JP2013184994A - Volatile organic compound decomposer - Google Patents

Volatile organic compound decomposer Download PDF

Info

Publication number
JP2013184994A
JP2013184994A JP2012049048A JP2012049048A JP2013184994A JP 2013184994 A JP2013184994 A JP 2013184994A JP 2012049048 A JP2012049048 A JP 2012049048A JP 2012049048 A JP2012049048 A JP 2012049048A JP 2013184994 A JP2013184994 A JP 2013184994A
Authority
JP
Japan
Prior art keywords
volatile organic
organic compound
activated sludge
filtrate
pce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049048A
Other languages
Japanese (ja)
Other versions
JP5898532B2 (en
Inventor
Katsuya Ono
勝也 大野
Hiroyuki Tanaka
博之 田中
Kazuhiro Takamizawa
一裕 高見澤
Kohei Nakamura
浩平 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2012049048A priority Critical patent/JP5898532B2/en
Publication of JP2013184994A publication Critical patent/JP2013184994A/en
Application granted granted Critical
Publication of JP5898532B2 publication Critical patent/JP5898532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a volatile organic compound decomposer insusceptible to soils to be actually cleaned and conditions of ground water.SOLUTION: A volatile organic compound decomposer comprises a fraction obtained by a preparation method including: a step 1 of acclimating an activated sludge on condition that 0.0006-600 mM of tetrachloroethylene is contained as a carbon source; and a step 2 of sorting the fraction having a molecular weight of 3,000 or lower, from the activated sludge thus acclimated.

Description

本発明は土壌や地下水に残留する揮発性有機化合物を分解するための分解剤に関する。   The present invention relates to a decomposing agent for decomposing volatile organic compounds remaining in soil or groundwater.

これまでに多くの電子基板工場やドライクリーニング店などで揮発性有機化合物(以下、VOC)が使用されてきた。そのVOCの漏出などにより、各地で土壌・地下水の汚染が見つかっている。主な汚染VOCには、テトラクロロエチレン(以下、PCE)、トリクロロエチレン、シス−1,2−ジクロロエチレンなどの揮発性有機塩素化合物があり、いずれも難分解性である。さらに、VOCは人体への変異原性や発がん性を有する恐れがあることから、健康被害も懸念される。   To date, volatile organic compounds (hereinafter referred to as VOCs) have been used in many electronic substrate factories and dry cleaning stores. Due to the leakage of VOC, soil and groundwater contamination has been found in various places. Major polluting VOCs include volatile organochlorine compounds such as tetrachloroethylene (hereinafter PCE), trichlorethylene, and cis-1,2-dichloroethylene, all of which are hardly decomposable. Furthermore, since VOCs may be mutagenic and carcinogenic to the human body, there are concerns about health hazards.

PCE等の揮発性有機化合物で汚染された土壌や地下水を浄化するための一つの方法として、バイオレメディエーションが知られている。バイオレメディエーションは微生物を用いるため、省エネルギーかつ低コストで土壌や地下水の汚染を浄化することが期待できる(特許文献1)。   Bioremediation is known as one method for purifying soil and groundwater contaminated with volatile organic compounds such as PCE. Since bioremediation uses microorganisms, it can be expected to purify contamination of soil and groundwater at low energy and cost (Patent Document 1).

しかしながら、実際の浄化対象の土壌や地下水の温度、pHや酸素濃度等は様々であるので、実験室で発揮されたような微生物の増殖や分解作用が進まないことも多く、結果として浄化に長時間を要することがある。   However, since the temperature, pH, oxygen concentration, etc. of the actual soil and groundwater to be purified vary, the growth and decomposition of microorganisms as demonstrated in the laboratory often does not proceed, resulting in long purification. It may take time.

特開2006−262842号公報JP 2006-262842 A

従って本発明の課題は、実際の浄化対象の土壌や地下水の条件に影響を受けにくい、揮発性有機化合物分解剤を提供することにある。   Accordingly, an object of the present invention is to provide a volatile organic compound decomposing agent that is not easily affected by the conditions of actual soil and groundwater to be purified.

