JP2013182845A - Negative electrode active material for lithium secondary battery, and method for producing the same - Google Patents

Negative electrode active material for lithium secondary battery, and method for producing the same Download PDF

Info

Publication number
JP2013182845A
JP2013182845A JP2012047582A JP2012047582A JP2013182845A JP 2013182845 A JP2013182845 A JP 2013182845A JP 2012047582 A JP2012047582 A JP 2012047582A JP 2012047582 A JP2012047582 A JP 2012047582A JP 2013182845 A JP2013182845 A JP 2013182845A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012047582A
Other languages
Japanese (ja)
Inventor
Koji Hisayuki
晃二 久幸
Masashi Sakaguchi
雅司 坂口
Tadatoshi Kurozumi
忠利 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012047582A priority Critical patent/JP2013182845A/en
Priority to PCT/JP2013/053837 priority patent/WO2013132996A1/en
Priority to CN201380004284.5A priority patent/CN103999271B/en
Publication of JP2013182845A publication Critical patent/JP2013182845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/054Alkali metals, i.e. Li, Na, K, Rb, Cs, Fr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery, capable of achieving prolonged cycle life of a lithium secondary battery.SOLUTION: A negative electrode material for a lithium secondary battery comprises powder of an aggregate of particles formed by cutting an aluminum foil with a thickness of 0.15 mm or less. Each of the particles has a size that allows each particle to pass through a sieve with an aperture of 0.1 mm (in accordance with JIS Z8801-3), and the powder has a specific surface area as determined by a BET method of 0.3 m/g or more.

Description

この発明はリチウム二次電池用負極活物質およびその製造方法に関し、さらに詳しくは、Liイオンを多量にかつ可逆的に吸蔵・放出することのできる非水電解質二次電池用負極活物質およびその製造方法に関する。ここで、非水電解質二次電池は、電解質を有機溶媒に溶解した非水電解質を用いた二次電池と、高分子電解質やゲル電解質などの非水電解質を用いた二次電池とを包含する。   The present invention relates to a negative electrode active material for a lithium secondary battery and a method for producing the same, and more specifically, a negative electrode active material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li ions in large quantities and the production thereof. Regarding the method. Here, the nonaqueous electrolyte secondary battery includes a secondary battery using a nonaqueous electrolyte obtained by dissolving an electrolyte in an organic solvent, and a secondary battery using a nonaqueous electrolyte such as a polymer electrolyte or a gel electrolyte. .

リチウムイオン電池、リチウムポリマー電池などのリチウム二次電池は、高いエネルギー密度を有するものであり、移動体通信機器や携帯用電子機器などの主電源として利用されるにとどまらず、大型の電力貯蔵用電源や車載用電源としても注目されている。   Lithium secondary batteries such as lithium ion batteries and lithium polymer batteries have a high energy density and are not only used as main power sources for mobile communication devices and portable electronic devices, but also for large-scale power storage. It is also attracting attention as a power source and an on-vehicle power source.

このようなリチウム二次電池の負極としては、従来、黒鉛、結晶化度の低い炭素等の各種炭素材料から形成されたものが広く用いられていた。しかしながら、炭素材料からなる負極は、使用可能な電流密度が低く、理論容量も不十分である。たとえば炭素材料のひとつである黒鉛は、理論容量が372mAh/gに過ぎないため、より一層の高容量化が望まれている。   As a negative electrode of such a lithium secondary battery, those formed from various carbon materials such as graphite and carbon having a low crystallinity have been widely used. However, a negative electrode made of a carbon material has a low usable current density and an insufficient theoretical capacity. For example, graphite, which is one of the carbon materials, has a theoretical capacity of only 372 mAh / g, and therefore a higher capacity is desired.

一方、金属Liから形成された負極をリチウム二次電池に用いた場合には、高い理論容量が得られることが知られているが、充電時に、金属Liが負極にデンドライト状に析出し、充放電を繰り返すことによって成長を続け、正極側に達して内部短絡が起こるというという大きな欠点がある。その上、析出したデンドライト状金属Liは、比表面積が大きいために反応活性度が高く、その表面で電子伝導性のない溶媒の分解生成物からなる界面被膜が形成され、これによって電池の内部抵抗が高くなって充放電効率が低下する。このような理由により、金属Liから形成された負極を用いるリチウム二次電池は信頼性が低く、サイクル寿命が短いという欠点があり、広く実用化される段階には達していない。   On the other hand, when a negative electrode formed from metallic Li is used for a lithium secondary battery, it is known that a high theoretical capacity can be obtained. However, during charging, metallic Li precipitates on the negative electrode in a dendrite-like manner, and is charged. There is a major drawback in that the growth continues by repeating the discharge and reaches the positive electrode side to cause an internal short circuit. In addition, the deposited dendritic metal Li has a high specific activity, and thus has a high reaction activity, and an interfacial film made of a decomposition product of a solvent having no electron conductivity is formed on the surface, thereby forming an internal resistance of the battery. As a result, the charge / discharge efficiency decreases. For these reasons, lithium secondary batteries using a negative electrode formed from metal Li have the disadvantages of low reliability and short cycle life, and have not yet reached the stage of wide practical use.

このような背景から、汎用の炭素材料よりも放電容量の大きい物質であって、金属Li以外の材料からなる負極活物質が望まれている。例えば、Sn、Si、Agなどの元素や、これらの窒化物、酸化物等は、Liイオンを吸蔵してLiイオンと合金を形成することができ、その吸蔵量は各種炭素材料よりはるかに大きい値を示すことが知られている。   From such a background, a negative electrode active material which is a substance having a discharge capacity larger than that of a general-purpose carbon material and made of a material other than metal Li is desired. For example, elements such as Sn, Si and Ag, nitrides, oxides and the like of these can occlude Li ions to form an alloy with Li ions, and the occlusion amount is much larger than various carbon materials. It is known to show a value.

しかしながら、Sn、Si、Agなどの元素や、これらの窒化物、酸化物等から形成された負極をリチウム二次電池に用いる場合には、充放電のサイクルを繰り返すうちに、Liイオンの吸蔵・放出に伴って負極に大きな膨張・収縮が発生し、この膨張・収縮に起因して負極の割れや微粉化が発生する。したがって、Sn、Si、Agなどの元素や、これらの窒化物、酸化物等上記物質から形成された負極を用いるリチウム二次電池はサイクル寿命が低下することになって実用電池として用いることはできない。   However, when a negative electrode formed from an element such as Sn, Si, or Ag, or a nitride or oxide thereof is used for a lithium secondary battery, the Li-ion occlusion / Along with the release, the negative electrode is greatly expanded / contracted, and the negative electrode is cracked or pulverized due to the expansion / contraction. Therefore, a lithium secondary battery using a negative electrode formed from the above-described substances such as Sn, Si, Ag, etc., and their nitrides and oxides cannot be used as a practical battery because its cycle life is reduced. .

その対策として、Liイオンを吸蔵・放出しやすい金属と、吸蔵・放出を行なわない金属とからなる2相以上の合金を負極活物質とし、吸蔵・放出を行なわない金属によって、Liイオンを吸蔵・放出する際の負極の膨張・収縮、および膨張・収縮に起因する負極の割れや微粉化を抑制することを意図した負極活物質が提案されている。   As a countermeasure, a negative electrode active material is an alloy of two or more phases composed of a metal that easily stores and releases Li ions and a metal that does not store and release, and the metal that does not store and release does not store and release Li ions. A negative electrode active material intended to suppress the expansion / contraction of the negative electrode during discharge and the cracking or pulverization of the negative electrode due to expansion / contraction has been proposed.

たとえば特許文献1には、Liイオン吸蔵相α 、およびLiイオン吸蔵相αを構成する元素と他の元素との金属間化合物または固溶体からなる相βよりなり、かつ組成を選択した原料の溶湯を、アトマイズ法、ロール急冷法等により急冷凝固させた組織を有する負極活物質が記載され、特許文献2には、Ag、Al、Au、Ca、Cu、Fe、In、Mg、Pd、Pt、Y、Zn、Ti、V、Cr、Mn、Co、Ni、Y、Zr、Nb、Mo、Hf、Ta、Wおよび希土類元素からなる群から選ばれた少なくとも一種の元素であるA成分、ならびにGa、Ge、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素であるB成分からなる原料物質を混合し、メカニカルアロイング処理を行って形成された複合粉末からなる負極活物質が記載されている。   For example, Patent Document 1 includes a raw material melt composed of a Li ion storage phase α and a phase β made of an intermetallic compound or a solid solution of an element constituting the Li ion storage phase α and another element and having a selected composition. , A negative electrode active material having a structure rapidly quenched and solidified by an atomizing method, a roll rapid cooling method, or the like is described. Patent Document 2 discloses Ag, Al, Au, Ca, Cu, Fe, In, Mg, Pd, Pt, Y Zn, Ti, V, Cr, Mn, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W and an A component that is at least one element selected from the group consisting of rare earth elements, and Ga, A negative active material comprising a composite powder formed by mixing a raw material comprising a B component, which is at least one element selected from the group consisting of Ge, Sb, Si and Sn, and subjecting it to mechanical alloying treatment The quality is listed.

しかしながら、特許文献1および2記載の負極活物質から形成された負極においては、大きな初期放電容量が得られるものの、充放電を繰り返すうちに生じる負極の膨張・収縮、および膨張・収縮に起因する負極の割れや微粉化を効果的に抑制することはできず、サイクル寿命の長寿命化を達成するには至っていない。   However, in the negative electrode formed from the negative electrode active material described in Patent Documents 1 and 2, a large initial discharge capacity is obtained, but the negative electrode is caused by expansion / contraction of the negative electrode and the expansion / contraction caused by repeated charge / discharge. Cracking and pulverization cannot be effectively suppressed, and the cycle life has not been extended.

特開2001−297757号公報JP 2001-297757 A 特開2005−78999号公報JP 2005-78999 A

この発明の目的は、上記問題を解決し、Liイオンを吸蔵・放出する量が多く、したがって充電・放電容量が大きくなるとともに、充電・放電を繰り返すことによる容量低下が少なく、リチウム二次電池のサイクル寿命の長寿命化を達成することができるリチウム二次電池用負極活物質およびその製造方法を提供することにある。   The object of the present invention is to solve the above-described problems, and to increase the amount of occlusion / release of Li ions, thus increasing the charge / discharge capacity and reducing the capacity decrease due to repeated charge / discharge. An object of the present invention is to provide a negative electrode active material for a lithium secondary battery and a method for producing the same, which can achieve a longer cycle life.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)厚さ0.15mm以下のアルミニウム箔を切断することにより形成された粒子の集合体である粉末からなり、各粒子が、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであり、粉末のBET法による比表面積が0.3m/g以上となっているリチウム二次電池用負極活物質。 1) Made of powder that is an aggregate of particles formed by cutting an aluminum foil having a thickness of 0.15 mm or less, and each particle passes through a sieve (based on JIS Z8801-1) having an aperture of 0.1 mm. A negative electrode active material for a lithium secondary battery that has a size that can be measured and that has a specific surface area of 0.3 m 2 / g or more by the BET method of the powder.

2)前記各粒子が、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさである上記1)記載のリチウム二次電池用負極活物質。   2) The negative electrode active material for a lithium secondary battery according to 1), wherein each of the particles has a size capable of passing through a sieve having an opening of 0.045 mm (based on JIS Z8801-1).

3)前記各粒子の投影周長円相当径が、0.010mm以下である上記1)記載のリチウム二次電池用負極活物質。   3) The negative electrode active material for a lithium secondary battery according to 1) above, wherein the projected equivalent circle diameter of each particle is 0.010 mm or less.

4)前記各粒子の投影周長円相当径が、0.005mm以下である上記1)記載のリチウム二次電池用負極活物質。   4) The negative electrode active material for a lithium secondary battery according to 1) above, wherein the projected equivalent circle diameter of each particle is 0.005 mm or less.

5)前記粉末のBET法による比表面積が0.5m/g以上となっている上記1)〜4)のうちのいずれかに記載のリチウム二次電池用負極活物質。 5) The negative electrode active material for a lithium secondary battery according to any one of 1) to 4) above, wherein the powder has a specific surface area of 0.5 m 2 / g or more by the BET method.

6)前記アルミニウム箔が、純度が99質量%以上のAlからなる上記1)〜5)のうちのいずれかに記載のリチウム二次電池用負極活物質。   6) The negative electrode active material for a lithium secondary battery according to any one of 1) to 5), wherein the aluminum foil is made of Al having a purity of 99% by mass or more.

7)前記アルミニウム箔が、純度が99.9質量%以上のAlからなる上記1)〜5)のうちのいずれかに記載のリチウム二次電池用負極活物質。   7) The negative electrode active material for a lithium secondary battery according to any one of 1) to 5), wherein the aluminum foil is made of Al having a purity of 99.9% by mass or more.

8)前記粒子が、厚さ0.15mm以下のアルミニウム箔を切断するとともに、圧縮応力が加わる方法で粉砕することにより形成されている上記1)〜7)のうちのいずれかに記載のリチウム二次電池用負極活物質。   8) The lithium secondary battery according to any one of 1) to 7) above, wherein the particles are formed by cutting an aluminum foil having a thickness of 0.15 mm or less and pulverizing by a method in which a compressive stress is applied. Negative electrode active material for secondary battery.

9)前記粒子に、酸またはアルカリを用いて化学溶解処理が施されている上記1)〜8)のうちのいずれかに記載のリチウム二次電池用負極活物質。   9) The negative electrode active material for a lithium secondary battery according to any one of 1) to 8), wherein the particles are chemically dissolved using an acid or an alkali.

10)厚さ0.15mm以下のアルミニウム箔を切断して粒子を形成することにより粉末をつくり、粉末を構成する各粒子を、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにするとともに、同じく粉末のBET法による比表面積を0.3m/g以上にすることを特徴とするリチウム二次電池用負極活物質の製造方法。 10) Powder is made by cutting aluminum foil with a thickness of 0.15 mm or less to form particles, and each particle constituting the powder is passed through a sieve having a mesh opening of 0.1 mm (based on JIS Z8801-1). A method for producing a negative electrode active material for a lithium secondary battery, characterized in that the specific surface area of the powder according to the BET method is 0.3 m 2 / g or more.

11)前記各粒子を、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにする上記10)記載のリチウム二次電池用負極活物質の製造方法。   11) The method for producing a negative electrode active material for a lithium secondary battery as described in 10) above, wherein each particle is sized so as to pass through a sieve having an aperture of 0.045 mm (based on JIS Z8801-1).

12)前記各粒子の投影周長円相当径を0.010mm以下にする上記10)記載のリチウム二次電池用負極活物質の製造方法。   12) The method for producing a negative electrode active material for a lithium secondary battery as described in 10) above, wherein the projected circumference equivalent circle diameter of each particle is 0.010 mm or less.

13)前記各粒子の投影周長円相当径を0.005mm以下にする上記10)記載のリチウム二次電池用負極活物質の製造方法。   13) The method for producing a negative electrode active material for a lithium secondary battery as described in 10) above, wherein the projected equivalent circle length of each particle is 0.005 mm or less.

14)前記アルミニウム箔が、純度が99質量%以上のAlからなる上記10)〜13)のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。   14) The method for producing a negative electrode active material for a lithium secondary battery according to any one of 10) to 13), wherein the aluminum foil is made of Al having a purity of 99% by mass or more.

15)前記アルミニウム箔が、純度が99.9質量%以上のAlからなる上記10)〜13)のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。   15) The method for producing a negative electrode active material for a lithium secondary battery according to any one of 10) to 13), wherein the aluminum foil is made of Al having a purity of 99.9% by mass or more.

16)厚さ0.15mm以下のアルミニウム箔を切断した後、酸またはアルカリを用いて化学溶解処理を施して粒子を形成する上記10)〜15)のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。   16) The lithium secondary battery according to any one of 10) to 15) above, wherein an aluminum foil having a thickness of 0.15 mm or less is cut and then subjected to chemical dissolution treatment with an acid or an alkali to form particles. For producing a negative electrode active material.

17)厚さ0.15mm以下のアルミニウム箔を切断するとともに、圧縮応力が加わる方法により粉砕して粒子を形成する上記10)〜15)のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。   17) The negative electrode active for lithium secondary batteries according to any one of 10) to 15) above, wherein the aluminum foil having a thickness of 0.15 mm or less is cut and pulverized by a method to which compressive stress is applied to form particles. A method for producing a substance.

18)厚さ0.15mm以下のアルミニウム箔を切断するとともに、圧縮応力が加わる方法により粉砕し、さらに酸またはアルカリを用いて化学溶解処理を施して粒子を形成する上記10)〜15)のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。   18) Among the above 10) to 15) in which an aluminum foil having a thickness of 0.15 mm or less is cut, pulverized by a method in which compressive stress is applied, and further subjected to chemical dissolution treatment using an acid or alkali to form particles. The manufacturing method of the negative electrode active material for lithium secondary batteries in any one of these.

19)集電体上に、上記1)〜9)のうちのいずれかに記載された負極活物質、導電助剤および結着剤を含む混合物質が付着されているリチウム二次電池用負極。   19) A negative electrode for a lithium secondary battery, wherein a mixed material containing a negative electrode active material, a conductive additive and a binder described in any one of 1) to 9) above is attached on a current collector.

20)上記19)記載の負極と、セパレータと、リチウム二次電池用正極とを備えているリチウム二次電池。   20) A lithium secondary battery comprising the negative electrode described in 19) above, a separator, and a positive electrode for a lithium secondary battery.

本発明は、また以下の態様を含む。   The present invention also includes the following aspects.

a)前記各粒子が、目開き0.010mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさである上記1)記載のリチウム二次電池用負極活物質。   a) The negative electrode active material for a lithium secondary battery according to 1) above, wherein each of the particles has a size capable of passing through a sieve having an aperture of 0.010 mm (based on JIS Z8801-1).

b)前記各粒子が、目開き0.005mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさである上記1)記載のリチウム二次電池用負極活物質。   b) The negative electrode active material for a lithium secondary battery according to 1) above, wherein each of the particles has a size capable of passing through a sieve having an aperture of 0.005 mm (based on JIS Z8801-1).

c)前記各粒子を、目開き0.010mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにする上記10)記載のリチウム二次電池用負極活物質の製造方法。   c) The method for producing a negative electrode active material for a lithium secondary battery according to 10) above, wherein each particle is sized so as to pass through a sieve having an aperture of 0.010 mm (based on JIS Z8801-1).

d)前記各粒子を、目開き0.005mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにする上記10)記載のリチウム二次電池用負極活物質の製造方法。   d) The method for producing a negative electrode active material for a lithium secondary battery as described in 10) above, wherein each particle is sized so as to pass through a sieve having an aperture of 0.005 mm (based on JIS Z8801-1).

上記1)〜9)のリチウム二次電池用負極活物質によれば、厚さ0.15mm以下のアルミニウム箔を切断することにより形成された粒子の集合体である粉末からなり、各粒子が、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであり、粉末のBET法による比表面積が0.3m/g以上となっているので、アルミニウム箔を切断して形成された粉末の比表面積が大きくなる。したがって、充電・放電の際の負極活物質の体積変化が小さくなって、充電・放電の際の負極活物質の体積変化が大きくなることに起因する負極活物質の割れや微粉化、ならびに負極活物質の導電助剤および結着剤からの剥離を効果的に抑制することができるとともに、充電・放電を繰り返すことによる容量低下が少なくなってリチウム二次電池のサイクル寿命の長寿命化を図ることが可能になると考えられる。その理由は、次に述べるとおりであると推定される。すなわち、LiイオンがAlと合金化する場合、粒子の表面から優先的に反応して粒子の表面にLiイオンを含む化合物が形成されることになるが、粉末のBET法による比表面積が0.3m/g以上となっていれば、粒子の表面において多くのLiイオンを含む化合物が形成され、充電時の負極活物質の膨張を抑制することができる。また、放電時にLiイオンが負極活物質から出る際の負極活物質の収縮も小さくなる。その結果、充電・放電の際の負極活物質の体積変化が小さくなると推定される。 According to the negative electrode active material for lithium secondary batteries of 1) to 9) above, the negative active material for lithium secondary battery comprises a powder that is an aggregate of particles formed by cutting an aluminum foil having a thickness of 0.15 mm or less. The size is such that it can pass through a sieve with a mesh size of 0.1 mm (based on JIS Z8801-1), and the specific surface area of the powder by the BET method is 0.3 m 2 / g or more. Thus, the specific surface area of the powder formed is increased. Accordingly, the volume change of the negative electrode active material during charging / discharging is reduced, and the volume change of the negative electrode active material during charging / discharging is increased. Separation of substances from conductive aids and binders can be effectively suppressed, and capacity reduction due to repeated charging and discharging is reduced, and the cycle life of lithium secondary batteries is extended. Will be possible. The reason is estimated as follows. That is, when Li ions are alloyed with Al, a compound containing Li ions is formed on the surface of the particles by preferential reaction from the surface of the particles, but the specific surface area of the powder by the BET method is 0. If it is 3 m < 2 > / g or more, the compound containing many Li ions will be formed in the surface of particle | grains, and it can suppress the expansion | swelling of the negative electrode active material at the time of charge. Further, the shrinkage of the negative electrode active material when Li ions exit from the negative electrode active material during discharge is reduced. As a result, it is estimated that the volume change of the negative electrode active material during charging / discharging is reduced.

しかも、上記1)〜9)の負極活物質から形成された負極を備えたリチウム二次電池においては、各種炭素材料からなる負極活物質から形成された負極を備えたリチウム二次電池に比べて、Liイオンを多量に吸蔵・放出することが可能になって充電・放電容量が大きくなる。   Moreover, in the lithium secondary battery provided with the negative electrode formed from the negative electrode active material of the above 1) to 9), compared with the lithium secondary battery provided with the negative electrode formed from the negative electrode active material made of various carbon materials. In addition, a large amount of Li ions can be occluded / released, and the charge / discharge capacity is increased.

上記2)〜9)のリチウム二次電池用負極活物質によれば、当該負極活物質から形成された負極を用いたリチウム二次電池の充電・放電時の体積変化を一層効果的に小さくすることができる。   According to the negative electrode active material for lithium secondary batteries of the above 2) to 9), the volume change at the time of charging / discharging of the lithium secondary battery using the negative electrode formed from the negative electrode active material is further effectively reduced. be able to.

上記10)の方法によれば、厚さ0.15mm以下のアルミニウム箔を切断して粒子を形成することにより粉末をつくり、粉末を構成する各粒子を、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにするとともに、同じく粉末のBET法による比表面積を0.3m/g以上にするだけであるので、リチウム二次電池用負極活物質を容易に製造することができる。 According to the above method 10), a powder is prepared by cutting an aluminum foil having a thickness of 0.15 mm or less to form particles, and each particle constituting the powder is sieved with a sieve having a mesh size of 0.1 mm (JIS Z8801). 1), and the specific surface area of the powder by the BET method is only 0.3 m 2 / g or more, so that a negative electrode active material for a lithium secondary battery can be easily produced. can do.

上記11)〜18)の方法によれば、上記2)〜9)の負極活物質を容易に製造することができる。   According to the methods 11) to 18), the negative electrode active materials 2) to 9) can be easily produced.

上記19)の負極および上記20)のリチウム二次電池によれば、上記1)〜9)の負極活物質で述べたような顕著な効果を奏する。   According to the negative electrode of 19) and the lithium secondary battery of 20), there are remarkable effects as described in the negative electrode active materials of 1) to 9).

この発明によるリチウム二次電池用負極活物質の粒子を示す部分断面拡大斜視図である。It is a partial cross-section enlarged perspective view showing particles of a negative electrode active material for a lithium secondary battery according to the present invention. アルミニウム箔を切断してこの発明によるリチウム二次電池用負極活物質となる粉末を形成する装置を示す概略垂直断面図である。1 is a schematic vertical sectional view showing an apparatus for cutting an aluminum foil to form a powder that becomes a negative electrode active material for a lithium secondary battery according to the present invention. この発明によるリチウム二次電池用負極活物質を用いて形成された負極を有するリチウム二次電池を示す一部切り欠き正面図である。1 is a partially cutaway front view showing a lithium secondary battery having a negative electrode formed using a negative electrode active material for a lithium secondary battery according to the present invention.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1はこの発明によるリチウム二次電池用負極活物質を構成する粒子を示し、図2はアルミニウム箔を切断してこの発明によるリチウム二次電池用負極活物質となる粉末を形成する装置を示し、図3はこの発明によるリチウム二次電池用負極活物質を用いて形成された負極を有するリチウム二次電池の一例を示す。   FIG. 1 shows particles constituting the negative electrode active material for a lithium secondary battery according to the present invention, and FIG. 2 shows an apparatus for cutting an aluminum foil to form a powder that becomes a negative electrode active material for a lithium secondary battery according to the present invention. FIG. 3 shows an example of a lithium secondary battery having a negative electrode formed using the negative electrode active material for a lithium secondary battery according to the present invention.

リチウム二次電池用負極活物質は、厚さ0.15mm以下のアルミニウム箔を切断することにより形成された粒子の集合体である粉末からなり、各粒子が、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであり、粉末のBET法による比表面積が0.3m/g以上となっているものである。 A negative electrode active material for a lithium secondary battery is made of powder which is an aggregate of particles formed by cutting an aluminum foil having a thickness of 0.15 mm or less, and each particle has a sieve having an opening of 0.1 mm (JIS The specific surface area of the powder by the BET method is 0.3 m 2 / g or more.

ここで、「箔」とは、JISで規定されているように、厚さが0.006〜0.2mmのものを意味するものとする。また、「粉末」とは、JIS Z2500で規定されているように、最大寸法1mm以下の粒子の集合体を意味するものとする。   Here, the “foil” means one having a thickness of 0.006 to 0.2 mm as defined in JIS. “Powder” means an aggregate of particles having a maximum dimension of 1 mm or less, as defined in JIS Z2500.

用いるアルミニウム箔の厚さを0.15mmに限定したのは、アルミニウム箔の厚さが0.15mmを超えると、切断が困難になり、生産効率が低下するからである。用いるアルミニウム箔は、純度が99質量%以上のAlからなることが好ましく、純度が99.9質量%以上のAlからなることが望ましい。これは、形成された負極活物質からなる負極へのLiイオンの吸蔵・放出量を多くするためである。特に、純度99.9質量%以上のAlからなる場合、負極活物質で形成された負極を用いたリチウム二次電池の初期充放電容量を大きくすることができるとともに、充放電を繰り返すことによる容量低下を少なくすることができる。なお、アルミニウム箔の純度は、JIS H4170に規定されているように、100質量%からFe、SiおよびCuの合計量を減じた残部を表すものである。   The reason why the thickness of the aluminum foil to be used is limited to 0.15 mm is that when the thickness of the aluminum foil exceeds 0.15 mm, cutting becomes difficult and the production efficiency decreases. The aluminum foil to be used is preferably made of Al having a purity of 99% by mass or more, and is preferably made of Al having a purity of 99.9% by mass or more. This is for increasing the amount of insertion / extraction of Li ions to / from the negative electrode made of the formed negative electrode active material. In particular, when composed of Al having a purity of 99.9% by mass or more, the initial charge / discharge capacity of the lithium secondary battery using the negative electrode formed of the negative electrode active material can be increased, and the capacity by repeating charge / discharge can be increased. Reduction can be reduced. In addition, the purity of aluminum foil represents the remainder which reduced the total amount of Fe, Si, and Cu from 100 mass%, as prescribed | regulated to JIS H4170.

前記アルミニウム箔を切断することにより形成された粒子の集合体である粉末には、様々な形状の粒子が含まれるが、厚さ0.15mm以下のアルミニウム箔を切断すると、箔が分断されることによって新生面が生じるとともに屈曲による延伸部分が生じ、その結果比表面積が増大すると考えられる。たとえば、粒子(1)は、図1に示すような形状となる。   The powder, which is an aggregate of particles formed by cutting the aluminum foil, includes particles of various shapes, but when the aluminum foil having a thickness of 0.15 mm or less is cut, the foil is divided. As a result, a new surface is formed and a stretched portion is formed by bending, resulting in an increase in specific surface area. For example, the particle (1) has a shape as shown in FIG.

リチウム二次電池用負極活物質となる粉末を構成する粒子は、アルミニウム箔を切断するとともに、圧縮応力が加わる方法で粉砕することにより形成されていてもよい。また、前記粒子は、アルミニウム箔を切断するとともに、酸またはアルカリを用いて化学溶解処理を施すことにより形成されていてもよい。さらに、前記粒子は、アルミニウム箔を切断するとともに、圧縮応力が加わる方法で粉砕し、ついで酸またはアルカリを用いて化学溶解処理を施すことにより形成されていてもよい。   The particles constituting the powder serving as the negative electrode active material for a lithium secondary battery may be formed by cutting the aluminum foil and pulverizing it by a method in which a compressive stress is applied. The particles may be formed by cutting the aluminum foil and subjecting it to chemical dissolution treatment using acid or alkali. Further, the particles may be formed by cutting the aluminum foil, pulverizing it by a method in which a compressive stress is applied, and then performing a chemical dissolution treatment using an acid or an alkali.

また、前記粒子の大きさを、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさに限定したのは、これよりも大きくなると、負極をつくるにあたって導電助剤および結着剤と混合した際に、適度なペースト状にならず、集電体上へのコーティングが困難になるからである。各粒子の大きさは、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであることが好ましく、投影周長円相当径が、0.010mm以下であることがより好ましく、投影周長円相当径が、0.005mm以下であることが望ましい。また、各粒子の大きさは、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであることが好ましく、目開き0.010mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであることがより好ましく、目開き0.005mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであることが望ましい。   In addition, the size of the particles is limited to a size that can pass through a sieve having a mesh size of 0.1 mm (based on JIS Z8801-1). This is because when mixed with the binder, the paste does not form an appropriate paste, and coating on the current collector becomes difficult. The size of each particle is preferably a size that can pass through a sieve having an aperture of 0.045 mm (based on JIS Z8801-1), and the projected circumferential ellipse equivalent diameter is 0.010 mm or less. More preferably, it is desirable that the projected circumference circle equivalent diameter is 0.005 mm or less. Further, the size of each particle is preferably a size that can pass through a sieve having an opening of 0.045 mm (based on JIS Z8801-1), and a sieve having an opening of 0.010 mm (based on JIS Z8801-1). ) Is more preferable, and it is desirable that the size be able to pass through a sieve having an aperture of 0.005 mm (based on JIS Z8801-1).

さらに、前記粒子の集合体である粉末のBET法による比表面積を0.3m/g以上に限定したのは、形成された負極活物質からなる負極へのLiイオンの吸蔵・放出量を多くするためである。当該比表面積は0.5/g以上であることが好ましい。 Furthermore, the specific surface area by the BET method of the powder that is an aggregate of the particles is limited to 0.3 m 2 / g or more because the amount of insertion / extraction of Li ions to the negative electrode made of the formed negative electrode active material is increased. It is to do. The specific surface area is preferably 0.5 2 / g or more.

ここで、BET法による比表面積は、公知の方法で次のようにして求められる。すなわち、固体物質およびその周囲に存在するガスは、急速に冷却されるとファンデルワールス力によって互いに引き付け合うので、吸着したガスの量を測定し、BET式に代入する事によって固体の表面積を計算することができる。上記においては、粉末の比表面積は、吸着ガスとして窒素ガス、キャリアガスとしてヘリウム、冷却剤として液体窒素を使用してBET法により求められたものである。なお、キャリアガスであるヘリウムは希釈気体であり、窒素ガスと混合された混合気体として用いられる。当該混合気体における窒素ガス濃度は、ここでは29.8%である。   Here, the specific surface area by BET method is calculated | required as follows by a well-known method. That is, the solid substance and the gas present around it attract each other by van der Waals force when rapidly cooled, so measure the amount of adsorbed gas and calculate the surface area of the solid by substituting it into the BET equation. can do. In the above, the specific surface area of the powder is determined by the BET method using nitrogen gas as the adsorption gas, helium as the carrier gas, and liquid nitrogen as the coolant. Note that helium, which is a carrier gas, is a diluted gas and is used as a mixed gas mixed with nitrogen gas. Here, the nitrogen gas concentration in the mixed gas is 29.8%.

アルミニウム箔の厚さや、粒子の大きさや、粉末のBET法による比表面積などの条件は、アルミニウム箔を切断して形成された粉末の粒子の表面へのLiイオンの吸蔵量や、当該負極活物質からなる負極を備えたリチウム二次電池の充電時の負極の膨張や、放電時の負極の収縮を吸収するという観点から定められたものである。   Conditions such as the thickness of the aluminum foil, the size of the particles, and the specific surface area of the powder by the BET method include the amount of Li ions occluded on the surface of the powder particles formed by cutting the aluminum foil, and the negative electrode active material. It is determined from the viewpoint of absorbing the expansion of the negative electrode during charging of the lithium secondary battery including the negative electrode and the contraction of the negative electrode during discharging.

アルミニウム箔を切断して粉末にする切断方法としては、刃を使って細かく切断する方法が好ましく、引きちぎったり、たたきつけたりする方法は、形成された粉末の粒子表面への開口が潰れる可能性があるので好ましくない。刃を使って細かく切断する方法としては、可動刃と固定刃とを備えた装置を使用し、可動刃を高速回転させて固定刃とともに切断する方法がある。この場合、可動刃および固定刃の下方に多数のふるい目を有するスクリーンを配置し、ふるい目の大きさを適切に調節することにより粒子の大きさを調整することができる。   As a cutting method of cutting aluminum foil into powder, a method of cutting finely with a blade is preferable, and the method of tearing or knocking may cause the opening to the particle surface of the formed powder to be crushed Therefore, it is not preferable. As a method of finely cutting using a blade, there is a method of using an apparatus including a movable blade and a fixed blade, rotating the movable blade at a high speed, and cutting with the fixed blade. In this case, it is possible to adjust the size of the particles by arranging a screen having a large number of sieves below the movable blade and the fixed blade and appropriately adjusting the size of the sieves.

図2は、アルミニウム箔を切断する装置の一具体例を概略的に示す。   FIG. 2 schematically shows a specific example of an apparatus for cutting an aluminum foil.

切断装置(20)のハウジング(21)には、切断室(22)と、切断室(22)の下方に位置する粉末回収室(23)とが設けられている。ハウジング(21)には、切断室(22)内に臨む箔投入口(24)と、粉末回収室(23)に臨む粉末回収口(25)とが設けられており、それぞれハウジング(21)に着脱自在に取り付けられた蓋(26)(27)により開閉自在となっている。   The housing (21) of the cutting device (20) is provided with a cutting chamber (22) and a powder recovery chamber (23) located below the cutting chamber (22). The housing (21) is provided with a foil inlet (24) facing the cutting chamber (22) and a powder recovery port (25) facing the powder recovery chamber (23). The lids (26) and (27) can be opened and closed freely.

切断装置(20)のハウジング(21)の切断室(22)内に、回転体(28)および回転体(28)の回転方向に間隔をおいて回転体(28)に取り付けられた複数の回転刃(29)を有する回転切断機(30)が設置されている。また、ハウジング(21)には、先端部が切断室(22)内に望むように、複数の固定刃(31)が取り付けられている。そして、回転体(28)が回転させられることによって、回転刃(29)と固定刃(31)とによりアルミニウム箔が切断される。   In the cutting chamber (22) of the housing (21) of the cutting device (20), a plurality of rotations attached to the rotating body (28) at intervals in the rotating direction of the rotating body (28) and the rotating body (28) A rotary cutting machine (30) having a blade (29) is installed. In addition, a plurality of fixed blades (31) are attached to the housing (21) so that the front end portion is desired in the cutting chamber (22). Then, by rotating the rotating body (28), the aluminum foil is cut by the rotating blade (29) and the fixed blade (31).

切断装置(20)のハウジング(21)内における切断室(22)と粉末回収室(23)との間には複数のふるい目を有するスクリーン(32)が配置されている。スクリーン(32)は、目開き0.1mm、好ましくは目開き0.045mm、より好ましくは目開き0.010mm、望ましくは目開き0.005mmのふるい(JIS Z8801−1に基づく)からなる。   A screen (32) having a plurality of sieves is disposed between the cutting chamber (22) and the powder recovery chamber (23) in the housing (21) of the cutting device (20). The screen (32) comprises a sieve (based on JIS Z8801-1) having an aperture of 0.1 mm, preferably 0.045 mm, more preferably 0.010 mm, and desirably 0.005 mm.

このような切断装置において、アルミニウム箔を箔投入口(24)から投入した後に箔投入口(24)を蓋(26)により塞いで回転体(28)を回転させると、回転刃(29)と固定刃(31)とによって、アルミニウム箔がスクリーン(32)のふるい目を通る大きさの粒子になるまで切断され、スクリーン(32)のふるい目を通過した粒子が粉末回収室(23)内に入る。その後、蓋(27)を開けて粉末回収室(23)内から粉末を取り出す。こうして、負極活物質が得られる。   In such a cutting device, after the aluminum foil is introduced from the foil inlet (24), the foil inlet (24) is closed by the lid (26), and the rotating body (28) is rotated. With the fixed blade (31), the aluminum foil is cut until the size of the particles passes through the screen (32), and the particles passing through the screen (32) are put into the powder recovery chamber (23). enter. Thereafter, the lid (27) is opened and the powder is taken out from the powder collection chamber (23). In this way, a negative electrode active material is obtained.

負極活物質は、図3に示すように、たとえばコイン型のリチウム二次電池(10)に用いられる。コイン型のリチウム二次電池(10)は、ケース(11)内に、負極(12)、負極(12)と対向した正極(13)、負極(12)と正極(13)との間に挟まれたセパレータ(14)、および非水電解質(図示略)が封入されたものである。   As shown in FIG. 3, the negative electrode active material is used, for example, in a coin-type lithium secondary battery (10). The coin-type lithium secondary battery (10) is sandwiched between a negative electrode (12), a positive electrode (13) facing the negative electrode (12), and a negative electrode (12) and a positive electrode (13) in a case (11). The separator (14) and a non-aqueous electrolyte (not shown) are enclosed.

負極(12)は、集電体(15)上に、負極活物質、導電助剤および結着剤を含む混合物(16)が付着させられたものである。集電体(15)としては、たとえば圧延銅箔や、電解銅箔などの銅箔が用いられる。。導電助剤としては、ケッチェンブラックやアセチレンブラックなどがが用いられるが、これに限定されるものではない。結着剤としては、ポリフッ化ビニリデンが用いられるが、これに限定されるものではない。   The negative electrode (12) is obtained by adhering a mixture (16) containing a negative electrode active material, a conductive additive and a binder on a current collector (15). As the current collector (15), for example, a rolled copper foil or a copper foil such as an electrolytic copper foil is used. . As the conductive assistant, ketjen black or acetylene black is used, but is not limited thereto. As the binder, polyvinylidene fluoride is used, but is not limited thereto.

正極(13)としては、たとえばLiCoOからなるものが活物質として用いられ、当該活物質と導電助剤および結着剤との混合物がアルミニウム箔からなる集電体上に付着されたものが用いられるが、これに限定されるものではない。 As the positive electrode (13), for example, a material made of LiCoO 2 is used as an active material, and a material in which a mixture of the active material, a conductive additive and a binder is attached on a current collector made of aluminum foil is used. However, the present invention is not limited to this.

上述したリチウム二次電池(10)において、充電時には、Liイオンが負極(12)に含まれる負極活物質の粒子(1)の表面でLiイオンを含む化合物が形成されることになり、充電時の負極活物質の粒子(1)の膨張を抑制することができる。また、充電時の膨張が抑制されているので、放電時にLiイオンが負極活物質の粒子(1)から出る際の粒子(1)の収縮も小さくなる。その結果、充電・放電の際の負極活物質の粒子(1)の体積変化が小さくなり、充電・放電時の負極活物質の粒子(1)の体積変化が大きくなることに起因する粒子(1)の割れや微粉化、ならびに負極活物質の粒子(1)の導電助剤および結着剤からの剥離をを効果的に抑制することができるとともに、充電・放電を繰り返すことによる容量低下が少なくなって、リチウム二次電池(10)のサイクル寿命の長寿命化を図ることが可能になる。   In the above-described lithium secondary battery (10), during charging, a compound containing Li ions is formed on the surface of the negative electrode active material particles (1) in which Li ions are contained in the negative electrode (12). Expansion of the negative electrode active material particles (1) can be suppressed. Further, since the expansion during charging is suppressed, the shrinkage of the particles (1) when Li ions exit from the particles (1) of the negative electrode active material during discharging is also reduced. As a result, the volume change of the negative electrode active material particles (1) during charge / discharge is reduced, and the volume change of the negative electrode active material particles (1) during charge / discharge is increased (1 ) Cracking and pulverization, as well as separation of the negative electrode active material particles (1) from the conductive additive and the binder, and a decrease in capacity due to repeated charging and discharging are small. Thus, the cycle life of the lithium secondary battery (10) can be extended.

また、リチウム二次電池(10)の初期充放電容量が大きくなるとともに、充放電を繰り返すことによる容量低下が少なくなる。   Further, the initial charge / discharge capacity of the lithium secondary battery (10) is increased, and the capacity reduction due to repeated charge / discharge is reduced.

上記実施形態においては、この発明による負極活物質がコイン型のリチウム二次電池に用いられているが、これに限定されるものではなく、角型、円筒型、ラミネート型などの公知のリチウム二次電池に用いられる。   In the above embodiment, the negative electrode active material according to the present invention is used in a coin-type lithium secondary battery. However, the present invention is not limited to this, and known lithium secondary batteries such as a square type, a cylindrical type, and a laminate type are used. Used for secondary batteries.

以下、この発明の具体的実施例を、比較例とともに説明する。   Hereinafter, specific examples of the present invention will be described together with comparative examples.

実施例1
純度が99.9質量%のAlからなる厚さが0.12mmの市販のアルミニウム箔をシュレッダー装置により小片化した後、目開き0.045mmのふるい(JIS Z8801−1に基づく)からなるスクリーン(32)を有する図2に示す粉砕装置により粉砕し、粉末からなる負極活物質をつくった。得られた負極活物質中の粒子は、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであり、粉末のBET法による比表面積は0.6m/gとなっていた。
Example 1
A commercially available aluminum foil made of Al with a purity of 99.9% by mass having a thickness of 0.12 mm was shredded by a shredder apparatus, and then a screen made of a sieve (based on JIS Z8801-1) having an opening of 0.045 mm ( The negative electrode active material made of powder was pulverized by a pulverizer shown in FIG. The particles in the obtained negative electrode active material have a size that can pass through a sieve having an aperture of 0.045 mm (based on JIS Z8801-1), and the specific surface area of the powder by the BET method is 0.6 m 2 / g. It was.

ついで、負極活物質:90重量部と、ポリフッ化ビニリデンからなる結着剤:5重量部と、アセチレンブラックからなる導電助剤:5重量部とを混合し、当該混合物を厚み10μmの銅箔からなる集電体上に塗布した。ついで、上記混合物が塗布された集電体を1cmの円形ポンチで打ち抜き、これを負極とした。そして、金属Liを正極とし、正極と負極との間に気孔率40vol%のミクロポア構造をしたポリエチレンからなるセパレータを挟み、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(EC+DMC=1:1(体積比))に1mol/リットルのLiPFを溶解させた溶液を電解質とし、露点が−50℃以下の雰囲気であるドライボックス中でコイン型モデル電池(CR2032タイプ)を作製した。 Then, 90 parts by weight of the negative electrode active material, 5 parts by weight of a binder made of polyvinylidene fluoride, and 5 parts by weight of a conductive auxiliary agent made of acetylene black were mixed, and the mixture was made from a copper foil having a thickness of 10 μm. It was applied on a current collector. Next, the current collector coated with the above mixture was punched with a 1 cm 2 circular punch, and this was used as a negative electrode. Then, a separator made of polyethylene having a micropore structure with a porosity of 40 vol% is sandwiched between the positive electrode and the negative electrode, and a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC + DMC = 1). 1 (volume ratio)) was dissolved in 1 mol / liter LiPF 6 as an electrolyte, and a coin-type model battery (CR2032 type) was produced in a dry box having an atmosphere with a dew point of −50 ° C. or lower.

実施例2
純度が99.9質量%のAlからなる厚さが0.12mmの市販のアルミニウム箔をシュレッダー装置により小片化した後、目開き0.045mmのふるい(JIS Z8801−1に基づく)からなるスクリーン(32)を有する図2に示す粉砕装置により粉砕して粉末をつくった。得られた粉末中の粒子は、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさである。
Example 2
A commercially available aluminum foil made of Al with a purity of 99.9% by mass having a thickness of 0.12 mm was shredded by a shredder apparatus, and then a screen made of a sieve (based on JIS Z8801-1) having an aperture of 0.045 mm ( The powder was pulverized by the pulverizer shown in FIG. The particles in the obtained powder have a size that can pass through a sieve having an opening of 0.045 mm (based on JIS Z8801-1).

ついで、上述のようにして得られた粉末の粒子に、液温60℃の5N−HCl中において40分間化学溶解処理を施し、負極活物質をつくった。得られた負極活物質を構成する粉末のBET法による比表面積は1.1m/gとなっていた。 Next, the powder particles obtained as described above were subjected to a chemical dissolution treatment in 5N HCl at a liquid temperature of 60 ° C. for 40 minutes to produce a negative electrode active material. The specific surface area by the BET method of the powder which comprises the obtained negative electrode active material was 1.1 m < 2 > / g.

ついで、負極活物質:90重量部と、ポリフッ化ビニリデンからなる結着剤:5重量部と、アセチレンブラックからなる導電助剤:5重量部とを混合し、当該混合物を厚み10μmの銅箔からなる集電体上に塗布した。ついで、上記混合物が塗布された集電体を1cmの円形ポンチで打ち抜き、これを負極とした。そして、金属Liを正極とし、正極と負極との間に気孔率40vol%のミクロポア構造をしたポリエチレンからなるセパレータを挟み、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(EC+DMC=1:1(体積比))に1mol/リットルのLiPFを溶解させた溶液を電解質とし、露点が−50℃以下の雰囲気であるドライボックス中でコイン型モデル電池(CR2032タイプ)を作製した。 Then, 90 parts by weight of the negative electrode active material, 5 parts by weight of a binder made of polyvinylidene fluoride, and 5 parts by weight of a conductive auxiliary agent made of acetylene black were mixed, and the mixture was made from a copper foil having a thickness of 10 μm. It was applied on a current collector. Next, the current collector coated with the above mixture was punched with a 1 cm 2 circular punch, and this was used as a negative electrode. Then, a separator made of polyethylene having a micropore structure with a porosity of 40 vol% is sandwiched between the positive electrode and the negative electrode, and a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC + DMC = 1). 1 (volume ratio)) was dissolved in 1 mol / liter LiPF 6 as an electrolyte, and a coin-type model battery (CR2032 type) was produced in a dry box having an atmosphere with a dew point of −50 ° C. or lower.

比較例
純度が99.9質量%のAlからなる厚さが0.12mmの市販のアルミニウム箔をシュレッダー装置により小片化した後、ボールミルにより粉砕し、扁平状の粒子の集合体である粉末からなる負極活物質をつくった。得られた負極活物質中の粒子は、目開き0.050mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであり、粉末のBET法による比表面積は0.07m/gとなっていた。
Comparative Example A commercially available aluminum foil made of Al having a purity of 99.9% by mass and having a thickness of 0.12 mm was shredded by a shredder apparatus, and then pulverized by a ball mill, and made of a powder that is an aggregate of flat particles. A negative electrode active material was made. The particles in the obtained negative electrode active material have a size that can pass through a sieve having an aperture of 0.050 mm (based on JIS Z8801-1), and the specific surface area of the powder by the BET method is 0.07 m 2 / g. It was.

ついで、負極活物質:90重量部と、ポリフッ化ビニリデンからなる結着剤:5重量部と、アセチレンブラックからなる導電助剤:5重量部とを混合し、当該混合物を厚み10μmの銅箔からなる集電体上に塗布した。ついで、上記混合物が塗布された集電体を1cmの円形ポンチで打ち抜き、これを負極とした。そして、金属Liを正極とし、正極と負極との間に気孔率40vol%のミクロポア構造をしたポリエチレンからなるセパレータを挟み、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(EC+DMC=1:1(体積比))に1mol/リットルのLiPFを溶解させた溶液を電解質とし、露点が−50℃以下の雰囲気であるドライボックス中でコイン型モデル電池(CR2032タイプ)を作製した。 Then, 90 parts by weight of the negative electrode active material, 5 parts by weight of a binder made of polyvinylidene fluoride, and 5 parts by weight of a conductive auxiliary agent made of acetylene black were mixed, and the mixture was made from a copper foil having a thickness of 10 μm. It was applied on a current collector. Next, the current collector coated with the above mixture was punched with a 1 cm 2 circular punch, and this was used as a negative electrode. Then, a separator made of polyethylene having a micropore structure with a porosity of 40 vol% is sandwiched between the positive electrode and the negative electrode, and a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC + DMC = 1). 1 (volume ratio)) was dissolved in 1 mol / liter LiPF 6 as an electrolyte, and a coin-type model battery (CR2032 type) was produced in a dry box having an atmosphere with a dew point of −50 ° C. or lower.

評価試験
実施例1〜2および比較例において作製したモデル電池について、負極の評価を次の方法で行った。
Evaluation test About the model battery produced in Examples 1-2 and the comparative example, the negative electrode was evaluated by the following method.

まず、モデル電池を、0.2mA/cmの定電流で1Vに達するまで充電し、10分間休止後、0.2mA/cmの定電流で0Vに達するまで放電した。これを、1サイクルとし、繰り返し充放電を行って放電容量を調べた。 First, the model battery was charged at a constant current of 0.2 mA / cm 2 until reaching 1 V, and rested for 10 minutes, and then discharged at a constant current of 0.2 mA / cm 2 until reaching 0 V. This was defined as one cycle, and charging / discharging was repeated to examine the discharge capacity.

実施例1〜2および比較例において作製したモデル電池におけるサイクル数と放電容量とを表1に示す。

Figure 2013182845
Table 1 shows the number of cycles and the discharge capacity in the model batteries produced in Examples 1 and 2 and the comparative example.
Figure 2013182845

表1から明かなように、実施例1〜において作製したモデル電池では、比較例において作製したモデル電池と比較して初期放電容量が高くなっているとともに、100サイクル経過後の放電容量の低下も少なく十分な値を維持していることが分かる。したがって、実施例において作製したモデル電池では、比較例において作製したモデル電池と比較してサイクル寿命の長寿命化が達成されている。   As is clear from Table 1, in the model batteries produced in Examples 1 to 1, the initial discharge capacity was higher than that of the model battery produced in the comparative example, and the discharge capacity decreased after 100 cycles. It can be seen that a small and sufficient value is maintained. Therefore, in the model battery manufactured in the example, the cycle life is extended as compared with the model battery manufactured in the comparative example.

この発明によるリチウム二次電池用負極活物質は、リチウム二次電池の負極に好適に用いられ、リチウム二次電池のサイクル寿命の長寿命化を達成することが可能になる。   The negative electrode active material for a lithium secondary battery according to the present invention is suitably used for a negative electrode of a lithium secondary battery, and it is possible to achieve a long cycle life of the lithium secondary battery.

(1):粒子
(10):リチウム二次電池
(12):負極
(13):正極
(14):セパレータ
(1): Particle
(10): Lithium secondary battery
(12): Negative electrode
(13): Positive electrode
(14): Separator

Claims (20)

厚さ0.15mm以下のアルミニウム箔を切断することにより形成された粒子の集合体である粉末からなり、各粒子が、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさであり、粉末のBET法による比表面積が0.3m/g以上となっているリチウム二次電池用負極活物質。 It consists of powder which is an aggregate of particles formed by cutting an aluminum foil having a thickness of 0.15 mm or less, and each particle can pass through a sieve (based on JIS Z8801-1) having an aperture of 0.1 mm. A negative electrode active material for a lithium secondary battery that is large in size and has a powder specific surface area of 0.3 m 2 / g or more by the BET method. 前記各粒子が、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさである請求項1記載のリチウム二次電池用負極活物質。 2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein each of the particles has a size capable of passing through a sieve having an aperture of 0.045 mm (based on JIS Z8801-1). 前記各粒子の投影周長円相当径が、0.010mm以下である請求項1記載のリチウム二次電池用負極活物質。 2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein each particle has a projected circumference equivalent circle equivalent diameter of 0.010 mm or less. 前記各粒子の投影周長円相当径が、0.005mm以下である請求項1記載のリチウム二次電池用負極活物質。 2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein each particle has a projected circumference equivalent circle equivalent diameter of 0.005 mm or less. 前記粉末のBET法による比表面積が0.5m/g以上となっている請求項1〜4のうちのいずれかに記載のリチウム二次電池用負極活物質。 The negative electrode active material for a lithium secondary battery according to any one of claims 1 to 4, wherein a specific surface area of the powder by a BET method is 0.5 m 2 / g or more. 前記アルミニウム箔が、純度が99質量%以上のAlからなる請求項1〜5のうちのいずれかに記載のリチウム二次電池用負極活物質。 The negative electrode active material for a lithium secondary battery according to any one of claims 1 to 5, wherein the aluminum foil is made of Al having a purity of 99 mass% or more. 前記アルミニウム箔が、純度が99.9質量%以上のAlからなる請求項1〜5のうちのいずれかに記載のリチウム二次電池用負極活物質。 The negative electrode active material for a lithium secondary battery according to any one of claims 1 to 5, wherein the aluminum foil is made of Al having a purity of 99.9% by mass or more. 前記粒子が、厚さ0.15mm以下のアルミニウム箔を切断するとともに、圧縮応力が加わる方法で粉砕することにより形成されている請求項1〜7のうちのいずれかに記載のリチウム二次電池用負極活物質。 8. The lithium secondary battery according to claim 1, wherein the particles are formed by cutting an aluminum foil having a thickness of 0.15 mm or less and pulverizing by a method in which a compressive stress is applied. Negative electrode active material. 前記粒子に、酸またはアルカリを用いて化学溶解処理が施されている請求項1〜8のうちのいずれかに記載のリチウム二次電池用負極活物質。 The negative electrode active material for a lithium secondary battery according to any one of claims 1 to 8, wherein the particles are chemically dissolved using an acid or an alkali. 厚さ0.15mm以下のアルミニウム箔を切断して粒子を形成することにより粉末をつくり、粉末を構成する各粒子を、目開き0.1mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにするとともに、同じく粉末のBET法による比表面積を0.3m/g以上にすることを特徴とするリチウム二次電池用負極活物質の製造方法。 A powder is formed by cutting an aluminum foil having a thickness of 0.15 mm or less to form particles, and each particle constituting the powder can pass through a sieve having a mesh size of 0.1 mm (based on JIS Z8801-1). A method for producing a negative electrode active material for a lithium secondary battery, characterized in that the specific surface area of the powder according to the BET method is 0.3 m 2 / g or more. 前記各粒子を、目開き0.045mmのふるい(JIS Z8801−1に基づく)を通過しうる大きさにする請求項10記載のリチウム二次電池用負極活物質の製造方法。 The manufacturing method of the negative electrode active material for lithium secondary batteries of Claim 10 which makes the said each particle | grain the magnitude | size which can pass the sieve (based on JISZ8801-1) of 0.045mm of opening. 前記各粒子の投影周長円相当径を0.010mm以下にする請求項10記載のリチウム二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a lithium secondary battery according to claim 10, wherein a projected circumference equivalent circle diameter of each particle is set to 0.010 mm or less. 前記各粒子の投影周長円相当径を0.005mm以下にする請求項10記載のリチウム二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a lithium secondary battery according to claim 10, wherein a projected circumference equivalent circle diameter of each particle is 0.005 mm or less. 前記アルミニウム箔が、純度が99質量%以上のAlからなる請求項10〜13のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a lithium secondary battery according to any one of claims 10 to 13, wherein the aluminum foil is made of Al having a purity of 99 mass% or more. 前記アルミニウム箔が、純度が99.9質量%以上のAlからなる請求項10〜13のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a lithium secondary battery according to any one of claims 10 to 13, wherein the aluminum foil is made of Al having a purity of 99.9 mass% or more. 厚さ0.15mm以下のアルミニウム箔を切断した後、酸またはアルカリを用いて化学溶解処理を施して粒子を形成する請求項10〜15のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。 The negative electrode active for a lithium secondary battery according to any one of claims 10 to 15, wherein a particle is formed by cutting an aluminum foil having a thickness of 0.15 mm or less and then performing chemical dissolution treatment using an acid or an alkali. A method for producing a substance. 厚さ0.15mm以下のアルミニウム箔を切断するとともに、圧縮応力が加わる方法により粉砕して粒子を形成する請求項10〜15のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。 The production of a negative electrode active material for a lithium secondary battery according to any one of claims 10 to 15, wherein an aluminum foil having a thickness of 0.15 mm or less is cut and pulverized by a method in which a compressive stress is applied to form particles. Method. 厚さ0.15mm以下のアルミニウム箔を切断するとともに、圧縮応力が加わる方法により粉砕し、さらに酸またはアルカリを用いて化学溶解処理を施して粒子を形成する請求項10〜15のうちのいずれかに記載のリチウム二次電池用負極活物質の製造方法。 The aluminum foil having a thickness of 0.15 mm or less is cut, pulverized by a method in which compressive stress is applied, and further subjected to chemical dissolution treatment using an acid or alkali to form particles. The manufacturing method of the negative electrode active material for lithium secondary batteries as described in any one of. 集電体上に、請求項1〜9のうちのいずれかに記載された負極活物質、導電助剤および結着剤を含む混合物質が付着されているリチウム二次電池用負極。 A negative electrode for a lithium secondary battery, wherein a mixed material containing the negative electrode active material according to any one of claims 1 to 9, a conductive additive, and a binder is attached on a current collector. 請求項19記載の負極と、セパレータと、リチウム二次電池用正極とを備えているリチウム二次電池。 A lithium secondary battery comprising the negative electrode according to claim 19, a separator, and a positive electrode for a lithium secondary battery.
JP2012047582A 2012-03-05 2012-03-05 Negative electrode active material for lithium secondary battery, and method for producing the same Pending JP2013182845A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012047582A JP2013182845A (en) 2012-03-05 2012-03-05 Negative electrode active material for lithium secondary battery, and method for producing the same
PCT/JP2013/053837 WO2013132996A1 (en) 2012-03-05 2013-02-18 Negative electrode active material for lithium secondary battery and method for manufacturing same
CN201380004284.5A CN103999271B (en) 2012-03-05 2013-02-18 Anode active material for lithium secondary battery and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047582A JP2013182845A (en) 2012-03-05 2012-03-05 Negative electrode active material for lithium secondary battery, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013182845A true JP2013182845A (en) 2013-09-12

Family

ID=49116480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047582A Pending JP2013182845A (en) 2012-03-05 2012-03-05 Negative electrode active material for lithium secondary battery, and method for producing the same

Country Status (3)

Country Link
JP (1) JP2013182845A (en)
CN (1) CN103999271B (en)
WO (1) WO2013132996A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919531B2 (en) * 1990-02-28 1999-07-12 三洋電機株式会社 Battery
JP2851681B2 (en) * 1990-04-11 1999-01-27 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Continuous production method of negative electrode made of finely ground hydrogen storage alloy material
JPH10241684A (en) * 1997-02-27 1998-09-11 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001332255A (en) * 2000-03-16 2001-11-30 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery
CN101645500B (en) * 2009-09-08 2011-10-26 无锡欧力达新能源电力科技有限公司 Carbon-based material inlaid and penetrated with sulfur and aluminum secondary battery using same as cathode active material
JP5636699B2 (en) * 2010-03-10 2014-12-10 株式会社Gsユアサ Negative electrode plate for lead-acid battery and lead-acid battery using the same
US9263742B2 (en) * 2010-11-30 2016-02-16 Showa Denko K.K. Negative electrode active substance for lithium secondary battery and method for producing same

Also Published As

Publication number Publication date
CN103999271A (en) 2014-08-20
WO2013132996A1 (en) 2013-09-12
CN103999271B (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6850949B2 (en) Lithium-ion battery Positive material, lithium-ion battery, communication device using it, electric power device, energy storage device and portable storage device, and use of lithium-ion battery
JP5555978B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5754098B2 (en) Carbon material for lithium ion secondary battery
JP6003996B2 (en) Electrode active material, method for producing electrode active material, electrode, battery, and method of using clathrate compound
JP4654381B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP2005158305A (en) Negative electrode material for lithium secondary battery, and its manufacturing method
CN111628161A (en) Negative electrode active material
JP2000149927A (en) Electric energy storage device
JP5234600B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and method for producing negative electrode for lithium ion secondary battery
CN106030866B (en) Negative electrode active material, negative electrode, and battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6736868B2 (en) Negative electrode active material, negative electrode and battery, and method for producing negative electrode active material
JP5645971B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP6119796B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6116068B2 (en) Negative electrode for lithium ion secondary battery
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP6063639B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
WO2013132996A1 (en) Negative electrode active material for lithium secondary battery and method for manufacturing same
WO2013161733A1 (en) Negative electrode active material for a lithium secondary battery and method for manufacturing same
JP2004063400A (en) Negative electrode material for lithium cell, and its manufacturing method
JP2022161719A (en) Negative electrode active material particle, negative electrode, and, battery
JP5907223B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode and method for producing non-aqueous electrolyte secondary battery
JP5821893B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2011077055A (en) Anode material for nonaqueous electrolyte secondary battery