JP2013187489A - Compound semiconductor substrate and manufacturing method of the same - Google Patents
Compound semiconductor substrate and manufacturing method of the same Download PDFInfo
- Publication number
- JP2013187489A JP2013187489A JP2012053445A JP2012053445A JP2013187489A JP 2013187489 A JP2013187489 A JP 2013187489A JP 2012053445 A JP2012053445 A JP 2012053445A JP 2012053445 A JP2012053445 A JP 2012053445A JP 2013187489 A JP2013187489 A JP 2013187489A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- semiconductor layer
- substrate
- layer
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
本発明は、化合物半導体基板及びその製造方法に関する。より詳細には、Si基板上に形成されたGaAsSb層を備えた化合物半導体基板及びその製造方法に関する。 The present invention relates to a compound semiconductor substrate and a manufacturing method thereof. More specifically, the present invention relates to a compound semiconductor substrate having a GaAsSb layer formed on a Si substrate and a method for manufacturing the same.
GaAsに代表される化合物半導体は、Siでは得ることのできない特性を発現することができるため、HEMT(High Electron Mobility Transistor)やHBT(Heterojunction Bipolar Transistor)などの高速電子デバイスや、LED(Light Emitted Diode)、LD(Laser Diode)などの光デバイス、高効率の太陽電池、磁気センサなど多岐に渡るデバイスへの応用が進められている。 Since compound semiconductors typified by GaAs can exhibit characteristics that cannot be obtained with Si, high-speed electronic devices such as HEMT (High Electron Mobility Transistor) and HBT (Heterojunction Bipolar Transistor), and LED (Light Emitter). ), Optical devices such as LD (Laser Diode), high-efficiency solar cells, magnetic sensors, etc., are being applied to a wide variety of devices.
これらのデバイスにおいて、良好な特性、信頼性を得るためには、その上にデバイス層を形成するための基板上に、結晶欠陥が少なく、表面が平坦な化合物半導体層を形成する技術が重要である。基板材料としてGaAsやInPなどの単結晶からなる化合物半導体を基板として用いると、Siを用いた場合よりも比較的容易に結晶欠陥が少なく、表面が平坦な化合物半導体を形成することができるため、基板材料としては、化合物半導体が良く用いられている。 In these devices, in order to obtain good characteristics and reliability, it is important to have a technology that forms a compound semiconductor layer with few crystal defects and a flat surface on the substrate on which the device layer is to be formed. is there. When a compound semiconductor made of a single crystal such as GaAs or InP is used as a substrate material, a compound semiconductor with fewer crystal defects and a flat surface can be formed relatively easily than when Si is used. A compound semiconductor is often used as a substrate material.
しかしながら、化合物半導体を用いた場合、一般的に大型の単結晶を得るのが難しく、基板の大口径化がSiよりも難しい。またGaAsやInPは、Siと比較すると、脆くて割れやすい上、価格の上でも高価である。 However, when a compound semiconductor is used, it is generally difficult to obtain a large single crystal, and it is more difficult to increase the substrate diameter than Si. GaAs and InP are more brittle and easier to break than Si, and are expensive in terms of price.
そこで、安価で割れにくく、大口径化が容易なSi基板の上に化合物半導体層を形成した化合物半導体基板が注目されている。高品質の化合物半導体層をSi基板上に形成することができれば、優れた特徴をもつ化合物半導体のデバイスと、Si上の大規模な信号処理回路とを融合させたOEIC(Opto−Electronic Integrated Circuit)などについても利用が可能となる。 Thus, a compound semiconductor substrate in which a compound semiconductor layer is formed on an Si substrate that is inexpensive, difficult to crack, and easy to increase in diameter has attracted attention. If a high-quality compound semiconductor layer can be formed on a Si substrate, an OEIC (Opto-Electronic Integrated Circuit) in which a compound semiconductor device having excellent characteristics and a large-scale signal processing circuit on Si are fused. Etc. can be used.
しかしながら、Si基板上に化合物半導体層を形成する場合、格子定数や熱膨張係数が大きく異なるため、これに起因したミスフイットが生じてしまい、結晶欠陥が多く発生してしまう。例えば、SiとGaAsとの間では、格子定数は約4%の差が存在し、線膨張係数は3倍もの差がある。従って、Si基板上に、結晶欠陥が少なく、表面が平坦なGaAsを形成するのは容易ではない。 However, when the compound semiconductor layer is formed on the Si substrate, the lattice constant and the thermal expansion coefficient are greatly different, so that misfit due to this occurs, and many crystal defects are generated. For example, there is a difference of about 4% in lattice constant between Si and GaAs, and the linear expansion coefficient is 3 times different. Therefore, it is not easy to form GaAs with few crystal defects and a flat surface on the Si substrate.
Si基板上に、結晶欠陥が少なく、表面が平坦な化合物半導体薄膜を形成するためには、Si基板表面の自然酸化膜除去、表面処理の工程が重要となる。 In order to form a compound semiconductor thin film with few crystal defects and a flat surface on the Si substrate, a process of removing a natural oxide film on the surface of the Si substrate and a surface treatment are important.
例えば、特許文献1によると、Si基板上にAsを含む化合物半導体を設けた化合物半導体基板において、Si基板と、化合物半導体層との界面に、化合物半導体層よりもAsの濃度が高い物質を島状に存在させる方法が提案されている。 For example, according to Patent Document 1, in a compound semiconductor substrate in which a compound semiconductor containing As is provided on an Si substrate, a substance having a higher As concentration than the compound semiconductor layer is formed at the interface between the Si substrate and the compound semiconductor layer. The method of making it exist in a shape is proposed.
特許文献1に開示された技術によれば、Si基板上に結晶性が良く、且つ、表面が平坦なGaAsを形成することができる。 According to the technique disclosed in Patent Document 1, GaAs having good crystallinity and a flat surface can be formed on a Si substrate.
しかしながら、Si基板上に結晶性が良く、且つ、表面が平坦なGaAsを形成するのは容易ではない。すなわち、Asは蒸気圧が高く再蒸発しやすいため、Si基板上にGaAsを形成する場合、GaAs表面の被覆性が十分でなくGaAsは3次元成長してしまう。そのため、表面の平坦性を得にくい。 However, it is not easy to form GaAs with good crystallinity and a flat surface on the Si substrate. That is, As has a high vapor pressure and easily re-evaporates, when GaAs is formed on a Si substrate, the coverage of the GaAs surface is not sufficient and GaAs grows three-dimensionally. Therefore, it is difficult to obtain surface flatness.
十分な平坦性を得るためには、極端に過剰なAs原料の供給が必要となる。極端に過剰なAs原料の供給は、成長装置チャンバの真空度悪化及びそれに伴う真空ポンプへの負荷、或いは成長装置のチャンバの汚染、さらにはAs原料の消費を著しく早めてしまう等の問題があり、改善が要求される。 In order to obtain sufficient flatness, an extremely excessive supply of As material is required. Supplying an extremely excessive amount of As raw material has problems such as deterioration of the vacuum degree of the growth apparatus chamber and the accompanying load on the vacuum pump, contamination of the growth apparatus chamber, and further rapid consumption of the As raw material. Improvement is required.
