintained at 1.0% by weight or less even when the dehydration / desorption cycle of the solvent dehydration step → desorption step is repeated 20 cycles. It was possible. Since adsorption and desorption are continuously dehydrated, there is no performance degradation, and dewatering can be performed stably and with high efficiency.
[実施例2]
図2の溶剤脱水装置にて、φ550mmで高さ800mmの吸着槽に、吸着材としてイオン交換繊維不織布(東洋紡績株式会社製モイスファイン(R)97)を10Kg充填させ、水分3重量%、酢酸エチル96重量%とエタノール1%の混合液を導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.1重量%であり、出口水分濃度が2重量%に達するまでの時間が240分間であり、水分吸着量(q*)が0.6(g/g−resin)と良好な水分吸着量を示した。
[Example 2]
In the solvent dehydrator of FIG. 2, an adsorption tank having a diameter of 550 mm and a height of 800 mm is filled with 10 kg of an ion exchange fiber nonwoven fabric (MOISFINE (R) 97 manufactured by Toyobo Co., Ltd.) as an adsorbent, 3% by weight of water, acetic acid A mixed solution of 96% by weight of ethyl and 1% of ethanol was introduced. The adsorption temperature was 30 ° C. As a result of confirming the time-dependent change of the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.1% by weight, and the time until the outlet moisture concentration reached 2% by weight was 240 minutes. q *) was 0.6 (g / g-resin), indicating a good amount of moisture adsorption.
次に、脱着工程における脱着ガスとして再生された不活性ガス(窒素)を120℃、0℃DPに設定し、脱着のSVを3000(1/h)とした。溶剤脱水工程における吸着時間を4時間、脱着工程における脱着時間を4時間として脱水脱着サイクルとした。その際の混合溶剤中の出口平均水分濃度は0.7重量%以下であった。このときに不活性ガス循環経路23に補充した不活性ガス量は10L/minであった。 Next, the inert gas (nitrogen) regenerated as the desorption gas in the desorption step was set to 120 ° C. and 0 ° C. DP, and the desorption SV was set to 3000 (1 / h). The adsorption time in the solvent dehydration step was 4 hours, and the desorption time in the desorption step was 4 hours, which was a dehydration / desorption cycle. At that time, the outlet average water concentration in the mixed solvent was 0.7% by weight or less. At this time, the amount of inert gas replenished to the inert gas circulation path 23 was 10 L / min.
本実施例の溶剤脱水装置により脱水処理された混合溶剤は、溶剤脱水工程→脱着工程の脱水脱着サイクルを繰り返しても脱水溶剤中の出口平均水分濃度は20サイクル以上運転しても0.7重量%以下を維持することが可能であった。吸着と脱着を連続して脱水するため、性能低下がなく安定して高効率で脱水が可能である。 The mixed solvent dehydrated by the solvent dehydrating apparatus of this example is 0.7 weight even if the dehydration / desorption cycle of the solvent dehydration step → desorption step is repeated and the outlet average moisture concentration in the dehydrated solvent is operated for 20 cycles or more. % Or less could be maintained. Since adsorption and desorption are continuously dehydrated, stable and highly efficient dehydration is possible without performance degradation.
[比較例1]
図3の溶剤脱水装置にて、φ550mmで高さ800mmの吸着槽に、吸着材としてイオン交換繊維不織布(東洋紡績株式会社製モイスファイン(R)97)を10Kg充填させ、水分3重量%、酢酸エチル96重量%とエタノール1%の混合液を導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.1重量%であり、出口水分濃度が2重量%に達するまでの時間が240分間であり、水分吸着量(q*)が0.6(g/g−resin)と良好な水分吸着量を示した。
[Comparative Example 1]
In the solvent dehydrator in FIG. 3, an adsorption tank having a diameter of 550 mm and a height of 800 mm is filled with 10 kg of an ion exchange fiber nonwoven fabric (Toyobo Co., Ltd., Moisfine (R) 97) as an adsorbent. A mixed solution of 96% by weight of ethyl and 1% of ethanol was introduced. The adsorption temperature was 30 ° C. As a result of confirming the time-dependent change of the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.1% by weight, and the time until the outlet moisture concentration reached 2% by weight was 240 minutes. q *) was 0.6 (g / g-resin), indicating a good amount of moisture adsorption.
次に、脱着工程における脱着ガスとして不活性ガス(窒素)を120℃、0℃DPに設定した。溶剤脱水工程における吸着時間を4時間、脱着工程における脱着時間を4時間として脱水脱着サイクルとした。その際の混合溶剤中の出口平均水分濃度は1.5重量%であったが、このとき実施例1の不活性ガス補充量の400倍の不活性ガスが必要であった。 Next, an inert gas (nitrogen) was set to 120 ° C. and 0 ° C. DP as a desorption gas in the desorption step. The adsorption time in the solvent dehydration step was 4 hours, and the desorption time in the desorption step was 4 hours, which was a dehydration / desorption cycle. At that time, the average water concentration at the outlet in the mixed solvent was 1.5% by weight. At this time, 400 times the inert gas replenishment amount of Example 1 was required.
本比較例の溶剤脱水装置により脱水処理された混合溶剤は、溶剤脱水工程→脱着工程の脱水脱着サイクルを20サイクル繰り返しても混合溶剤中の出口平均水分濃度は1.0重量%以下を維持することが可能であった。しかし、上記不活性ガスの使用量が多く、ランニングコストが多大に必要である。 In the mixed solvent dehydrated by the solvent dehydrating apparatus of this comparative example, the average water concentration at the outlet in the mixed solvent is maintained at 1.0% by weight or less even when the dehydration / desorption cycle of the solvent dehydration step → desorption step is repeated 20 times. It was possible. However, the amount of the inert gas used is large, and the running cost is very high.
本発明の溶剤脱水装置は、溶剤の連続脱水を実現し、基本的に吸着材の交換が必要なく、多量の水分を高効率、且つ安定的に除去することができる脱水装置であるため、吸着材交換作業を省略でき、コスト低減、水分の安定的除去が可能である。更に脱着工程を工夫したことにより、不活性ガスの必要添加量を抑えることができるため、ランニングコストを大幅に低減させることができ経済的である。更に、特に研究所や工場等の幅広い分野から発生する排ガスから溶剤回収処理装置を用いて回収される溶剤の脱水に利用することができ、産業界に寄与することが大である。 The solvent dehydrating apparatus of the present invention is a dehydrating apparatus that realizes continuous dehydration of the solvent, basically does not require replacement of the adsorbent, and can remove a large amount of water with high efficiency and stability. Material replacement work can be omitted, and cost reduction and stable removal of moisture are possible. Further, by devising the desorption process, the necessary addition amount of the inert gas can be suppressed, so that the running cost can be greatly reduced and it is economical. Furthermore, it can be used for dehydration of the solvent recovered from exhaust gas generated from a wide range of fields such as laboratories and factories using a solvent recovery processing apparatus, and contributes greatly to the industry.
11 吸着材
12 被処理有機溶剤タンク
13 被処理有機溶剤導入経路
14 脱水有機溶剤タンク
15 吸着槽
16 被処理有機溶剤送液ポンプ
17 被処理有機溶剤戻り経路
21 窒素発生器
22 不活性ガス再生設備
23 不活性ガス循環経路
24 不活性ガス循環ファン
25 冷却凝縮処理装置
26 凝縮液タンク
27 乾燥処理装置
28 加温処理装置
31 溶剤含有被処理ガス
32 吸着ファン
33 吸着槽
34 活性炭素繊維エレメント
35 スチーム
36 清浄ガス
37 ダンパー
38 コンデンサー
39 セパレーター
40 回収溶剤
DESCRIPTION OF SYMBOLS 11 Adsorbent 12 Treated organic solvent tank 13 Processed organic solvent introduction path 14 Dehydrated organic solvent tank 15 Adsorption tank 16 Processed organic solvent feed pump 17 Processed organic solvent return path 21 Nitrogen generator 22 Inert gas regeneration equipment 23 Inert gas circulation path 24 Inert gas circulation fan 25 Cooling condensation treatment device 26 Condensate tank 27 Drying treatment device 28 Heat treatment device 31 Solvent-containing gas 32 Adsorption fan 33 Adsorption tank 34 Activated carbon fiber element 35 Steam 36 Clean Gas 37 Damper 38 Condenser 39 Separator 40 Recovered solvent
Claims (7)
脱着工程で使用した不活性ガスを再生処理する不活性ガス再生設備と、
不活性ガス再生設備で再生された不活性ガスを吸着槽に導入し、吸着槽から排出された不活性ガスを不活性ガス循環再生設備に戻す不活性ガス循環経路とを、
備えた溶剤脱水装置。 A solvent dehydration process that adsorbs and removes moisture contained in organic solvents by introducing an organic solvent containing moisture into the adsorption tank from the treated organic solvent introduction path and bringing it into contact with the adsorbent filled in the adsorption tank. And a solvent dehydrating apparatus comprising a desorption step of desorbing moisture adsorbed on the adsorbent by circulating and introducing an inert gas to the adsorbent,
An inert gas regeneration facility for regenerating the inert gas used in the desorption process;
An inert gas circulation path for introducing the inert gas regenerated in the inert gas regeneration facility into the adsorption tank and returning the inert gas discharged from the adsorption tank to the inert gas circulation regeneration facility;
Solvent dehydrator equipped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010239437A JP2012091096A (en) | 2010-10-26 | 2010-10-26 | Solvent dehydration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010239437A JP2012091096A (en) | 2010-10-26 | 2010-10-26 | Solvent dehydration device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012091096A true JP2012091096A (en) | 2012-05-17 |
Family
ID=46385082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010239437A Withdrawn JP2012091096A (en) | 2010-10-26 | 2010-10-26 | Solvent dehydration device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012091096A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105688673A (en) * | 2014-11-26 | 2016-06-22 | 安徽智新生化有限公司 | Dehydrating device |
CN110385012A (en) * | 2019-08-05 | 2019-10-29 | 江苏金门能源装备有限公司 | A kind of VOCs treatment system of the absorption containing three tank two-stages |
CN111420513A (en) * | 2020-04-29 | 2020-07-17 | 广州市安健环工程咨询有限公司 | Low-energy-consumption activated carbon desorption regeneration and solvent recovery device and use method thereof |
CN114166009A (en) * | 2021-11-26 | 2022-03-11 | 安徽金禾实业股份有限公司 | Drying device and method for triethylamine in acesulfame potassium production |
CN114225655A (en) * | 2021-11-23 | 2022-03-25 | 安徽金禾实业股份有限公司 | Sucrose esterification dehydration condensation device and method |
-
2010
- 2010-10-26 JP JP2010239437A patent/JP2012091096A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105688673A (en) * | 2014-11-26 | 2016-06-22 | 安徽智新生化有限公司 | Dehydrating device |
CN110385012A (en) * | 2019-08-05 | 2019-10-29 | 江苏金门能源装备有限公司 | A kind of VOCs treatment system of the absorption containing three tank two-stages |
CN111420513A (en) * | 2020-04-29 | 2020-07-17 | 广州市安健环工程咨询有限公司 | Low-energy-consumption activated carbon desorption regeneration and solvent recovery device and use method thereof |
CN114225655A (en) * | 2021-11-23 | 2022-03-25 | 安徽金禾实业股份有限公司 | Sucrose esterification dehydration condensation device and method |
CN114166009A (en) * | 2021-11-26 | 2022-03-11 | 安徽金禾实业股份有限公司 | Drying device and method for triethylamine in acesulfame potassium production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101715826B1 (en) | Method for removing organic solvent, and removal device | |
KR20190084067A (en) | Organic solvent recovery system and organic solvent recovery method | |
JP2012091096A (en) | Solvent dehydration device | |
JPH04171019A (en) | Process for removing water content in mixed gas | |
CA3230475A1 (en) | A temperature vacuum swing adsorption process suited for carbon capture to regenerate sorbents using the co2 product gas as the heat transfer medium | |
AU2019369728B2 (en) | Carbon dioxide separation recovery system and method | |
JP6318580B2 (en) | Organic solvent recovery system | |
JP2013188701A (en) | Organic solvent dehydration device | |
JP2009291676A (en) | Solvent refining apparatus | |
KR20150093697A (en) | Organic solvent-containing gas processing system | |
JP2012081411A (en) | Solvent dehydrator | |
JP2012081412A (en) | Solvent dehydrator | |
JP6024131B2 (en) | Organic solvent dehydrator | |
JP2009273975A (en) | System for treatment of gas containing organic solvent | |
JP5527447B2 (en) | Organic solvent dehydrator | |
CN118251265A (en) | Utilization of carbon dioxide from ambient air | |
JP2010029739A (en) | Organic solvent-containing gas treatment system | |
JP2001137646A (en) | Device and method for adsorption treating waste gas | |
JP2001239127A (en) | Method for recovering organic solvent | |
JP2012081443A (en) | Solvent dehydrator | |
CN105749700A (en) | Novel continuous cylinder type volatile organic compound absorbing method | |
RU2669269C2 (en) | Method for regenerating the adsorbent of dehydration of natural gases | |
JP2012081410A (en) | Apparatus and method for refining organic solvent | |
CN108025247A (en) | By means of the method and apparatus of enthalpy wheel and sorption wheel purification air | |
WO2020203780A1 (en) | Organic solvent recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140407 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20140509 |