JP2013181893A - Method for detecting nickel contained in drain water - Google Patents
Method for detecting nickel contained in drain water Download PDFInfo
- Publication number
- JP2013181893A JP2013181893A JP2012046882A JP2012046882A JP2013181893A JP 2013181893 A JP2013181893 A JP 2013181893A JP 2012046882 A JP2012046882 A JP 2012046882A JP 2012046882 A JP2012046882 A JP 2012046882A JP 2013181893 A JP2013181893 A JP 2013181893A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- wastewater
- concentration
- drain water
- turbidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、重金属を含む汚水を消石灰にて中和処理する排水処理工程において、排水処理後水の浮遊物質濃度(Suspended solids濃度、以下SS濃度と称す。)および濁度を連続的に監視することにより、排水中へのニッケル漏洩を検知し、海域への流出を防止する方法に関するものである。 The present invention continuously monitors the suspended solids concentration (suspended solids concentration, hereinafter referred to as SS concentration) and turbidity of wastewater-treated water in a wastewater treatment process in which sewage containing heavy metals is neutralized with slaked lime. Therefore, the present invention relates to a method for detecting nickel leakage into waste water and preventing outflow into the sea area.
電気ニッケル製造プロセスならびに硫酸ニッケル製造プロセスから排出される汚水は、ニッケル、コバルト、鉄、亜鉛等の重金属成分を含有しており、その除去には、これらの重金属成分を排水処理工程において消石灰中和法にて分離除去する方法を採用している。 Sewage discharged from the electric nickel production process and nickel sulfate production process contains heavy metal components such as nickel, cobalt, iron, and zinc, and these heavy metal components are neutralized by slaked lime in the wastewater treatment process. The separation and removal method is used.
その除去原理は、重金属を含む汚水に消石灰スラリーを添加し、高アルカリ領域に保持することで中和澱物を形成させ、その後、ろ過機となるフィルタープレスにより中和澱物を捕捉、分離し、残液であるろ液は硫酸にて中性領域にpH調整して、その他一般排水の冷却水や生活排水と混合して油水分離槽へと送液される。 The principle of removal is to add slaked lime slurry to sewage containing heavy metals and form a neutralized starch by keeping it in a highly alkaline region, and then capture and separate the neutralized starch with a filter press that serves as a filter. The filtrate, which is the residual liquid, is adjusted to a neutral region with sulfuric acid, mixed with other general waste water cooling water and domestic waste water, and sent to the oil / water separation tank.
このような油水分離槽を経由する手法が採られる理由は、ニッケル湿式製錬から排水される汚水には、ニッケルとコバルトを分離する溶媒抽出工程からの汚水も含まれているため、放流する前段に油水分離槽を経由させて油分の検知を行うことを目的としている。加えて、その油水分離槽には汚水中のニッケル濃度を測定する自動分析装置を設置しており、ある所定濃度を超えた場合、自動制御により油水分離槽から処分場(例えば海域)への放流を行う放流ポンプを停止し、替わりに回収ポンプを起動させて大型の緊急回収槽へ送水することで、海域などの自然界への流出防止を図るシステムを有している。
又、pHやCOD(UV計)値において所定の管理濃度を超えた場合にも同様に連動したシステムとなっている。
The reason why such an oil-water separation tank is used is that the sewage drained from nickel hydrometallurgy also includes sewage from the solvent extraction process that separates nickel and cobalt. It is intended to detect the oil content through an oil-water separation tank. In addition, an automatic analyzer that measures the nickel concentration in the sewage is installed in the oil / water separation tank, and if it exceeds a certain concentration, it is discharged from the oil / water separation tank to a disposal site (for example, sea area) by automatic control. This system has a system that prevents the discharge to the natural world such as the sea area by stopping the discharge pump, and starting the recovery pump instead to feed water to a large emergency recovery tank.
In addition, the system is similarly linked when a predetermined control concentration is exceeded in the pH and COD (UV meter) values.
このように、排水処理工程を経た汚水は、一度油水分離槽に経由され、一般排水である冷却水や生活排水と混合された後、ポンプアップにより海域へと放流されているが、ここで、ニッケルの漏洩がないか確認、監視する必要がある。通常の化学分析でニッケル濃度測定する方法は、人手と時間がかかるため、自動でニッケル濃度を測定する装置が開発されている(例えば特許文献1参照)。 In this way, the sewage that has passed through the wastewater treatment process is once passed through the oil / water separation tank, mixed with cooling water and domestic wastewater that are general wastewater, and then discharged into the sea area by pumping up, It is necessary to check and monitor for nickel leakage. Since the method of measuring nickel concentration by ordinary chemical analysis takes time and labor, an apparatus for automatically measuring nickel concentration has been developed (see, for example, Patent Document 1).
しかしながら、油水分離槽に設置されているニッケル自動分析装置は、測定頻度が1測定当たり20分間程度かかるため、その20分間中にニッケルを含有した汚水が漏洩してくると検出のタイミング次第で海域へ放流されるリスクがある。
その想定されるリスクとしては、排水処理工程に高濃度のニッケル原液が流出した場合、中和反応が完結しない状態でフィルタープレスを通過すると高濃度のニッケルが排水処理水として流出することである。加えて、フィルタープレスのろ布の破れや劣化などによって中和スラリーがリークし、後の硫酸によるpH調整工程にてニッケルが再溶出した場合などが挙げられる。
従って、このようなニッケルの流出を防止するために、排水処理後水を対象にニッケルの漏洩を瞬時に検知して海域への漏洩を未然に防ぐ方法が求められていた。
However, the nickel automatic analyzer installed in the oil / water separation tank has a measurement frequency of about 20 minutes per measurement. Therefore, if sewage containing nickel leaks during the 20 minutes, the sea area depends on the detection timing. There is a risk of being released to
The assumed risk is that when a high concentration nickel stock solution flows into the wastewater treatment process, the high concentration nickel flows out as wastewater treatment water when passing through the filter press in a state where the neutralization reaction is not completed. In addition, there are cases where the neutralized slurry leaks due to breakage or deterioration of the filter cloth of the filter press, and nickel is re-eluted in the pH adjustment step with sulfuric acid later.
Therefore, in order to prevent such nickel outflow, there has been a demand for a method of instantaneously detecting nickel leakage in water after wastewater treatment to prevent leakage into the sea area.
本発明は、ニッケルを含む汚水を中和沈殿処理によりニッケルを沈澱させる排水処理工程において、中和沈澱処理後にろ過した排水の浮遊物質濃度(SS濃度)および、その排水を硫酸でpH調整した廃液の濁度を連続的に測定することにより、瞬時に排水中へのニッケル漏洩を検出する方法の提供を目的とするものである。 The present invention relates to a wastewater treatment process in which nickel is precipitated by neutralizing and precipitating sewage containing nickel, and the suspended solid concentration (SS concentration) of the wastewater filtered after the neutralizing and precipitating treatment and the wastewater whose pH is adjusted with sulfuric acid. The purpose is to provide a method for instantaneously detecting nickel leakage into the waste water by continuously measuring the turbidity of the water.
このような課題に鑑み、鋭意調査研究の結果、本発明の第1の発明は、ニッケルを含む汚水をアルカリを用いた中和沈殿処理によりニッケルを沈澱させる排水処理工程における中和沈澱処理後にろ過した排水の浮遊物質濃度(以下、SS濃度と称す。)、及び排水を硫酸でpH調整処理した廃液の濁度を連続測定することにより、中和沈澱処理後にろ過した排水中のニッケルの存在を検知することを特徴とする排水中のニッケル検出方法である。 In view of such a problem, as a result of earnest investigation and research, the first invention of the present invention is to filter the sewage containing nickel after the neutralization precipitation process in the wastewater treatment process in which nickel is precipitated by the neutralization precipitation process using alkali. By continuously measuring the suspended solids concentration (hereinafter referred to as SS concentration) of wastewater and the turbidity of wastewater whose pH was adjusted with sulfuric acid, the presence of nickel in the wastewater filtered after neutralization precipitation treatment was confirmed. It is the nickel detection method in the waste_water | drain characterized by detecting.
本発明の第2の発明は、第1の発明における浮遊物質濃度(SS濃度)の連続測定が、排水を硫酸でpH調整処理するpH調整槽の排水流入側に浮遊物質濃度計(以下、SS濃度計と称す。)を設置して行われることを特徴とする排水中のニッケル検出方法である。 In the second invention of the present invention, the continuous measurement of suspended solids concentration (SS concentration) in the first invention is carried out by the suspended matter concentration meter (hereinafter referred to as SS) This is a method for detecting nickel in wastewater, which is performed by installing a densitometer.
本発明の第3の発明は、第1及び第2の発明における濁度の連続測定が、排水を硫酸でpH調整処理するpH調整槽の廃液流出側に濁度計を設置して行われることを特徴とする排水中のニッケル検出方法である。 In the third invention of the present invention, the continuous measurement of turbidity in the first and second inventions is carried out by installing a turbidimeter on the waste liquid outflow side of the pH adjusting tank for adjusting the pH of the wastewater with sulfuric acid. A method for detecting nickel in wastewater.
本発明により、ニッケルを含む汚水を消石灰などのアルカリを用いた中和沈殿処理により、ニッケルを沈澱させる排水処理工程において、中和沈澱処理後にろ過した排水のSS濃度、及びSS濃度を測定した排水を硫酸でpH調整した廃液の濁度も連続的に測定することで、排水中のニッケル濃度を連続的に把握することができ、ニッケルを含む廃液の海域などの自然界への流出の防止を可能とするものである。 According to the present invention, in the wastewater treatment step of precipitating nickel by neutralization precipitation using alkali such as slaked lime with sewage containing nickel, the SS concentration of the wastewater filtered after the neutralization precipitation treatment, and the wastewater whose SS concentration was measured By continuously measuring the turbidity of waste liquid adjusted to pH with sulfuric acid, the nickel concentration in the waste water can be continuously monitored, and it is possible to prevent the waste liquid containing nickel from flowing out into the natural environment such as the sea area. It is what.
以下、本発明の実施の形態について、詳細に説明する。
本発明では、ニッケルを含む汚水を消石灰などのアルカリによる中和沈殿処理を行い、ニッケルを沈澱させる排水処理工程において、中和沈澱処理後にろ過した排水のSS濃度と、その排水を硫酸でpH調整した廃液の濁度の両者を合わせて連続的に測定することによって、連続して排水中のニッケルを監視、異常を検知することを可能とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, in a wastewater treatment process in which nickel-containing wastewater is subjected to neutralization precipitation treatment with alkali such as slaked lime, and nickel is precipitated, the SS concentration of the wastewater filtered after the neutralization precipitation treatment and pH adjustment of the wastewater with sulfuric acid By continuously measuring both of the turbidity of the waste liquid, it is possible to continuously monitor nickel and detect abnormalities in the wastewater.
通常排水処理は、汚水に消石灰などのアルカリを加えた中和沈澱処理によりニッケルを沈澱させ、フィルタープレスなどの濾過機により濾過し、沈殿物としてニッケルを含む排水処理澱物を分離する。その排水処理澱物を分離した濾液には、硫酸を添加してpHを中性に調整し一般排水と混ぜられた後、油水分離槽を経て、排水として放出される。 In general wastewater treatment, nickel is precipitated by neutralization precipitation treatment in which alkali such as slaked lime is added to sewage, and filtered by a filter such as a filter press to separate wastewater treatment starch containing nickel as a precipitate. To the filtrate from which the wastewater-treated starch has been separated, sulfuric acid is added to adjust the pH to neutral, and after mixing with general wastewater, it is discharged as wastewater through an oil-water separation tank.
その排水処理澱物中のニッケル品位は約1〜5%程度であり、これが何らかの事象でフィルタープレス(濾過機)からリークすると、後の硫酸添加により中性領域へ調整するpH調整工程にて澱物の一部が溶解されてしまう。つまり、排水澱物中に含有しているニッケルが再溶出し、自然界(例えば海域)へ放流されることになる。
これを防ぐ手段としては、フィルタープレスの通水液中のSS濃度を、連続的に測定することによりフィルタープレスの挙動を監視して、その異常を検知する。すなわちニッケルの溶出を検知することである。
The nickel grade in the wastewater-treated starch is about 1 to 5%, and if this leaks from the filter press (filter) due to some event, the starch is adjusted in the pH adjustment step to adjust to the neutral region by adding sulfuric acid later. Part of the object is dissolved. That is, nickel contained in the wastewater starch is eluted again and released into the natural world (for example, the sea area).
As means for preventing this, the SS concentration in the water flow through the filter press is continuously measured to monitor the behavior of the filter press and detect the abnormality. That is, it detects nickel elution.
従って、本発明において使用するSS濃度計は、短周期でサンプリングできるものが望ましく、少なくとも1分周期で測定が可能であることが望ましい。短周期におけるサンプリングは、瞬時判断を可能とするものであり、複数のフィルタープレスを使用する場合でも、各フィルタープレスの集合水ではなく、単一毎に測定することで異常の特定が瞬時に判断できる。 Therefore, it is desirable that the SS densitometer used in the present invention can be sampled in a short period, and it is desirable that measurement can be performed in at least one minute period. Sampling in a short cycle enables instantaneous judgment. Even when using multiple filter presses, it is possible to instantly determine the anomaly by measuring each filter press instead of the collected water. it can.
またSS濃度は、フィルタープレスから漏洩するニッケルを含むSS濃度を測定するため、フィルタープレスの通水液を測定する必要がある。そのため、SS濃度計はフィルタープレス後のラインに設置するもので、さらに判定時間を短くするためには、フィルタープレスに近い方が望ましい。また、硫酸によるpH調整を行うpH調整槽に入ってしまうと浮遊物質(SS)が溶解して検出されなくなるため、好ましくない。
そのため、SS濃度計は、pH調整槽のフィルタープレスろ液流入側に設置すると良い。
Moreover, since SS density | concentration measures SS density | concentration containing the nickel which leaks from a filter press, it is necessary to measure the water flow of a filter press. For this reason, the SS densitometer is installed on the line after the filter press. In order to further shorten the determination time, it is desirable that the SS densitometer be closer to the filter press. Moreover, if it enters into the pH adjustment tank which adjusts pH with a sulfuric acid, since suspended | floating matter (SS) melt | dissolves and it will no longer be detected, it is unpreferable.
Therefore, the SS densitometer is preferably installed on the filter press filtrate inflow side of the pH adjustment tank.
更に、pH調整後の排水を対象とし、浮遊物質(SS)は存在しないがニッケルを含む排水を検知してニッケルの漏洩を防止するために、排水中の濁度を連続的に測定する濁度測定工程が行われる。
この濁度の測定は、例えばニッケル電解で供給されているニッケルの原液(ニッケル濃度 約100g/L)が何らかの事象で排水処理工程に送液された場合、中和反応が完結しない状態でフィルタープレスを通過してしまうと、高濃度のニッケルが漏洩することになり、先のSS濃度測定で行われるSS濃度による検知では、フィルタープレスが正常状態であればSSのリークは無く、SS濃度測定ではニッケルの検出は困難である。
そこで、本工程では濁度計の赤外線散乱光検出方法の原理を利用し、高濃度のニッケルが漏洩した場合、透過散乱光の低下により測定値が低下していくことを利用したニッケル漏洩を検知するものである。
In addition, turbidity that continuously measures the turbidity in wastewater to detect wastewater that contains nickel but does not contain suspended solids (SS) but prevents nickel leakage by targeting pH-treated wastewater A measurement process is performed.
This turbidity is measured, for example, when a nickel stock solution (nickel concentration of about 100 g / L) supplied by nickel electrolysis is sent to the wastewater treatment process due to some event. If it passes, the high-concentration nickel leaks, and in the detection by the SS concentration performed in the previous SS concentration measurement, there is no SS leak if the filter press is in a normal state. The detection of nickel is difficult.
Therefore, in this process, the principle of the infrared scattered light detection method of the turbidimeter is used to detect nickel leakage using the fact that the measured value decreases due to the decrease in transmitted scattered light when high concentration nickel leaks. To do.
使用する濁度計ではpH調整槽に流入したニッケルを含むスラリーが再溶解したものを測定する。そのため、濁度計はpH調整槽以降に設置する必要があり、早く検出するためには、pH調整槽の廃液流出側に設置することが望ましい。
なお、濁度はニッケルが流入することで急激に上昇し、その後、ニッケル濃度が高くなると低下する。これは粒子が存在しない状況では逆に光が散乱しにくい為、ある濃度を超えてニッケル濃度が高くなると液中の濁度は負の方向へ向かう為である。
The turbidimeter to be used measures the re-dissolved slurry containing nickel flowing into the pH adjusting tank. Therefore, it is necessary to install the turbidimeter after the pH adjustment tank, and it is desirable to install it on the waste liquid outflow side of the pH adjustment tank in order to detect it quickly.
The turbidity rapidly increases as nickel flows in, and then decreases as the nickel concentration increases. This is because light hardly scatters in the absence of particles, and the turbidity in the liquid tends to be negative when the nickel concentration increases beyond a certain concentration.
以下、実施例を用いて本発明をさらに説明する。 The present invention will be further described below using examples.
図1に実施例で用いた試験用のpH調整槽1を示す。(a)は外観写真、(b)は槽蓋を取り外して槽(専用桶)内部構造を示す写真である。
この図1のpH調整槽1の槽容量は94Lで、専用桶10の内部は、液中の気泡が直接検出部に触れないようにするため、堰板11を取付け、且つ下部に隙間を作ることで気泡の噛み込みと浮遊物質(SS)の滞留を防止した。なお、黒塗り矢印の示す方向が排水の流れる方向を示している。なお、専用桶10で硫酸によるpH調整が行われ、専用桶10の影響を受けないように堰板11により仕切られた排水流入部12にSS濃度計2を設置し、同様に堰板11により仕切られた廃液流出部13に濁度計3を設置するものである。
SS濃度を測定するSS濃度計2(東亜DKK株式会社製:SSD−10)は、硫酸によりpH調製される前の排水の流入側(排水流入部12)に設置し、濁度計3(HACK社製:SOLITAX)は廃液の流出側(廃液流出部13)に設置した。
FIG. 1 shows a pH adjustment tank 1 for testing used in the examples. (A) is an external view photograph, (b) is a photograph which shows the internal structure of a tank (dedicated basket) by removing the tank lid.
The tank capacity of the pH adjusting tank 1 in FIG. 1 is 94 L, and the inside of the dedicated tub 10 is attached with a weir plate 11 and a gap is formed in the lower part so that bubbles in the liquid do not directly touch the detection unit. This prevented the entrapment of bubbles and the retention of suspended solids (SS). The direction indicated by the black arrow indicates the direction in which drainage flows. In addition, the pH is adjusted with sulfuric acid in the dedicated dredger 10, and the SS concentration meter 2 is installed in the drainage inflow portion 12 partitioned by the weir plate 11 so as not to be affected by the dedicated dredger 10. The turbidimeter 3 is installed in the partitioned waste liquid outflow portion 13.
An SS densitometer 2 (manufactured by Toa DKK Co., Ltd .: SSD-10) that measures the SS concentration is installed on the inflow side (drainage inflow section 12) before the pH is adjusted with sulfuric acid, and the turbidimeter 3 (HACK) (SOLITAX) was installed on the waste liquid outflow side (waste liquid outflow part 13).
次に、澱物を含む排水が混入した場合を想定して、フィルタープレスろ液の模擬排水として、SS濃度が25mg/Lの排水澱物スラリーを図1のpH調整槽に投入した。
流量を、15L/min、20L/minの2水準とし、その流量で模擬廃水を流し、SS濃度の閾値を2mg/Lにして排水澱物の検出を行った。
Next, assuming that wastewater containing starch was mixed, wastewater starch slurry having an SS concentration of 25 mg / L was charged into the pH adjustment tank of FIG.
The flow rate was set to two levels of 15 L / min and 20 L / min, simulated waste water was flowed at the flow rate, and the SS concentration threshold was set to 2 mg / L to detect wastewater starch.
図2にフィルタープレスろ液として排水澱物スラリーを投入したときのSS濃度検出結果を示す。
流量が15L/minでは7分後、20L/minでは5分後にSS濃度の上昇を検知し、浮遊物質(SS)の流出を微量に抑えられることが判明した。
FIG. 2 shows the SS concentration detection result when drained starch slurry is added as a filter press filtrate.
When the flow rate was 15 L / min, an increase in SS concentration was detected after 7 minutes and at 20 L / min after 5 minutes, and it was found that the outflow of suspended solids (SS) could be suppressed to a very small amount.
次に、浮遊物質(SS)が硫酸により溶解し、ニッケルを含有した排水となった場合を想定して、ニッケル濃度を5mg/L〜100mg/Lまで変化させた排水を通水し、その濁度を測定した。
一般水に所定量のNiCl2溶液を添加し、所定のニッケル濃度に調整した模擬排水を作製し、通水したときの濁度の検出状況を確認した。
Next, assuming that the suspended matter (SS) is dissolved by sulfuric acid and becomes wastewater containing nickel, drainage water whose nickel concentration is changed from 5 mg / L to 100 mg / L is passed through, and the turbidity is obtained. The degree was measured.
A predetermined amount of NiCl 2 solution was added to general water to prepare a simulated waste water adjusted to a predetermined nickel concentration, and the detection state of turbidity when water was passed was confirmed.
図3に、ニッケル濃度変化時の濁度値推移測定結果を示す。
図3より、ニッケル廃液が流入すると、濁度は2分以内に急激に上昇した。これにより、濁度を測定することで、溶解したニッケルを短時間で検出することが可能であることがわかる。また、濁度はニッケル濃度によって異なるため、予め濁度とニッケル濃度との関係を把握しておくことで、濁度の測定値からおおよそのニッケル流出量を求めることができる。
FIG. 3 shows the turbidity value transition measurement results when the nickel concentration changes.
From FIG. 3, when nickel waste liquid flows in, turbidity rose rapidly within 2 minutes. Thus, it can be seen that the dissolved nickel can be detected in a short time by measuring the turbidity. Further, since turbidity varies depending on nickel concentration, it is possible to obtain an approximate nickel outflow amount from the measured value of turbidity by grasping the relationship between turbidity and nickel concentration in advance.
(比較例1)
廃液の流出側に特許文献1に開示されるような自動ニッケル濃度測定装置を設置し、実施例1と同じ模擬廃液を流し、ニッケルの濃度測定を行った。
その結果、ニッケルの検出には20分かかり、その間はニッケルを含む廃液が排出されていることを確認した。
(Comparative Example 1)
An automatic nickel concentration measuring apparatus as disclosed in Patent Document 1 was installed on the outflow side of the waste liquid, and the same simulated waste liquid as in Example 1 was flowed to measure the nickel concentration.
As a result, it took 20 minutes to detect nickel, and during that period, it was confirmed that the waste liquid containing nickel was discharged.
1 pH調整槽
2 浮遊物質濃度計(SS濃度計)
3 濁度計
10 専用桶
11 堰板
12 排水流入部
13 廃液流出部
1 pH adjustment tank 2 Suspended substance concentration meter (SS concentration meter)
3 Turbidimeter 10 Dedicated basin 11 Dam plate 12 Drainage inlet 13 Wastewater outlet
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012046882A JP5867165B2 (en) | 2012-03-02 | 2012-03-02 | Method for detecting nickel contained in wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012046882A JP5867165B2 (en) | 2012-03-02 | 2012-03-02 | Method for detecting nickel contained in wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013181893A true JP2013181893A (en) | 2013-09-12 |
JP5867165B2 JP5867165B2 (en) | 2016-02-24 |
Family
ID=49272629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012046882A Active JP5867165B2 (en) | 2012-03-02 | 2012-03-02 | Method for detecting nickel contained in wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5867165B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015156009A1 (en) * | 2014-04-11 | 2015-10-15 | 住友金属鉱山株式会社 | Supernatant water discharge device |
JP2015202496A (en) * | 2015-08-04 | 2015-11-16 | 住友金属鉱山株式会社 | Supernatant water discharge device |
CN111675393A (en) * | 2020-06-29 | 2020-09-18 | 厦门市韩江环保科技有限公司 | Method for treating and recycling nickel-containing wastewater |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5985940A (en) * | 1983-10-03 | 1984-05-18 | 篠原 好美 | Apparatus for measuring concentration of floating material in water |
JPH09182740A (en) * | 1995-12-30 | 1997-07-15 | Shimadzu Corp | Biological photomeasuring device |
JPH10180239A (en) * | 1996-12-24 | 1998-07-07 | Shimizu Corp | Waste water monitoring system and waste water treating system |
JPH10180266A (en) * | 1996-12-27 | 1998-07-07 | Yamato Denki Kogyo Kk | Treatment of waste liquid of electroless nickel plating |
JP2002192168A (en) * | 2000-12-27 | 2002-07-10 | Nippon Steel Corp | Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge |
WO2003002774A1 (en) * | 2001-06-29 | 2003-01-09 | Outokumpu Oyj | A method for the removal of metals from an aqueous solution using lime precipitation |
JP2004041912A (en) * | 2002-07-11 | 2004-02-12 | Kurita Water Ind Ltd | Membrane separation method and membrane separation equipment |
JP2004105923A (en) * | 2002-09-20 | 2004-04-08 | Nippon Steel Corp | Method of recovering valuable metal in metal-containing waste water and method of utilizing the same |
JP2011224466A (en) * | 2010-04-20 | 2011-11-10 | Nippon Steel Corp | Metal ion-containing wastewater treatment method |
-
2012
- 2012-03-02 JP JP2012046882A patent/JP5867165B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5985940A (en) * | 1983-10-03 | 1984-05-18 | 篠原 好美 | Apparatus for measuring concentration of floating material in water |
JPH09182740A (en) * | 1995-12-30 | 1997-07-15 | Shimadzu Corp | Biological photomeasuring device |
JPH10180239A (en) * | 1996-12-24 | 1998-07-07 | Shimizu Corp | Waste water monitoring system and waste water treating system |
JPH10180266A (en) * | 1996-12-27 | 1998-07-07 | Yamato Denki Kogyo Kk | Treatment of waste liquid of electroless nickel plating |
JP2002192168A (en) * | 2000-12-27 | 2002-07-10 | Nippon Steel Corp | Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge |
WO2003002774A1 (en) * | 2001-06-29 | 2003-01-09 | Outokumpu Oyj | A method for the removal of metals from an aqueous solution using lime precipitation |
JP2004530559A (en) * | 2001-06-29 | 2004-10-07 | オウトクンプ オサケイティオ ユルキネン | Method for removing metal from lime precipitation from aqueous solution |
JP2004041912A (en) * | 2002-07-11 | 2004-02-12 | Kurita Water Ind Ltd | Membrane separation method and membrane separation equipment |
JP2004105923A (en) * | 2002-09-20 | 2004-04-08 | Nippon Steel Corp | Method of recovering valuable metal in metal-containing waste water and method of utilizing the same |
JP2011224466A (en) * | 2010-04-20 | 2011-11-10 | Nippon Steel Corp | Metal ion-containing wastewater treatment method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015156009A1 (en) * | 2014-04-11 | 2015-10-15 | 住友金属鉱山株式会社 | Supernatant water discharge device |
JP2015202424A (en) * | 2014-04-11 | 2015-11-16 | 住友金属鉱山株式会社 | Supernatant water discharge device |
US9950283B2 (en) | 2014-04-11 | 2018-04-24 | Sumitomo Metal Mining Co., Ltd. | Supernatant water discharge device |
JP2015202496A (en) * | 2015-08-04 | 2015-11-16 | 住友金属鉱山株式会社 | Supernatant water discharge device |
CN111675393A (en) * | 2020-06-29 | 2020-09-18 | 厦门市韩江环保科技有限公司 | Method for treating and recycling nickel-containing wastewater |
Also Published As
Publication number | Publication date |
---|---|
JP5867165B2 (en) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6105220B2 (en) | Treatment method of flushing waste water from piping system of equipment with galvanized steel pipes | |
JP5473560B2 (en) | Water purification automatic continuous monitoring device and continuous water purification system monitoring system using the same | |
JP5867165B2 (en) | Method for detecting nickel contained in wastewater | |
JP2012115770A (en) | Turbid water treatment apparatus | |
CA2825752C (en) | Flocculation magnetic separator | |
CN205603369U (en) | Electroplating wastewater treatment system device | |
JP7021461B2 (en) | Water treatment method, water treatment equipment and control method of addition of cake layer forming substance to raw water | |
KR101161327B1 (en) | Water purifying system for improving discharge water quality with membrane | |
AU2015316179B2 (en) | Measurement and treatment of fluid streams | |
CN204981415U (en) | Dissolved -air air -floating device | |
JP4931522B2 (en) | Smoke treatment liquid treatment equipment | |
CN206483442U (en) | A kind of Full-automatic agent-feeding device | |
JP2017124368A (en) | Precipitation separation method and precipitation separation apparatus of inorganic waste water | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
CN113998810A (en) | Drinking water defluorination process | |
CN208250024U (en) | Emulsifying liquid waste water processing system | |
KR101309990B1 (en) | Water treatment apparatus comprising settling membrane separation tank and water treatment method using thereof | |
KR20030075348A (en) | Matter seperation device of water purification system | |
JP2017196567A (en) | Cleaning method, cleaning liquid and cleaning device of pipe for polymer | |
CN103387296A (en) | Method for removing copper ions from chemical plating wastewater | |
CN218290671U (en) | Emulsion wash kettle water treatment system | |
JP2012115816A (en) | Apparatus and method for treating sludge | |
CN106044915A (en) | Production wastewater treatment system | |
KR102592025B1 (en) | An automatic control method for treatment of wastewater with heavy metal | |
CN202089803U (en) | Chemical degreaser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5867165 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |