JP2013181106A - Resin composition for fixing rotor, rotor, and automobile - Google Patents

Resin composition for fixing rotor, rotor, and automobile Download PDF

Info

Publication number
JP2013181106A
JP2013181106A JP2012045882A JP2012045882A JP2013181106A JP 2013181106 A JP2013181106 A JP 2013181106A JP 2012045882 A JP2012045882 A JP 2012045882A JP 2012045882 A JP2012045882 A JP 2012045882A JP 2013181106 A JP2013181106 A JP 2013181106A
Authority
JP
Japan
Prior art keywords
resin composition
rotor
fixing
resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012045882A
Other languages
Japanese (ja)
Inventor
Tetsuya Kitada
哲也 北田
Koji Muto
康二 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2012045882A priority Critical patent/JP2013181106A/en
Publication of JP2013181106A publication Critical patent/JP2013181106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for fixing a rotor for obtaining a rotor core improved in durability to withstand repeated use.SOLUTION: A resin composition for fixing rotor is used for formation of a fixing member in a rotor including: a rotor core fixed to a rotary shaft and provided with a plurality of hole portions arranged along the circumferential edge of the rotary shaft; magnets inserted in the hole portions; and the fixing member disposed in each of separation portions between the hole portions and the magnets. The resin composition for fixing rotor includes a thermosetting resin including an epoxy resin, a curing agent, and an inorganic filler. When a dumbbell shaped cured product of the resin composition for fixing a rotor is prepared in accordance with JIS K7162 under a curing condition of a mold temperature of 175°C, an injection pressure of 9.8 Mpa, and a curing time 120 seconds, and a cured product as a test piece produced by further curing the dumbbell shaped cured product under a condition of 175°C for 4 hours is subjected to a tensile test under a condition of a temperature of 25°C and a load speed of 1.0 mm/min, fracture energy of ≥1.5×10J/mmis obtained.

Description

本発明は、ローター固定用樹脂組成物、ローター、および自動車に関する。   The present invention relates to a resin composition for fixing a rotor, a rotor, and an automobile.

自動車等に搭載されるモータに関し、その強度等を向上させるための様々な技術が検討されている。特許文献1に記載の技術は、モータの封止に用いるモータ封止用樹脂成形材料に関するものである。すなわち、特許文献1に記載の成形材料は、モータを封止するハウジングに用いられるものであると考えられる。   Various techniques for improving the strength and the like of motors mounted on automobiles and the like have been studied. The technique described in Patent Document 1 relates to a resin molding material for motor sealing used for motor sealing. That is, the molding material described in Patent Document 1 is considered to be used for a housing that seals a motor.

特許文献2〜6には、モータを構成するローターに関する技術が記載されている。ローターは、穴部を有するローターコアと、穴部に挿入された永久磁石と、を有する。
例えば特許文献2に記載の技術は、永久磁石を収容するための収容孔に連通して設けられたスリットに、樹脂を充填するというものである。なお、当該スリットは、ステータに伝わる磁束量を増やすために、永久磁石を収容するための収容孔の周方向に関する両端部分に形成されるものであると記載されている。
Patent Documents 2 to 6 describe techniques related to a rotor constituting a motor. The rotor has a rotor core having a hole and a permanent magnet inserted into the hole.
For example, the technique described in Patent Document 2 is to fill a slit into a slit provided in communication with an accommodation hole for accommodating a permanent magnet. The slits are described as being formed at both end portions in the circumferential direction of the accommodation hole for accommodating the permanent magnet in order to increase the amount of magnetic flux transmitted to the stator.

また、特許文献3〜5には、磁石をローターコアに接着する技術が記載されている。
特許文献3に記載の技術は、永久磁石に直接コーティングされた接着剤により、永久磁石とローターコアとの接着を行うものである。特許文献4に記載の技術は、接着剤を入れたローターコアのスロット内に永久磁石を挿入した後、上下を逆転させた状態において接着剤の熱硬化を行うものである。特許文献5に記載の技術は、マグネットおよび接着剤を挿入するスロットの内壁またはマグネットの表面に形成された凹条部または凸条部に、硬化した接着剤を係合させるものである。
Patent Documents 3 to 5 describe techniques for bonding a magnet to a rotor core.
The technique described in Patent Document 3 is to bond the permanent magnet and the rotor core with an adhesive directly coated on the permanent magnet. In the technique described in Patent Document 4, after a permanent magnet is inserted into a slot of a rotor core containing an adhesive, the adhesive is thermally cured in a state where the top and bottom are reversed. The technique described in Patent Document 5 is to engage a hardened adhesive with a concave portion or a convex portion formed on the inner wall of a slot into which a magnet and an adhesive are inserted or on the surface of the magnet.

さらに、特許文献6には、磁石を挿入するための穴部に注入された樹脂部により磁石をローターコアに固定する技術が記載されている。特許文献6に記載の技術は、穴部に埋設された磁石と穴部との間に形成される充填部を、穴部の開口における磁石の幅方向の中央部に面する部分から穴部に注入して形成するものである。
なお、樹脂に関する技術としては、例えば特許文献7に記載のものがある。特許文献7に記載の技術は、顆粒状の半導体封止用エポキシ樹脂組成物に関し、その粒度分布を制御するものである。
Furthermore, Patent Document 6 describes a technique for fixing a magnet to a rotor core by a resin portion injected into a hole for inserting the magnet. In the technique described in Patent Document 6, the filling portion formed between the magnet embedded in the hole portion and the hole portion is changed from the portion facing the central portion in the width direction of the magnet at the opening of the hole portion to the hole portion. It is formed by injection.
In addition, as a technique regarding resin, there exists a thing of patent document 7, for example. The technique described in Patent Document 7 relates to a granular epoxy resin composition for encapsulating a semiconductor, and controls the particle size distribution thereof.

特開2009−13213号公報JP 2009-13213 A 特開2002−359942号公報Japanese Patent Laid-Open No. 2002-359942 特開2003−199303号公報JP 2003-199303 A 特開2005−304247号公報JP 2005-304247 A 特開平11−98735号公報JP-A-11-98735 特開2007−236020号公報JP 2007-236020 A 特開2010−159400号公報JP 2010-159400 A

ローターコアは、高温下、長時間にわたって高速回転させて使用されるものである。現在、自動車駆動用のモータをさらに小型化することが求められており、小型化を達成するためには、より高速回転可能なモータとすることが必要となる。このため、ローターコアに対しても、高速回転時における耐久性の向上が強く求められている。   The rotor core is used by being rotated at a high speed for a long time at a high temperature. Currently, there is a demand for further miniaturization of motors for driving automobiles, and in order to achieve miniaturization, a motor capable of rotating at a higher speed is required. For this reason, improvement of the durability at the time of high speed rotation is also strongly demanded for the rotor core.

モータが高速回転している際、ローターコア内部に埋め込まれた永久磁石には大きな遠心力が作用する。遠心力が作用したとしても、磁石の位置ずれや磁石の変形が起こらない構造とすることが求められる。このような構造の実現には、磁石をローターコアに固定する固定材を最適に設計することが重要な技術的課題となっている。   When the motor rotates at a high speed, a large centrifugal force acts on the permanent magnet embedded in the rotor core. Even if centrifugal force acts, it is required to have a structure that does not cause displacement of the magnet or deformation of the magnet. In order to realize such a structure, it is an important technical problem to optimally design a fixing material for fixing the magnet to the rotor core.

そこで、本発明の目的は、繰り返し使用に耐えることのできる耐久性を向上させたローターコアを得るためのローター固定用樹脂組成物、当該ローター固定用樹脂組成物を用いて形成したローターを提供することにある。   Accordingly, an object of the present invention is to provide a rotor fixing resin composition for obtaining a rotor core with improved durability capable of withstanding repeated use, and a rotor formed using the rotor fixing resin composition. There is.

本発明者らは、遠心力が作用したとしても、磁石の位置ずれや変形を抑制するために、固定部材の弾性率や強度などを向上させることを考え、無機充填剤を含有する固定用樹脂組成物を固定部材に用いることを検討した。
しかしながら、上記構造は、単に固定部材の弾性率や強度などを高めるだけでは磁石の位置ずれや変形を抑制するには十分ではなかった。
The present inventors have considered a resin for fixing containing an inorganic filler in consideration of improving the elastic modulus and strength of the fixing member in order to suppress displacement and deformation of the magnet even when centrifugal force is applied. The use of the composition as a fixing member was studied.
However, the above structure is not sufficient to suppress the displacement and deformation of the magnet simply by increasing the elastic modulus and strength of the fixing member.

本発明者らは、こうした構造を実現するための設計指針についてさらに鋭意検討した。その結果、本発明者等らが考案した特定温度における固定材の破断エネルギーという尺度がこうした設計指針として有効であることを見出し、本発明に到達した。   The inventors of the present invention have further intensively studied design guidelines for realizing such a structure. As a result, the inventors have found that the measure of the breaking energy of a fixing material at a specific temperature devised by the present inventors is effective as such a design guideline, and reached the present invention.

本発明によれば、回転シャフトに固設され、前記回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、
前記穴部に挿入された磁石と、
前記穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち前記固定部材の形成に用いるローター固定用樹脂組成物であって、
エポキシ樹脂を含む熱硬化性樹脂と、
硬化剤と、
無機充填剤と、
を含み、
金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状の前記ローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として作製し、
温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10−4J/mm以上であるローター固定用樹脂組成物が提供される。
According to the present invention, the rotor core fixed to the rotating shaft and provided with a plurality of holes arranged along the peripheral edge of the rotating shaft;
A magnet inserted into the hole;
A fixing member provided in a separation portion between the hole and the magnet, and a rotor fixing resin composition used for forming the fixing member among rotors comprising:
A thermosetting resin including an epoxy resin;
A curing agent;
An inorganic filler;
Including
A dumbbell-shaped cured resin composition for fixing a rotor under a curing condition of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, and according to JIS K7162, is further added at 175 ° C., 4 Hardened under the condition of time and made as a test piece,
There is provided a resin composition for fixing a rotor, wherein a breaking energy obtained when a tensile test is performed under conditions of a temperature of 25 ° C. and a load speed of 1.0 mm / min is 1.5 × 10 −4 J / mm 3 or more. The

さらに、本発明によれば、上記ローター固定用樹脂組成物を用いて形成されるローターが提供される。   Furthermore, according to this invention, the rotor formed using the said resin composition for rotor fixation is provided.

さらに、本発明によれば、上記ローター用いて作製される自動車が提供される。   Furthermore, according to this invention, the motor vehicle produced using the said rotor is provided.

本発明によれば、ローターコアの耐久性を測る尺度として特定温度における破断エネルギーを用いている。この破断エネルギーが、温度25℃において、1.5×10−4J/mm以上の範囲にある固定材を用いることによって、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現させることができる。 According to the present invention, the breaking energy at a specific temperature is used as a scale for measuring the durability of the rotor core. By using a fixing material whose breaking energy is in the range of 1.5 × 10 −4 J / mm 3 or more at a temperature of 25 ° C., sufficient durability is achieved in an environment in which high speed rotation is performed for a long time at high temperature The rotor core which shows can be implement | achieved.

上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。   The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.

本実施形態に係るローターを示す平面図である。It is a top view which shows the rotor which concerns on this embodiment. 図1に示すローターを示す断面図である。It is sectional drawing which shows the rotor shown in FIG. 図1に示すローターを示す断面拡大図である。It is a cross-sectional enlarged view which shows the rotor shown in FIG. 図1に示すローターを構成するローターコアの第1変形例を示す平面図である。It is a top view which shows the 1st modification of the rotor core which comprises the rotor shown in FIG. 図1に示すローターを構成するローターコアの第2変形例を示す平面図である。It is a top view which shows the 2nd modification of the rotor core which comprises the rotor shown in FIG. 図1に示すローターを構成するローターコアの第3変形例を示す平面図である。FIG. 10 is a plan view showing a third modification of the rotor core that constitutes the rotor shown in FIG. 1. 図1に示すローターの一部を示す平面拡大図である。FIG. 2 is an enlarged plan view showing a part of the rotor shown in FIG. 1. 図1に示すローターを示す断面図である。It is sectional drawing which shows the rotor shown in FIG. 図1に示すローターの一部を示す平面拡大図である。FIG. 2 is an enlarged plan view showing a part of the rotor shown in FIG. 1. インサート成形に用いるインサート成形装置の上型を示す断面図である。It is sectional drawing which shows the upper mold | type of the insert molding apparatus used for insert molding.

以下、本実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, the present embodiment will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1は、本実施形態に係るローター100を示す平面図である。図2は、図1に示すローター100を示す断面図である。なお、図1および図2はローター100を示す模式図であり、本実施形態に係るローター100の構成は図1および図2に示すものに限られない。
ローター100は、ローターコア110と、磁石120と、固定部材130と、を備える。ローターコア110には、孔部150が設けられている。磁石120は、孔部150内に挿入されている。固定部材130は、孔部150と磁石120との離間部140に設けられている。
FIG. 1 is a plan view showing a rotor 100 according to this embodiment. FIG. 2 is a cross-sectional view showing the rotor 100 shown in FIG. 1 and 2 are schematic views showing the rotor 100, and the configuration of the rotor 100 according to the present embodiment is not limited to that shown in FIG. 1 and FIG.
The rotor 100 includes a rotor core 110, a magnet 120, and a fixing member 130. The rotor core 110 is provided with a hole 150. The magnet 120 is inserted into the hole 150. The fixing member 130 is provided in a separation portion 140 between the hole 150 and the magnet 120.

固定部材130は、固定用樹脂組成物を用いて形成される。本実施形態に係るローター固定用樹脂組成物は、熱硬化性樹脂(A)と、硬化剤(B)と、無機充填剤(C)と、を含んでいる。   The fixing member 130 is formed using a fixing resin composition. The resin composition for fixing a rotor according to this embodiment includes a thermosetting resin (A), a curing agent (B), and an inorganic filler (C).

本実施形態では、金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状のローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として用いた結果を例に説明する。なお、JIS K7162に記載のダンベル形状と同様の形状が、ISO527−2に記載されている。   In the present embodiment, a cured product of a resin composition for fixing a rotor in a dumbbell shape obtained under the curing conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, and according to JIS K7162, The results of curing at 175 ° C. for 4 hours and using as a test piece will be described as an example. A shape similar to the dumbbell shape described in JIS K7162 is described in ISO527-2.

以下、温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーを、破断エネルギーa、とする。また、温度150℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーを、破断エネルギーbとする。さらに、破断エネルギーaの測定条件における破断強度を、破断強度a、破断エネルギーbの測定条件における破断強度を、破断強度bとする。   Hereinafter, the breaking energy obtained when a tensile test is performed under the conditions of a temperature of 25 ° C. and a load speed of 1.0 mm / min is referred to as a breaking energy a. Further, the breaking energy obtained when the tensile test is performed under the conditions of a temperature of 150 ° C. and a load speed of 1.0 mm / min is defined as a breaking energy b. Further, the breaking strength under the measurement condition of the breaking energy a is set as the breaking strength a, and the breaking strength under the measurement condition of the breaking energy b is set as the breaking strength b.

破断エネルギーとは、引張試験時における垂直応力(stress)と垂直歪み(strein)との関係を、グラフ化した曲線(応力−歪曲線)を作成し、算出した。具体的には、歪みを変数とし、引張試験の開始点から破断点までの応力の積分値を算出するものである。この破断エネルギーが大きい程、得られるローターコアは、硬さおよび粘り強さを備えた耐久性に優れたものとなる。なお、単位は、×10−4J/mmである。 The breaking energy was calculated by creating a graph (stress-strain curve) that graphed the relationship between the normal stress (stress) and the normal strain (strain) during the tensile test. Specifically, the integrated value of stress from the starting point of the tensile test to the breaking point is calculated with strain as a variable. The larger the breaking energy, the more excellent the durability of the obtained rotor core with hardness and tenacity. The unit is × 10 −4 J / mm 3 .

本実施形態に係るローター固定用樹脂組成物の硬化物における破断エネルギーaは、1.5×10−4J/mm以上の範囲であって、かかる範囲の破断エネルギーaを有していることによって、硬さおよび粘り強さを備えた耐久性に優れたローターコアが得られる。 Break energy a in the cured product of the resin composition for fixing a rotor according to the present embodiment is in a range of 1.5 × 10 −4 J / mm 3 or more, and has a break energy a in such a range. Thus, a rotor core having hardness and tenacity and excellent durability can be obtained.

また、破断エネルギーaは、1.9×10−4J/mm以上であることが好ましい。破断エネルギーaが、この範囲にあることによって、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。なお、上限値については特に制限されるものではないが、15.0×10−4J/mm程度であれば十分である。 Further, the breaking energy a is preferably 1.9 × 10 −4 J / mm 3 or more. When the breaking energy a is within this range, a rotor core exhibiting sufficient durability can be realized in an environment in which high-speed rotation is performed at a high temperature for a long time. In addition, although it does not restrict | limit in particular about an upper limit, if it is about 15.0 * 10 < -4 > J / mm < 3 >, it is enough.

なお、破断エネルギーbは、1.2×10−4J/mm以上であることが好ましい。破断エネルギーaと比較して高温で測定している破断エネルギーbが、上記範囲内である場合、温度変化にも強く、かつ硬さと粘り強さを備えた耐久性に優れたローターコアを得ることができる。また、破断エネルギーbは、1.5×10−4J/mm以上であることがさらに好ましい。破断エネルギーbが、この範囲にあることによって、高速回転時における耐久性が、より一層向上する。破断エネルギーbについても、破断エネルギーaと同様に、上限値については特に制限されるものではないが、8.0×10−4J/mm程度であれば十分である。 The breaking energy b is preferably 1.2 × 10 −4 J / mm 3 or more. When the breaking energy b measured at a high temperature compared with the breaking energy a is within the above range, it is possible to obtain a durable rotor core that is resistant to temperature changes and has hardness and tenacity. it can. Further, the breaking energy b is more preferably 1.5 × 10 −4 J / mm 3 or more. When the breaking energy b is within this range, the durability during high-speed rotation is further improved. As for the breaking energy b, similarly to the breaking energy a, the upper limit is not particularly limited, but about 8.0 × 10 −4 J / mm 3 is sufficient.

破断エネルギーaおよびbを向上させるためには、以下の手法が有効である。
まず、エポキシ樹脂およびその硬化剤の組み合わせを最適化することにより、樹脂成分の強度および粘り強さを向上させることが必要である。これにくわえ、無機充填剤の表面をシランカップリング剤により改質し、樹脂と無機充填剤の界面接着強度を向上させることが有効である。さらには、無機充填剤の粒径分布を調整することにより、樹脂硬化体内部に発生したマイクロクラックが進展し難い構造とすることも有効である。
In order to improve the breaking energy a and b, the following method is effective.
First, it is necessary to improve the strength and tenacity of the resin component by optimizing the combination of the epoxy resin and its curing agent. In addition to this, it is effective to improve the interfacial adhesive strength between the resin and the inorganic filler by modifying the surface of the inorganic filler with a silane coupling agent. Furthermore, it is also effective to adjust the particle size distribution of the inorganic filler so that a microcrack generated in the cured resin body does not easily develop.

本実施形態に係るローターコアは、破断強度aを50MPa以上の範囲に制御することによって、さらに耐久性を向上させることが可能である。具体的には、破断強度aがこの範囲にあることによって、高速回転時における耐久性が、より一層向上する。なお、破断強度aは、60MPa以上であると好ましい。上限値については特に制限されるものではないが、200MPa程度であれば十分である。   The rotor core according to the present embodiment can be further improved in durability by controlling the breaking strength a in the range of 50 MPa or more. Specifically, when the breaking strength a is within this range, the durability during high-speed rotation is further improved. The breaking strength a is preferably 60 MPa or more. The upper limit is not particularly limited, but about 200 MPa is sufficient.

破断強度bについても、破断強度aと同様に、破断強度bを15MPa以上の範囲に制御することによって、高速回転時における耐久性が、より一層向上する。なお、破断強度bは、20MPa以上であることが好ましい。上限値については特に制限されるものではないが、100MPa程度であれば十分である。   Regarding the breaking strength b, similarly to the breaking strength a, the durability during high-speed rotation is further improved by controlling the breaking strength b in the range of 15 MPa or more. The breaking strength b is preferably 20 MPa or more. The upper limit is not particularly limited, but about 100 MPa is sufficient.

破断強度aおよびbについて上記特定の範囲に設定することによって、耐久性に優れたローターコアを提供することが可能である。特に、ローターコアの高速回転使用時における永久磁石の位置安定性に優れたローターコアを提供することが可能である。   By setting the breaking strengths a and b within the above specific ranges, it is possible to provide a rotor core having excellent durability. In particular, it is possible to provide a rotor core that is excellent in the positional stability of the permanent magnet when the rotor core is used for high-speed rotation.

ヤング率は、引張試験実施時の応力−歪み曲線における引張開始直後の線形領域における直線の傾きから求めることができる。このヤング率は、ローターコアの変形しやすさを表す指標の一つである。得られるローターコアは、ヤング率が大きければ大きいほど、変形しにくい耐久性に優れたものとなる。   The Young's modulus can be determined from the slope of the straight line in the linear region immediately after the start of tension in the stress-strain curve when the tensile test is performed. This Young's modulus is one of the indexes representing the ease of deformation of the rotor core. The larger the Young's modulus of the obtained rotor core, the more excellent the durability against deformation.

本実施形態に係るローターコアにおいて25℃でのヤング率は、12GPa以上であることが好ましい。ヤング率がこの範囲にあれば、高速回転時における耐久性が、より一層向上する。   In the rotor core according to this embodiment, the Young's modulus at 25 ° C. is preferably 12 GPa or more. If the Young's modulus is within this range, the durability during high-speed rotation is further improved.

なお、ヤング率は、無機充填剤の量、あるいは樹脂成分の選択により適宜調整することが可能である。   The Young's modulus can be appropriately adjusted by selecting the amount of the inorganic filler or the resin component.

以上のように、本実施形態に係るローター固定用樹脂組成物の硬化物は、特定の破断エネルギーaを有している。このため、得られたローターコアは、硬さや粘り強さの観点で耐久性に優れたローターコアを得ることが可能である。また、本実施形態に係るローター固定用樹脂組成物の硬化物は、破断エネルギーの他に破断強度やヤング率についても、特定の値を設定することが好ましい。こうすることによって、変形しにくい機械的特性のバランスのとれたローターコアを得ることができる。   As described above, the cured product of the resin composition for fixing a rotor according to the present embodiment has a specific breaking energy a. For this reason, the obtained rotor core can obtain a rotor core excellent in durability in terms of hardness and tenacity. Moreover, it is preferable that the hardened | cured material of the resin composition for rotor fixation which concerns on this embodiment sets a specific value also about breaking strength and Young's modulus other than breaking energy. By doing so, it is possible to obtain a rotor core having a balanced mechanical property that is difficult to deform.

また、本実施形態に係るローターコアは、ワックスを使用せずにローター固定用樹脂組成物を製造しても良い。通常、半導体封止剤には金型の汚染が生じることを防止するため、ワックスを添加することが必須とされている。一方、本実施形態に係るローター固定用樹脂組成物では、ワックスをあえて使用しない組成としている。   In addition, the rotor core according to the present embodiment may be manufactured from a rotor fixing resin composition without using wax. Usually, it is essential to add wax to the semiconductor encapsulant to prevent contamination of the mold. On the other hand, the rotor fixing resin composition according to this embodiment has a composition that does not use wax.

ローター固定用樹脂組成物の組成を工夫して、特定の構成とすることにより金型を汚染することなくトランスファー成形できることを見いだした。また、ワックスを添加しないことによって、破断エネルギーが従来の技術水準と比較して向上することも見いだした。これは、理由は必ずしも明らかではないが、無機充填剤と樹脂との界面強度が向上したことによると考えられる。   The inventors have found that transfer molding can be performed without contaminating the mold by devising the composition of the resin composition for fixing the rotor to a specific configuration. It has also been found that the break energy is improved compared to the prior art by not adding wax. Although this reason is not necessarily clear, it is considered that the interface strength between the inorganic filler and the resin is improved.

本実施形態のローター固定用樹脂組成物を得るためには、例えば、以下の3つの条件を、それぞれ適切に調整することが重要である。
(1)無機充填剤の性状
(2)無機充填剤のシランカップリング処理条件
(3)熱硬化性樹脂、その硬化剤および添加剤の組み合わせ
具体的には、実施例にて後述する。
In order to obtain the resin composition for fixing a rotor of the present embodiment, for example, it is important to appropriately adjust the following three conditions, respectively.
(1) Properties of inorganic filler (2) Silane coupling treatment condition of inorganic filler (3) Combination of thermosetting resin, curing agent and additive The details will be described later in Examples.

ただし、本実施形態のローター固定用樹脂組成物の製法は、上記のような方法には限定されず、種々の条件を適切に調整することにより、本実施形態のローター固定用樹脂組成物を得ることができる。例えば、シリカ粒子を用いなくても、カップリング剤の処理条件を調整することにより、本実施形態のローター固定用樹脂組成物を得ることができる。   However, the method for producing the rotor fixing resin composition of the present embodiment is not limited to the above method, and the rotor fixing resin composition of the present embodiment is obtained by appropriately adjusting various conditions. be able to. For example, even if silica particles are not used, the rotor fixing resin composition of the present embodiment can be obtained by adjusting the processing conditions of the coupling agent.

本実施形態に係るローター固定用樹脂組成物は、以下に説明する態様で使用することができる。   The rotor fixing resin composition according to the present embodiment can be used in the manner described below.

本実施形態に係るローター100は、例えば自動車等に搭載されるモータを構成する。モータは、ローター100およびローター100の周囲に設けられたステータ(図示せず)を含む。ステータは、ステータコアと、ステータコアに巻回されたコイルにより構成される。
図2に示すように、ローター100は回転シャフト170に取り付けられている。ローター100により発生した回転は、回転シャフト170を介して外部に伝達されることとなる。
The rotor 100 according to the present embodiment constitutes a motor mounted on, for example, an automobile. The motor includes a rotor 100 and a stator (not shown) provided around the rotor 100. The stator includes a stator core and a coil wound around the stator core.
As shown in FIG. 2, the rotor 100 is attached to the rotating shaft 170. The rotation generated by the rotor 100 is transmitted to the outside through the rotating shaft 170.

ローターコア110には、回転シャフト170を挿入するための貫通孔が設けられている。ローターコア110は、貫通孔に挿入されて回転シャフト170に固設される。ローターコア110の形状は、特に限定されないが、例えば平面視で円形または多角形等である。
図2に示すように、ローターコア110は、薄板状の磁性体である電磁鋼板112を複数積層してなる。電磁鋼板112は、例えば鉄または鉄合金等により構成される。
また、図2に示すように、ローターコア110の軸方向における両端には、エンドプレート118aおよびエンドプレート118bが設けられている。すなわち、積層された電磁鋼板112上には、エンドプレート118aが設けられている。また、積層された電磁鋼板112下にはエンドプレート118bが設けられている。エンドプレート118aおよびエンドプレート118bは、例えば溶接等により回転シャフト170に固定される。
The rotor core 110 is provided with a through hole for inserting the rotating shaft 170. The rotor core 110 is inserted into the through hole and fixed to the rotating shaft 170. The shape of the rotor core 110 is not particularly limited, but is, for example, a circle or a polygon in plan view.
As shown in FIG. 2, the rotor core 110 is formed by laminating a plurality of electromagnetic steel plates 112, which are thin plate-like magnetic bodies. The electromagnetic steel plate 112 is made of, for example, iron or an iron alloy.
Further, as shown in FIG. 2, end plates 118 a and 118 b are provided at both ends of the rotor core 110 in the axial direction. That is, an end plate 118 a is provided on the laminated electromagnetic steel plates 112. Further, an end plate 118b is provided below the laminated electromagnetic steel plates 112. The end plate 118a and the end plate 118b are fixed to the rotating shaft 170 by, for example, welding.

図3は、図1に示すローター100を示す断面拡大図である。図3に示すように、複数の電磁鋼板112には、カシメ部160が形成されている。カシメ部160は、例えば電磁鋼板112に形成された突起部により構成される。各電磁鋼板112は、互いにカシメ部160により結合されている。
また、エンドプレート118aには、例えば電磁鋼板112から突出したカシメ部160や、電磁鋼板112上に突出した固定部材130との干渉を避けるための溝部116が設けられている。なお、電磁鋼板112上に突出した固定部材130とは、固定用樹脂組成物を離間部140へ注入する際に電磁鋼板112上に残存した固定用樹脂組成物が硬化することにより形成される部分である。
FIG. 3 is an enlarged cross-sectional view showing the rotor 100 shown in FIG. As shown in FIG. 3, a caulking portion 160 is formed on the plurality of electromagnetic steel plates 112. The crimping part 160 is comprised by the projection part formed in the electromagnetic steel plate 112, for example. The electromagnetic steel plates 112 are coupled to each other by a caulking portion 160.
Further, the end plate 118 a is provided with, for example, a caulking portion 160 protruding from the electromagnetic steel plate 112 and a groove portion 116 for avoiding interference with the fixing member 130 protruding on the electromagnetic steel plate 112. The fixing member 130 protruding on the electromagnetic steel sheet 112 is a portion formed by hardening of the fixing resin composition remaining on the electromagnetic steel sheet 112 when the fixing resin composition is poured into the separating portion 140. It is.

図1に示すように、ローターコア110には、複数の孔部150が設けられている。複数の孔部150は、回転シャフト170の軸心を中心として点対称となるようにローターコア110に配置されている。
図1に示すように、本実施形態のローター100では、例えば隣接する二つの孔部150からなる複数の孔部群が、回転シャフト170の周縁部に沿って配置されている。複数の孔部群は、例えば互いに離間するように設けられている。一つの孔部群を構成する二つの孔部150は、例えば平面視でVの字状に配置される。この場合、一つの孔部群を構成する二つの孔部150は、例えば互いに対向するそれぞれの端部が回転シャフト170側に位置するように設けられる。また、一つの孔部群を構成する二つの孔部150は、例えば互いに離間するように設けられている。
As shown in FIG. 1, the rotor core 110 is provided with a plurality of holes 150. The plurality of holes 150 are arranged in the rotor core 110 so as to be point symmetric about the axis of the rotating shaft 170.
As shown in FIG. 1, in the rotor 100 according to this embodiment, a plurality of hole groups each including, for example, two adjacent hole portions 150 are arranged along the peripheral edge portion of the rotating shaft 170. The plurality of hole groups are provided, for example, so as to be separated from each other. The two hole portions 150 constituting one hole group are arranged in a V shape in a plan view, for example. In this case, the two hole parts 150 constituting one hole part group are provided, for example, such that respective end parts facing each other are located on the rotating shaft 170 side. Moreover, the two hole parts 150 which comprise one hole part group are provided so that it may mutually separate, for example.

図4は、図1に示すローター100を構成するローターコア110の第1変形例を示す平面図である。図4に示すように、三つの孔部150からなる複数の孔部群が、回転シャフト170の周縁部に沿って配置されていてもよい。この場合、三つの孔部150は、例えば平面視でVの字状に配置された孔部154aおよび孔部154bと、これらの間に位置する孔部156と、により構成される。孔部154a、孔部154b、および孔部156は、互いに離間している。   FIG. 4 is a plan view showing a first modification of the rotor core 110 constituting the rotor 100 shown in FIG. As shown in FIG. 4, a plurality of hole groups composed of three hole portions 150 may be arranged along the peripheral edge portion of the rotating shaft 170. In this case, the three hole portions 150 are configured by, for example, a hole portion 154a and a hole portion 154b arranged in a V shape in a plan view, and a hole portion 156 positioned therebetween. The hole 154a, the hole 154b, and the hole 156 are separated from each other.

図5は、図1に示すローター100を構成するローターコア110の第2変形例を示す平面図である。図5に示すように、平面視でVの字状の形状を有する複数の孔部150が、回転シャフト170の周縁部に沿って配置されていてもよい。この場合、孔部150は、例えば孔部150の中心部が回転シャフト170側に位置し、かつ孔部150の両端部がローターコア110の外周縁側に位置するように設けられる。
図6は、図1に示すローター100を構成するローターコア110の第3変形例を示す平面図である。図6に示すように、平面視でローターコア110の径方向に対して垂直な長方形の形状を有する複数の孔部150が、回転シャフト170の周縁部に沿って配置されていてもよい。
なお、孔部150の配置レイアウトは上述したものに限定されない。
FIG. 5 is a plan view showing a second modification of the rotor core 110 constituting the rotor 100 shown in FIG. As shown in FIG. 5, a plurality of holes 150 having a V shape in plan view may be arranged along the peripheral edge of the rotating shaft 170. In this case, the hole 150 is provided so that, for example, the center of the hole 150 is located on the rotating shaft 170 side, and both ends of the hole 150 are located on the outer peripheral edge side of the rotor core 110.
FIG. 6 is a plan view showing a third modification of the rotor core 110 constituting the rotor 100 shown in FIG. As shown in FIG. 6, a plurality of holes 150 having a rectangular shape perpendicular to the radial direction of the rotor core 110 in plan view may be arranged along the peripheral edge of the rotating shaft 170.
The layout of the holes 150 is not limited to that described above.

図7は、図1に示すローター100の一部を示す平面拡大図である。
図7に示すように、孔部150は、例えば平面視で矩形である。孔部150は、ローターコア110の外周縁側に位置する側壁151と、ローターコア110の内周縁側に位置する側壁153と、ローターコア110の周方向において互いに対向する側壁155および側壁157と、を有する。側壁151と側壁153は、ローターコア110の径方向において互いに対向している。本実施形態において、一つの孔部群を構成し、かつ互いに隣接する二つの孔部150は、それぞれの側壁155が互いに対向するように配置される。
なお、孔部150の形状は、磁石120の形状に対応していれば特に限定されず、例えば楕円形等であってもよい。
FIG. 7 is an enlarged plan view showing a part of the rotor 100 shown in FIG.
As shown in FIG. 7, the hole 150 is, for example, a rectangle in plan view. The hole 150 includes a side wall 151 located on the outer peripheral edge side of the rotor core 110, a side wall 153 located on the inner peripheral edge side of the rotor core 110, and a side wall 155 and a side wall 157 facing each other in the circumferential direction of the rotor core 110. Have. The side wall 151 and the side wall 153 are opposed to each other in the radial direction of the rotor core 110. In the present embodiment, two hole portions 150 that form one hole group and are adjacent to each other are arranged such that the respective side walls 155 face each other.
The shape of the hole 150 is not particularly limited as long as it corresponds to the shape of the magnet 120, and may be, for example, an ellipse.

図7に示すように、磁石120は、例えば平面視で矩形である。磁石120は、側壁151と対向する側壁121、側壁153と対向する側壁123、側壁155と対向する側壁125、および側壁157と対向する側壁127と、を有する。すなわち、側壁121は、ローターコア110の外周縁側に位置する。また、側壁123は、ローターコアの内周縁側に位置する。磁石120は、例えばネオジム磁石等の永久磁石である。なお、磁石120の形状は、上述したものに限定されず、例えば楕円形等であってもよい。   As shown in FIG. 7, the magnet 120 is, for example, a rectangle in plan view. The magnet 120 has a side wall 121 that faces the side wall 151, a side wall 123 that faces the side wall 153, a side wall 125 that faces the side wall 155, and a side wall 127 that faces the side wall 157. That is, the side wall 121 is located on the outer peripheral side of the rotor core 110. Further, the side wall 123 is located on the inner peripheral edge side of the rotor core. The magnet 120 is a permanent magnet such as a neodymium magnet. The shape of the magnet 120 is not limited to that described above, and may be, for example, an ellipse.

固定部材130は、孔部150と磁石120との間隙(以下、離間部140とも称呼する)に充填された固定用樹脂組成物を硬化することにより形成される。これにより、磁石120がローターコア110に固定されることとなる。なお、本実施形態に係るローター100において、離間部140の幅は、例えば20μm以上500μm以下である。
固定部材130は、少なくともロータコア110の径方向における孔部150と磁石120との離間部140に設けられている。すなわち、固定部材130は、少なくとも側壁121と側壁151の間または側壁123と側壁153の間のいずれか一方に設けられることとなる。
また、固定部材130は、例えば平面視で矩形である磁石120の少なくとも3辺を覆うように設けられている。すなわち、側壁121、側壁123、側壁125、および側壁127のうちの少なくとも3つが、固定部材130により覆われることとなる。
図7に示すように、離間部140は、例えば側壁121と側壁151との間、側壁123と側壁153との間、側壁125と側壁155との間、および側壁127と側壁157との間に形成される。この場合、磁石120のうち、側壁121、側壁123、側壁125、および側壁127が、固定部材130により覆われることとなる。
本実施形態では、側壁121と側壁151との間隙、および側壁123と側壁153との間隙に、固定部材130が形成される。このため、ローターコア110の径方向において、磁石120の位置が固定されることとなる。これにより、モータの高速回転時に働く遠心力によって磁石120の位置がずれてしまうことを抑制することができる。
The fixing member 130 is formed by curing a fixing resin composition filled in a gap between the hole 150 and the magnet 120 (hereinafter also referred to as a separation part 140). Thereby, the magnet 120 is fixed to the rotor core 110. In the rotor 100 according to this embodiment, the width of the separation portion 140 is, for example, 20 μm or more and 500 μm or less.
The fixing member 130 is provided at least in a separation portion 140 between the hole 150 and the magnet 120 in the radial direction of the rotor core 110. That is, the fixing member 130 is provided at least either between the side wall 121 and the side wall 151 or between the side wall 123 and the side wall 153.
The fixing member 130 is provided so as to cover at least three sides of the magnet 120 that is rectangular in plan view, for example. That is, at least three of the side wall 121, the side wall 123, the side wall 125, and the side wall 127 are covered with the fixing member 130.
As shown in FIG. 7, the separation portion 140 is, for example, between the side wall 121 and the side wall 151, between the side wall 123 and the side wall 153, between the side wall 125 and the side wall 155, and between the side wall 127 and the side wall 157. It is formed. In this case, the side wall 121, the side wall 123, the side wall 125, and the side wall 127 of the magnet 120 are covered with the fixing member 130.
In the present embodiment, the fixing member 130 is formed in the gap between the side wall 121 and the side wall 151 and in the gap between the side wall 123 and the side wall 153. For this reason, the position of the magnet 120 is fixed in the radial direction of the rotor core 110. Thereby, it can suppress that the position of the magnet 120 shifts | deviates by the centrifugal force which acts at the time of high-speed rotation of a motor.

また、図2に示すように、固定部材130は、例えば磁石120の上面を覆うように形成されている。これにより、ローターコア110の軸方向において、磁石120の位置が固定される。従って、モータの駆動時等に磁石120の位置がローターコア110の軸方向へずれてしまうことを抑制することができる。   Further, as shown in FIG. 2, the fixing member 130 is formed so as to cover the upper surface of the magnet 120, for example. Thereby, the position of the magnet 120 is fixed in the axial direction of the rotor core 110. Therefore, it is possible to suppress the position of the magnet 120 from shifting in the axial direction of the rotor core 110 when the motor is driven.

図8は、図1に示すローター100を示す断面図であり、図2とは異なる例を示す。
図8に示すように、磁石120は、例えば側壁121が側壁151に当接するように固定されてもよい。この場合、離間部140は、側壁123と側壁153との間、側壁125と側壁155との間、および側壁127と側壁157との間に形成されることとなる。従って、磁石120のうち、側壁123、側壁125および側壁127が、固定部材130により覆われることとなる。この場合においても、ローターコア110の径方向において、磁石120の位置を固定することができる。
FIG. 8 is a cross-sectional view showing the rotor 100 shown in FIG. 1 and shows an example different from FIG.
As shown in FIG. 8, the magnet 120 may be fixed so that, for example, the side wall 121 contacts the side wall 151. In this case, the separation portion 140 is formed between the side wall 123 and the side wall 153, between the side wall 125 and the side wall 155, and between the side wall 127 and the side wall 157. Therefore, the side wall 123, the side wall 125, and the side wall 127 of the magnet 120 are covered with the fixing member 130. Even in this case, the position of the magnet 120 can be fixed in the radial direction of the rotor core 110.

また、磁石120は、例えば側壁123が側壁153に当接するように固定されてもよい。この場合、離間部140は、側壁121と側壁151との間、側壁125と側壁155との間、および側壁127と側壁157との間に形成されることとなる。従って、磁石120のうち、側壁121、側壁125および側壁127が、固定部材130により覆われることとなる。この場合においても、ローターコア110の径方向において、磁石120の位置を固定することができる。   Moreover, the magnet 120 may be fixed so that the side wall 123 abuts on the side wall 153, for example. In this case, the separation portion 140 is formed between the side wall 121 and the side wall 151, between the side wall 125 and the side wall 155, and between the side wall 127 and the side wall 157. Therefore, the side wall 121, the side wall 125, and the side wall 127 of the magnet 120 are covered with the fixing member 130. Even in this case, the position of the magnet 120 can be fixed in the radial direction of the rotor core 110.

図9は、図1に示すローター100の一部を示す平面拡大図であり、図7とは異なる例を示している。図9に示すように、本実施形態に係るローター100において、孔部150の両端部には、スリット152が設けられていてもよい。スリット152は、ローターコア110の周方向における、孔部150の両端部に位置している。また、スリット152は、孔部150と連通して設けられている。
孔部150の両端にスリット152を設けることで、磁石120から発生される磁束の磁路を狭くすることができる。すなわち、磁石120の両端部からローターコア110の周方向へ生じる磁束がローターコア110内において短絡することを抑制することができる。これにより、ローターコア110内における短絡を減少させ、ステータに伝わる磁束量を増大させることが可能となる。
9 is an enlarged plan view showing a part of the rotor 100 shown in FIG. 1, and shows an example different from FIG. As shown in FIG. 9, in the rotor 100 according to this embodiment, slits 152 may be provided at both ends of the hole 150. The slits 152 are located at both ends of the hole 150 in the circumferential direction of the rotor core 110. The slit 152 is provided in communication with the hole 150.
By providing the slits 152 at both ends of the hole 150, the magnetic path of the magnetic flux generated from the magnet 120 can be narrowed. That is, it is possible to suppress short-circuiting of the magnetic flux generated in the circumferential direction of the rotor core 110 from both ends of the magnet 120 in the rotor core 110. As a result, short-circuits in the rotor core 110 can be reduced, and the amount of magnetic flux transmitted to the stator can be increased.

図9に示すように、スリット152内には、スリット充填用樹脂部材132が形成されている。スリット充填用樹脂部材132は、例えば離間部140およびスリット152内に充填された固定用樹脂組成物を硬化することにより形成される。すなわち、スリット充填用樹脂部材132は、例えば固定部材130と同一工程により形成される。このため、スリット充填用樹脂部材132は、固定部材130と一体として設けられる。
スリット152を形成する場合、側壁155および側壁157と、スリット152と、の境界部には、角部が形成される。この場合、モータを駆動する際に磁石120にかかる応力は、当該角部と当接する部分に集中してしまう。
本変形例によれば、スリット152内にスリット充填用樹脂部材132を形成することで、モータを駆動する際に磁石120にかかる応力の集中を緩和することができる。このため、モータ駆動時に磁石120に対して大きな応力が働くことを抑制できる。従って、磁石120の破損等が発生することを防止することが可能となる。
As shown in FIG. 9, a slit filling resin member 132 is formed in the slit 152. The slit filling resin member 132 is formed, for example, by curing the fixing resin composition filled in the separation portion 140 and the slit 152. That is, the slit filling resin member 132 is formed by the same process as the fixing member 130, for example. Therefore, the slit filling resin member 132 is provided integrally with the fixing member 130.
When the slit 152 is formed, a corner is formed at the boundary between the side wall 155 and the side wall 157 and the slit 152. In this case, the stress applied to the magnet 120 when the motor is driven is concentrated on the portion in contact with the corner portion.
According to this modification, by forming the slit filling resin member 132 in the slit 152, it is possible to reduce the concentration of stress applied to the magnet 120 when the motor is driven. For this reason, it can suppress that a big stress acts with respect to the magnet 120 at the time of a motor drive. Therefore, it is possible to prevent the magnet 120 from being damaged.

(ローター固定用樹脂組成物)
次に、本実施形態に係るローター固定用樹脂組成物について、詳細に説明する。
本実施形態に係る固定用樹脂組成物は、例えば粉末状、顆粒状、またはタブレット状等である。このため、後述するように、例えば溶融させた固定用樹脂組成物を離間部140内に注入することにより、離間部140内に固定用樹脂組成物が充填される。
本実施形態に係る固定用樹脂組成物は、熱硬化性樹脂(A)と、硬化剤(B)と、無機充填剤(C)と、を含む。以下、各成分について説明する。
(Resin composition for fixing rotor)
Next, the resin composition for fixing a rotor according to the present embodiment will be described in detail.
The fixing resin composition according to the present embodiment is, for example, in the form of powder, granules, or tablets. For this reason, as will be described later, for example, the fixing resin composition is filled into the spacing portion 140 by injecting the molten fixing resin composition into the spacing portion 140.
The fixing resin composition according to this embodiment includes a thermosetting resin (A), a curing agent (B), and an inorganic filler (C). Hereinafter, each component will be described.

[熱硬化性樹脂(A)]
熱硬化性樹脂(A)は、特に制限されるものではないが、例えばエポキシ樹脂(A1)、フェノール樹脂、オキセタン樹脂、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、またはマレイミド樹脂等が用いられる。中でも、硬化性、保存性、硬化物の耐熱性、耐湿性、および耐薬品性に優れるエポキシ樹脂(A1)が好適に用いられる。
[Thermosetting resin (A)]
The thermosetting resin (A) is not particularly limited, and examples thereof include an epoxy resin (A1), a phenol resin, an oxetane resin, a (meth) acrylate resin, an unsaturated polyester resin, a diallyl phthalate resin, or a maleimide resin. Is used. Among these, an epoxy resin (A1) excellent in curability, storage stability, heat resistance of the cured product, moisture resistance, and chemical resistance is preferably used.

本実施形態に係る熱硬化性樹脂(A)は、好ましくはエポキシ樹脂(A1)を含む。エポキシ樹脂(A1)としては、一分子中にエポキシ基を2個以上有するものであれば特に分子量や構造は限定されるものではない。
エポキシ樹脂(A1)としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビフェニル型エポキシ樹脂;スチルベン型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;トリフェノールプロパン型エポキシ樹脂;アルキル変性トリフェノールメタン型エポキシ樹脂;トリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂;ナフトール型エポキシ樹脂;ナフタレン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂;フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂等のエポキシ樹脂、またはビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ−アジペイド等の脂環式エポキシ等の脂肪族エポキシ樹脂が挙げられる。これらは単独でも2種以上混合して使用しても良い。
熱硬化性樹脂(A)としてエポキシ樹脂(A1)を含む場合、芳香族環にグリシジルエーテル構造あるいはグリシジルアミン構造が結合した構造を含むものが、耐熱性、機械特性、および耐湿性の観点から好ましい。
The thermosetting resin (A) according to the present embodiment preferably includes an epoxy resin (A1). The epoxy resin (A1) is not particularly limited in molecular weight and structure as long as it has two or more epoxy groups in one molecule.
Examples of the epoxy resin (A1) include novolak type epoxy resins such as phenol novolak type epoxy resins and cresol novolak type epoxy resins; bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins; N, N-di Aromatic glycidylamine type epoxy resins such as glycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aminophenol type glycidylamine; hydroquinone type epoxy resin; biphenyl type epoxy resin; stilbene type epoxy resin; Methane-type epoxy resin; Triphenolpropane-type epoxy resin; Alkyl-modified triphenolmethane-type epoxy resin; Triazine nucleus-containing epoxy resin; Dicyclopenta En-modified phenol type epoxy resin; naphthol type epoxy resin; naphthalene type epoxy resin; naphthylene ether type epoxy resin; phenol aralkyl type epoxy resin having phenylene and / or biphenylene skeleton, naphthol aralkyl type epoxy having phenylene and / or biphenylene skeleton Examples thereof include epoxy resins such as aralkyl type epoxy resins such as resins, and aliphatic epoxy resins such as alicyclic epoxies such as vinylcyclohexene dioxide, dicyclopentadiene oxide, and alicyclic diepoxy-adipade. These may be used alone or in combination of two or more.
When the epoxy resin (A1) is included as the thermosetting resin (A), it is preferable from the viewpoint of heat resistance, mechanical properties, and moisture resistance to include a structure in which a glycidyl ether structure or a glycidylamine structure is bonded to an aromatic ring. .

また、フェノール樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられる。   Examples of the phenol resin include novolak type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, and resol type phenol resin.

本実施形態に係る熱硬化性樹脂(A)の含有量は、特に限定されないが、固定用樹脂組成物の合計値100質量%に対して、好ましくは5質量%以上40質量%以下であり、より好ましくは10質量%以上20質量%以下である。   Although content of the thermosetting resin (A) which concerns on this embodiment is not specifically limited, Preferably it is 5 mass% or more and 40 mass% or less with respect to 100 mass% of the total value of the resin composition for fixation, More preferably, it is 10 mass% or more and 20 mass% or less.

熱硬化性樹脂(A)としてエポキシ樹脂(A1)を含む好ましい態様において、該エポキシ樹脂の含有量は、特に限定されないが、熱硬化性樹脂(A)100質量%に対して、好ましくは70質量%以上100質量%以下であり、より好ましくは80質量%以上100質量%以下である。   In a preferred embodiment including the epoxy resin (A1) as the thermosetting resin (A), the content of the epoxy resin is not particularly limited, but is preferably 70 mass with respect to 100 mass% of the thermosetting resin (A). % To 100% by mass, more preferably 80% to 100% by mass.

[硬化剤(B)]
硬化剤(B)は、熱硬化性樹脂(A)に好ましい態様として含まれるエポキシ樹脂(A1)を三次元架橋させるために用いられるものである。硬化剤(B)としては、特に限定されないが、例えばフェノール樹脂を用いることができる。このようなフェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではない。
フェノール樹脂系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物、ナフテン酸コバルト等のナフテン酸金属塩等が挙げられる。これらは、1種類を単独で用いても2種類以上を併用してもよい。このようなフェノール樹脂系硬化剤を用いることにより、耐燃性、耐湿性、電気特性、硬化性、および保存安定性等のバランスが良好となる。特に、硬化性の点から、フェノール樹脂系硬化剤の水酸基当量は、例えば90g/eq以上250g/eq以下とすることができる。
[Curing agent (B)]
The curing agent (B) is used to three-dimensionally crosslink the epoxy resin (A1) included as a preferred embodiment in the thermosetting resin (A). Although it does not specifically limit as a hardening | curing agent (B), For example, a phenol resin can be used. Such phenol resin-based curing agents are monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited.
Examples of the phenol resin-based curing agent include novolak resins such as phenol novolak resin, cresol novolak resin, and naphthol novolak resin; polyfunctional phenol resins such as triphenolmethane phenol resin; terpene modified phenol resin, dicyclopentadiene modified Modified phenol resins such as phenol resins; Aralkyl resins such as phenol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, naphthenic acid Examples thereof include naphthenic acid metal salts such as cobalt. These may be used alone or in combination of two or more. By using such a phenol resin-based curing agent, the balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like is improved. In particular, from the viewpoint of curability, the hydroxyl equivalent of the phenol resin-based curing agent can be, for example, 90 g / eq or more and 250 g / eq or less.

さらに、併用できる硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤等を挙げることができる。   Furthermore, examples of the curing agent that can be used in combination include a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.

重付加型の硬化剤としては、例えばジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレンジアミン(MXDA)等の脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)等の芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジド等を含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマー等のポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類等が挙げられる。   Examples of polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylenediamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiphenyl. In addition to aromatic polyamines such as sulfone (DDS), polyamine compounds containing dicyandiamide (DICY), organic acid dihydralazide, etc .; alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA) , Acid anhydrides including aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA); polyphenols such as novolac type phenol resins and phenol polymers Phenol compounds; polysulfide, thioester, polymercaptan compounds such as thioether; an isocyanate prepolymer, an isocyanate compound such as a blocked isocyanate; organic acids such as carboxylic acid-containing polyester resins.

触媒型の硬化剤としては、例えばベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)等の3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)等のイミダゾール化合物;BF3錯体等のルイス酸等が挙げられる。   Examples of the catalyst-type curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4- Examples include imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF3 complexes.

縮合型の硬化剤としては、例えばレゾール樹脂、メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂等が挙げられる。   Examples of the condensation type curing agent include a urea resin such as a resole resin and a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.

このような他の硬化剤を併用する場合において、フェノール樹脂系硬化剤の含有量は、全硬化剤(B)に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、耐燃性を保持しつつ、良好な流動性を発現させることができる。また、フェノール樹脂系硬化剤の含有量は、特に限定されないが、全硬化剤(B)に対して、100質量%以下であることが好ましい。   In the case where such other curing agents are used in combination, the content of the phenol resin curing agent is preferably 20% by mass or more, and more preferably 30% by mass or more with respect to the total curing agent (B). Is more preferable, and 50% by mass or more is particularly preferable. When the blending ratio is within the above range, good fluidity can be exhibited while maintaining the flame resistance. Moreover, the content of the phenol resin-based curing agent is not particularly limited, but is preferably 100% by mass or less with respect to the total curing agent (B).

固定用樹脂組成物に対する硬化剤(B)の含有量は、特に限定されるものではないが、固定用樹脂組成物の合計値100質量%に対して、0.8質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。配合割合を上記範囲内とすることにより、良好な硬化性を得ることができる。また、固定用樹脂組成物に対する硬化剤(B)の含有量は、特に限定されるものではないが、全固定用樹脂組成物の合計値100質量%に対して、12質量%以下であることが好ましく、10質量%以下であることがより好ましい。   Although content of the hardening | curing agent (B) with respect to the resin composition for fixation is not specifically limited, It is 0.8 mass% or more with respect to 100 mass% of total values of the resin composition for fixation. Preferably, it is 1.5% by mass or more. By setting the blending ratio within the above range, good curability can be obtained. Moreover, content of the hardening | curing agent (B) with respect to the resin composition for fixation is although it does not specifically limit, It is 12 mass% or less with respect to 100 mass% of total values of the resin composition for all fixation. Is preferable, and it is more preferable that it is 10 mass% or less.

なお、硬化剤(B)としてのフェノール樹脂と熱硬化性樹脂(A)としてのエポキシ樹脂(A1)は、全熱硬化性樹脂(A)中のエポキシ基数(EP)と全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、0.8以上1.3以下となるように配合されることが好ましい。当量比が上記範囲内であると、得られる固定用樹脂組成物を成形する際、十分な硬化特性を得ることができる。ただし、エポキシ樹脂と反応し得るフェノール樹脂以外の樹脂を併用する場合は、適宜当量比を調整すればよい。   The phenol resin as the curing agent (B) and the epoxy resin (A1) as the thermosetting resin (A) are the number of epoxy groups (EP) in the total thermosetting resin (A) and the phenolic property of all phenol resins. It is preferable that the equivalent ratio (EP) / (OH) to the number of hydroxyl groups (OH) is 0.8 to 1.3. When the equivalent ratio is within the above range, sufficient curing characteristics can be obtained when the obtained fixing resin composition is molded. However, when a resin other than a phenol resin capable of reacting with an epoxy resin is used in combination, the equivalent ratio may be adjusted as appropriate.

[無機充填剤(C)]
無機充填剤(C)としては、固定用樹脂組成物の技術分野で一般的に用いられる無機充填剤を使用することができる。
無機充填剤(C)としては、例えば溶融破砕シリカ及び溶融球状シリカ等の溶融シリカ、結晶シリカ、アルミナ、カオリン、タルク、クレイ、マイカ、ロックウール、ウォラストナイト、ガラスパウダー、ガラスフレーク、ガラスビーズ、ガラスファイバー、炭化ケイ素、窒化ケイ素、窒化アルミ、カーボンブラック、グラファイト、二酸化チタン、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、セルロース、アラミド、木材、フェノール樹脂成形材料やエポキシ樹脂成形材料の硬化物を粉砕した粉砕粉等が挙げられる。この中でも、溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカが好ましく、溶融球状シリカがより好ましい。また、この中でも、炭酸カルシウムがコストの面で好ましい。無機充填剤(C)としては、一種で使用しても良いし、または二種以上を併用してもよい。
[Inorganic filler (C)]
As the inorganic filler (C), inorganic fillers generally used in the technical field of fixing resin compositions can be used.
Examples of the inorganic filler (C) include fused silica such as fused crushed silica and fused spherical silica, crystalline silica, alumina, kaolin, talc, clay, mica, rock wool, wollastonite, glass powder, glass flake, and glass beads. Glass fiber, silicon carbide, silicon nitride, aluminum nitride, carbon black, graphite, titanium dioxide, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, cellulose, aramid, wood, phenolic resin molding material and Examples thereof include pulverized powder obtained by pulverizing a cured product of an epoxy resin molding material. Among these, silica such as fused crushed silica, fused spherical silica, and crystalline silica is preferable, and fused spherical silica is more preferable. Of these, calcium carbonate is preferred in terms of cost. As the inorganic filler (C), one kind may be used, or two or more kinds may be used in combination.

無機充填剤(C)の平均粒径D50は、好ましくは0.01μm以上75μm以下であり、より好ましくは0.05μm以上50μm以下である。無機充填剤(C)の平均粒径を上記範囲内にすることにより、孔部150と磁石120との離間部140への充填性が向上する。平均粒径D50は、レーザー回折型測定装置RODOS SR型(SYMPATEC HEROS&RODOS社)での体積換算平均粒径とした。 The average particle diameter D 50 of the inorganic filler (C) is preferably not 0.01μm least 75μm or less, more preferably 0.05μm or more 50μm or less. By making the average particle diameter of the inorganic filler (C) within the above range, the filling property to the spacing part 140 between the hole 150 and the magnet 120 is improved. The average particle diameter D 50 was set in terms of volume average particle diameter with a laser diffraction type measuring device RODOS SR type (SYMPATEC HEROS & RODOS, Inc.).

また、本実施形態に係る固定用樹脂組成物において、無機充填剤(C)は、平均粒径D50が異なる2種以上の球状シリカを含むことができる。これにより、流動性及び充填性の向上とバリ抑制の両立が可能となる。 Further, in the fixing resin composition according to the present embodiment, the inorganic filler (C) may be an average particle diameter D 50 comprises two or more spherical silica are different. Thereby, improvement of fluidity | liquidity and a filling property and coexistence of burr | flash suppression are attained.

無機充填剤(C)の含有量は、固定用樹脂組成物の合計値100質量%に対して、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは65質量%以上であり、特に好ましくは75質量%以上である。上記範囲内であると、得られる固定用樹脂組成物の硬化に伴う吸湿量の増加や、強度の低下が低減できる。また、無機充填剤(C)の含有量は、固定用樹脂組成物の合計値100質量%に対して、好ましくは93質量%以下であり、より好ましくは91質量%以下であり、さらに好ましくは90質量%以下である。上記範囲内であると、得られる固定用樹脂組成物は良好な流動性を有するとともに、良好な成形性を備える。したがって、ローターの製造安定性が高まり、歩留まり及び耐久性のバランスに優れたローターが得られる。   The content of the inorganic filler (C) is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 65% by mass with respect to 100% by mass of the total value of the fixing resin composition. % Or more, and particularly preferably 75% by mass or more. Within the above range, an increase in moisture absorption and a decrease in strength due to curing of the obtained fixing resin composition can be reduced. Further, the content of the inorganic filler (C) is preferably 93% by mass or less, more preferably 91% by mass or less, and still more preferably with respect to 100% by mass of the total value of the fixing resin composition. 90% by mass or less. Within the above range, the obtained fixing resin composition has good fluidity and good moldability. Therefore, the manufacturing stability of the rotor is increased, and a rotor having an excellent balance between yield and durability can be obtained.

また、本発明者らが検討した結果、無機充填剤(C)の含有量を50質量%以上とすることにより、固定部材130と電磁鋼板112との線膨張率の差を小さくすることができることが判明した。これにより、温度変化に応じて電磁鋼板112が変形し、ローター100の回転特性が低下することを抑制することができる。従って、耐久性の中でも、とくに回転特性の持続性に優れたローターが実現される。   In addition, as a result of the study by the present inventors, the difference in linear expansion coefficient between the fixing member 130 and the electromagnetic steel sheet 112 can be reduced by setting the content of the inorganic filler (C) to 50% by mass or more. There was found. Thereby, it can suppress that the electromagnetic steel plate 112 deform | transforms according to a temperature change, and the rotational characteristic of the rotor 100 falls. Therefore, among the durability, a rotor that is particularly excellent in sustaining rotational characteristics is realized.

また、無機充填剤(C)として溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカを用いる場合、シリカの含有量が、固定用樹脂組成物の合計値100質量%に対して、40質量%以上であることが好ましく、60質量%以上であることがより好ましい。上記範囲内であると、流動性と熱膨張率のバランスが良好となる。   When silica such as fused crushed silica, fused spherical silica, or crystalline silica is used as the inorganic filler (C), the silica content is 40% by mass with respect to 100% by mass of the fixing resin composition. Preferably, it is more than 60% by mass. Within the above range, the balance between fluidity and coefficient of thermal expansion is good.

また、無機充填剤(C)と、後述するような水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモン等の無機系難燃剤とを併用する場合には、これらの無機系難燃剤と上記無機充填剤の合計量は、上記無機充填剤(C)の含有量の範囲内とすることが望ましい。   Also, when the inorganic filler (C) is used in combination with a metal hydroxide such as aluminum hydroxide or magnesium hydroxide as described later, or an inorganic flame retardant such as zinc borate, zinc molybdate or antimony trioxide. Therefore, it is desirable that the total amount of these inorganic flame retardants and the inorganic filler is within the range of the content of the inorganic filler (C).

無機充填剤(C)には、予めシランカップリング剤などのカップリング剤(F)(第1カップリング剤とも呼ぶ。)による表面処理が行われていてもよい。これにより、無機充填剤の凝集を抑制し、良好な流動性を得ることができる。したがって、離間部140への固定用樹脂組成物の充填性を向上させることが可能となる。
また、樹脂成分との親和性が高まるため、固定用樹脂組成物を用いて形成される固定部材の強度を向上させることができる。
無機充填剤(C)の表面処理に用いられる第1カップリング剤としては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン等の1級アミノシランを用いることができる。このような無機充填剤(C)の表面処理に使用する第1カップリング剤の種類を適宜選択し、または第1カップリング剤の配合量を適宜調整することにより、固定用樹脂組成物の流動性および固定部材の強度等を制御することができる。
The inorganic filler (C) may be previously subjected to a surface treatment with a coupling agent (F) such as a silane coupling agent (also referred to as a first coupling agent). Thereby, aggregation of an inorganic filler can be suppressed and good fluidity can be obtained. Therefore, it becomes possible to improve the filling property of the fixing resin composition into the separation portion 140.
Moreover, since affinity with a resin component increases, the intensity | strength of the fixing member formed using the resin composition for fixing can be improved.
As a 1st coupling agent used for the surface treatment of an inorganic filler (C), primary aminosilanes, such as (gamma) -aminopropyltriethoxysilane and (gamma) -aminopropyltrimethoxysilane, can be used, for example. By appropriately selecting the type of the first coupling agent used for the surface treatment of such an inorganic filler (C) or appropriately adjusting the blending amount of the first coupling agent, the flow of the fixing resin composition The strength and the strength of the fixing member can be controlled.

無機充填剤(C)へのカップリング処理は、例えば次のように行うことができる。まず、ミキサーを用いて無機充填剤(C)とシランカップリング剤を混合攪拌する。ミキサーとしては、例えばリボンブレンダー等を用いることができる。このとき、ミキサー内を湿度50%以下に設定しておくのが好ましい。このような噴霧環境に調整することにより、シリカ粒子の表面に水分が再付着するのを抑制することができる。さらに、噴霧中のカップリング剤に水分が混入し、カップリング剤同士が反応してしまうのを抑制することができる。
次いで、得られた混合物をミキサーから取り出し、エージング処理を行い、カップリング反応を促進させる。エージング処理は、例えば、20±5℃の条件下で、7日間以上放置することにより行われる。このような条件でおこなうことにより、シリカ粒子の表面にカップリング剤を均一に結合させることができる。その後、ふるいにかけ、粗大粒子を除去することにより、シランカップリング処理が施された無機充填剤(C)が得られる。
このような表面処理シリカ粒子を用いることにより、シリカ粒子と樹脂成分との界面接着強度を向上させることができる。さらには、固定部材中のマイクロクラックの発生を抑制することができる。
The coupling treatment to the inorganic filler (C) can be performed as follows, for example. First, the inorganic filler (C) and the silane coupling agent are mixed and stirred using a mixer. For example, a ribbon blender or the like can be used as the mixer. At this time, the inside of the mixer is preferably set to a humidity of 50% or less. By adjusting to such a spray environment, it is possible to suppress moisture from reattaching to the surface of the silica particles. Furthermore, it can suppress that water mixes in the coupling agent during spraying and the coupling agents react with each other.
Subsequently, the obtained mixture is taken out from the mixer and subjected to an aging treatment to promote the coupling reaction. The aging treatment is performed, for example, by leaving it for 7 days or more under the condition of 20 ± 5 ° C. By carrying out under such conditions, the coupling agent can be uniformly bonded to the surface of the silica particles. Then, the inorganic filler (C) to which the silane coupling process was performed is obtained by sieving and removing a coarse particle.
By using such surface-treated silica particles, the interfacial adhesive strength between the silica particles and the resin component can be improved. Furthermore, generation of microcracks in the fixing member can be suppressed.

[その他の成分]
本実施形態に係る固定用樹脂組成物は、硬化促進剤(D)を含んでもよい。硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール樹脂系硬化剤(B)の水酸基との反応を促進するものであればよく、一般に使用される硬化促進剤(D)を用いることができる。
[Other ingredients]
The fixing resin composition according to this embodiment may include a curing accelerator (D). The curing accelerator (D) only needs to accelerate the reaction between the epoxy group of the epoxy resin and the hydroxyl group of the phenol resin curing agent (B), and a generally used curing accelerator (D) is used. it can.

硬化促進剤(D)の具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、イミダゾールなどのアミジン系化合物、ベンジルジメチルアミンなどの3級アミンや前記化合物の4級オニウム塩であるアミジニウム塩、アンモニウム塩などに代表される窒素原子含有化合物が挙げられる。
これらのうち、硬化性の観点からはリン原子含有化合物が好ましく、流動性と硬化性のバランスの観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有する硬化促進剤がより好ましい。流動性という点を考慮するとテトラ置換ホスホニウム化合物が特に好ましく、また耐半田性の観点では、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、また潜伏的硬化性という点を考慮すると、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。また、連続成形性の観点では、テトラ置換ホスホニウム化合物が好ましい。また、コスト面を考えると、有機ホスフィン、窒素原子含有化合物も好適に用いられる。
Specific examples of the curing accelerator (D) include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; Representative examples include 1,8-diazabicyclo (5,4,0) undecene-7, amidine compounds such as imidazole, tertiary amines such as benzyldimethylamine, and quaternary onium salts such as amidinium salts and ammonium salts. And nitrogen atom-containing compounds.
Among these, a phosphorus atom-containing compound is preferable from the viewpoint of curability, and from the viewpoint of balance between fluidity and curability, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, a phosphonium compound A curing accelerator having a latent property such as an adduct of silane compound is more preferable. In view of fluidity, tetra-substituted phosphonium compounds are particularly preferable. From the viewpoint of solder resistance, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds are particularly preferable, and in view of latent curability. An adduct of a phosphonium compound and a silane compound is particularly preferable. Further, from the viewpoint of continuous moldability, a tetra-substituted phosphonium compound is preferable. In view of cost, organic phosphine and nitrogen atom-containing compounds are also preferably used.

本実施形態に係る固定用樹脂組成物で用いることができる有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。   Examples of the organic phosphine that can be used in the fixing resin composition according to this embodiment include a first phosphine such as ethylphosphine and phenylphosphine; a second phosphine such as dimethylphosphine and diphenylphosphine; trimethylphosphine, triethylphosphine, and tributyl. Third phosphine such as phosphine and triphenylphosphine can be used.

本実施形態に係る固定用樹脂組成物で用いることができるテトラ置換ホスホニウム化合物としては、例えば下記一般式(1)で表される化合物等が挙げられる。   Examples of the tetra-substituted phosphonium compound that can be used in the fixing resin composition according to this embodiment include compounds represented by the following general formula (1).

Figure 2013181106
Figure 2013181106

一般式(1)において、Pはリン原子を表し、R1、R2、R3及びR4は、それぞれ独立して芳香族基又はアルキル基を表し、Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表し、AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表し、x及びyは1〜3の整数であり、zは0〜3の整数であり、かつx=yである。   In the general formula (1), P represents a phosphorus atom, R1, R2, R3 and R4 each independently represents an aromatic group or an alkyl group, and A represents a functional group selected from a hydroxyl group, a carboxyl group and a thiol group. Represents an anion of an aromatic organic acid having at least one of the groups in the aromatic ring, and AH is an aromatic organic having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring Represents an acid, x and y are integers of 1 to 3, z is an integer of 0 to 3, and x = y.

一般式(1)で表される化合物は、例えば次のようにして得られるが、これに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで、水を加えると、一般式(1)で表される化合物を沈殿させることができる。
一般式(1)で表される化合物において、合成時の収得率と硬化促進効果のバランスに優れるという観点では、リン原子に結合するR1、R2、R3及びR4がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール化合物であり、かつAは該フェノール化合物のアニオンであるのが好ましい。なお、フェノール化合物とは、単環のフェノール、クレゾール、カテコール、レゾルシンや縮合多環式のナフトール、ジヒドロキシナフタレン、複数の芳香環を備える(多環式の)ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、フェニルフェノール、フェノールノボラック等を概念に含むものであり、中でも水酸基を2個有するフェノール化合物が好ましく用いられる。
Although the compound represented by General formula (1) is obtained as follows, for example, it is not limited to this. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Next, when water is added, the compound represented by the general formula (1) can be precipitated.
In the compound represented by the general formula (1), R1, R2, R3, and R4 bonded to the phosphorus atom are phenyl groups, and AH is bonded to the phosphorus atom from the viewpoint of excellent balance between the yield during synthesis and the curing acceleration effect. A compound having a hydroxyl group in an aromatic ring, that is, a phenol compound, and A is preferably an anion of the phenol compound. The phenol compounds are monocyclic phenol, cresol, catechol, resorcin, condensed polycyclic naphthol, dihydroxynaphthalene, (polycyclic) bisphenol A, bisphenol F, bisphenol S, biphenol having a plurality of aromatic rings. , Phenylphenol, phenol novolak and the like, and among them, phenol compounds having two hydroxyl groups are preferably used.

本実施形態に係る固定用樹脂組成物で用いることができるホスホベタイン化合物としては、例えば下記一般式(2)で表される化合物等が挙げられる。   Examples of the phosphobetaine compound that can be used in the fixing resin composition according to this embodiment include compounds represented by the following general formula (2).

Figure 2013181106
Figure 2013181106

一般式(2)において、X1は炭素数1〜3のアルキル基を表し、Y1はヒドロキシル基を表し、aは0〜5の整数であり、bは0〜4の整数である。   In General formula (2), X1 represents a C1-C3 alkyl group, Y1 represents a hydroxyl group, a is an integer of 0-5, b is an integer of 0-4.

一般式(2)で表される化合物は、例えば第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。   The compound represented by the general formula (2) is subjected to, for example, a step of bringing a triaromatic substituted phosphine that is a third phosphine into contact with a diazonium salt and substituting the diazonium group of the triaromatic substituted phosphine with the diazonium salt. can get. However, the present invention is not limited to this.

本実施形態に係る固定用樹脂組成物で用いることができるホスフィン化合物とキノン化合物との付加物としては、例えば下記一般式(3)で表される化合物等が挙げられる。   Examples of the adduct of a phosphine compound and a quinone compound that can be used in the fixing resin composition according to this embodiment include compounds represented by the following general formula (3).

Figure 2013181106
Figure 2013181106

一般式(3)において、Pはリン原子を表し、R5、R6及びR7は、互いに独立して、炭素数1〜12のアルキル基又は炭素数6〜12のアリール基を表し、R8、R9及びR10は、互いに独立して、水素原子又は炭素数1〜12の炭化水素基を表す。R8とR9は、互いに結合して環を形成していてもよい。   In General formula (3), P represents a phosphorus atom, R5, R6, and R7 represent a C1-C12 alkyl group or a C6-C12 aryl group mutually independently, R8, R9, and R10 represents a hydrogen atom or a C1-C12 hydrocarbon group mutually independently. R8 and R9 may be bonded to each other to form a ring.

ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換又はアルキル基、アルコキシル基等の置換基が存在するものが好ましい。アルキル基、アルコキシル基等の置換基としては1〜6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。   Examples of the phosphine compound used as an adduct of a phosphine compound and a quinone compound include an aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine. Those having a substituent or a substituent such as an alkyl group or an alkoxyl group are preferred. Examples of the substituent such as an alkyl group and an alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, triphenylphosphine is preferable.

またホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o−ベンゾキノン、p−ベンゾキノン、アントラキノン類が挙げられる。これらの中でもp−ベンゾキノンが保存安定性の点から好ましい。   Moreover, o-benzoquinone, p-benzoquinone, anthraquinones are mentioned as a quinone compound used for the adduct of a phosphine compound and a quinone compound. Among these, p-benzoquinone is preferable from the viewpoint of storage stability.

ホスフィン化合物とキノン化合物との付加物は、例えば有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。   The adduct of a phosphine compound and a quinone compound can be obtained by, for example, contacting and mixing in a solvent in which both organic tertiary phosphine and benzoquinone can be dissolved. The solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct. However, the present invention is not limited to this.

一般式(3)で表される化合物において、リン原子に結合するR5、R6及びR7がフェニル基であり、かつR8、R9及びR10が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンを付加させた化合物が、固定用樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。   In the compound represented by the general formula (3), R5, R6 and R7 bonded to the phosphorus atom are phenyl groups, and R8, R9 and R10 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl A compound to which phosphine is added is preferable in that it reduces the elastic modulus during heat of the cured product of the fixing resin composition.

本実施形態に係る固定用樹脂組成物で用いることができるホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(4)で表される化合物等が挙げられる。   Examples of the adduct of a phosphonium compound and a silane compound that can be used in the fixing resin composition according to this embodiment include compounds represented by the following general formula (4).

Figure 2013181106
Figure 2013181106

一般式(4)において、Pはリン原子を表し、Siは珪素原子を表す。R11、R12、R13及びR14は、互いに独立して、芳香環又は複素環を有する有機基、あるいは脂肪族基を表し、X2は、基Y2及びY3と結合する有機基である。X3は、基Y4及びY5と結合する有機基である。Y2及びY3は、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。Y4及びY5はプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。X2、及びX3は互いに同一であっても異なっていてもよい。Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基、あるいは脂肪族基である。   In General formula (4), P represents a phosphorus atom and Si represents a silicon atom. R11, R12, R13 and R14 each independently represent an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group, and X2 is an organic group bonded to the groups Y2 and Y3. X3 is an organic group bonded to the groups Y4 and Y5. Y2 and Y3 represent a group formed by releasing a proton from a proton donating group, and groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate structure. Y4 and Y5 represent a group formed by releasing a proton from a proton donating group, and groups Y4 and Y5 in the same molecule are bonded to a silicon atom to form a chelate structure. X2 and X3 may be the same as or different from each other. Y2, Y3, Y4, and Y5 may be the same as or different from each other. Z1 is an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group.

一般式(4)において、R11、R12、R13及びR14としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n−ブチル基、n−オクチル基及びシクロヘキシル基等が挙げられる。これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等の置換基を有する芳香族基もしくは無置換の芳香族基が好ましい。   In the general formula (4), examples of R11, R12, R13, and R14 include phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, ethyl group, An n-butyl group, an n-octyl group, a cyclohexyl group, etc. are mentioned. Among these, an aromatic group having a substituent such as a phenyl group, a methylphenyl group, a methoxyphenyl group, a hydroxyphenyl group, and a hydroxynaphthyl group or an unsubstituted aromatic group is preferable.

また、一般式(4)において、X2は、Y2及びY3と結合する有機基である。同様に、X3は、基Y4及びY5と結合する有機基である。Y2及びY3はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。同様にY4及びY5はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。基X2及びX3は互いに同一であっても異なっていてもよく、基Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。このような一般式(4)中の−Y2−X2−Y3−、及び−Y4−X3−Y5−で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものである。このため、プロトン供与体としては、分子内にカルボキシル基または水酸基を少なくとも2個有する有機酸が好ましく、芳香環を構成する炭素上にカルボキシル基または水酸基を少なくとも2個有する芳香族化合物がより好ましく、芳香環を構成する隣接する炭素上に水酸基を少なくとも2個有する芳香族化合物がさらに好ましい。
プロトン供与体としては、例えば、カテコール、ピロガロール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,2'−ビフェノール、1,1'−ビ−2−ナフトール、サリチル酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸、クロラニル酸、タンニン酸、2−ヒドロキシベンジルアルコール、1,2−シクロヘキサンジオール、1,2−プロパンジオール及びグリセリン等が挙げられる。これらの中でも、原料入手の容易さと硬化促進効果のバランスという観点では、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンがより好ましい。
Moreover, in General formula (4), X2 is an organic group couple | bonded with Y2 and Y3. Similarly, X3 is an organic group bonded to the groups Y4 and Y5. Y2 and Y3 are groups formed by proton-donating groups releasing protons, and groups Y2 and Y3 in the same molecule are combined with a silicon atom to form a chelate structure. Similarly, Y4 and Y5 are groups formed by proton-donating groups releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure. The groups X2 and X3 may be the same or different from each other, and the groups Y2, Y3, Y4, and Y5 may be the same or different from each other. The groups represented by -Y2-X2-Y3- and -Y4-X3-Y5- in general formula (4) are composed of groups in which a proton donor releases two protons. Is. Therefore, the proton donor is preferably an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule, more preferably an aromatic compound having at least two carboxyl groups or hydroxyl groups on carbon constituting the aromatic ring, An aromatic compound having at least two hydroxyl groups on adjacent carbons constituting the aromatic ring is more preferable.
Examples of proton donors include catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2′-biphenol, 1,1′-bi-2-naphthol, salicylic acid, 1-hydroxy- Examples include 2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, and glycerin. Among these, catechol, 1,2-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene are more preferable from the viewpoint of easy availability of raw materials and a curing acceleration effect.

また、一般式(4)中のZ1は、芳香環又は複素環を有する有機基又は脂肪族基を表す。これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基またはオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基またはビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基またはビニル基等の反応性置換基などが挙げられる。これらの中でも、メチル基、エチル基、フェニル基、ナフチル基、またはビフェニル基が熱安定性の面から、より好ましい。   Moreover, Z1 in General formula (4) represents the organic group or aliphatic group which has an aromatic ring or a heterocyclic ring. Specific examples thereof include aliphatic hydrocarbon groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group or octyl group, and aromatic groups such as phenyl group, benzyl group, naphthyl group or biphenyl group. Examples thereof include reactive substituents such as a hydrocarbon group, a glycidyloxypropyl group, a mercaptopropyl group, an aminopropyl group, and a vinyl group. Among these, a methyl group, an ethyl group, a phenyl group, a naphthyl group, or a biphenyl group is more preferable from the viewpoint of thermal stability.

ホスホニウム化合物とシラン化合物との付加物は、例えば次のようにして得られる。まず、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3−ジヒドロキシナフタレン等のプロトン供与体を加えて溶かす。次いで、上記フラスコに室温攪拌下でナトリウムメトキシド−メタノール溶液を滴下する。次いで、予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を、上記フラスコに室温攪拌下で滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。   An adduct of a phosphonium compound and a silane compound can be obtained, for example, as follows. First, a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added and dissolved in a flask containing methanol. Next, a sodium methoxide-methanol solution is dropped into the flask while stirring at room temperature. Next, when a solution prepared by dissolving a tetra-substituted phosphonium halide such as tetraphenylphosphonium bromide in methanol in methanol is added dropwise to the flask with stirring at room temperature, crystals are deposited. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound. However, it is not limited to this.

本実施形態に係る固定用樹脂組成物に用いることができる硬化促進剤(D)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、0.1質量%以上であることが好ましい。硬化促進剤(D)の含有量が上記範囲内であると、充分な硬化性を得ることができる。また、硬化促進剤(D)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、好ましくは3質量%以下であり、より好ましくは1質量%以下である。硬化促進剤(D)の含有量が上記範囲内であると、充分な流動性を得ることができる。   The content of the curing accelerator (D) that can be used in the fixing resin composition according to the present embodiment is 0.1% by mass or more with respect to 100% by mass of the total value of all fixing resin compositions. It is preferable. When the content of the curing accelerator (D) is within the above range, sufficient curability can be obtained. Further, the content of the curing accelerator (D) is preferably 3% by mass or less, more preferably 1% by mass or less, with respect to 100% by mass of the total value of the resin composition for fixation. Sufficient fluidity | liquidity can be acquired as content of a hardening accelerator (D) exists in the said range.

本実施形態に係る固定用樹脂組成物には、さらに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)(以下、単に「化合物(E)」と称することもある)が含まれていてもよい。化合物(E)を用いることにより、硬化促進剤(D)として潜伏性を有しないリン原子含有硬化促進剤を用いた場合であっても、固定用樹脂組成物の溶融混練中における反応を抑えることができ、安定して固定用樹脂組成物を得ることができる。また、化合物(E)は、固定用樹脂組成物の溶融粘度を下げ、流動性を向上させる効果も有するものである。化合物(E)としては、下記一般式(5)で表される単環式化合物、又は下記一般式(6)で表される多環式化合物等を用いることができる。これらの化合物は水酸基以外の置換基を有していてもよい。   In the fixing resin composition according to this embodiment, a compound (E) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring (hereinafter simply referred to as “compound (E)”). May also be included. By using the compound (E), even when a phosphorus atom-containing curing accelerator having no latent property is used as the curing accelerator (D), the reaction during the melt-kneading of the fixing resin composition is suppressed. The fixing resin composition can be obtained stably. The compound (E) also has an effect of lowering the melt viscosity of the fixing resin composition and improving fluidity. As the compound (E), a monocyclic compound represented by the following general formula (5), a polycyclic compound represented by the following general formula (6), or the like can be used. These compounds may have a substituent other than a hydroxyl group.

Figure 2013181106
Figure 2013181106

一般式(5)において、R15及びR19のいずれか一方は水酸基であり、他方は水素原子、水酸基又は水酸基以外の置換基である。また、R16、R17及びR18は、水素原子、水酸基又は水酸基以外の置換基である。   In General Formula (5), one of R15 and R19 is a hydroxyl group, and the other is a hydrogen atom, a hydroxyl group, or a substituent other than a hydroxyl group. R16, R17 and R18 are a hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group.

Figure 2013181106
Figure 2013181106

一般式(6)において、R20及びR26のいずれか一方は水酸基であり、他方は水素原子、水酸基又は水酸基以外の置換基である。また、R21、R22、R23、R24及びR25は、水素原子、水酸基又は水酸基以外の置換基である。   In General formula (6), one of R20 and R26 is a hydroxyl group, and the other is a hydrogen atom, a hydroxyl group, or a substituent other than a hydroxyl group. R21, R22, R23, R24 and R25 are a hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group.

一般式(5)で表される単環式化合物の具体例としては、例えばカテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、一般式(6)で表される多環式化合物の具体例としては、例えば1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(E)を、具体的には、例えば1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(E)は1種類を単独で用いても2種以上を併用してもよい。   Specific examples of the monocyclic compound represented by the general formula (5) include catechol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof. Specific examples of the polycyclic compound represented by the general formula (6) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof. Among these, a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring is preferable because of easy control of fluidity and curability. In consideration of volatilization in the kneading step, it is more preferable that the mother nucleus is a compound having a low volatility and a highly stable weighing naphthalene ring. In this case, specifically, the compound (E) can be a compound having a naphthalene ring such as 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. These compounds (E) may be used individually by 1 type, or may use 2 or more types together.

化合物(E)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。化合物(E)の含有量が上記範囲内であると、固定用樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(E)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、2質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。化合物(E)の含有量が上記範囲内であると、固定用樹脂組成物の硬化性の低下や硬化物の物性の低下を引き起こす恐れが少ない。   The content of the compound (E) is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, with respect to a total value of 100% by mass of the total fixing resin composition. More preferably, it is 0.05 mass% or more. When the content of the compound (E) is within the above range, a sufficient viscosity reduction and fluidity improvement effect of the fixing resin composition can be obtained. Further, the content of the compound (E) is preferably 2% by mass or less, more preferably 0.8% by mass or less, with respect to the total value of 100% by mass of the total fixing resin composition. More preferably, it is 0.5 mass% or less. When the content of the compound (E) is within the above range, there is little risk of causing a decrease in the curability of the fixing resin composition and a decrease in the physical properties of the cured product.

本実施形態に係る固定用樹脂組成物においては、エポキシ樹脂(A1)と、無機充填剤(C)との密着性をさらに向上させるため、上述した第1カップリング剤とは別に、カップリング剤(F)(第2カップリング剤とも呼ぶ。)をさらに添加することができる。第2カップリング剤としては、エポキシ樹脂(A1)と無機充填剤(C)との間で反応し、エポキシ樹脂(A1)と無機充填剤(C)の界面強度を向上させるものであればよい。
第2カップリング剤としては、特に限定されるものではないが、例えばエポキシシラン、アミノシラン、ウレイドシラン、メルカプトシランなどが挙げられる。また、第2カップリング剤は、前述の化合物(E)と併用することで、固定用樹脂組成物の溶融粘度を下げ、流動性を向上させるという化合物(E)の効果を高めることもできるものである。
In the fixing resin composition according to the present embodiment, in order to further improve the adhesion between the epoxy resin (A1) and the inorganic filler (C), the coupling agent is separated from the first coupling agent described above. (F) (also referred to as a second coupling agent) can be further added. Any second coupling agent may be used as long as it reacts between the epoxy resin (A1) and the inorganic filler (C) to improve the interface strength between the epoxy resin (A1) and the inorganic filler (C). .
The second coupling agent is not particularly limited, and examples thereof include epoxy silane, amino silane, ureido silane, mercapto silane, and the like. The second coupling agent can also enhance the effect of the compound (E) to lower the melt viscosity of the fixing resin composition and improve the fluidity when used in combination with the aforementioned compound (E). It is.

エポキシシランとしては、例えばγ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。また、アミノシランとしては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナン等が挙げられる。また、ウレイドシランとしては、例えばγ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられる。アミノシランの1級アミノ部位をケトン又はアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、アミノシランとしては、2級アミノ基を有してもよい。また、メルカプトシランとしては、例えばγ−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシランのほか、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤等、が挙げられる。また、これらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。   Examples of the epoxy silane include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and the like. Is mentioned. Examples of aminosilane include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and N-β (aminoethyl) γ-aminopropylmethyl. Dimethoxysilane, N-phenyl γ-aminopropyltriethoxysilane, N-phenyl γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-6- (aminohexyl) 3- Examples include aminopropyltrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, etc. Examples of ureidosilane include γ-ureidopropyltriethoxysilane, hexamethyldimethane. Silazane, etc. First grade of aminosilane The amino site may be used as a latent aminosilane coupling agent protected by reacting with a ketone or aldehyde, and the aminosilane may have a secondary amino group. -Mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, mercaptosilane cup by thermal decomposition such as bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide Examples of the silane coupling agent exhibiting the same function as that of the ring agent, etc. In addition, these silane coupling agents may be preliminarily hydrolyzed. Use two or more types alone It may be.

連続成形性という観点では、メルカプトシランが好ましい。流動性の観点では、アミノシランが好ましい。密着性という観点ではエポキシシランが好ましい。   Mercaptosilane is preferable from the viewpoint of continuous formability. From the viewpoint of fluidity, aminosilane is preferred. Epoxysilane is preferable from the viewpoint of adhesion.

本実施形態に係る固定用樹脂組成物に用いることができるシランカップリング剤等のカップリング剤(F)の含有量(第1カップリング剤および第2カップリング剤の合計量)は、全固定用樹脂組成物の合計値100質量%に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、エポキシ樹脂(A1)と無機充填剤(C)との界面強度が低下することがなく、良好な耐振動性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、1質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.6質量%以下であることがさらに好ましい。シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、エポキシ樹脂(A1)と無機充填剤(C)との界面強度が低下することがなく、良好な耐振動性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、固定用樹脂組成物の硬化物の吸水性が増大することがなく、良好な防錆性を得ることができる。   The content of the coupling agent (F) such as a silane coupling agent that can be used in the fixing resin composition according to this embodiment (the total amount of the first coupling agent and the second coupling agent) is fully fixed. It is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more with respect to 100% by mass of the total resin composition. preferable. If the content of the coupling agent (F) such as a silane coupling agent is within the above range, the interface strength between the epoxy resin (A1) and the inorganic filler (C) does not decrease, and the vibration resistance is good. Sex can be obtained. Further, the content of the coupling agent (F) such as a silane coupling agent is preferably 1% by mass or less, based on the total value of 100% by mass of the total fixing resin composition, and 0.8% by mass. More preferably, it is more preferably 0.6% by mass or less. If the content of the coupling agent (F) such as a silane coupling agent is within the above range, the interface strength between the epoxy resin (A1) and the inorganic filler (C) does not decrease, and the vibration resistance is good. Sex can be obtained. Moreover, if content of coupling agents (F), such as a silane coupling agent, exists in the said range, the water absorption of the hardened | cured material of the resin composition for fixation will not increase, and favorable rust prevention property will be acquired. be able to.

本実施形態に係る固定用樹脂組成物においては、難燃性を向上させるために無機難燃剤(G)を添加することができる。無機難燃剤(G)としては、燃焼時に脱水、吸熱することによって燃焼反応を阻害する金属水酸化物、又は複合金属水酸化物が、燃焼時間を短縮することができる点で好ましい。金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ジルコニアを挙げることができる。複合金属水酸化物としては、2種以上の金属元素を含むハイドロタルサイト化合物であって、少なくとも一つの金属元素がマグネシウムであり、かつ、その他の金属元素がカルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅、又は亜鉛から選ばれる金属元素であればよい。このような複合金属水酸化物としては、水酸化マグネシウム・亜鉛固溶体が市販品で入手が容易である。なかでも、連続成形性の観点からは水酸化アルミニウム、水酸化マグネシウム・亜鉛固溶体が好ましい。無機難燃剤(G)は、単独で用いても、2種以上用いてもよい。また、連続成形性への影響を低減する目的から、シランカップリング剤などの珪素化合物やワックスなどの脂肪族系化合物などで表面処理を行って用いてもよい。
また、本実施形態に係る無機難燃剤(G)の含有量は、少ない方が好ましく、とくに0.2質量%以下が好ましい。通常、半導体封止材用途は、UL規格を満たすために難燃剤の添加は必須であるが、難燃剤の添加量が多すぎると、熱硬化性樹脂の硬化反応を阻害してしまい、固定部材の強度が低下する場合がある。そのため、本実施形態では、無機難燃剤(G)はなるべく添加しない方が好ましい。
In the fixing resin composition according to this embodiment, an inorganic flame retardant (G) can be added in order to improve flame retardancy. As the inorganic flame retardant (G), a metal hydroxide or a composite metal hydroxide that inhibits the combustion reaction by dehydrating and absorbing heat during combustion is preferable in that the combustion time can be shortened. Examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, and zirconia hydroxide. The composite metal hydroxide is a hydrotalcite compound containing two or more metal elements, wherein at least one metal element is magnesium, and the other metal elements are calcium, aluminum, tin, titanium, iron Any metal element selected from cobalt, nickel, copper, or zinc may be used. As such a composite metal hydroxide, magnesium hydroxide / zinc solid solution is a commercially available product and is easily available. Of these, aluminum hydroxide and magnesium hydroxide / zinc solid solution are preferable from the viewpoint of continuous formability. An inorganic flame retardant (G) may be used independently or may be used 2 or more types. Further, for the purpose of reducing the influence on the continuous moldability, a surface treatment may be performed with a silicon compound such as a silane coupling agent or an aliphatic compound such as wax.
Further, the content of the inorganic flame retardant (G) according to this embodiment is preferably as small as possible, and particularly preferably 0.2% by mass or less. Usually, for semiconductor encapsulant use, the addition of a flame retardant is essential to meet UL standards, but if the amount of flame retardant added is too large, the curing reaction of the thermosetting resin will be hindered, and the fixing member There is a case where the strength of the is lowered. Therefore, in this embodiment, it is preferable not to add the inorganic flame retardant (G) as much as possible.

本実施形態に係る固定用樹脂組成物においては、イオン性不純物の濃度は、固定用樹脂組成物に対して、好ましくは500ppm以下であり、より好ましくは300ppm以下であり、さらに好ましくは200ppm以下である。また、イオン性不純物の濃度は、特に限定されないが、例えば、本発明に係る固定用樹脂組成物に対して、0ppb以上であり、より好ましくは10ppb以上であり、さらに好ましくは100ppb以上である。これにより、本実施形態に係る固定用樹脂組成物の硬化物を固定部材に用いた際、高温、多湿下で処理しても高い防錆性を保持することができる。
本実施形態に係るイオン性不純物としては、特に限定されるものではないが、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン等、より具体的にはナトリウムイオン、塩素イオン等が挙げられる。ナトリウムイオンの濃度は、本実施形態に係る固定用樹脂組成物に対して、好ましくは100ppm以下であり、より好ましくは70ppm以下であり、さらに好ましくは50ppm以下である。また、塩素イオンの濃度は、本実施形態に係る固定用樹脂組成物に対して、好ましくは100ppm以下であり、より好ましくは50ppm以下であり、さらに好ましくは30ppm以下である。上記の範囲とすることにより、電磁鋼板や磁石の腐食を抑制することができる。
本実施形態においては、例えば純度の高いエポキシ樹脂を使用することにより、イオン性不純物を低減することができる。以上により、耐久性に優れたローターが得られる。
In the fixing resin composition according to the present embodiment, the concentration of the ionic impurities is preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 200 ppm or less with respect to the fixing resin composition. is there. The concentration of the ionic impurity is not particularly limited, but is, for example, 0 ppb or more, more preferably 10 ppb or more, and further preferably 100 ppb or more with respect to the fixing resin composition according to the present invention. Thereby, when using the hardened | cured material of the resin composition for fixation concerning this embodiment for a fixing member, even if it processes at high temperature and humidity, high rust prevention property can be hold | maintained.
Although it does not specifically limit as an ionic impurity which concerns on this embodiment, An alkali metal ion, alkaline-earth metal ion, a halogen ion, etc., More specifically, a sodium ion, a chlorine ion, etc. are mentioned. The concentration of sodium ions is preferably 100 ppm or less, more preferably 70 ppm or less, and further preferably 50 ppm or less with respect to the fixing resin composition according to the present embodiment. The concentration of chloride ions is preferably 100 ppm or less, more preferably 50 ppm or less, and further preferably 30 ppm or less with respect to the fixing resin composition according to the present embodiment. By setting it as said range, corrosion of an electromagnetic steel plate and a magnet can be suppressed.
In this embodiment, ionic impurities can be reduced by using, for example, a highly pure epoxy resin. As described above, a rotor having excellent durability can be obtained.

イオン性不純物の濃度は、下記のようにして求めることができる。まず、本実施形態に係る固定用樹脂組成物を175℃、180秒で成形硬化後、粉砕機で粉砕し硬化物の粉末を得る。得られた硬化物粉末を純水中で120℃、24時間処理し、純水中にイオンを抽出した後、ICP−MS(誘導結合プラズマイオン源質量分析装置)を用い測定できる。   The concentration of ionic impurities can be determined as follows. First, the fixing resin composition according to the present embodiment is molded and cured at 175 ° C. for 180 seconds and then pulverized by a pulverizer to obtain a cured powder. The obtained cured product powder can be measured using ICP-MS (inductively coupled plasma ion source mass spectrometer) after treating ions in pure water at 120 ° C. for 24 hours to extract ions in pure water.

本実施形態に係る固定用樹脂組成物においては、アルミナの含有量は、固定用樹脂組成物の合計値100質量%に対して、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、さらに好ましくは5質量%以下である。アルミナの含有量は、特に限定されないが、例えば、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上である。アルミナの含有量を上記上限値以下とすることにより、本実施形態に係る固定用樹脂組成物の流動性を向上させること、および軽量化を図ることができる。なお、本実施形態において、0質量%は検出限界の値を許容する。   In the fixing resin composition according to this embodiment, the content of alumina is preferably 10% by mass or less, more preferably 7% by mass or less, with respect to 100% by mass of the total value of the fixing resin composition. More preferably, it is 5 mass% or less. The content of alumina is not particularly limited. For example, the content is preferably 0% by mass or more, and more preferably 0.01% by mass with respect to a total value of 100% by mass of the fixing resin composition according to the present embodiment. It is above, More preferably, it is 0.1 mass% or more. By making the content of alumina not more than the above upper limit value, the fluidity of the fixing resin composition according to this embodiment can be improved and the weight can be reduced. In the present embodiment, 0 mass% allows a detection limit value.

本実施形態に係る固定用樹脂組成物では、前述した成分以外に、ハイドロタルサイト類またはマグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物等のイオン捕捉剤;カーボンブラック、ベンガラ、酸化チタン等の着色剤;カルナバワックス等の天然ワックス;ポリエチレンワックス等の合成ワックス;ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物等の低応力剤、チアゾリン、ジアゾール、トリアゾール、トリアジン、ピリミジン等の密着付与剤を適宜配合してもよい。   In the fixing resin composition according to this embodiment, in addition to the components described above, hydrotalcites or ion scavengers such as hydrated oxides of elements selected from magnesium, aluminum, bismuth, titanium, zirconium; carbon black, bengara Colorants such as titanium oxide; natural waxes such as carnauba wax; synthetic waxes such as polyethylene wax; mold release agents such as higher fatty acids such as stearic acid and zinc stearate and their metal salts or paraffin; and polybutadiene compounds and acrylonitrile butadiene A low stress agent such as a polymerization compound, a silicone compound such as silicone oil and silicone rubber, and an adhesion-imparting agent such as thiazoline, diazole, triazole, triazine, and pyrimidine may be appropriately blended.

本実施形態に係る着色剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上1質量%以下であり、より好ましくは0.05質量%以上0.8質量%以下である。着色剤の含有量を上記範囲内とすることにより、色が付いた不純物を除去する工程が不要となり、作業性が向上する。したがって、歩留まりに優れたローターが実現される。   The content of the colorant according to this embodiment is preferably 0.01% by mass or more and 1% by mass or less, more preferably 100% by mass with respect to the total value of 100% by mass of the fixing resin composition according to this embodiment. It is 0.05 mass% or more and 0.8 mass% or less. By setting the content of the colorant within the above range, a step of removing colored impurities is unnecessary, and workability is improved. Therefore, a rotor with excellent yield is realized.

本実施形態に係る離型剤の含有量は、特に限定されないが、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、例えば好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上である。また、離型剤の含有量は、特に限定されないが、例えば好ましくは1質量%以下であり、より好ましくは0.5質量%以下であり、さらに好ましくは0.2質量%以下であり、特に好ましくは0.1質量%以下である。通常、半導体チップをトランスファー形成する際には、固定部材が金型から離間する離型性を確保するために、離型剤を一定量添加することが知られている。   The content of the release agent according to this embodiment is not particularly limited, but is preferably 0.01% by mass or more, for example, with respect to the total value of 100% by mass of the fixing resin composition according to this embodiment, More preferably, it is 0.05 mass% or more. Further, the content of the release agent is not particularly limited, but for example, is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.2% by mass or less. Preferably it is 0.1 mass% or less. Usually, when a semiconductor chip is formed by transfer, it is known that a certain amount of a release agent is added in order to ensure the releasability that the fixing member is separated from the mold.

本実施形態に係る低応力剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上3質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。低応力剤の含有量が上記範囲内であると、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。   The content of the low stress agent according to the present embodiment is preferably 0.01% by mass or more and 3% by mass or less, more preferably 100% by mass with respect to the total value of 100% by mass of the fixing resin composition according to the present embodiment. Is 0.05 mass% or more and 2 mass% or less. When the content of the low-stress agent is within the above range, a rotor core exhibiting sufficient durability can be realized in an environment in which high-speed rotation is performed for a long time at a high temperature.

本実施形態に係るイオン捕捉剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上3質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。イオン捕捉剤の含有量が上記範囲内であると、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。   The content of the ion scavenger according to this embodiment is preferably 0.01% by mass to 3% by mass, more preferably 100% by mass with respect to the total value of 100% by mass of the fixing resin composition according to this embodiment. Is 0.05 mass% or more and 2 mass% or less. When the content of the ion scavenger is within the above range, a rotor core exhibiting sufficient durability can be realized in an environment in which high-speed rotation is performed for a long time at high temperatures.

本実施形態に係る密着付与剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上3質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。密着付与剤の含有量が上記範囲内であると、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。   The content of the adhesion-imparting agent according to this embodiment is preferably 0.01% by mass or more and 3% by mass or less, and more preferably 100% by mass of the total value of the fixing resin composition according to this embodiment. Is 0.05 mass% or more and 2 mass% or less. When the content of the adhesion-imparting agent is within the above range, a rotor core exhibiting sufficient durability can be realized in an environment where high-speed rotation is performed for a long time at a high temperature.

(ローター固定用樹脂組成物の製造方法)
本実施形態に係る固定用樹脂組成物の製造方法は、特に制限されないが、例えば次のように行われる。まず、熱硬化性樹脂(A)、フェノール樹脂系硬化剤(B)及び無機充填剤(C)、ならびに好ましくはその他の添加剤等を、所定量配合する。次いで、配合したものを、たとえばミキサー、ジェットミル、ボールミル等を用いて常温で均一に粉砕、混合する。次いで、加熱ロール、ニーダー又は押出機等の混練機を用いて、90〜120℃程度まで固定用樹脂組成物を加温しながら溶融し混練を行う。次いで、混練後の固定用樹脂組成物を冷却、粉砕し、顆粒又は粉末状の固形の固定用樹脂組成物を得る。これらの製造工程における条件を適宜調整することにより、所望の分散度や流動性等を有する固定用樹脂組成物を得ることができる。
本実施形態に係る固定用樹脂組成物の粉末又は顆粒の粒度は、例えば5mm以下が好ましい。5mm以下とすることにより、打錠時に充填不良をおこし、タブレットの質量のバラツキが大きくなることを抑制することができる。
(Method for producing resin composition for fixing rotor)
Although the manufacturing method of the fixing resin composition according to the present embodiment is not particularly limited, for example, it is performed as follows. First, a predetermined amount of a thermosetting resin (A), a phenol resin-based curing agent (B), an inorganic filler (C), and preferably other additives are blended. Next, the blended material is uniformly pulverized and mixed at room temperature using, for example, a mixer, a jet mill, a ball mill or the like. Subsequently, using a kneader such as a heating roll, a kneader, or an extruder, the fixing resin composition is melted and heated to about 90 to 120 ° C. while being kneaded. Next, the kneaded fixing resin composition is cooled and pulverized to obtain a solid fixing resin composition in the form of granules or powder. By appropriately adjusting the conditions in these production steps, a fixing resin composition having a desired degree of dispersion and fluidity can be obtained.
The particle size of the powder or granule of the fixing resin composition according to this embodiment is preferably, for example, 5 mm or less. By setting the thickness to 5 mm or less, it is possible to suppress a filling failure at the time of tableting and an increase in tablet mass variation.

さらに、得られた固定用樹脂組成物の粉末又は顆粒を打錠成型することによりタブレットを得ることができる。打錠成型に用いる装置としては、単発式、又は多連ローターリー式の打錠機を用いることができる。タブレットの形状は、特に限定されないが、円柱状であることが好ましい。打錠機のオス型、メス型及び環境の温度に特に制限はないが、35℃以下が好ましい。35℃を超えると固定用樹脂組成物が反応により粘度上昇し、流動性が損なわれる恐れがある。打錠圧力は400×10以上3000×10以下Paの範囲が好ましい。打錠圧力を上記上限値以下とすることにより、タブレット打錠直後に破壊が生じることを抑制できる。一方、打錠圧力を上記下限値以上とすることにより、十分な凝集力が得られないために輸送中にタブレットの破壊が生じることを抑制することができる。打錠機のオス型、メス型の金型の材質、表面処理に特に限定はなく、公知の材質のものを使用することができる。表面処理の例としては、たとえば放電加工、離型剤のコーティング、メッキ処理、研磨などを挙げることができる。 Further, a tablet can be obtained by tableting the obtained powder or granule of the fixing resin composition. As an apparatus used for tableting molding, a single-shot or multiple rotary tableting machine can be used. The shape of the tablet is not particularly limited, but is preferably a columnar shape. There are no particular restrictions on the male, female, and environmental temperatures of the tableting machine, but 35 ° C. or lower is preferred. When it exceeds 35 ° C., the viscosity of the fixing resin composition increases due to the reaction, and the fluidity may be impaired. The tableting pressure is preferably in the range of 400 × 10 4 to 3000 × 10 4 Pa. By making the tableting pressure not more than the above upper limit value, it is possible to suppress the occurrence of breakage immediately after tableting. On the other hand, by setting the tableting pressure to the lower limit value or more, it is possible to prevent the tablet from being broken during transportation because sufficient cohesive force cannot be obtained. There are no particular limitations on the material and surface treatment of the male and female molds of the tableting machine, and known materials can be used. Examples of the surface treatment include electric discharge machining, release agent coating, plating treatment, and polishing.

また、本実施形態に係る固定部材のガラス転移温度(Tg)が、130℃以上であることが好ましく、140℃以上であることがより好ましい。上記下限値以上であれば、信頼性向上が期待できる。上記ガラス転移温度(Tg)の上限値としては、とくに限定されないが200℃以下が好ましく、190℃以下がより好ましい。これにより、耐久性に優れたローターが実現される。
また、本実施形態においては、例えば、エポキシ樹脂、硬化剤の軟化点を上げることにより、上記ガラス転移温度(Tg)を増加させることができる。
Moreover, it is preferable that the glass transition temperature (Tg) of the fixing member which concerns on this embodiment is 130 degreeC or more, and it is more preferable that it is 140 degreeC or more. If it is more than the said lower limit, improvement in reliability can be expected. Although it does not specifically limit as an upper limit of the said glass transition temperature (Tg), 200 degrees C or less is preferable and 190 degrees C or less is more preferable. Thereby, the rotor excellent in durability is implement | achieved.
Moreover, in this embodiment, the said glass transition temperature (Tg) can be increased by raising the softening point of an epoxy resin and a hardening | curing agent, for example.

本実施形態に係る固定部材の150℃における曲げ強度が、70MPa以上であることが好ましく、100MPa以上であることがより好ましい。上記下限値以上であれば、クラックなどが発生しにくく信頼性向上が期待できる。上記曲げ強度の上限値としては、とくに限定されないが300MPa以下が好ましく、250MPa以下がより好ましい。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、無機充填剤の表面にカップリング剤を処理することにより、上記曲げ強度を増加することができる。
The bending strength at 150 ° C. of the fixing member according to this embodiment is preferably 70 MPa or more, and more preferably 100 MPa or more. If it is more than the said lower limit, a crack etc. are hard to generate | occur | produce and reliability improvement can be expected. Although it does not specifically limit as an upper limit of the said bending strength, 300 MPa or less is preferable and 250 MPa or less is more preferable. Thereby, the rotor excellent in durability is implement | achieved.
Moreover, in this Embodiment, the said bending strength can be increased by processing a coupling agent on the surface of an inorganic filler, for example.

本実施形態に係る固定部材の150℃における曲げ弾性率の上限値が、1.6×10MPa以下であることが好ましく、1.3×10MPa以下であることがより好ましい。上記上限値以下であれば、応力緩和による信頼性向上が期待できる。上記曲げ弾性率の下限値としては、とくに限定されないが5000MPa以上が好ましく、7000MPa以上がより好ましい。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、低応力剤の添加量を増やす、無機充填剤の配合量を減らすなどにより、上記曲げ弾性率を低減することができる。
The upper limit value of the flexural modulus at 150 ° C. of the fixing member according to the present embodiment is preferably 1.6 × 10 4 MPa or less, and more preferably 1.3 × 10 4 MPa or less. If it is below the above upper limit value, reliability improvement by stress relaxation can be expected. Although it does not specifically limit as a lower limit of the said bending elastic modulus, 5000 MPa or more is preferable and 7000 MPa or more is more preferable. Thereby, the rotor excellent in durability is implement | achieved.
Moreover, in this Embodiment, the said bending elastic modulus can be reduced by increasing the addition amount of a low stress agent, reducing the compounding quantity of an inorganic filler, etc., for example.

本実施形態に係る固定部材の、25℃以上のガラス転移温度(Tg)以下の領域における線膨張係数(α1)が、10ppm/℃以上、25ppm/℃以下であることが好ましく、15ppm/℃以上、20ppm/℃以下であることがより好ましい。上記範囲内であれば、電磁鋼板との熱膨張差が小さくかつマグネットの抜け落ちが防止できる。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、無機充填剤の配合量を増やすことにより、上記線膨張係数(α1)を低減することができる。
The linear expansion coefficient (α1) of the fixing member according to this embodiment in the region of a glass transition temperature (Tg) of 25 ° C. or higher is preferably 10 ppm / ° C. or higher and 25 ppm / ° C. or lower, preferably 15 ppm / ° C. or higher. 20 ppm / ° C. or less is more preferable. If it is in the said range, the thermal expansion difference with an electromagnetic steel plate will be small, and the fall-off | omission of a magnet can be prevented. Thereby, the rotor excellent in durability is implement | achieved.
Moreover, in this Embodiment, the said linear expansion coefficient ((alpha) 1) can be reduced by increasing the compounding quantity of an inorganic filler, for example.

本実施形態に係る固定部材の、ガラス転移温度(Tg)を超える領域における線膨張係数(α2)が、10ppm/℃以上、100ppm/℃以下であることが好ましく、20ppm/℃以上、80ppm/℃以下であることがより好ましい。上記範囲内であれば、電磁鋼板との熱膨張差が小さくかつマグネットの抜け落ちが防止できる。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、無機充填剤の配合量を増やすことにより、上記線膨張係数(α2)を低減することができる。
The linear expansion coefficient (α2) in the region exceeding the glass transition temperature (Tg) of the fixing member according to this embodiment is preferably 10 ppm / ° C. or more and 100 ppm / ° C. or less, preferably 20 ppm / ° C. or more and 80 ppm / ° C. The following is more preferable. If it is in the said range, the thermal expansion difference with an electromagnetic steel plate will be small, and the fall-off | omission of a magnet can be prevented. Thereby, the rotor excellent in durability is implement | achieved.
Moreover, in this Embodiment, the said linear expansion coefficient ((alpha) 2) can be reduced by increasing the compounding quantity of an inorganic filler, for example.

(ローターの製造方法)
本実施形態に係るローター100の製造方法は、例えば次のように行われる。まず、回転シャフト170が貫通する貫通孔の周縁部に沿って配置されている複数の穴部150が設けられたローターコア110を準備する。次いで、孔部150に磁石120を挿入する。次いで、孔部150と磁石120との離間部140に固定用樹脂組成物を充填する。次いで、固定用樹脂組成物を硬化して、固定部材130を得る。次いで、ローターコア110が有する貫通孔に回転シャフト170を挿入するとともに、ローターコアに回転シャフト170を固設する。これにより、本実施形態に係るローター100が得られる。
本実施形態では、離間部140に固定用樹脂組成物を充填する手法として、インサート成形を用いることが好ましい。以下、詳述する。
(Method for manufacturing rotor)
The method for manufacturing the rotor 100 according to the present embodiment is performed as follows, for example. First, the rotor core 110 provided with a plurality of holes 150 arranged along the peripheral edge of the through hole through which the rotating shaft 170 passes is prepared. Next, the magnet 120 is inserted into the hole 150. Next, the fixing resin composition is filled in the space 140 between the hole 150 and the magnet 120. Next, the fixing resin composition is cured to obtain the fixing member 130. Next, the rotary shaft 170 is inserted into the through hole of the rotor core 110, and the rotary shaft 170 is fixed to the rotor core. Thereby, the rotor 100 which concerns on this embodiment is obtained.
In the present embodiment, it is preferable to use insert molding as a method of filling the spacing portion 140 with the fixing resin composition. Details will be described below.

まず、インサート成形装置について説明する。図10は、インサート成形に用いるインサート成形装置の上型200を示す断面図である。
固定部材130の形成方法の一例としては、タブレット状の固定用樹脂組成物を用い、インサート成形を行う方法を用いることができる。このインサート成形には、インサート成形装置を用いる。この成形装置は、タブレット状の固定用樹脂組成物が供給されるポット210および溶融状態の固定用樹脂組成物を移動させる流路220を有する上型200と、下型(図示せず)と、これらの上型200及び下型を加熱する加熱手段と、溶融状態の固定用樹脂組成物を押し出す押出機構と、を備える。インサート成形装置は、例えば、ローターコア等を搬送する搬送機能を備えてもよい。
First, an insert molding apparatus will be described. FIG. 10 is a cross-sectional view showing an upper mold 200 of an insert molding apparatus used for insert molding.
As an example of a method of forming the fixing member 130, a method of performing insert molding using a tablet-like fixing resin composition can be used. An insert molding device is used for this insert molding. The molding apparatus includes a pot 210 to which a tablet-like fixing resin composition is supplied, an upper mold 200 having a flow path 220 for moving the molten fixing resin composition, a lower mold (not shown), A heating means for heating the upper mold 200 and the lower mold, and an extrusion mechanism for extruding the fixing resin composition in a molten state are provided. The insert molding device may have a transport function for transporting, for example, a rotor core.

上型200および下型は、インサート成形時において、ローターコア110の上面および下面にそれぞれ密着することが好ましい。このため、上型200および下型は、例えば板状である。本実施形態の上型200および下型は、インサート成形成型時においてローターコア110の全体を覆わない点で、半導体装置の製造方法に用いる通常のトランスファー成形の金型とは異なる。すなわち、本実施形態に係る上型200および下型は、インサート成形時において、ローターコア110の側面を覆わない。一方で、トランスファー成形用の金型は、上型及び下型で構成されるキャビティ内に半導体チップ全体が配置されるように構成される。
また、図10に示すように、ポット210は、二つの別々の流路220を有してもよい。この場合、一つのポット210に接続する二つの流路220は、Y字状に配置される。これにより、一つのポット210から、二つの孔部150に、本実施形態に係る固定用樹脂組成物を充填できる。なお、一つのポット210は、一つの孔部150に固定用樹脂組成物を充填する一つの流路のみを有してもよく、三つ以上の孔部150に固定用樹脂組成物を充填する三つ以上の流路を有してもよい。一つのポット210が複数の流路220を有する場合、複数の流路220は互いに独立してもよく、互いに連続していてもよい。
The upper mold 200 and the lower mold are preferably in close contact with the upper surface and the lower surface of the rotor core 110 at the time of insert molding. For this reason, the upper mold 200 and the lower mold are, for example, plate-shaped. The upper mold 200 and the lower mold of the present embodiment are different from the normal transfer mold used in the method for manufacturing a semiconductor device in that the entire rotor core 110 is not covered during insert molding. That is, the upper mold 200 and the lower mold according to the present embodiment do not cover the side surface of the rotor core 110 during insert molding. On the other hand, a transfer molding die is configured such that the entire semiconductor chip is disposed in a cavity constituted by an upper die and a lower die.
As shown in FIG. 10, the pot 210 may have two separate flow paths 220. In this case, the two flow paths 220 connected to one pot 210 are arranged in a Y shape. As a result, the fixing resin composition according to this embodiment can be filled into the two holes 150 from one pot 210. One pot 210 may have only one flow path for filling one hole 150 with the fixing resin composition, and three or more holes 150 are filled with the fixing resin composition. You may have three or more flow paths. When one pot 210 includes a plurality of flow paths 220, the plurality of flow paths 220 may be independent from each other or may be continuous with each other.

続いて、本実施形態に係るインサート成形について説明する。
まず、ローターコア110をオーブン又は熱盤上などで予熱後、不図示の成形装置の下型に固定する。続いて、ローターコア110の孔部150中に、磁石120を挿入する。続いて、下型を上昇させ、ローターコア110の上面に上型200を押しつける。これにより、上型200と下型とで、ローターコア110の上面および下面を挟み込む。このとき、上型200中の流路220の先端部が、孔部150と磁石120との離間部140上に配置される。また、ローターコア110は、成形装置の下型と上型200からの熱伝導により加熱されることとなる。成形装置の下型および上型200は、ローターコア110が固定用樹脂組成物の成形、硬化に適した温度となるよう、例えば150℃〜200℃程度に温調されている。この状態でタブレット状の固定用樹脂組成物を上型200のポット210内に供給する。上型200のポット210内に供給されたタブレット状の固定用樹脂組成物は、ポット210内で加熱され溶融状態となる。
Next, insert molding according to this embodiment will be described.
First, the rotor core 110 is preheated on an oven or a hot platen, and then fixed to a lower mold of a molding apparatus (not shown). Subsequently, the magnet 120 is inserted into the hole 150 of the rotor core 110. Subsequently, the lower mold is raised and the upper mold 200 is pressed against the upper surface of the rotor core 110. Thereby, the upper surface and the lower surface of the rotor core 110 are sandwiched between the upper mold 200 and the lower mold. At this time, the front end portion of the flow path 220 in the upper mold 200 is disposed on the separation portion 140 between the hole 150 and the magnet 120. The rotor core 110 is heated by heat conduction from the lower mold and the upper mold 200 of the molding apparatus. The lower mold and upper mold 200 of the molding apparatus are temperature-controlled at, for example, about 150 ° C. to 200 ° C. so that the rotor core 110 has a temperature suitable for molding and curing the fixing resin composition. In this state, a tablet-like fixing resin composition is supplied into the pot 210 of the upper mold 200. The tablet-like fixing resin composition supplied into the pot 210 of the upper mold 200 is heated in the pot 210 to be in a molten state.

続いて、プランジャ(押出機構)により、溶融状態の固定用樹脂組成物をポット210から押し出す。これにより、固定用樹脂組成物は、流路220を移動して孔部150と磁石120との離間部140に充填される。固定用樹脂組成物が離間部140に充填される間、ローターコア110は金型(下型と上型200)からの熱伝導により加熱される。ローターコア110が加熱されることで、離間部140に充填された固定用樹脂組成物が硬化される。これにより、固定部材130が形成されることとなる。
このとき、固定用樹脂組成物を硬化する際の温度条件は、例えば150℃〜200℃とすることができる。また、硬化時間は、例えば30秒〜180秒とすることができる。これにより、孔部150の内部に挿入された磁石120が固定部材130により固定される。この後、ローターコア110の上面から上型200を離間する。次いで、ローターコア110の貫通孔に回転シャフト170を挿入するとともに、ローターコア110に回転シャフト170を固設する。
以上により、本実施形態に係るローター100が得られる。
Subsequently, the fixing resin composition in a molten state is extruded from the pot 210 by a plunger (extrusion mechanism). As a result, the fixing resin composition moves through the flow path 220 and fills the separation portion 140 between the hole 150 and the magnet 120. While the fixing resin composition is filled in the separation portion 140, the rotor core 110 is heated by heat conduction from the molds (the lower mold and the upper mold 200). When the rotor core 110 is heated, the fixing resin composition filled in the separation portion 140 is cured. Thereby, the fixing member 130 is formed.
At this time, the temperature condition at the time of hardening the fixing resin composition can be set to 150 ° C. to 200 ° C., for example. Further, the curing time can be, for example, 30 seconds to 180 seconds. As a result, the magnet 120 inserted into the hole 150 is fixed by the fixing member 130. Thereafter, the upper mold 200 is separated from the upper surface of the rotor core 110. Next, the rotary shaft 170 is inserted into the through hole of the rotor core 110 and the rotary shaft 170 is fixed to the rotor core 110.
As described above, the rotor 100 according to the present embodiment is obtained.

本実施形態に係るインサート成形方法は、脱型する必要がない点で、半導体装置の製造に用いるトランスファー成形方法と異なる。
インサート成形方法では、ローターコア110の上面と上型200とが密着された状態で、上型200の流路220を通って、ローターコア110の孔部150に固定用樹脂組成物が充填される。このため、ローターコア110の上面と上型200との間に樹脂が充填されず、上型200と上面との着脱が容易となる。
一方、トランスファー成形方法では、半導体チップと金型との間のキャビティに樹脂が充填されるので、成形品から金型をうまく脱型する必要がある。このため、半導体チップを封止する樹脂には、金型と成形品との離型性が特に要求されることになる。
The insert molding method according to the present embodiment is different from the transfer molding method used for manufacturing a semiconductor device in that it is not necessary to remove the mold.
In the insert molding method, the fixing resin composition is filled into the hole 150 of the rotor core 110 through the flow path 220 of the upper mold 200 while the upper surface of the rotor core 110 and the upper mold 200 are in close contact with each other. . For this reason, resin is not filled between the upper surface of the rotor core 110 and the upper mold 200, and the upper mold 200 and the upper surface can be easily attached and detached.
On the other hand, in the transfer molding method, since the resin is filled in the cavity between the semiconductor chip and the mold, it is necessary to successfully remove the mold from the molded product. For this reason, releasability between the mold and the molded product is particularly required for the resin for sealing the semiconductor chip.

本実施の形態のローター100は、ハイブリッド車、燃料電池車および電気自動車等の電動車両、列車ならびに船舶等の、乗り物に搭載することができる。   The rotor 100 according to the present embodiment can be mounted on a vehicle such as an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, and an electric vehicle, a train, and a ship.

以下、本発明を、実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。特に記載しない限り、以下に記載の「部」は「質量部」、「%」は「質量%」を示す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited to description of these Examples at all. Unless otherwise specified, “part” described below indicates “part by mass” and “%” indicates “% by mass”.

各実施例及び各比較例で用いた原料成分を下記に示した。
(熱硬化性樹脂(A))
エポキシ樹脂1:製造方法を後述する。
エポキシ樹脂2:オルソクレゾールノボラック型エポキシ樹脂(日本化薬社製、EOCN−1020−65)
エポキシ樹脂3:オルソクレゾールノボラック型エポキシ樹脂(日本化薬社製、EOCN−1020−55)
The raw material components used in each example and each comparative example are shown below.
(Thermosetting resin (A))
Epoxy resin 1: A production method will be described later.
Epoxy resin 2: Orthocresol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EOCN-1020-65)
Epoxy resin 3: Orthocresol novolac type epoxy resin (Nippon Kayaku Co., Ltd., EOCN-1020-55)

(硬化剤(B))
フェノール樹脂系硬化剤1:製造方法を後述する。
フェノール樹脂系硬化剤2:ノボラック型フェノール樹脂(住友ベークライト製、PR−HF−3)
フェノール樹脂系硬化剤3:ノボラック型フェノール樹脂(住友ベークライト製、PR−51470)
(Curing agent (B))
Phenol resin curing agent 1: The production method will be described later.
Phenolic resin curing agent 2: Novolac type phenolic resin (manufactured by Sumitomo Bakelite, PR-HF-3)
Phenol resin curing agent 3: novolak type phenol resin (manufactured by Sumitomo Bakelite, PR-51470)

(無機充填剤(C))
球状シリカ1(電気化学工業製、FB−950、平均粒径D5023μm、最大粒径Dmax75μm)
球状シリカ2(電気化学工業製、FB−35、平均粒径D5010μm、最大粒径Dmax75μm)
未処理球状シリカ3(アドマテックス社製、SO−25R、平均粒径D500.5μm)
(Inorganic filler (C))
Spherical silica 1 (manufactured by Denki Kagaku Kogyo, FB-950, average particle diameter D 50 23 μm, maximum particle diameter D max 75 μm)
Spherical silica 2 (manufactured by Denki Kagaku Kogyo, FB-35, average particle diameter D 50 10 μm, maximum particle diameter D max 75 μm)
Untreated spherical silica 3 (manufactured by Admatechs, SO-25R, average particle size D 50 0.5 μm)

(硬化促進剤(D))
硬化促進剤:トリフェニルホスフィン(ケイ・アイ化成(株)製、PP−360)
(Curing accelerator (D))
Curing accelerator: Triphenylphosphine (manufactured by Kei Isei Kabushiki Kaisha, PP-360)

(シランカップリング剤(F))
シランカップリング剤1:γ−アミノプロピルトリエトキシシラン(信越化学工業(株)製、KBE−903)
シランカップリング剤2:フェニルアミノプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、CF4083)
シランカップリング剤3:γ−グリシドキシプロピルトリメトキシシラン(チッソ(株)製、GPS−M)
シランカップリング剤4:γ−メルカプトプロピルトリメトキシシラン
(Silane coupling agent (F))
Silane coupling agent 1: γ-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-903)
Silane coupling agent 2: Phenylaminopropyltrimethoxysilane (manufactured by Dow Corning Toray, CF4083)
Silane coupling agent 3: γ-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation, GPS-M)
Silane coupling agent 4: γ-mercaptopropyltrimethoxysilane

(その他の添加剤)
離型剤:カルナバワックス
イオン捕捉剤:ハイドロタルサイト(協和化学工業製、商品名DHT−4H)
着色剤:カーボンブラック(三菱化学製、MA600)
トリアゾール:3−アミノ−1,2,4−トリアゾール−5−チオール
低応力剤:シリコーンレジン(信越化学工業(株)製、KMP−594)
難燃剤:水酸化アルミニウム(住友化学、CL−303,平均粒径D503.5μm)
(Other additives)
Mold release agent: Carnauba wax
Ion scavenger: Hydrotalcite (Kyowa Chemical Industry, trade name DHT-4H)
Colorant: Carbon black (Mitsubishi Chemical, MA600)
Triazole: 3-amino-1,2,4-triazole-5-thiol
Low stress agent: Silicone resin (Shin-Etsu Chemical Co., Ltd., KMP-594)
Flame retardant: Aluminum hydroxide (Sumitomo Chemical, CL-303, average particle size D 50 3.5 μm)

フェノール樹脂系硬化剤1の製造方法を以下に示す。
セパラブルフラスコに撹拌装置、温度計、還流冷却器、窒素導入口を装着した後、1,3−ジヒドロキシベンゼン(東京化成工業社製、「レゾルシノール」、融点111℃、分子量110、純度99.4%)360質量部、フェノール(関東化学社製特級試薬、融点41℃、分子量94、純度99.3%)235質量部、あらかじめ粒状に砕いた4,4'−ビスクロロメチルビフェニル(和光純薬工業社製、融点126℃、純度95%、分子量251)251質量部を、セパラブルフラスコに秤量した。次に、窒素置換しながら加熱し、フェノールの溶融の開始に併せて攪拌を開始した。
A method for producing the phenol resin curing agent 1 will be described below.
A separable flask was equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet, and then 1,3-dihydroxybenzene (manufactured by Tokyo Chemical Industry Co., Ltd., “resorcinol”, melting point 111 ° C., molecular weight 110, purity 99.4 %) 360 parts by mass, phenol (special grade reagent manufactured by Kanto Chemical Co., Inc., melting point 41 ° C., molecular weight 94, purity 99.3%) 235 parts by mass, 4,4′-bischloromethylbiphenyl (Wako Pure Chemical Industries) previously crushed into granules 251 parts by mass of Kogyo Co., Ltd., melting point 126 ° C., purity 95%, molecular weight 251) was weighed into a separable flask. Next, heating was performed while purging with nitrogen, and stirring was started in conjunction with the start of melting of phenol.

撹拌開始後、系内温度を110〜130℃の範囲に維持しながら3時間反応させた後、再度加熱し、140〜160℃の範囲に維持しながら3時間反応させた。なお、上記の反応によって系内に発生した塩酸ガスは、窒素気流によって系外へ排出した。   After the start of stirring, the reaction was carried out for 3 hours while maintaining the system temperature in the range of 110 to 130 ° C, and then heated again and reacted for 3 hours while maintaining the temperature in the range of 140 to 160 ° C. The hydrochloric acid gas generated in the system by the above reaction was discharged out of the system by a nitrogen stream.

反応終了後、150℃、2mmHgの減圧条件下、未反応成分を留去した。次いで、トルエン400質量部を添加し、均一溶解させた後、分液漏斗に移し、蒸留水150質量部を加えて振とうした。振とう後、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った。上記水洗操作後、油層を125℃減圧処理することによってトルエン、残留未反応成分等の揮発成分を留去し、下記式(12A)で表されるフェノール樹脂系硬化剤1(重合体)を得た。   After completion of the reaction, unreacted components were distilled off under reduced pressure conditions at 150 ° C. and 2 mmHg. Next, 400 parts by mass of toluene was added and dissolved uniformly, and then transferred to a separatory funnel, and 150 parts by mass of distilled water was added and shaken. After shaking, the operation of rinsing the water layer (washing) was repeated until the wash water became neutral. After the water washing operation, the oil layer is treated at 125 ° C. under reduced pressure to distill off volatile components such as toluene and residual unreacted components to obtain a phenol resin curing agent 1 (polymer) represented by the following formula (12A). It was.

なお、このフェノール樹脂系硬化剤1における水酸基当量は135、150℃におけるICI粘度は4.7dPa・sであった。   The phenol resin-based curing agent 1 had a hydroxyl group equivalent of 135 and an ICI viscosity at 150 ° C. of 4.7 dPa · s.

また、電界脱離質量分析(Field Desorption Mass Spectrometry;FD−MS)により測定・分析された相対強度比を質量比とみなして算術計算することにより得られた、一価ヒドロキシフェニレン構造単位の繰り返し数kの平均値k0、二価ヒドロキシフェニレン構造単位の繰り返し数mの平均値m0、およびそれらの比k0/m0は、それぞれ、1.20、1.27、48.6/51.4であった。   In addition, the number of repeating monovalent hydroxyphenylene structural units obtained by calculating the relative intensity ratio measured and analyzed by field desorption mass spectrometry (FD-MS) as a mass ratio. The average value k0 of k, the average value m0 of the repeating number m of the divalent hydroxyphenylene structural unit, and the ratio k0 / m0 were 1.20, 1.27, and 48.6 / 51.4, respectively. .

Figure 2013181106
(式(12A)中、2つのYは、それぞれ互いに独立して、下記式(12B)または下記式(12C)で表されるヒドロキシフェニル基を表し、Xは、下記式(12D)または下記式(12E)で表されるヒドロキシフェニレン基を表す。)
Figure 2013181106
(In the formula (12A), two Y's each independently represent a hydroxyphenyl group represented by the following formula (12B) or the following formula (12C), and X represents the following formula (12D) or the following formula (It represents a hydroxyphenylene group represented by (12E).)

Figure 2013181106
Figure 2013181106

エポキシ樹脂1の製造方法を以下に示す。   The manufacturing method of the epoxy resin 1 is shown below.

セパラブルフラスコに撹拌装置、温度計、還流冷却器、窒素導入口を装着した後、前述のフェノール樹脂系硬化剤1を100質量部、エピクロルヒドリン(東京化成工業社製)を400質量部、秤量して100℃に加熱溶解させた。次に、水酸化ナトリウム(固形細粒状、純度99%)60質量部を4時間かけて徐々に添加し、さらに3時間反応させた。次に、トルエン200質量部を加えて溶解させた後、蒸留水150質量部を加えて振とうし、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った。上記水洗操作後、油層を125℃、2mmHgの減圧条件下、エピクロルヒドリンを留去した。得られた固形物にメチルイソブチルケトン300質量部を加えて溶解し、70℃に加熱した上で、30質量%水酸化ナトリウム水溶液13質量部を1時間かけて添加した。添加後、さらに1時間反応して静置し、水層を棄却した。次に、油層に蒸留水150質量部を加えて水洗操作を行い、洗浄水が中性になるまで同様の水洗操作を繰り返し行った。上記水洗操作後、加熱減圧によってメチルイソブチルケトンを留去し、下記式(13A)で表される化合物を含むエポキシ樹脂1(エポキシ当量190g/eq)を得た。   After attaching a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet to the separable flask, 100 parts by mass of the aforementioned phenol resin curing agent 1 and 400 parts by mass of epichlorohydrin (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. And dissolved at 100 ° C. by heating. Next, 60 parts by mass of sodium hydroxide (solid fine particles, purity 99%) was gradually added over 4 hours, and further reacted for 3 hours. Next, after adding 200 mass parts of toluene and making it melt | dissolve, 150 mass parts of distilled water was added and shaken, and operation (water washing) which rejects an aqueous layer was repeated until washing water became neutral. After the water washing operation, epichlorohydrin was distilled off from the oil layer under reduced pressure conditions of 125 ° C. and 2 mmHg. 300 parts by mass of methyl isobutyl ketone was added to the obtained solid and dissolved, heated to 70 ° C., and 13 parts by mass of a 30% by mass aqueous sodium hydroxide solution were added over 1 hour. After the addition, the reaction was further continued for 1 hour, and the aqueous layer was discarded. Next, 150 parts by mass of distilled water was added to the oil layer to perform a water washing operation, and the same water washing operation was repeated until the washing water became neutral. After the washing operation, methyl isobutyl ketone was distilled off by heating under reduced pressure to obtain an epoxy resin 1 (epoxy equivalent 190 g / eq) containing a compound represented by the following formula (13A).

Figure 2013181106
(式(13A)中、2つのYは、それぞれ互いに独立して、下記式(13B)または下記式(13C)で表されるグリシジル化フェニル基を表し、Xは、下記式(13D)または下記式(13E)で表されるグリシジル化フェニレン基を表す。)
Figure 2013181106
(In the formula (13A), two Y's each independently represent a glycidylated phenyl group represented by the following formula (13B) or the following formula (13C), and X represents the following formula (13D) or the following (This represents a glycidylated phenylene group represented by the formula (13E).)

Figure 2013181106
Figure 2013181106

実施例1、3および4では、予めシランカップリング処理を施した無機充填剤(C)を処理シリカとして用いた。無機充填剤(C)のシランカップリング処理は、次のように行った。
まず、球状シリカ1および球状シリカ2を105℃で12時間それぞれ乾燥した。次いで、球状シリカ1を60重量部と、球状シリカ2を20重量部と、をミキサーに投入し、10分間攪拌した。次いで、球状シリカ1と球状シリカ2の混合物にシランカップリング剤1を0.3重量部噴霧しながら、当該混合物を20分間攪拌した。この際、シランカップリング剤1を噴霧した時間は、10分間程度であった。また、ミキサー内の湿度は50%以下であった。その後、60分間攪拌を続けることで、シリカとシランカップリング剤1とを混合した。
次いで、ミキサーから取り出し、20±5℃の条件下で7日間エージングを行った。次いで、200meshのふるいにかけ、粗大粒子を除去した。これにより、シランカップリング処理が施された無機充填剤(C)が得られた。なお。ミキサーには、リボンブレンダーを用いた。また、リボンブレンダーの回転数は、30rpmであった。
なお、シランカップリング剤2、3および4は樹脂に添加した。
In Examples 1, 3 and 4, the inorganic filler (C) which had been subjected to silane coupling treatment in advance was used as the treated silica. The silane coupling treatment of the inorganic filler (C) was performed as follows.
First, spherical silica 1 and spherical silica 2 were each dried at 105 ° C. for 12 hours. Next, 60 parts by weight of spherical silica 1 and 20 parts by weight of spherical silica 2 were charged into a mixer and stirred for 10 minutes. Next, the mixture was stirred for 20 minutes while spraying 0.3 part by weight of the silane coupling agent 1 onto the mixture of the spherical silica 1 and the spherical silica 2. At this time, the time during which the silane coupling agent 1 was sprayed was about 10 minutes. The humidity in the mixer was 50% or less. Then, silica and the silane coupling agent 1 were mixed by continuing stirring for 60 minutes.
Subsequently, it was taken out from the mixer and aged for 7 days under the condition of 20 ± 5 ° C. It was then passed through a 200 mesh sieve to remove coarse particles. Thereby, the inorganic filler (C) to which the silane coupling process was given was obtained. Note that. A ribbon blender was used as the mixer. Moreover, the rotation speed of the ribbon blender was 30 rpm.
Silane coupling agents 2, 3 and 4 were added to the resin.

(実施例および比較例)
実施例1〜4および比較例1〜3について、表に示す配合量に従って各成分を配合したものを、ミキサーを用いて常温で混合し、粉末状中間体を得た。得られた粉末状中間体を自動供給装置(ホッパー)に装填して、80℃〜100℃の加熱ロールへ定量供給し、溶融混練を行った。その後冷却し、次いで粉砕して、固定用樹脂組成物を得た。成型装置を用いて、得られた固定用樹脂組成物を打錠成型することにより、タブレットを得た。
(Examples and Comparative Examples)
About Examples 1-4 and Comparative Examples 1-3, what mix | blended each component according to the compounding quantity shown to a table | surface was mixed at normal temperature using the mixer, and the powdery intermediate body was obtained. The obtained powdery intermediate was loaded into an automatic supply device (hopper), quantitatively supplied to a heating roll at 80 ° C. to 100 ° C., and melt kneaded. Thereafter, the mixture was cooled and then pulverized to obtain a fixing resin composition. A tablet was obtained by tablet-molding the obtained fixing resin composition using a molding apparatus.

得られた固定用樹脂組成物について、下記に示す測定及び評価を行った。   About the obtained resin composition for fixation, the measurement and evaluation shown below were performed.

実施例1〜4および比較例1〜3では、ローター固定用樹脂組成物の硬化物を得るために、金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件を用いている。また、下記測定に用いるローター固定用樹脂組成物の硬化物は、JIS K7162に準じた形状に成形し、175℃、4時間という条件でさらに硬化することで試験片を得た。   In Examples 1 to 4 and Comparative Examples 1 to 3, curing conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds are used in order to obtain a cured product of the resin composition for fixing a rotor. . Moreover, the hardened | cured material of the resin composition for rotor fixation used for the following measurement shape | molded in the shape according to JISK7162, and obtained the test piece by further hardening | curing on the conditions of 175 degreeC and 4 hours.

また、実施例1〜4および比較例1〜3における、各成分の配合比率を、以下の表1にまとめた。   Moreover, the compounding ratio of each component in Examples 1-4 and Comparative Examples 1-3 was put together in the following Table 1.

下記表1の配合比率で得られた各硬化物に対し、行った測定および評価について以下に詳説する。   The measurement and evaluation performed on each cured product obtained with the blending ratios in Table 1 below are described in detail below.

(評価項目)
破断エネルギーaおよびb、ヤング率:JIS K7162に準じてダンベル型に成形したローター固定用樹脂組成物の硬化物(以下、試験片と示す)を、25℃あるいは150℃で、負荷速度1.0mm/minという条件で引張試験を行った。なお、ヤング率は25℃、負荷速度1.0mm/minという条件のみで上記引張試験を行った。この引張試験において、テンシロンには、オリエンテック社製テンシロンUCT−30T型を、歪みゲージには、共和電業社製タイプKFG−2−120−D16−11L1M2Rを用いた。
(Evaluation item)
Breaking energy a and b, Young's modulus: A cured product (hereinafter referred to as a test piece) of a resin composition for fixing a rotor formed into a dumbbell shape according to JIS K7162, at 25 ° C. or 150 ° C., and a load speed of 1.0 mm A tensile test was performed under the condition of / min. The above tensile test was performed only under the conditions of Young's modulus of 25 ° C. and load speed of 1.0 mm / min. In this tensile test, Tensilon UCT-30T manufactured by Orientec Co., Ltd. was used as the tensilon, and Type KFG-2-120-D16-11L1M2R manufactured by Kyowa Dengyo Co., Ltd. was used as the strain gauge.

破断エネルギーは、以下の方法で算出した。まず、引張試験時における垂直応力(stress)と垂直歪み(strein)との関係を、グラフ化した曲線(応力−歪曲線)を作成した。次に、歪みを変数とし、引張試験の開始点から破断点までの応力の積分値を、算出した。なお、単位は、×10−4J/mmとした。 The breaking energy was calculated by the following method. First, a graph (stress-strain curve) in which the relationship between the vertical stress (stress) and the vertical strain (strain) during the tensile test was graphed was created. Next, using the strain as a variable, the integrated value of stress from the starting point of the tensile test to the breaking point was calculated. The unit was set to × 10 −4 J / mm 3 .

ヤング率の単位は、GPaとした。   The unit of Young's modulus was GPa.

破断強度aおよびb:試験片を、25℃あるいは150℃で、負荷速度1.0mm/minという条件で引張試験を行った。ここで破断強度とは、試験片を破断させるために必要な引張荷重または力のことを示している。本実施例において破断強度は、以下の方法で算出した。まず、試験片が破断した際に、試験片に加えた応力をσ、試験片の最小断面積をSとする。破断強度は、試験片が破断した際に試験片に加えた力である。単位は、MPaとした。   Breaking strengths a and b: A tensile test was performed on the test piece at 25 ° C. or 150 ° C. under a load speed of 1.0 mm / min. Here, the breaking strength indicates a tensile load or force necessary for breaking the test piece. In this example, the breaking strength was calculated by the following method. First, σ is the stress applied to the test piece when the test piece is broken, and S is the minimum cross-sectional area of the test piece. The breaking strength is a force applied to the test piece when the test piece is broken. The unit was MPa.

疲労限度応力:試験片を、25℃で引張疲労試験を行った。ここで、疲労限度応力とは、試験片に繰り返し応力を加えた場合に、応力を無限回数負荷しても破壊しない応力振幅の上限のことを示している。本実施例において疲労限度応力は、鷲宮製作所社製引張疲労試験機FT−10型を用い、以下の方法で算出した。試験片に対し30Hzの正弦波で片振り応力(最大値と最小値=0の間を繰り返す応力)を印加し、10回印加しても破断しない応力を求めた。この時の応力を疲労限度応力とて算出した。なお、単位は、MPaである。
また、耐久性に優れたローターコアとするには、引張限度応力が25MPa以上であると好ましく、28MPa以上であるとさらに好ましい。
Fatigue limit stress: The specimen was subjected to a tensile fatigue test at 25 ° C. Here, the fatigue limit stress indicates the upper limit of the stress amplitude that does not break even when stress is applied to an infinite number of times when a stress is repeatedly applied to the test piece. In this example, the fatigue limit stress was calculated by the following method using a tensile fatigue tester FT-10 model manufactured by Kashiwamiya Seisakusho. The test piece was subjected to a one-way swing stress (stress between the maximum value and the minimum value = 0) with a sine wave of 30 Hz, and the stress that did not break even when applied 10 7 times was determined. The stress at this time was calculated as the fatigue limit stress. The unit is MPa.
In order to obtain a rotor core having excellent durability, the tensile limit stress is preferably 25 MPa or more, and more preferably 28 MPa or more.

上記評価項目に関する評価結果を、以下の表1に各成分の配合比率と共に示す。   The evaluation results regarding the above evaluation items are shown in Table 1 below together with the blending ratio of each component.

Figure 2013181106
Figure 2013181106

疲労限度応力は、繰り返し使用に伴うローターコアの耐久性を表す指標となる。疲労限度応力が大きい材料を用いた場合、良好な耐久性を有したローターコアを得ることができる。表1からも分かるように、実施例1〜4の硬化物は、いずれも比較例の値と比較して高い値の疲労限度応力を有している。実際に、実施例に記載の材料を用いてローターコアを製造した場合、繰り返し使用という観点で高い耐久性を有したローターコアが得られた。   The fatigue limit stress is an index representing the durability of the rotor core with repeated use. When a material having a large fatigue limit stress is used, a rotor core having good durability can be obtained. As can be seen from Table 1, the cured products of Examples 1 to 4 all have a higher fatigue limit stress than the values of the comparative examples. Actually, when a rotor core was manufactured using the materials described in the examples, a rotor core having high durability in terms of repeated use was obtained.

実施例1〜4に記載のローター固定用樹脂組成物は、破断エネルギーaを向上させるために、樹脂組成物の配合、シリカの表面処理(処理前の乾燥、pHの管理、エージング時間)その他の処理等の最適化を行っている。実施例1〜4では、従来にない処方上の工夫等をして最適化を行っており、以下に詳説する。   In order to improve the breaking energy a, the resin compositions for fixing a rotor described in Examples 1 to 4 were blended with a resin composition, surface-treated with silica (drying before treatment, pH control, aging time) and the like. Optimization of processing is performed. In Examples 1 to 4, optimization is carried out by making a prescribing idea and the like that are not conventional, which will be described in detail below.

具体的に、実施例1では、新規なエポキシ樹脂1を含む3種のエポキシ樹脂を含有させている点、新規なフェノール樹脂系硬化剤1を用いている点、無機充填剤(C)のシランカップリング処理を最適化した点、等の技術的な工夫を行っている。実施例2では、新規なエポキシ樹脂1およびフェノール樹脂系硬化剤1を用いている点、ワックスを添加していないものを使用している点、等の技術的な工夫を行っている。実施例3では、新規なエポキシ樹脂1を含む3種のエポキシ樹脂を含有させている点、新規なフェノール樹脂系硬化剤1を含む3種のフェノール樹脂系硬化剤を含有させている点、無機充填剤(C)のシランカップリング処理を最適化した点、等の技術的な工夫を行っている。実施例4では、2種のエポキシ樹脂を含有させている点、2種のフェノール樹脂系硬化剤を含有させている点、ワックスを添加していないものを使用している点、無機充填剤(C)のシランカップリング処理を最適化した点、等の技術的な工夫を行っている。   Specifically, in Example 1, the point that three kinds of epoxy resins including the novel epoxy resin 1 are contained, the point that the novel phenol resin curing agent 1 is used, the silane of the inorganic filler (C) We are making technical measures such as optimizing the coupling process. In Example 2, technical contrivances such as a point using a novel epoxy resin 1 and a phenol resin-based curing agent 1 and a point using no added wax are performed. In Example 3, the point which contains 3 types of epoxy resins containing the novel epoxy resin 1, the point which contains 3 types of phenolic resin type hardening | curing agents including the novel phenolic resin type hardening | curing agent 1, inorganic The technical idea of the point which optimized the silane coupling process of the filler (C) is performed. In Example 4, the point which contains 2 types of epoxy resins, the point which contains 2 types of phenol resin type hardening | curing agents, the point which uses the thing which does not add wax, inorganic filler ( Technical measures such as the optimization of the silane coupling process of C) are being carried out.

100 ローター
110 ローターコア
112 電磁鋼板
116 溝部
118a エンドプレート
118b エンドプレート
120 磁石
121 側壁
123 側壁
125 側壁
127 側壁
130 固定部材
132 スリット充填用樹脂部材
140 離間部
150 孔部
151 側壁
152 スリット
153 側壁
154a 孔部
154b 孔部
155 側壁
156 孔部
157 側壁
160 カシメ部
170 回転シャフト
200 上型
210 ポット
220 流路
100 rotor 110 rotor core 112 electromagnetic steel sheet 116 groove
118a End plate 118b End plate 120 Magnet 121 Side wall 123 Side wall 125 Side wall 127 Side wall 130 Fixing member 132 Slit filling resin member 140 Separation part 150 Hole part 151 Side wall 152 Slit 153 Side wall 154a Hole part 154b Hole part 155 Side wall 156 Hole part 157 Side wall 160 Caulking part 170 Rotating shaft 200 Upper mold 210 Pot 220 Flow path

Claims (13)

回転シャフトに固設され、前記回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、
前記穴部に挿入された磁石と、
前記穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち前記固定部材の形成に用いるローター固定用樹脂組成物であって、
エポキシ樹脂を含む熱硬化性樹脂と、
硬化剤と、
無機充填剤と、
を含み、
金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状の前記ローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として作製し、
温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10−4J/mm以上であるローター固定用樹脂組成物。
A rotor core fixed to the rotating shaft and provided with a plurality of holes arranged along the peripheral edge of the rotating shaft;
A magnet inserted into the hole;
A fixing member provided in a separation portion between the hole and the magnet, and a rotor fixing resin composition used for forming the fixing member among rotors comprising:
A thermosetting resin including an epoxy resin;
A curing agent;
An inorganic filler;
Including
A dumbbell-shaped cured resin composition for fixing a rotor under a curing condition of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, and according to JIS K7162, is further added at 175 ° C., 4 Hardened under the condition of time and made as a test piece,
A resin composition for fixing a rotor, wherein a fracture energy obtained when a tensile test is performed under conditions of a temperature of 25 ° C. and a load speed of 1.0 mm / min is 1.5 × 10 −4 J / mm 3 or more.
前記試験片に対して、温度150℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.2×10−4J/mm以上である請求項1に記載のローター固定用樹脂組成物。 The fracture energy obtained when a tensile test is performed on the test piece under the conditions of a temperature of 150 ° C and a load speed of 1.0 mm / min is 1.2 x 10 -4 J / mm 3 or more. 2. The resin composition for fixing a rotor according to 1. 前記試験片に対して、温度25℃、負荷速度1.0mm/minという条件で測定した際の破断強度が50MPa以上である請求項1または2に記載のローター固定用樹脂組成物。   The resin composition for fixing a rotor according to claim 1 or 2, wherein the breaking strength when measured on the test piece under the conditions of a temperature of 25 ° C and a load speed of 1.0 mm / min is 50 MPa or more. 前記試験片に対して、温度150℃、負荷速度1.0mm/minという条件で測定した際の破断強度が15MPa以上である請求項1乃至3のいずれか一項に記載のローター固定用樹脂組成物。   The resin composition for fixing a rotor according to any one of claims 1 to 3, wherein the breaking strength when measured under the conditions of a temperature of 150 ° C and a load speed of 1.0 mm / min with respect to the test piece is 15 MPa or more. object. 前記試験片のヤング率が、12GPa以上である請求項1乃至4のいずれか一項に記載のローター固定用樹脂組成物。   The rotor fixing resin composition according to any one of claims 1 to 4, wherein the test piece has a Young's modulus of 12 GPa or more. 2級アミノシラン、エポキシシラン、メルカプトシランからなる群よりされる1種の化合物をさらに含む請求項1乃至5のいずれか一項に記載のローター固定用樹脂組成物。   The resin composition for fixing a rotor according to any one of claims 1 to 5, further comprising one compound selected from the group consisting of secondary aminosilane, epoxysilane, and mercaptosilane. 前記エポキシ樹脂が、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェノールノボラックエポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセンジオール型エポキシ樹脂、及びトリフェニルメタン型エポキシ樹脂からなる群から選択される少なくとも一種を含む、請求項1乃至6のいずれか一項に記載のローター固定用樹脂組成物。   The epoxy resin is a biphenyl type epoxy resin, a phenol aralkyl type epoxy resin, a phenol novolac epoxy resin, an orthocresol novolac type epoxy resin, a bisphenol type epoxy resin, a bisnaphthol type epoxy resin, a dicyclopentadiene type epoxy resin, a dihydroanthracenediol type The resin composition for fixing a rotor according to any one of claims 1 to 6, comprising at least one selected from the group consisting of an epoxy resin and a triphenylmethane type epoxy resin. 前記硬化剤が、ノボラック型フェノール樹脂、フェノールアラルキル樹脂、ナフトール型フェノール樹脂、及びヒドロキシベンズアルデヒドとホルムアルデヒドとフェノールの反応生成物を主とするフェノール樹脂からなる群から選択される少なくとも一種を含む、請求項1乃至7のいずれか一項に記載のローター固定用樹脂組成物。   The curing agent includes at least one selected from the group consisting of a novolac-type phenol resin, a phenol aralkyl resin, a naphthol-type phenol resin, and a phenol resin mainly composed of a reaction product of hydroxybenzaldehyde, formaldehyde, and phenol. The resin composition for fixing a rotor according to any one of 1 to 7. 前記エポキシ樹脂が、結晶性エポキシ樹脂である、請求項1乃至6のいずれか一項に記載のローター固定用樹脂組成物。   The resin composition for fixing a rotor according to any one of claims 1 to 6, wherein the epoxy resin is a crystalline epoxy resin. 粉末状、顆粒状、又はタブレット状である、請求項1乃至9のいずれか一項に記載のローター固定用樹脂組成物。   The resin composition for fixing a rotor according to any one of claims 1 to 9, which is in the form of powder, granules or tablets. 穴部と磁石との前記離間部の幅は、20μm以上500μm以下である請求項1乃至10のいずれか一項に記載のローター固定用樹脂組成物。   11. The resin composition for fixing a rotor according to claim 1, wherein a width of the space between the hole and the magnet is 20 μm or more and 500 μm or less. 請求項1乃至10のいずれか一項に記載のローター固定用樹脂組成物を用いて形成されるローター。   The rotor formed using the resin composition for rotor fixation as described in any one of Claims 1 thru | or 10. 請求項12に記載のローターを用いて作製された自動車。   An automobile manufactured using the rotor according to claim 12.
JP2012045882A 2012-03-01 2012-03-01 Resin composition for fixing rotor, rotor, and automobile Pending JP2013181106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045882A JP2013181106A (en) 2012-03-01 2012-03-01 Resin composition for fixing rotor, rotor, and automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045882A JP2013181106A (en) 2012-03-01 2012-03-01 Resin composition for fixing rotor, rotor, and automobile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016131273A Division JP2016182032A (en) 2016-07-01 2016-07-01 Resin composition for fixing rotor, rotor, and motor car

Publications (1)

Publication Number Publication Date
JP2013181106A true JP2013181106A (en) 2013-09-12

Family

ID=49272004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045882A Pending JP2013181106A (en) 2012-03-01 2012-03-01 Resin composition for fixing rotor, rotor, and automobile

Country Status (1)

Country Link
JP (1) JP2013181106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072379A1 (en) * 2014-11-05 2016-05-12 三菱重工オートモーティブサーマルシステムズ株式会社 Rotor for motor, and motor
US10422370B2 (en) 2015-12-22 2019-09-24 Man Truck & Bus Ag Adhesive means containing particles for connecting two vehicle parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015563A (en) * 2003-06-24 2005-01-20 Three M Innovative Properties Co Epoxy adhesive composition for electric-powered steering device, bonded structure and electric-powered steering device
JP2010529819A (en) * 2007-06-01 2010-08-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Method for joining two joining partners
JP5257541B2 (en) * 2011-11-29 2013-08-07 住友ベークライト株式会社 Fixing resin composition, rotor, automobile, and method for manufacturing rotor
JP2013181101A (en) * 2012-03-01 2013-09-12 Sumitomo Bakelite Co Ltd Resin composition for fixing, rotor, and automobile
JP2013209644A (en) * 2012-03-01 2013-10-10 Sumitomo Bakelite Co Ltd Resin composition for rotor fixing, rotor, and automobile
JP2014132802A (en) * 2012-03-01 2014-07-17 Sumitomo Bakelite Co Ltd Resin composition for fixation, rotor, and automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015563A (en) * 2003-06-24 2005-01-20 Three M Innovative Properties Co Epoxy adhesive composition for electric-powered steering device, bonded structure and electric-powered steering device
JP2010529819A (en) * 2007-06-01 2010-08-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Method for joining two joining partners
JP5257541B2 (en) * 2011-11-29 2013-08-07 住友ベークライト株式会社 Fixing resin composition, rotor, automobile, and method for manufacturing rotor
JP2013181101A (en) * 2012-03-01 2013-09-12 Sumitomo Bakelite Co Ltd Resin composition for fixing, rotor, and automobile
JP2013209644A (en) * 2012-03-01 2013-10-10 Sumitomo Bakelite Co Ltd Resin composition for rotor fixing, rotor, and automobile
JP2014132802A (en) * 2012-03-01 2014-07-17 Sumitomo Bakelite Co Ltd Resin composition for fixation, rotor, and automobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072379A1 (en) * 2014-11-05 2016-05-12 三菱重工オートモーティブサーマルシステムズ株式会社 Rotor for motor, and motor
JP2016092984A (en) * 2014-11-05 2016-05-23 三菱重工オートモーティブサーマルシステムズ株式会社 Rotor for motor and motor
US10361600B2 (en) 2014-11-05 2019-07-23 Mitsubishi Heavy Industries Thermal Systems, Ltd. Rotor for motor, and motor
US10422370B2 (en) 2015-12-22 2019-09-24 Man Truck & Bus Ag Adhesive means containing particles for connecting two vehicle parts

Similar Documents

Publication Publication Date Title
JP6469943B2 (en) Rotor fixing resin composition and rotor
JP6089900B2 (en) Fixing resin composition, rotor, automobile, and method for manufacturing rotor
WO2012029278A1 (en) Fixing resin composition for use in rotor
JP5966445B2 (en) Fixing resin composition, rotor, and automobile
JP5307263B1 (en) Fixing resin composition, rotor, and automobile
JP6281614B2 (en) Rotor
JP6281178B2 (en) Electronic device, automobile and method of manufacturing electronic device
JP2016182032A (en) Resin composition for fixing rotor, rotor, and motor car
JP5957961B2 (en) Fixing resin composition, rotor and automobile
JP5971176B2 (en) Fixing resin composition used for rotor
JP6249468B2 (en) Rotor and car
JP2013181106A (en) Resin composition for fixing rotor, rotor, and automobile
JP6275946B2 (en) Rotor fixing resin composition and rotor
JP5971081B2 (en) Fixing resin composition, rotor, and automobile
JP6989044B1 (en) Manufacturing method of sealed structure and tablet
JP5246377B2 (en) Fixing resin composition for use in rotor and rotor
WO2023182485A1 (en) Resin composition for encapsulation and method for producing single-sided-encapsulation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160708

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160729