本発明者が鋭意検討した結果、比較的高濃度のPCEを炭素源として好気条件下で馴養して得られた活性汚泥の菌体外成分が、強いPCE分解能力を有することを見出した。かかる知見に基づいて本発明者はさらに検討を重ね、本発明を完成させた。   As a result of intensive studies by the present inventors, it has been found that the extracellular components of activated sludge obtained by acclimatizing under aerobic conditions using a relatively high concentration of PCE as a carbon source has a strong PCE degrading ability. Based on this knowledge, the present inventors have further studied and completed the present invention.

即ち、本発明の要旨は、
<1> 炭素源として0.0006〜600mMのテトラクロロエチレンを含有する条件で活性汚泥を馴養する工程〔工程1〕、及び
馴養された活性汚泥から、分子量3000以下の画分を分取する工程〔工程2〕、
を含む調製方法によって得られた該画分からなる、揮発性有機化合物分解剤;
<2> 工程1で馴養された活性汚泥をメンブレンフィルターを用いてろ過してろ液を得る工程〔工程A〕をさらに含み、馴養された活性汚泥の代わりに該ろ液を工程2に提供する、前記<1>に記載の揮発性有機化合物分解剤;
<3> 前記<1>又は<2>に記載の揮発性有機化合物分解剤を、土壌中の揮発性有機化合物1gに対して2〜20g適用する工程を有する、土壌中の揮発性有機化合物を分解する方法;並びに
<4> 前記<1>又は<2>に記載の揮発性有機化合物分解剤を、地下水中の揮発性有機化合物1gに対して2〜20g適用する工程を有する、地下水中の揮発性有機化合物を分解する方法;に関するものである。
That is, the gist of the present invention is as follows.
<1> A step of acclimatizing activated sludge under conditions containing 0.0006 to 600 mM tetrachloroethylene as a carbon source [Step 1] and a step of fractionating a fraction having a molecular weight of 3000 or less from the acclimatized activated sludge [Step 2],
A volatile organic compound decomposing agent comprising the fraction obtained by the preparation method comprising:
<2> The method further includes the step of obtaining the filtrate by filtering the activated sludge conditioned in the step 1 using a membrane filter, and providing the filtrate to the step 2 instead of the conditioned activated sludge. The volatile organic compound decomposing agent according to the above <1>;
<3> A volatile organic compound in soil having a step of applying 2 to 20 g of the volatile organic compound decomposing agent according to <1> or <2> to 1 g of volatile organic compound in soil. A method of decomposing; and <4> a step of applying 2 to 20 g of the volatile organic compound decomposing agent according to <1> or <2> to 1 g of volatile organic compound in groundwater. A method for decomposing volatile organic compounds.

本発明の揮発性有機化合物分解剤は比較的低分子の成分からなるものなので、土壌や地下水の諸条件に左右されることなく、揮発性有機化合物を分解することができる、という効果が発揮される。   Since the volatile organic compound decomposing agent of the present invention consists of relatively low-molecular components, the effect of being able to decompose volatile organic compounds without being affected by various conditions of soil and groundwater is exhibited. The

本発明の揮発性有機化合物分解剤は、下記の工程1及び工程2を含む調製方法によって得られた該画分からなるものである。   The volatile organic compound decomposing agent of the present invention comprises the fraction obtained by the preparation method including the following step 1 and step 2.

工程1
工程1は、炭素源として0.0006〜600mMのPCEを含有する条件で活性汚泥を馴養する工程である。
Process 1
Step 1 is a step of acclimatizing activated sludge under conditions containing 0.0006 to 600 mM PCE as a carbon source.

本発明に用いられる活性汚泥としては、特に限定されないが、活性汚泥法を利用する廃水処理施設、例えば下水処理場やその他の産業廃棄物処理場等に由来する活性汚泥を利用することができる。馴養の際の活性汚泥の量としては、馴養期間を通して撹拌や曝気が可能な程度であれば特に限定されないが、例えば、1Lの水に対して、乾燥重量で5〜10gの範囲が好ましい。   Although it does not specifically limit as activated sludge used for this invention, The activated sludge derived from the wastewater treatment facility using the activated sludge method, for example, a sewage treatment plant, other industrial waste disposal plants, etc. can be utilized. The amount of activated sludge at the time of acclimatization is not particularly limited as long as it can be stirred and aerated throughout the acclimatization period. For example, a range of 5 to 10 g in dry weight with respect to 1 L of water is preferable.

かかる活性汚泥を、炭素源として0.0006〜600mMのPCEを含有する条件で馴養することにより、特定の細菌を含む微生物を含有する馴養化活性汚泥が得られる。馴養時のPCEの濃度としては、PCEを分解し得る微生物を効率的に選択する観点から、0.006〜180mMの範囲が好ましく、0.06〜60mMの範囲がより好ましい。   By acclimating such activated sludge under conditions containing 0.0006 to 600 mM PCE as a carbon source, a conditioned activated sludge containing microorganisms containing specific bacteria can be obtained. The concentration of PCE at the time of acclimatization is preferably in the range of 0.006 to 180 mM, more preferably in the range of 0.06 to 60 mM, from the viewpoint of efficiently selecting microorganisms that can degrade PCE.

活性汚泥を馴養する期間としては、特に限定されないが、1〜24週間の期間が好ましい。馴養の際の他の条件、例えば温度、溶存酸素濃度、pHとしては、以下の範囲が好ましい。温度としては、10〜40℃の範囲が好ましく、15〜30℃の範囲がより好ましい。馴養中の溶存酸素濃度としては特に限定されないが、空気、酸素等を供給しながら馴養を実施する程度でよい。従って、馴養に用いる装置としては、曝気手段を備えたものが好ましい。さらに、馴養の際のpHとしては、馴養時の温度において、例えば6.0〜9.5の範囲が好ましく、7.0〜8.5の範囲がより好ましい。   Although it does not specifically limit as a period which acclimatizes activated sludge, The period of 1 to 24 weeks is preferable. As other conditions at the time of acclimatization, such as temperature, dissolved oxygen concentration, and pH, the following ranges are preferable. As temperature, the range of 10-40 degreeC is preferable, and the range of 15-30 degreeC is more preferable. The dissolved oxygen concentration during the acclimatization is not particularly limited, but may be an extent that the acclimatization is performed while supplying air, oxygen and the like. Therefore, a device equipped with aeration means is preferable as a device used for habituation. Furthermore, as pH at the time of acclimatization, in the temperature at the time of acclimatization, the range of 6.0-9.5 is preferable, for example, and the range of 7.0-8.5 is more preferable.

工程2
工程2は、工程1で馴養された活性汚泥から、分子量3000以下の画分を分取する工程である。
分子量3000以下の画分を分取するためには、例えば分画分子量3000の公知の限外ろ過膜を使用すればよい。この時、活性汚泥を分画分子量3000の限外ろ過膜で処理することもできるが、膜の目詰まりを抑制する観点から、数段階に分けて、例えば、分画分子量10000程度(例えば、孔径約20〜30ÅのUF膜)の膜を用いて活性汚泥からろ液を分取し、次いで分画分子量5000程度(例えば、孔径約10〜20ÅのUF膜)の膜を用いて、先のろ液からさらにろ液を分取し、最後に分画分子量3000の膜を用いてろ液、即ち本発明の揮発性有機化合物分解剤を得ることができる。本発明の揮発性有機化合物分解剤は、ろ液の状態、即ち溶液又は分散液の状態であってもよく、ろ液を凍結乾燥等の処理により乾燥させて得られる固体の状態であってもよい。
Process 2
Step 2 is a step of fractionating a fraction having a molecular weight of 3000 or less from the activated sludge conditioned in Step 1.
In order to fractionate a fraction having a molecular weight of 3000 or less, for example, a known ultrafiltration membrane having a molecular weight cutoff of 3000 may be used. At this time, the activated sludge can be treated with an ultrafiltration membrane having a fractional molecular weight of 3000, but from the viewpoint of suppressing clogging of the membrane, it is divided into several stages, for example, a fractional molecular weight of about 10,000 (for example, The filtrate is separated from the activated sludge using a membrane of about 20 to 30 mm UF membrane, and then filtered using a membrane with a molecular weight cut off of about 5000 (for example, a UF membrane having a pore diameter of about 10 to 20 mm). The filtrate is further collected from the liquid, and finally, the filtrate, that is, the volatile organic compound decomposing agent of the present invention can be obtained using a membrane having a molecular weight cutoff of 3000. The volatile organic compound decomposing agent of the present invention may be in the state of a filtrate, that is, in the state of a solution or dispersion, or in the state of a solid obtained by drying the filtrate by a treatment such as freeze drying. Good.

工程A
さらに本発明では、限外ろ過膜の目詰まりを防ぎ、効率的に揮発性有機化合物分解剤を調製する観点から、工程Aを含むことが好ましい。本明細書における工程Aとは、工程1で馴養された活性汚泥をメンブレンフィルターを用いてろ過してろ液を得る工程であり、工程Aを適用する場合、工程2においては、馴養された活性汚泥の代わりに、メンブレンフィルターを用いて得られたろ液が限外ろ過に適用されることとなる。
Process A
Furthermore, in this invention, it is preferable to include the process A from a viewpoint of preventing clogging of an ultrafiltration membrane and preparing a volatile organic compound decomposer efficiently. Step A in this specification is a step of obtaining the filtrate by filtering the activated sludge conditioned in step 1 using a membrane filter. When applying step A, in step 2, the conditioned activated sludge is used. Instead, the filtrate obtained using a membrane filter is applied to ultrafiltration.

工程Aで用いられるメンブレンフィルターとしては、孔径が0.025〜0.45μmのものが好ましく、0.10〜0.22μmのものがより好ましい。   The membrane filter used in step A preferably has a pore size of 0.025 to 0.45 μm, and more preferably 0.10 to 0.22 μm.

本発明の揮発性有機化合物分解剤を用いて、土壌中又は地下水中の揮発性有機化合物を分解することができる。本発明は、このような揮発性有機化合物を分解する方法を包含する。   The volatile organic compound decomposing agent of the present invention can be used to decompose volatile organic compounds in soil or groundwater. The present invention includes a method for decomposing such volatile organic compounds.

例えば、土壌中の揮発性有機化合物を分解する方法としては、本発明の揮発性有機化合物分解剤を、土壌中の揮発性有機化合物1gに対して2〜20g適用する工程を有する方法が挙げられる。   For example, as a method for decomposing volatile organic compounds in soil, there is a method having a step of applying 2 to 20 g of the volatile organic compound decomposing agent of the present invention to 1 g of volatile organic compounds in soil. .

さらに、地下水中の揮発性有機化合物を分解する方法としては、本発明の揮発性有機化合物分解剤を、地下水中の揮発性有機化合物1gに対して2〜20g適用する工程を有する方法が挙げられる。   Furthermore, as a method of decomposing | disassembling the volatile organic compound in groundwater, the method which has the process of applying 2-20g with respect to 1g of volatile organic compound decomposing agents of this invention with respect to 1g of volatile organic compounds in groundwater is mentioned. .

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例により何ら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited at all by these Examples.

実施例1
工程1:活性汚泥とPCEへの馴養
日本国岐阜県にある電子機器の製造工場に設置された、該工場に由来する廃液を活性汚泥法を利用して処理する施設から、活性汚泥を得た。リービッヒ冷却器を上部に、フラスコ内部を曝気するためのポンプを取り付けた丸底フラスコに、得られた活性汚泥(1000mL、乾燥重量は1g)を投入した。
Example 1
Process 1: Acclimatization to activated sludge and PCE Activated sludge was obtained from a facility installed at an electronic equipment manufacturing factory in Gifu Prefecture, Japan, that uses the activated sludge method to treat waste liquid derived from the factory. . The obtained activated sludge (1000 mL, dry weight 1 g) was put into a round bottom flask equipped with a Liebig condenser at the top and a pump for aeration of the inside of the flask.

次いで、炭素源としてのPCE(和光純薬工業)のエタノール溶液を、PCEの終濃度が12mMとなるように、該フラスコに添加した。該エタノール溶液を一週間ごとに追加し、最終的にフラスコ内のPCEを60mMの濃度とした。リン源及び窒素源としてのリン酸水素二アンモニウムを、終濃度が37.88mMとなるように該フラスコに添加した。さらに、ミネラル源及びビタミン源としての少量の酵母エキス(Difco、細胞培養用)も該フラスコに添加した。該フラスコ内の温度を20℃とし、pHを6.8〜8.0の範囲に維持しながら、ポンプから空気を該フラスコ内に曝気することによって、好気的条件下で馴養を行った。馴養期間は2週間とした。   Next, an ethanol solution of PCE (Wako Pure Chemical Industries) as a carbon source was added to the flask so that the final concentration of PCE was 12 mM. The ethanol solution was added every week, and finally the PCE in the flask was adjusted to a concentration of 60 mM. Diammonium hydrogen phosphate as a phosphorus source and a nitrogen source was added to the flask to a final concentration of 37.88 mM. In addition, a small amount of yeast extract (Difco, for cell culture) as mineral source and vitamin source was also added to the flask. The flask was conditioned under aerobic conditions by aeration of air from the pump into the flask while maintaining the temperature in the flask at 20 ° C. and maintaining the pH in the range of 6.8-8.0. The acclimatization period was 2 weeks.

活性汚泥の細菌叢の分析
馴養後の活性汚泥の細菌叢の分析を、タカラバイオ社が提供するGenome Sequencer FLXシステムを用いて行った。結果を表1に示す。
Analysis of bacterial flora of activated sludge The analysis of bacterial flora of activated sludge after acclimatization was performed using the Genome Sequencer FLX system provided by Takara Bio Inc. The results are shown in Table 1.

Figure 2013184994
Figure 2013184994

表1より、馴養後の活性汚泥の細菌叢では、Alcaligenesに属する微生物が支配的であることが分かった。   From Table 1, it was found that microorganisms belonging to Alcaligenes are dominant in the activated sludge bacterial flora after habituation.

工程A:活性汚泥のろ過
馴養後の活性汚泥をガラスファイバーフィルター(ADVANTEC、GS-25、ポアサイズは約1μm)でろ過して、活性汚泥からフロックを除去した。次いで、ポアサイズが0.2μmの膜フィルター(ADVANTEC)でろ過して、細菌を除去した。得られたろ液をろ液1とした。
Step A: Filtration of activated sludge The activated sludge after acclimatization was filtered with a glass fiber filter (ADVANTEC, GS-25, pore size is about 1 μm) to remove flocs from the activated sludge. Subsequently, it filtered with the membrane filter (ADVANTEC) whose pore size is 0.2 micrometer, and removed bacteria. The obtained filtrate was designated as filtrate 1.

工程2:ろ液の限外ろ過
ろ液1を、最初に分画分子量が10000の限外ろ過膜を用いて限外ろ過し、ろ液(ろ液2)を得た。次にろ液2を、分画分子量が5000の限外ろ過膜を用いて限外ろ過し、ろ液(ろ液3)を得た。最後にろ液3を、分画分子量が3000の限外ろ過膜を用いて限外ろ過し、ろ液(ろ液4)を得た。ここで用いた限外ろ過膜は、GEヘルスケア社の商品名:Vivaspinであった。このろ液4を揮発性有機化合物分解剤とした。
Step 2: Ultrafiltration of filtrate Filtrate 1 was first ultrafiltered using an ultrafiltration membrane having a fractional molecular weight of 10,000 to obtain a filtrate (filtrate 2). Next, the filtrate 2 was ultrafiltered using an ultrafiltration membrane having a fractional molecular weight of 5000 to obtain a filtrate (filtrate 3). Finally, the filtrate 3 was ultrafiltered using an ultrafiltration membrane having a fractional molecular weight of 3000 to obtain a filtrate (filtrate 4). The ultrafiltration membrane used here was Vivaspin, a trade name of GE Healthcare. This filtrate 4 was used as a volatile organic compound decomposer.

PCEの分解能力の定量
上記の各ろ液についてのPCEの分解能力を定量した。
100mL容のガラス瓶に、20mLのサンプルと、少量のエタノールに溶解させた12μmolのPCEを添加した。ガラス瓶を密閉し、20℃で22±2時間、好気状態となるように振盪を続けてPCEの分解処理を行った。
Quantification of PCE decomposition ability The PCE decomposition ability of each of the above filtrates was quantified.
A 20 mL sample and 12 μmol PCE dissolved in a small amount of ethanol were added to a 100 mL glass bottle. The glass bottle was sealed, and the PCE was decomposed by continuing shaking at 20 ° C. for 22 ± 2 hours so as to be in an aerobic state.

振盪終了後、ガラス瓶を4℃で1時間静置し、それぞれのガラス瓶の液相から1mLをサンプルとして採取した。9mLの純水及び3gの塩化ナトリウムを入れた別の20mL容のガラス瓶に、採取したサンプルを注入した。密閉した後、ヘッドスペースガスクロマトグラフィー質量分析装置(島津製作所、GCMS-QP2010 Plus、Perkin Elmer、Headspace Sampler Turbo Matrix 40)を用いてPCEの量を定量した。測定されたPCEの量から、20mLのサンプルあたりのPCEの減少量を算出した。結果を表2に示す。   After completion of the shaking, the glass bottle was allowed to stand at 4 ° C. for 1 hour, and 1 mL was collected as a sample from the liquid phase of each glass bottle. The collected sample was poured into another 20 mL glass bottle containing 9 mL of pure water and 3 g of sodium chloride. After sealing, the amount of PCE was quantified using a headspace gas chromatography mass spectrometer (Shimadzu Corporation, GCMS-QP2010 Plus, Perkin Elmer, Headspace Sampler Turbo Matrix 40). The amount of decrease in PCE per 20 mL sample was calculated from the measured amount of PCE. The results are shown in Table 2.

タンパク質の定量
上記の各ろ液中のタンパク質の量を、Quanti-iTタンパク質アッセイキット(Invitorogen)を用いて定量した。該キットに添付の説明書に記載の方法に従って、定量操作を行った。結果を表2に示す。
Protein quantification The amount of protein in each of the above filtrates was quantified using a Quanti-iT protein assay kit (Invitorogen). The quantitative operation was performed according to the method described in the instructions attached to the kit. The results are shown in Table 2.

Figure 2013184994
Figure 2013184994

表2より、ろ液1、即ち、0.2μmの膜フィルターのろ液はPCEを大きく減少させることが分かった。このろ液1を位相差顕微鏡で確認したところ、細菌が観察されなかったことから、菌体外の物質がPCEの分解に関与することが示唆された。   From Table 2, it was found that the filtrate 1, that is, the filtrate of the membrane filter of 0.2 μm, greatly reduces PCE. When this filtrate 1 was confirmed with a phase-contrast microscope, no bacteria were observed, suggesting that substances outside the cells are involved in the degradation of PCE.

ろ液1をさらに限外ろ過に供した結果、ろ液3、即ち分画分子量が5000未満の画分は、ろ液1の1.73倍、ろ液4、即ち分画分子量が3000未満の画分は、ろ液1の1.68倍のPCE分解能力を有することが分かった。分画分子量が3000未満の画分がこのような高いPCE分解能力を有すること、及び該画分中のタンパク質性成分の量を考慮すると、比較的低分子量のタンパク質性成分、例えばオリゴペプチドがPCEの分解に関与することが示唆された。   The filtrate 1 was further subjected to ultrafiltration. As a result, the filtrate 3, ie, the fraction having a fractional molecular weight of less than 5000, was 1.73 times the filtrate 1, and the filtrate 4, ie, the fractional molecular weight was less than 3000. The fraction was found to have 1.68 times the PCE degradation capacity of filtrate 1. Considering that fractions with a molecular weight cut-off less than 3000 have such a high PCE degradation ability and the amount of proteinaceous components in the fractions, relatively low molecular weight proteinaceous components such as oligopeptides are It was suggested to be involved in the degradation of.

細菌そのものや酵素ではなく、このような、比較的低分子量のタンパク質性成分がPCEの分解に関与することは、当業者にとって予想外であり、低分子量の成分は細菌そのものや酵素に比べて温度やpHに対して高い抵抗性を発揮することが期待される。   It is unexpected for a person skilled in the art that such a relatively low molecular weight protein component is involved in the degradation of PCE, not the bacteria themselves or the enzyme, and the low molecular weight components have a temperature higher than that of the bacteria themselves and the enzyme. And high resistance to pH is expected.

本発明は、土壌や地下水に残留する揮発性有機化合物、特にテトラクロロエチレンを分解するための分解剤として利用することができる。   The present invention can be used as a decomposing agent for decomposing volatile organic compounds remaining in soil or groundwater, particularly tetrachloroethylene.

Claims (4)

炭素源として0.0006〜600mMのテトラクロロエチレンを含有する条件で活性汚泥を馴養する工程〔工程1〕、及び
馴養された活性汚泥から、分子量3000以下の画分を分取する工程〔工程2〕、
を含む調製方法によって得られた該画分からなる、揮発性有機化合物分解剤。
A step of acclimatizing activated sludge under conditions containing 0.0006 to 600 mM tetrachloroethylene as a carbon source (step 1), and a step of fractionating a fraction having a molecular weight of 3000 or less from the acclimatized activated sludge (step 2);
A volatile organic compound decomposing agent comprising the fraction obtained by the preparation method comprising:
工程1で馴養された活性汚泥をメンブレンフィルターを用いてろ過してろ液を得る工程〔工程A〕をさらに含み、馴養された活性汚泥の代わりに該ろ液を工程2に提供する、請求項1に記載の揮発性有機化合物分解剤。   The method further comprises the step of obtaining the filtrate by filtering the activated sludge conditioned in the step 1 using a membrane filter, and providing the filtrate to the step 2 instead of the conditioned activated sludge. The volatile organic compound decomposing agent described in 1. 請求項1又は2に記載の揮発性有機化合物分解剤を、土壌中の揮発性有機化合物1gに対して2〜20g適用する工程を有する、土壌中の揮発性有機化合物を分解する方法。   A method for decomposing a volatile organic compound in soil, the method comprising applying 2 to 20 g of the volatile organic compound decomposing agent according to claim 1 or 2 to 1 g of volatile organic compound in soil. 請求項1又は2に記載の揮発性有機化合物分解剤を、地下水中の揮発性有機化合物1gに対して2〜20g適用する工程を有する、地下水中の揮発性有機化合物を分解する方法。   A method for decomposing a volatile organic compound in groundwater, comprising applying 2 to 20 g of the volatile organic compound decomposing agent according to claim 1 or 2 to 1 g of volatile organic compound in groundwater.
JP2012049048A 2012-03-06 2012-03-06 Volatile organic compound decomposer Active JP5898532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049048A JP5898532B2 (en) 2012-03-06 2012-03-06 Volatile organic compound decomposer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049048A JP5898532B2 (en) 2012-03-06 2012-03-06 Volatile organic compound decomposer

Publications (2)

Publication Number Publication Date
JP2013184994A true JP2013184994A (en) 2013-09-19
JP5898532B2 JP5898532B2 (en) 2016-04-06

Family

ID=49386740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049048A Active JP5898532B2 (en) 2012-03-06 2012-03-06 Volatile organic compound decomposer

Country Status (1)

Country Link
JP (1) JP5898532B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739064A (en) * 2013-12-24 2014-04-23 广州中国科学院沈阳自动化研究所分所 Domestication method of novel aerobic activated sludge for treating printing and dyeing wastewater raw water and application of domestication method
JP2016174537A (en) * 2015-03-18 2016-10-06 イビデン株式会社 Production method of biosurfactant, and biosurfactant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149786A (en) * 1995-11-30 1997-06-10 Toyota Central Res & Dev Lab Inc Microorganism capable of decomposing halogenated hydrocarbon and its use
JP2001179234A (en) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd Method for cleaning environment and method for obtaining a group of microorganisms for the method
JP2006262842A (en) * 2005-03-25 2006-10-05 Kurita Water Ind Ltd Method for culturing microorganism group, culture liquid obtained by the culture method, and method for purifying underground water and/or soil
JP2006296303A (en) * 2005-04-21 2006-11-02 Kurita Water Ind Ltd Method for culturing cis-1,2-dichloroethylene-decomposing microorganism group, culture medium obtained thereby, and method for purifying underground water and/or soil
JP2009213427A (en) * 2008-03-12 2009-09-24 Kurita Water Ind Ltd Method for preparing bacterium for decomposing object substance to be purified, agent for purifying underground water and/or soil and purification method
JP2010119339A (en) * 2008-11-19 2010-06-03 Daikin Ind Ltd NEW TETRACHLOROETHYLENE DEHALOGENASE GENE (rdhA)
JP2012170359A (en) * 2011-02-18 2012-09-10 Takasago Thermal Eng Co Ltd New microorganism, dioxins-degrading agent and method for degrading dioxins

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149786A (en) * 1995-11-30 1997-06-10 Toyota Central Res & Dev Lab Inc Microorganism capable of decomposing halogenated hydrocarbon and its use
JP2001179234A (en) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd Method for cleaning environment and method for obtaining a group of microorganisms for the method
JP2006262842A (en) * 2005-03-25 2006-10-05 Kurita Water Ind Ltd Method for culturing microorganism group, culture liquid obtained by the culture method, and method for purifying underground water and/or soil
JP2006296303A (en) * 2005-04-21 2006-11-02 Kurita Water Ind Ltd Method for culturing cis-1,2-dichloroethylene-decomposing microorganism group, culture medium obtained thereby, and method for purifying underground water and/or soil
JP2009213427A (en) * 2008-03-12 2009-09-24 Kurita Water Ind Ltd Method for preparing bacterium for decomposing object substance to be purified, agent for purifying underground water and/or soil and purification method
JP2010119339A (en) * 2008-11-19 2010-06-03 Daikin Ind Ltd NEW TETRACHLOROETHYLENE DEHALOGENASE GENE (rdhA)
JP2012170359A (en) * 2011-02-18 2012-09-10 Takasago Thermal Eng Co Ltd New microorganism, dioxins-degrading agent and method for degrading dioxins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739064A (en) * 2013-12-24 2014-04-23 广州中国科学院沈阳自动化研究所分所 Domestication method of novel aerobic activated sludge for treating printing and dyeing wastewater raw water and application of domestication method
CN103739064B (en) * 2013-12-24 2016-03-23 广州中国科学院沈阳自动化研究所分所 The application of a kind of aerobic activated sludge in treatment of dyeing wastewater process
JP2016174537A (en) * 2015-03-18 2016-10-06 イビデン株式会社 Production method of biosurfactant, and biosurfactant

Also Published As

Publication number Publication date
JP5898532B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
Wirasnita et al. Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands
Cheng et al. Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: microbial analysis, performance and starvation response
Mita et al. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor
Colla et al. Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy
Thongtha et al. Phosphorus removal from domestic wastewater by Nelumbo nucifera Gaertn. and Cyperus alternifolius L.
KR102597380B1 (en) Constitutive 1,4-dioxane-degrading bacterium
Liao et al. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter
Gu et al. Community analysis and recovery of phenol-degrading bacteria from drinking water biofilters
Zhang et al. Influences of hydraulic loading rate on SVOC removal and microbial community structure in drinking water treatment biofilters
Di Tommaso et al. The contribution of biofilm to nitrogenous disinfection by-product formation in full-scale cyclically-operated drinking water biofilters
Hussain et al. Constructed wetlands and their role in remediation of industrial effluents via plant-microbe interaction–a mini review
Dialynas et al. The effect of biomass adsorption on the removal of selected pharmaceutical compounds in an immersed membrane bioreactor system
Samudro et al. Mixed plant operations for phytoremediation in polluted environments–a critical review
Zhang et al. Effect of submerged macrophytes Vallisneria spiralis L. on restoring the sediment contaminated by enrofloxacin in aquaculture ponds
JP5898532B2 (en) Volatile organic compound decomposer
Bao et al. New insight into the mechanism underlying the effect of biochar on phenanthrene degradation in contaminated soil revealed through DNA-SIP
JP2002018480A (en) Method for cleaning water contaminated by refractory material
Dogan et al. Contribution of green manure, rhizobium and humic+ fulvic acid on recovering soil biologic activity of olive mill wastewater contaminated soil.
KR102036844B1 (en) Method for preparation of organic germamium from granite
Chen et al. Effects of six types of straw derived biochar on anaerobic biodegradation of polybrominated diphenyl ethers in mangrove sediments: a microcosm experiment
KR101938497B1 (en) Microbiological non-sludge treatment method for the high concentration of organic waste water
JP2011036843A (en) Culture of bacteria carrier, stuck body thereof, and method for producing the same
Chen et al. Semivolatile organic compounds removal and health risk reduction in drinking water treatment biofilters applying different backwashing strategies
Xie et al. Enhancement the enzymatic activity of phenol-degrading microbes immobilized on agricultural residues during the biodegradation of phenol in petrochemical wastewater
Nnaji et al. Potato skin: a potential biostimulating agent for used motor oil biodegraders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250