さらにSi基板上に化合物半導体層としてGaAs層を形成した化合物半導体基板を用いた場合、化合物半導体基板のGaAs層上に形成されるデバイス層としての積層体の設計自由度は限定される。例えば、GaAsは2成分の化合物半導体なので組成率を制御することができない。そのため、GaAs層を光デバイスの発光層、受光層に用いる場合、GaAsのエネルギーバンドギャップと異なる発光、吸収波長帯が必要となる場合に対応することができない。また、GaAs層上にGaAsと格子定数が大きく異なる材料を形成する場合は、格子不整合による欠陥が発生してしまい対応が困難である。 Further, when a compound semiconductor substrate in which a GaAs layer is formed as a compound semiconductor layer on a Si substrate is used, the degree of freedom in designing a stacked body as a device layer formed on the GaAs layer of the compound semiconductor substrate is limited. For example, since GaAs is a two-component compound semiconductor, the composition ratio cannot be controlled. Therefore, when the GaAs layer is used for the light emitting layer and the light receiving layer of the optical device, it cannot cope with a case where light emission and absorption wavelength bands different from the energy band gap of GaAs are required. Further, when a material having a lattice constant significantly different from that of GaAs is formed on the GaAs layer, defects due to lattice mismatch are generated and it is difficult to cope with it.
すなわち、GaAsを用いる場合、当然のことながらエネルギーバンドギャップ、格子定数の制約を受け、設計自由度に乏しい。 That is, when GaAs is used, it is naturally limited by the energy band gap and lattice constant, and the degree of freedom in design is poor.
一方、GaAs1-ySby層はSb組成yを変えることで、所望のエネルギーバンドギャップ、格子定数の値を得ることができるので、その上に形成されるデバイス層としての積層体の設計自由度が広がるという観点から、化合物半導体基板の化合物半導体層として好ましい。 Meanwhile, GaAs 1-y Sb y layer is by changing the Sb composition y, the desired energy band gap, it is possible to obtain a value of the lattice constant, the design freedom of the stack as the device layer to be formed thereon From the viewpoint of widening the degree, it is preferable as the compound semiconductor layer of the compound semiconductor substrate.
しかし従来知られている方法では、Si基板上に結晶性が良く、且つ、表面が平坦なGaAs1-ySbyを形成するのは容易ではない。すなわち、Sb組成yを増加させるにつれて結晶性が悪化してしまい、Sb組成がわずかに0.05程度でも結晶性は相当悪化してしまう。また、Sb組成yをわずかに増加させる際、GaAs1-ySbyを形成中にGa、Asに加えて微量のSb原料を供給するが、Si基板上にGaAsを形成する場合と同様に、GaAs1-ySbyは3次元成長してしまい、表面の平坦性を十分に得ることができない。 However, in the conventionally known methods may crystallinity on the Si substrate, and the surface it is not easy to form a flat GaAs 1-y Sb y. That is, as the Sb composition y is increased, the crystallinity deteriorates, and even if the Sb composition is only about 0.05, the crystallinity is considerably deteriorated. Further, when increasing the Sb composition y slightly, as if Ga during formation of GaAs 1-y Sb y, supplies Sb raw material in addition to the As traces, forming a GaAs on a Si substrate, GaAs 1-y Sb y is would grow three-dimensionally, it is impossible to obtain a flatness of the surface sufficiently.
すなわち本発明は、Si基板上に、結晶性が良く、且つ、表面の平坦性に優れたGaAsSbを化合物半導体層として備えた化合物半導体基板を容易に実現可能な製造方法を提供することを目的とする。 That is, an object of the present invention is to provide a manufacturing method capable of easily realizing a compound semiconductor substrate having GaAsSb as a compound semiconductor layer having good crystallinity and excellent surface flatness on a Si substrate. To do.
本発明は、Si基板上に第1の化合物半導体層を形成する工程と、第1の化合物半導体層上に、第1の化合物半導体層を形成するときよりも高温で、第2の化合物半導体層を形成する工程とを備える化合物半導体基板の製造方法であって、第1の化合物半導体層は、GaAs1-xSbx(0≦x≦0.1)層であり、第2の化合物半導体層は、GaAs1-ySby(0<y≦0.1)層であり、第2の化合物半導体層を形成する工程は、Ga原料とAs原料とSb原料とを同時に照射する工程であり、第2の化合物半導体層を形成する工程において、Sb原料の分子線強度と、第2の化合物半導体層の形成速度が1時間当たり1μmとなるために必要なGa原料の分子線強度との比が1以上であることを特徴とする。 The present invention includes a step of forming a first compound semiconductor layer on a Si substrate, and a second compound semiconductor layer at a higher temperature than when forming the first compound semiconductor layer on the first compound semiconductor layer. The first compound semiconductor layer is a GaAs 1-x Sb x (0 ≦ x ≦ 0.1) layer, and the second compound semiconductor layer is GaAs 1-y Sb y (0 <y ≦ 0.1) layer, forming a second compound semiconductor layer is a step of irradiating the Ga raw material and as raw material and Sb raw material and at the same time, In the step of forming the second compound semiconductor layer, the ratio between the molecular beam intensity of the Sb material and the molecular beam intensity of the Ga material necessary for the formation rate of the second compound semiconductor layer to be 1 μm per hour is It is 1 or more.
本発明の一実施形態において、第1の化合物半導体層は、GaAs層であることを特徴とする。 In one embodiment of the present invention, the first compound semiconductor layer is a GaAs layer.
本発明の一実施形態において、第2の化合物半導体層の形成速度は、1時間当たり0.05μm以上0.3μm以下であることを特徴とする。 In one embodiment of the present invention, the formation rate of the second compound semiconductor layer is 0.05 μm or more and 0.3 μm or less per hour.
本発明の一実施形態において、As原料は、As2分子であることを特徴とする。 In one embodiment of the present invention, the As raw material is an As 2 molecule.
本発明の一実施形態において、As原料は、As4分子をクラッキングすることにより生成されることを特徴とする。 In one embodiment of the present invention, the As raw material is produced by cracking As 4 molecules.
本発明は、Si基板と、Si基板上に形成された、第1の化合物半導体層と、第1の化合物半導体層上に形成された、第2の化合物半導体層とを備えた化合物半導体基板であって、第1の化合物半導体層は、GaAs1-xSbx(0≦x≦0.1)層であり、第2の化合物半導体層は、GaAs1-ySby(0<y≦0.1)層であり、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値は、700秒以下であり、且つ第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrms値は、3nm以下であることを特徴とする。
The present invention is a compound semiconductor substrate comprising a Si substrate, a first compound semiconductor layer formed on the Si substrate, and a second compound semiconductor layer formed on the first compound semiconductor layer. there, the first compound semiconductor layer, a GaAs 1-x Sb x (0 ≦ x ≦ 0.1) layer, the
本発明の一実施形態において、第1の化合物半導体層は、GaAs層であり、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値は、600秒以下であり、且つ第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrms値は、3nm以下であることを特徴とする。 In one embodiment of the present invention, the first compound semiconductor layer is a GaAs layer, and the FWHM of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane orientation of the Si substrate of the second compound semiconductor layer. The value is 600 seconds or less, and the root mean square value Rrms value of the surface roughness in the 10 μm square region of the second compound semiconductor layer is 3 nm or less.
本発明の一実施形態において、第1の化合物半導体層は、GaAs層であり、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値は、500秒以下であり、且つ第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrms値は、2nm以下であることを特徴とする。 In one embodiment of the present invention, the first compound semiconductor layer is a GaAs layer, and the FWHM of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane orientation of the Si substrate of the second compound semiconductor layer. The value is 500 seconds or less, and the root mean square value Rrms value of the surface roughness in a 10 μm square region of the second compound semiconductor layer is 2 nm or less.
本発明の化合物半導体基板の製造方法によれば、Si基板上に、結晶性が良く、且つ、表面の平坦性に優れたGaAsSb層を含む化合物半導体層を備えた化合物半導体基板を容易に実現することができる。 According to the method for manufacturing a compound semiconductor substrate of the present invention, a compound semiconductor substrate including a compound semiconductor layer including a GaAsSb layer having good crystallinity and excellent surface flatness on a Si substrate is easily realized. be able to.
図1は、本発明による化合物半導体基板10の断面図である。Si基板101の上に、第1の化合物半導体層102、第2の化合物半導体層103が順次積層されている。
FIG. 1 is a cross-sectional view of a
この化合物半導体基板は、各種の成膜方法を用いて形成される。例えば、分子線エピタキシー(MBE)法や有機金属気相エピタキシー(MOVPE)法などは好ましい方法である。これらの方法を用いて、化合物半導体基板を形成する。 This compound semiconductor substrate is formed using various film forming methods. For example, a molecular beam epitaxy (MBE) method or a metal organic vapor phase epitaxy (MOVPE) method is a preferable method. Using these methods, a compound semiconductor substrate is formed.
本発明により形成した化合物半導体基板は、基板を形成した成膜装置から一旦、大気中に取り出しても良い。大気中に取り出した基板は、そのままエッチング、電極形成するなどして半導体デバイスを作製しても良いし、基板を形成したのと同一の成膜装置、或いは別の成膜装置に再度導入し、基板上に新たにデバイス層としての化合物半導体の積層体を形成しても良い。 The compound semiconductor substrate formed according to the present invention may be temporarily taken out into the atmosphere from the film forming apparatus on which the substrate is formed. The substrate taken out into the atmosphere may be used as it is to form a semiconductor device by etching, electrode formation, etc., or it may be introduced again into the same film forming apparatus that formed the substrate, or another film forming apparatus, A compound semiconductor laminate as a device layer may be newly formed on the substrate.
また、本発明により化合物半導体基板を形成した後、基板を形成したのと同一の成膜装置において引き続き、或いは真空を保持したまま別の成膜装置に搬送した後、基板上に新たに化合物半導体の積層体を形成しても良い。 In addition, after the compound semiconductor substrate is formed according to the present invention, the compound semiconductor substrate is newly formed on the substrate after it is continuously transferred to another film forming apparatus while maintaining the vacuum in the same film forming apparatus in which the substrate is formed. A laminate of the above may be formed.
本発明により形成した化合物半導体基板上に、新たに形成する化合物半導体の積層体に用いる材料は、特に制限されない。例えば、GaAs、InAs、InSb、InGaPなどが挙げられる。 The material used for the stack of compound semiconductors newly formed on the compound semiconductor substrate formed according to the present invention is not particularly limited. For example, GaAs, InAs, InSb, InGaP, and the like can be given.
以下に図1に示す各層の説明をする。
[Si基板]
Si基板は、一般に単結晶を成長できるものであれば特に制限されず、Siの単結晶基板が好ましく用いられる。単結晶基板は、半絶縁性基板であっても良いし、ドナー不純物やアクセプタ不純物によって、n型やp型にドーピングされた導電性基板であっても良い。
Hereinafter, each layer shown in FIG. 1 will be described.
[Si substrate]
The Si substrate is not particularly limited as long as it can generally grow a single crystal, and a Si single crystal substrate is preferably used. The single crystal substrate may be a semi-insulating substrate or a conductive substrate doped n-type or p-type with donor impurities or acceptor impurities.
単結晶基板の面方位は特に制限はないが、(100)、(111)、(110)等が好ましい。また、これらの面方位に対して1°から5°傾けた面方位を用いることもある。 The plane orientation of the single crystal substrate is not particularly limited, but (100), (111), (110) and the like are preferable. Further, a plane orientation inclined by 1 ° to 5 ° with respect to these plane orientations may be used.
基板表面は、真空中で加熱して酸化膜除去しても良いし、有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行っても良い。 The substrate surface may be heated in vacuum to remove the oxide film, or after removing contaminants such as organic substances and metals, the surface oxide film is removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment may be performed.
[第1の化合物半導体層]
本実施形態において、第1の化合物半導体層はGaAs1-xSbx(0≦x≦1)層である。
[First compound semiconductor layer]
In the present embodiment, the first compound semiconductor layer is a GaAs 1-x Sb x (0 ≦ x ≦ 1) layer.
第1の化合物半導体層は、結晶性が良く、且つ、表面の平坦性に優れた第2の化合物半導体層を形成するための、バッファ層としての役割を果たす。当然のことながら、バッファ層としての第1の化合物半導体層自体も、結晶性が良く、且つ、表面の平坦性も優れていることが好ましい。 The first compound semiconductor layer serves as a buffer layer for forming the second compound semiconductor layer having good crystallinity and excellent surface flatness. As a matter of course, it is preferable that the first compound semiconductor layer itself as the buffer layer also has good crystallinity and excellent surface flatness.
第1の化合物半導体層は、高温で形成すると、表面の凹凸が激しくなり、十分な平坦性を確保することができなくなるため、比較的低温で形成することが多い。形成時の温度は、結晶性の観点から150度以上であることが好ましい。また、形成時の温度は、平坦性確保の観点から350度以下であることが好ましい。 When the first compound semiconductor layer is formed at a high temperature, the unevenness of the surface becomes severe and sufficient flatness cannot be ensured. Therefore, the first compound semiconductor layer is often formed at a relatively low temperature. The temperature during formation is preferably 150 ° C. or more from the viewpoint of crystallinity. Moreover, it is preferable that the temperature at the time of formation is 350 degrees or less from a viewpoint of ensuring flatness.
第1の化合物半導体層は、低温で形成した場合、表面の平坦性は十分であるが、結晶性は必ずしも良くなくなってしまう。但し、第1の化合物半導体層を形成後に、第1の化合物半導体層の温度を上昇させ保持すると、アニール効果によって結晶性、表面の平坦性いずれも改善することができる。例えば、低温で第1の化合物半導体層を形成した後、温度をアニール効果が発現する程度に上昇させて保持した後、高温で第1の化合物半導体層上に第2の化合物半導体層を形成することが多い。 When the first compound semiconductor layer is formed at a low temperature, the flatness of the surface is sufficient, but the crystallinity is not always good. However, if the temperature of the first compound semiconductor layer is raised and maintained after the first compound semiconductor layer is formed, both the crystallinity and the surface flatness can be improved by the annealing effect. For example, after the first compound semiconductor layer is formed at a low temperature, the temperature is raised and maintained so as to exhibit the annealing effect, and then the second compound semiconductor layer is formed on the first compound semiconductor layer at a high temperature. There are many cases.
第1の化合物半導体層の膜厚は、結晶性の確保及び被覆性の観点から5nm以上であることが好ましい。また、第1の化合物半導体層の膜厚は、結晶性やアニール効果による改善効果の観点から50nm以下であることが好ましい。 The film thickness of the first compound semiconductor layer is preferably 5 nm or more from the viewpoint of ensuring crystallinity and covering properties. Further, the film thickness of the first compound semiconductor layer is preferably 50 nm or less from the viewpoint of the improvement effect due to the crystallinity and the annealing effect.
第1の化合物半導体層のSb組成xは、結晶性の観点から、0以上0.1以下が好ましい。特に、x=0、すなわち、第1の化合物半導体層がGaAsのとき、結晶性が非常に良く好ましい。 The Sb composition x of the first compound semiconductor layer is preferably 0 or more and 0.1 or less from the viewpoint of crystallinity. In particular, when x = 0, that is, when the first compound semiconductor layer is GaAs, the crystallinity is very good and preferable.
第1の化合物半導体層は、ノンドープでも良いし、ドナー不純物やアクセプタ不純物によって、n型やp型にドーピングしても良い。 The first compound semiconductor layer may be non-doped or may be doped n-type or p-type with a donor impurity or an acceptor impurity.
また、有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行ったSi基板と、第1の化合物半導体層との間に、Asを先行照射させることで、第1の化合物半導体層よりもAs濃度の高い物質を島状に存在させると、結晶性が良く、優れた表面の平坦性が得られるので好ましい。 In addition, after removing contaminants such as organic matter and metal, the surface oxide film is removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%, and a hydrogen-terminated Si substrate and the first compound When a substance having an As concentration higher than that of the first compound semiconductor layer is present in an island shape by pre-irradiating As between the semiconductor layer and the semiconductor layer, crystallinity is good and excellent surface flatness is obtained. Therefore, it is preferable.
[第2の化合物半導体層]
本実施形態において、第2の化合物半導体層は、GaAs1-ySby(0<y≦1)層である。
[Second Compound Semiconductor Layer]
In the present embodiment, the second compound semiconductor layer is GaAs 1-y Sb y (0 <y ≦ 1) layer.
第2の化合物半導体層は、第1の化合物半導体層上にGa、As、Sb原料を同時照射することで形成される。 The second compound semiconductor layer is formed by simultaneously irradiating Ga, As, and Sb raw materials on the first compound semiconductor layer.
図2は、基板温度を580℃とし、GaとAs原料の分子線強度をそれぞれ一定にした条件下において、Sb分子線強度を変化させながら第2の化合物半導体層を形成したときの、Sb分子線強度と、第2の化合物半導体層の表面粗さの二乗平均値Rrmsとの関係を示したグラフである。 FIG. 2 shows the Sb molecules when the second compound semiconductor layer is formed while changing the Sb molecular beam intensity under the condition that the substrate temperature is 580 ° C. and the molecular beam intensities of the Ga and As raw materials are constant. It is the graph which showed the relationship between line strength and the root mean square value Rrms of the surface roughness of a 2nd compound semiconductor layer.
Sbの分子線強度が7×10-7Torr以上で、Rrmsが急激に減少し、優れた表面の平坦性が得られることが理解される。Sbの分子線強度が7×10-7Torr以上であるということは、Sb原料の分子線強度と、第2の化合物半導体層の形成速度が1時間当たり1μmとなるために必要なGa原料の分子線強度との比とで言い換えると、その比が1以上であることに相当している。 It is understood that when the molecular beam intensity of Sb is 7 × 10 −7 Torr or more, Rrms decreases rapidly and excellent surface flatness is obtained. That the molecular beam intensity of Sb is 7 × 10 −7 Torr or more means that the molecular beam intensity of the Sb material and the formation rate of the second compound semiconductor layer are 1 μm per hour. In other words, the ratio to the molecular beam intensity corresponds to a ratio of 1 or more.
すなわち、優れた表面の平坦性を得るためには、Sb原料の分子線強度と、第2の化合物半導体層の形成速度が1時間当たり1μmとなるために必要なGa原料の分子線強度との比(以下、換算Sb/Ga分子線強度比と称することがある)が1以上であることが好ましい。 That is, in order to obtain excellent surface flatness, the molecular beam intensity of the Sb raw material and the molecular beam intensity of the Ga raw material necessary for the formation rate of the second compound semiconductor layer to be 1 μm per hour The ratio (hereinafter sometimes referred to as a converted Sb / Ga molecular beam intensity ratio) is preferably 1 or more.
換算Sb/Ga分子線強度比が1以上であるような、Sb原料の分子線強度は、例えば、GaAs基板上にInSb、GaSb、AlSb、AlGaSbなどの、V族元素がSbのみからなる半導体薄膜を形成する場合、結晶性が良く、優れた平坦性を容易に得るのに、十分なSb原料の分子線強度である。 The molecular beam intensity of the Sb raw material having a converted Sb / Ga molecular beam intensity ratio of 1 or more is, for example, a semiconductor thin film in which a group V element such as InSb, GaSb, AlSb, and AlGaSb is made of only Sb on a GaAs substrate. In the case of forming, the molecular beam intensity of the Sb raw material is sufficient to easily obtain crystallinity and excellent flatness.
第2の化合物半導体層のSb組成yは、結晶性確保の観点から0.1以下が好ましい。換算Sb/Ga分子線強度比が1以上であり、且つ、As原料がAs4分子の場合、As4分子は反応性や付着係数がSbに比べて低いため、Sb組成yは大きくなってしまう場合がある。そのため、As原料は反応性や付着係数が高いAs2分子であることが好ましい。As2分子は反応性や付着係数が高いため、Sb組成yはそれほど大きくならず、Sb組成0.1以下の第2の化合物半導体を容易に形成することができる。反応性や付着係数の高いAs2分子は、例えばAs4分子を加熱等によりクラッキングすることにより生成することが可能である。 The Sb composition y of the second compound semiconductor layer is preferably 0.1 or less from the viewpoint of ensuring crystallinity. When the converted Sb / Ga molecular beam intensity ratio is 1 or more and the As raw material is As 4 molecules, the As 4 molecules have a lower reactivity and adhesion coefficient than Sb, so the Sb composition y becomes large. There is a case. Therefore, the As raw material is preferably an As 2 molecule having high reactivity and adhesion coefficient. Since the As 2 molecule has a high reactivity and adhesion coefficient, the Sb composition y does not become so large, and a second compound semiconductor having an Sb composition of 0.1 or less can be easily formed. As 2 molecules having high reactivity and adhesion coefficient can be generated, for example, by cracking As 4 molecules by heating or the like.
第2の化合物半導体層の形成時の温度は、結晶性及び表面平坦性の観点から、550度以上が好ましい。また、第2の化合物半導体層の形成時の温度は、V族元素であるAs,Sbの再蒸発を防止して、結晶性及び表面平坦性を確保する観点から700度以下であることが好ましい。 The temperature at the time of forming the second compound semiconductor layer is preferably 550 ° C. or higher from the viewpoint of crystallinity and surface flatness. Further, the temperature at the time of forming the second compound semiconductor layer is preferably 700 ° C. or less from the viewpoint of preventing re-evaporation of the group V elements As and Sb and ensuring crystallinity and surface flatness. .
第2の化合物半導体層は、ノンドープでも良いし、ドナー不純物やアクセプタ不純物によって、n型やp型にドーピングしても良い。 The second compound semiconductor layer may be non-doped or may be doped n-type or p-type with a donor impurity or an acceptor impurity.
第2の化合物半導体層の膜厚は、十分な結晶性確保の観点から0.3μm以下が好ましい。また、第2の化合物半導体層の膜厚は、形成時間の観点から5μm以下が好ましい。 The film thickness of the second compound semiconductor layer is preferably 0.3 μm or less from the viewpoint of ensuring sufficient crystallinity. The film thickness of the second compound semiconductor layer is preferably 5 μm or less from the viewpoint of formation time.
第2の化合物半導体層の形成速度は、結晶性確保の観点から1.5μm/h以下が好ましく、0.3μm/h以下がより好ましい。また、第2の化合物半導体層の形成速度は、形成時間の観点から、0.05μm/h以上が好ましく、0.1μm/h以上がより好ましい。第2の化合物半導体層の形成速度は、所望の結晶性、形成時間に応じて、適宜決めることができる。 The formation rate of the second compound semiconductor layer is preferably 1.5 μm / h or less, and more preferably 0.3 μm / h or less from the viewpoint of ensuring crystallinity. In addition, the formation rate of the second compound semiconductor layer is preferably 0.05 μm / h or more, and more preferably 0.1 μm / h or more from the viewpoint of formation time. The formation rate of the second compound semiconductor layer can be appropriately determined according to desired crystallinity and formation time.
以下、本発明を実施例に基づいて詳細に説明するが、本発明は、下記実施例に限定されるものではなく、その発明の主旨を逸脱しない範囲において、種々変更可能であることは言うまでもない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the following examples, and it is needless to say that various modifications can be made without departing from the spirit of the invention. .
[実施例1]
まず、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。
[Example 1]
First, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%, and hydrogen termination treatment was performed. .
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が1.76×10-6TorrのSbとを同時に照射することにより、膜厚20nmの第1の化合物半導体層(GaAs1-xSbx層)を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, an As 2 molecule generated by cracking, ie heating, Ga having a molecular beam intensity of 7 × 10 −8 Torr and an As 4 molecule having a molecular beam intensity of 3 × 10 −5 Torr, and a molecular beam intensity of 1.76. A first compound semiconductor layer (GaAs 1-x Sb x layer) having a thickness of 20 nm was formed at a formation rate of 0.1 μm per hour by simultaneously irradiating Sb of × 10 −6 Torr.
その後、基板温度が660℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が1.76×10-6TorrのSbとを同時に照射することにより、膜厚980nmの第2の化合物半導体層(GaAs1-ySby層)を、1時間当たり1μmの形成速度で形成した。このとき、Sb原料の分子線強度と、第2の化合物半導体層の形成速度が1時間当たり1μmとなるために必要なGa原料の分子線強度との比(換算Sb/Ga分子線強度比)は2.51である。 Thereafter, the substrate temperature is heated to 660 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules and Sb having a molecular beam intensity of 1.76 × 10 −6 Torr, a second compound semiconductor layer having a thickness of 980 nm (GaAs 1-y Sb y layer) was formed at a formation rate of 1 μm per hour. At this time, the ratio between the molecular beam intensity of the Sb raw material and the molecular beam intensity of the Ga raw material necessary for the formation rate of the second compound semiconductor layer to be 1 μm per hour (converted Sb / Ga molecular beam intensity ratio) Is 2.51.
第2の化合物半導体層の(111)面に対応するX線回折ピークをX線回折装置(PHILIPS社製、PW1830)を用いて解析したところ、Sb組成yは0.032であった。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブのFWHM値は610秒であった。さらに、第2の化合物半導体層の10μm四方の領域における表面粗さの二乗平均値Rrmsを原子間力顕微鏡(AFM)で評価したところ、1.8nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was analyzed using an X-ray diffraction apparatus (PW1830, manufactured by PHILIPS), the Sb composition y was 0.032. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 610 seconds. Furthermore, when the root mean square value Rrms of the surface roughness in the 10 μm square region of the second compound semiconductor layer was evaluated with an atomic force microscope (AFM), it was 1.8 nm.
すなわち、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブのFWHM値が700秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における表面粗さの二乗平均値Rrmsが3nm以下である化合物半導体基板を実現した。 In other words, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer is 700 seconds or less, and 10 μm square of the second compound semiconductor layer A compound semiconductor substrate in which the root mean square value Rrms of the surface roughness in the region was 3 nm or less was realized.
[実施例2]
まず、実施例1と同様に、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。
[Example 2]
First, as in Example 1, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment was performed.
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が2.8×10-6TorrのSbとを同時に照射することにより、膜厚20nmの第1の化合物半導体層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, an As 2 molecule generated by cracking, ie heating, Ga having a molecular beam intensity of 7 × 10 −8 Torr and an As 4 molecule having a molecular beam intensity of 3 × 10 −5 Torr, and a molecular beam intensity of 2.8. By simultaneously irradiating Sb of × 10 −6 Torr, a first compound semiconductor layer having a thickness of 20 nm was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が660℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が2.8×10-6TorrのSbとを同時に照射することにより、膜厚980nmの第2の化合物半導体層を、1時間当たり1μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は4である。 Thereafter, the substrate temperature is heated to 660 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules generated by heating and Sb having a molecular beam intensity of 2.8 × 10 −6 Torr, a second compound semiconductor layer having a thickness of 980 nm is formed at 1 μm per hour. Formed at a rate of At this time, the converted Sb / Ga molecular beam intensity ratio is 4.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは0.052であった。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブの、FWHM値は660秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値、Rrms値を原子間力顕微鏡(AFM)で評価したところ、1.6nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was analyzed, the Sb composition y was 0.052. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 660 seconds. Furthermore, when the mean square value of the surface roughness and the Rrms value in a 10 μm square region of the second compound semiconductor layer were evaluated by an atomic force microscope (AFM), it was 1.6 nm.
すなわち、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブのFWHM値が700秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsが3nm以下である化合物半導体基板を実現した。 In other words, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer is 700 seconds or less, and 10 μm square of the second compound semiconductor layer A compound semiconductor substrate in which the root mean square value Rrms of the surface roughness in the region was 3 nm or less was realized.
[実施例3]
まず、実施例1と同様に、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。
[Example 3]
First, as in Example 1, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment was performed.
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚20nmの第1の化合物半導体層であるGaAs層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, the film is irradiated by simultaneously irradiating Ga having a molecular beam intensity of 7 × 10 −8 Torr and As 2 molecules generated by cracking, ie heating, As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr. A GaAs layer, which is a first compound semiconductor layer having a thickness of 20 nm, was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が660℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が1.66×10-6TorrのSbとを同時に照射することにより、膜厚980nmの第2の化合物半導体層を、1時間当たり1μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は2.37である。 Thereafter, the substrate temperature is heated to 660 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules and Sb having a molecular beam intensity of 1.66 × 10 −6 Torr, the second compound semiconductor layer having a thickness of 980 nm is 1 μm per hour. Formed at a rate of At this time, the converted Sb / Ga molecular beam intensity ratio is 2.37.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは0.033であった。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブのFWHM値は550秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値、Rrms値を原子間力顕微鏡(AFM)で評価したところ、2.2nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was analyzed, the Sb composition y was 0.033. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 550 seconds. Furthermore, when the mean square value of surface roughness and the Rrms value in a 10 μm square region of the second compound semiconductor layer were evaluated by an atomic force microscope (AFM), they were 2.2 nm.
すなわち、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値が600秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値、Rrms値が3nm以下である化合物半導体基板を実現した。 That is, the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer has a FWHM value of 600 seconds or less and the 10 μm square of the second compound semiconductor layer In this region, a compound semiconductor substrate having a surface roughness root mean square value and an Rrms value of 3 nm or less was realized.
[実施例4]
まず、実施例1と同様に、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。
[Example 4]
First, as in Example 1, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment was performed.
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚20nmの第1の化合物半導体層であるGaAs層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, the film is irradiated by simultaneously irradiating Ga having a molecular beam intensity of 7 × 10 −8 Torr and As 2 molecules generated by cracking, ie heating, As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr. A GaAs layer, which is a first compound semiconductor layer having a thickness of 20 nm, was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が660℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が8×10-7TorrのSbとを同時に照射することにより、膜厚980nmの第2の化合物半導体層を、1時間当たり1μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は1.14である。 Thereafter, the substrate temperature is heated to 660 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules generated and Sb having a molecular beam intensity of 8 × 10 −7 Torr, a second compound semiconductor layer having a thickness of 980 nm is formed at 1 μm per hour. Formed at speed. At this time, the converted Sb / Ga molecular beam intensity ratio is 1.14.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは0.015であった。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブのFWHM値は590秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsを原子間力顕微鏡(AFM)で評価したところ、2.9nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was analyzed, the Sb composition y was 0.015. Moreover, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 590 seconds. Furthermore, when the root mean square value Rrms of the 10 μm square region of the second compound semiconductor layer was evaluated with an atomic force microscope (AFM), it was 2.9 nm.
すなわち、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値が600秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsが3nm以下である化合物半導体基板を実現した。 That is, the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer has a FWHM value of 600 seconds or less and the 10 μm square of the second compound semiconductor layer In this region, a compound semiconductor substrate having a surface roughness root mean square value Rrms of 3 nm or less was realized.
[比較例1]
実施例3、4に対する比較例1について述べる。
[Comparative Example 1]
Comparative Example 1 for Examples 3 and 4 will be described.
まず、実施例1と同様に、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。 First, as in Example 1, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment was performed.
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚20nmの第1の化合物半導体層であるGaAs層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, the film is irradiated by simultaneously irradiating Ga having a molecular beam intensity of 7 × 10 −8 Torr and As 2 molecules generated by cracking, ie heating, As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr. A GaAs layer, which is a first compound semiconductor layer having a thickness of 20 nm, was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が580℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚980nmの第2の化合物半導体層をであるGaAs層を、1時間当たり1μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は、第2の化合物半導体層の形成時にSbを同時照射していないので、当然のことながら0である。 Then, the substrate temperature is heated to 580 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules, a GaAs layer, which is a second compound semiconductor layer having a thickness of 980 nm, was formed at a formation rate of 1 μm per hour. At this time, the converted Sb / Ga molecular beam intensity ratio is naturally 0 since Sb is not simultaneously irradiated when the second compound semiconductor layer is formed.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは、第2の化合物半導体層の形成時にSbを同時照射していないので、当然のことながら0である。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブのFWHM値は520秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsを原子間力顕微鏡(AFM)で評価したところ、20.5nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer is analyzed, the Sb composition y is naturally not simultaneously irradiated with Sb when the second compound semiconductor layer is formed. 0. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 520 seconds. Furthermore, when the root mean square value Rrms of the 10 μm square region of the second compound semiconductor layer was evaluated with an atomic force microscope (AFM), it was 20.5 nm.
実施例3、4と比較した場合、Rrms値が圧倒的に大きくなってしまうことがわかる。第2の化合物半導体層の形成時にSbを同時照射していない場合、第2の化合物半導体層は3次元成長してしまう。この状態で、Rrms値を下げるためには、第2の化合物半導体層形成時の基板温度を下げなければならないが、そうすると結晶性は悪化し、FWHM値は増大してしまう。 When compared with Examples 3 and 4, it can be seen that the Rrms value is overwhelmingly large. If Sb is not simultaneously irradiated when forming the second compound semiconductor layer, the second compound semiconductor layer grows three-dimensionally. In this state, in order to lower the Rrms value, the substrate temperature at the time of forming the second compound semiconductor layer must be lowered. However, in this case, the crystallinity deteriorates and the FWHM value increases.
すなわち、第2の化合物半導体層の形成時にSbを同時照射していない場合、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブのFWHM値が700秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsが3nm以下である化合物半導体基板を実現することはできない。 That is, when Sb is not simultaneously irradiated when forming the second compound semiconductor layer, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane orientation of the Si substrate of the second compound semiconductor layer is A compound semiconductor substrate having a surface roughness root mean square value Rrms of 3 nm or less in a 10 μm square region of the second compound semiconductor layer for 700 seconds or less cannot be realized.
[比較例2]
実施例3、4に対する比較例2について述べる。
[Comparative Example 2]
Comparative example 2 with respect to Examples 3 and 4 will be described.
比較例1では、実施例3、4と比較した場合、Rrms値が圧倒的に大きくなってしまう。Rrms値を小さくするためには、第二の化合物半導体層を、より低温で形成しなければならない。そこで、比較例1よりも低温で第二の化合物半導体層を形成した例を、比較例2として述べる。 In Comparative Example 1, when compared with Examples 3 and 4, the Rrms value is overwhelmingly large. In order to reduce the Rrms value, the second compound semiconductor layer must be formed at a lower temperature. Therefore, an example in which the second compound semiconductor layer is formed at a lower temperature than Comparative Example 1 will be described as Comparative Example 2.
まず、実施例1と同様に、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。 First, as in Example 1, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment was performed.
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚20nmの第1の化合物半導体層であるGaAs層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, the film is irradiated by simultaneously irradiating Ga having a molecular beam intensity of 7 × 10 −8 Torr and As 2 molecules generated by cracking, ie heating, As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr. A GaAs layer, which is a first compound semiconductor layer having a thickness of 20 nm, was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が420℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚980nmの第2の化合物半導体層をであるGaAs層を、1時間当たり1μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は、第2の化合物半導体層の形成時にSbを同時照射していないので、当然のことながら0である。 Thereafter, the substrate is heated to 420 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules, a GaAs layer, which is a second compound semiconductor layer having a thickness of 980 nm, was formed at a formation rate of 1 μm per hour. At this time, the converted Sb / Ga molecular beam intensity ratio is naturally 0 since Sb is not simultaneously irradiated when the second compound semiconductor layer is formed.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは、第2の化合物半導体層の形成時にSbを同時照射していないので、当然のことながら0である。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブのFWHM値は1040秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsを原子間力顕微鏡(AFM)で評価したところ、2.0nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer is analyzed, the Sb composition y is naturally not simultaneously irradiated with Sb when the second compound semiconductor layer is formed. 0. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 1040 seconds. Furthermore, when the root mean square value Rrms of the 10 μm square region of the second compound semiconductor layer was evaluated with an atomic force microscope (AFM), it was 2.0 nm.
比較例1と比較すると、Rrms値は小さくなったものの、FWHM値が大きくなってしまった。実施例3、4と比較した場合においても、FWHM値が圧倒的に大きくなってしまうことがわかる。 Compared with Comparative Example 1, although the Rrms value was small, the FWHM value was large. Even when compared with Examples 3 and 4, it can be seen that the FWHM value is overwhelmingly large.
すなわち、第2の化合物半導体層の形成時にSbを同時照射していない場合、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブのFWHM値が700秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsが3nm以下である化合物半導体基板を実現することはできない。 That is, when Sb is not simultaneously irradiated when forming the second compound semiconductor layer, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane orientation of the Si substrate of the second compound semiconductor layer is A compound semiconductor substrate having a surface roughness root mean square value Rrms of 3 nm or less in a 10 μm square region of the second compound semiconductor layer for 700 seconds or less cannot be realized.
[比較例3]
実施例3、4に対する比較例3について述べる。
[Comparative Example 3]
A comparative example 3 relative to the examples 3 and 4 will be described.
まず、実施例1と同様に、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。 First, as in Example 1, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%. Then, hydrogen termination treatment was performed.
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚20nmの第1の化合物半導体層であるGaAs層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, the film is irradiated by simultaneously irradiating Ga having a molecular beam intensity of 7 × 10 −8 Torr and As 2 molecules generated by cracking, ie heating, As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr. A GaAs layer, which is a first compound semiconductor layer having a thickness of 20 nm, was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が580℃になるまで加熱し、温度が一定になったところで、分子線強度が7×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が3.5×10-7TorrのSbとを同時に照射することにより、膜厚980nmの第2の化合物半導体層を、1時間当たり1μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は0.5である。 Then, the substrate temperature is heated to 580 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 7 × 10 −7 Torr and As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr are obtained. By simultaneously irradiating cracked or heated As 2 molecules generated by heating and Sb having a molecular beam intensity of 3.5 × 10 −7 Torr, a second compound semiconductor layer having a thickness of 980 nm is formed at 1 μm per hour. Formed at a rate of At this time, the converted Sb / Ga molecular beam intensity ratio is 0.5.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは0.026であった。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブのFWHM値は670秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsを原子間力顕微鏡(AFM)で評価したところ、20.3nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was analyzed, the Sb composition y was 0.026. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 670 seconds. Furthermore, the root mean square value Rrms of the 10 μm square region of the second compound semiconductor layer was evaluated by an atomic force microscope (AFM) to be 20.3 nm.
実施例3、4と比較した場合、Rrms値が圧倒的に大きくなってしまうことがわかる。第2の化合物半導体層の形成時にSbを同時照射していても、その量が少ない場合、すなわち、換算Sb/Ga分子線強度比が1以下の場合、第2の化合物半導体層は比較例1の場合と同様に3次元成長してしまう。この状態で、Rrms値を下げるためには、第2の化合物半導体層形成時の基板温度を下げなければならないが、そうすると結晶性は悪化し、FWHM値は増大してしまう。 When compared with Examples 3 and 4, it can be seen that the Rrms value is overwhelmingly large. Even if Sb is simultaneously irradiated when forming the second compound semiconductor layer, if the amount is small, that is, if the converted Sb / Ga molecular beam intensity ratio is 1 or less, the second compound semiconductor layer is Comparative Example 1. As in the case of, the three-dimensional growth occurs. In this state, in order to lower the Rrms value, the substrate temperature at the time of forming the second compound semiconductor layer must be lowered. However, in this case, the crystallinity deteriorates and the FWHM value increases.
すなわち、第2の化合物半導体層の形成時にSbを同時照射していても、その量が少ない場合、すなわち、換算Sb/Ga分子線強度比が1以下の場合、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブのFWHM値が700秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsが3nm以下である化合物半導体基板を実現することはできない。 That is, even when Sb is simultaneously irradiated at the time of forming the second compound semiconductor layer, when the amount is small, that is, when the converted Sb / Ga molecular beam intensity ratio is 1 or less, The FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate is 700 seconds or less, and the mean square value of the surface roughness in the 10 μm square region of the second compound semiconductor layer A compound semiconductor substrate having an Rrms of 3 nm or less cannot be realized.
[実施例5]
まず、Si(111)基板の表面の有機物、金属等の汚染物質を除去した後、濃度1.0wt%のフッ化水素水溶液を用いて表面の酸化膜を除去して、水素終端処理を行った。
[Example 5]
First, after removing contaminants such as organic substances and metals on the surface of the Si (111) substrate, the surface oxide film was removed using a hydrogen fluoride aqueous solution having a concentration of 1.0 wt%, and hydrogen termination treatment was performed. .
これを直ちにMBE装置内に導入し、1×10-6Torr(1.333×10-6Pa)以下の真空中で、基板温度が300℃になるまで加熱し、温度が一定になったところでAsを照射した。 This was immediately introduced into the MBE apparatus, heated in a vacuum of 1 × 10 −6 Torr (1.333 × 10 −6 Pa) or less until the substrate temperature reached 300 ° C., and when the temperature became constant As was irradiated.
引き続き、分子線強度が7×10-8TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子とを同時に照射することにより、膜厚20nmの第1の化合物半導体層であるGaAs層を、1時間当たり0.1μmの形成速度で形成した。 Subsequently, the film is irradiated by simultaneously irradiating Ga having a molecular beam intensity of 7 × 10 −8 Torr and As 2 molecules generated by cracking, ie heating, As 4 molecules having a molecular beam intensity of 3 × 10 −5 Torr. A GaAs layer, which is a first compound semiconductor layer having a thickness of 20 nm, was formed at a formation rate of 0.1 μm per hour.
その後、基板温度が660℃になるまで加熱し、温度が一定になったところで、分子線強度が1.4×10-7TorrのGaと、分子線強度が3×10-5TorrのAs4分子をクラッキングすなわち加熱して生成したAs2分子と、分子線強度が1.64×10-6TorrのSbとを同時に照射することにより、膜厚980nmの第2の化合物半導体層を、1時間当たり0.2μmの形成速度で形成した。このとき、換算Sb/Ga分子線強度比は2.34である。 Thereafter, the substrate is heated to 660 ° C., and when the temperature becomes constant, Ga having a molecular beam intensity of 1.4 × 10 −7 Torr and As 4 having a molecular beam intensity of 3 × 10 −5 Torr. By simultaneously irradiating As 2 molecules generated by cracking or heating the molecules and Sb having a molecular beam intensity of 1.64 × 10 −6 Torr, the second compound semiconductor layer having a thickness of 980 nm is formed for 1 hour. The film was formed at a formation speed of 0.2 μm per unit. At this time, the converted Sb / Ga molecular beam intensity ratio is 2.34.
第2の化合物半導体層の(111)面に対応するX線回折ピークを解析したところ、Sb組成yは0.013であった。また、第2の化合物半導体層の、(111)面に対応するX線回折ピークのロッキングカーブの、FWHM値は435秒であった。さらに、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値、Rrms値を原子間力顕微鏡(AFM)で評価したところ、1.8nmであった。 When the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was analyzed, the Sb composition y was 0.013. Further, the FWHM value of the rocking curve of the X-ray diffraction peak corresponding to the (111) plane of the second compound semiconductor layer was 435 seconds. Furthermore, when the mean square value of the surface roughness and the Rrms value in the 10 μm square region of the second compound semiconductor layer were evaluated by an atomic force microscope (AFM), it was 1.8 nm.
すなわち、第2の化合物半導体層の、Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値が500秒以下であり、且つ、第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrmsが2nm以下である化合物半導体基板を実現した。 That is, the rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer has a FWHM value of 500 seconds or less and the 10 μm square of the second compound semiconductor layer In this region, a compound semiconductor substrate having a surface roughness root mean square value Rrms of 2 nm or less was realized.
上述した実施例1〜5および比較例1,2を以下の表1にまとめた。 Examples 1 to 5 and Comparative Examples 1 and 2 described above are summarized in Table 1 below.
10 化合物半導体基板
101 Si基板
102 第1の化合物半導体層
103 第2の化合物半導体層
10
Claims (8)
前記第1の化合物半導体層上に、前記第1の化合物半導体層を形成するときよりも高温で、第2の化合物半導体層を形成する工程と
を備える化合物半導体基板の製造方法であって、
前記第1の化合物半導体層は、GaAs1-xSbx(0≦x≦0.1)層であり、
前記第2の化合物半導体層は、GaAs1-ySby(0<y≦0.1)層であり、
前記第2の化合物半導体層を形成する工程は、Ga原料とAs原料とSb原料とを同時に照射する工程であり、
前記第2の化合物半導体層を形成する工程において、前記Sb原料の分子線強度と、前記第2の化合物半導体層の形成速度が1時間当たり1μmとなるために必要な前記Ga原料の分子線強度との比が1以上であることを特徴とする化合物半導体基板の製造方法。 Forming a first compound semiconductor layer on a Si substrate;
Forming a second compound semiconductor layer on the first compound semiconductor layer at a higher temperature than when forming the first compound semiconductor layer, comprising:
The first compound semiconductor layer is a GaAs 1-x Sb x (0 ≦ x ≦ 0.1) layer,
Said second compound semiconductor layer is GaAs 1-y Sb y (0 <y ≦ 0.1) layer,
The step of forming the second compound semiconductor layer is a step of simultaneously irradiating a Ga raw material, an As raw material, and an Sb raw material,
In the step of forming the second compound semiconductor layer, the molecular beam intensity of the Sb material and the molecular beam intensity of the Ga material necessary for the formation rate of the second compound semiconductor layer to be 1 μm per hour. The method for producing a compound semiconductor substrate, wherein the ratio is 1 or more.
であることを特徴とする請求項1または2に記載の化合物半導体基板の製造方法。 3. The method of manufacturing a compound semiconductor substrate according to claim 1, wherein the formation rate of the second compound semiconductor layer is 0.05 μm or more and 0.3 μm or less per hour.
前記Si基板上に形成された、第1の化合物半導体層と、
前記第1の化合物半導体層上に形成された、第2の化合物半導体層と
を備えた化合物半導体基板であって、
前記第1の化合物半導体層は、GaAs1-xSbx(0≦x≦0.1)層であり、
前記第2の化合物半導体層は、GaAs1-ySby(0<y≦0.1)層であり、
前記第2の化合物半導体層の、前記Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値は、700秒以下であり、且つ
前記第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrms値は、3nm以下であることを特徴とする化合物半導体基板。 A Si substrate;
A first compound semiconductor layer formed on the Si substrate;
A compound semiconductor substrate comprising: a second compound semiconductor layer formed on the first compound semiconductor layer;
The first compound semiconductor layer is a GaAs 1-x Sb x (0 ≦ x ≦ 0.1) layer,
Said second compound semiconductor layer is GaAs 1-y Sb y (0 <y ≦ 0.1) layer,
The rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer has a FWHM value of 700 seconds or less, and 10 μm of the second compound semiconductor layer. A compound semiconductor substrate, wherein a root mean square value Rrms value of surface roughness in a four-way region is 3 nm or less.
前記第2の化合物半導体層の、前記Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値は、600秒以下であり、且つ
前記第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrms値は、3nm以下であることを特徴とする請求項6に記載の化合物半導体基板。 The first compound semiconductor layer is a GaAs layer;
The rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane direction of the Si substrate of the second compound semiconductor layer has a FWHM value of 600 seconds or less, and 10 μm of the second compound semiconductor layer. The compound semiconductor substrate according to claim 6, wherein a root mean square value Rrms value of the surface roughness in the four regions is 3 nm or less.
前記第2の化合物半導体層の、前記Si基板の面方位と同じ面に対応するX線回折ピークのロッキングカーブの、FWHM値は、500秒以下であり、且つ
前記第2の化合物半導体層の10μm四方の領域における、表面粗さの二乗平均値Rrms値は、2nm以下であることを特徴とする請求項6に記載の化合物半導体基板。 The first compound semiconductor layer is a GaAs layer;
The rocking curve of the X-ray diffraction peak corresponding to the same plane as the plane orientation of the Si substrate of the second compound semiconductor layer has a FWHM value of 500 seconds or less, and 10 μm of the second compound semiconductor layer. 7. The compound semiconductor substrate according to claim 6, wherein the root mean square value Rrms value of the surface roughness in the four regions is 2 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053445A JP6050595B2 (en) | 2012-03-09 | 2012-03-09 | Compound semiconductor substrate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053445A JP6050595B2 (en) | 2012-03-09 | 2012-03-09 | Compound semiconductor substrate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013187489A true JP2013187489A (en) | 2013-09-19 |
JP6050595B2 JP6050595B2 (en) | 2016-12-21 |
Family
ID=49388643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012053445A Active JP6050595B2 (en) | 2012-03-09 | 2012-03-09 | Compound semiconductor substrate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6050595B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111416A (en) * | 1990-08-31 | 1992-04-13 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of compound semiconductor |
JPH0645249A (en) * | 1991-03-20 | 1994-02-18 | Oki Electric Ind Co Ltd | Growth method of gaas layer |
JPH0794409A (en) * | 1993-09-20 | 1995-04-07 | Fujitsu Ltd | Formation of iii-v compound semiconductor thin film |
JPH07242499A (en) * | 1994-03-04 | 1995-09-19 | Sumitomo Electric Ind Ltd | Formation of thin film of compound semiconductor crystal |
JPH07321032A (en) * | 1994-05-27 | 1995-12-08 | Fujitsu Ltd | Method of growing compound semiconductor crystal layer |
JP2003109909A (en) * | 2001-07-25 | 2003-04-11 | Sharp Corp | Method of growing iii-v compound semiconductor, semiconductor element, and semiconductor device |
JP2006294818A (en) * | 2005-04-08 | 2006-10-26 | Sharp Corp | Manufacturing method of compound semiconductor device |
US20080187768A1 (en) * | 2005-03-11 | 2008-08-07 | The Arizona Board Of Regents | Novel Gesisn-Based Compounds, Templates, and Semiconductor Structures |
JP2010225870A (en) * | 2009-03-24 | 2010-10-07 | Toshiba Corp | Semiconductor element |
-
2012
- 2012-03-09 JP JP2012053445A patent/JP6050595B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111416A (en) * | 1990-08-31 | 1992-04-13 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of compound semiconductor |
JPH0645249A (en) * | 1991-03-20 | 1994-02-18 | Oki Electric Ind Co Ltd | Growth method of gaas layer |
JPH0794409A (en) * | 1993-09-20 | 1995-04-07 | Fujitsu Ltd | Formation of iii-v compound semiconductor thin film |
JPH07242499A (en) * | 1994-03-04 | 1995-09-19 | Sumitomo Electric Ind Ltd | Formation of thin film of compound semiconductor crystal |
JPH07321032A (en) * | 1994-05-27 | 1995-12-08 | Fujitsu Ltd | Method of growing compound semiconductor crystal layer |
JP2003109909A (en) * | 2001-07-25 | 2003-04-11 | Sharp Corp | Method of growing iii-v compound semiconductor, semiconductor element, and semiconductor device |
US20080187768A1 (en) * | 2005-03-11 | 2008-08-07 | The Arizona Board Of Regents | Novel Gesisn-Based Compounds, Templates, and Semiconductor Structures |
JP2008532294A (en) * | 2005-03-11 | 2008-08-14 | アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステイト ユニバーシティ | Novel GeSiSn-based compounds, templates, and semiconductor structures |
JP2006294818A (en) * | 2005-04-08 | 2006-10-26 | Sharp Corp | Manufacturing method of compound semiconductor device |
JP2010225870A (en) * | 2009-03-24 | 2010-10-07 | Toshiba Corp | Semiconductor element |
Non-Patent Citations (1)
Title |
---|
JPN6016008899; H.ITO(他1名): 'Influence of lattice mismatch on the crystalline quality of metastable GaAsSb grown by metalorganic' Journal of Crystal Growth Volume 173, Issues 1-2, 19970302, pp.210-213, Elsevier * |
Also Published As
Publication number | Publication date |
---|---|
JP6050595B2 (en) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11450528B2 (en) | Process for growing nanowires or nanopyramids on graphitic substrates | |
JP5679494B2 (en) | Nitride semiconductor structure and manufacturing method thereof | |
CN103311393B (en) | Nitride semiconductor device and nitride semiconductor wafer | |
JP5543103B2 (en) | Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device | |
WO2009084240A1 (en) | Semiconductor substrate, method for producing semiconductor substrate, and electronic device | |
JP2005303246A (en) | METHOD OF GROWING HIGH QUALITY ZnSe EPITAXIAL LAYER ONTO NEW Si SUBSTRATE | |
JP2010225870A (en) | Semiconductor element | |
CN101807648B (en) | Introduction-type roughening nitrogen polar surface gallium nitride based light-emitting diode and manufacturing method thereof | |
JP5043363B2 (en) | Method for forming gallium nitride crystal, substrate, and method for forming gallium nitride substrate | |
JP2009227545A (en) | Substrate for optical device and method for producing the same | |
WO2012029216A1 (en) | Method for manufacturing compound semiconductor | |
JP6050595B2 (en) | Compound semiconductor substrate and manufacturing method thereof | |
CN103794694A (en) | Silicon-based germanium film with tensile strain and manufacturing method thereof | |
JP6088281B2 (en) | Compound semiconductor laminate and manufacturing method thereof | |
JP2014175598A (en) | Compound semiconductor laminate and semiconductor device | |
JP2018022814A (en) | Nitride semiconductor device and method of manufacturing the same | |
US20140202378A1 (en) | METHOD FOR PRODUCING AN ORGANISED NETWORK OF SEMICONDUCTOR NANOWIRES, IN PARTICULAR MADE OF ZnO | |
JP2015053386A (en) | Method for manufacturing compound semiconductor substrate, and compound semiconductor substrate | |
JP6649693B2 (en) | Nitride semiconductor light emitting device and method of manufacturing the same | |
CN109378368B (en) | Method for epitaxial growth of GaN substrate on PSS substrate along semi-polar surface | |
KR101517808B1 (en) | GROWTH METHOD OF GaN ON Si FOR REDUCING CRACKS | |
JP5206596B2 (en) | Substrates for gallium nitride based semiconductor devices | |
JP2009161436A (en) | Group iii nitride semiconductor crystal substrate, group iii nitride semiconductor device, and its manufacture method | |
JP2009105231A (en) | Semiconductor substrate and method of manufacturing the same, and semiconductor device | |
JP2016039314A (en) | Compound semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6050595 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |