JP2013180530A - Liquid ejecting apparatus - Google Patents
Liquid ejecting apparatus Download PDFInfo
- Publication number
- JP2013180530A JP2013180530A JP2012047422A JP2012047422A JP2013180530A JP 2013180530 A JP2013180530 A JP 2013180530A JP 2012047422 A JP2012047422 A JP 2012047422A JP 2012047422 A JP2012047422 A JP 2012047422A JP 2013180530 A JP2013180530 A JP 2013180530A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- potential
- piezoelectric
- piezoelectric layer
- piezoelectric element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
本発明は、ノズル開口に連通する圧力発生室に圧力変化を生じさせる圧電素子を具備する液体噴射装置に関する。 The present invention relates to a liquid ejecting apparatus including a piezoelectric element that causes a pressure change in a pressure generation chamber communicating with a nozzle opening.
液体噴射装置に搭載される液体噴射ヘッドの代表例としては、例えば、インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、この振動板を圧電素子により変形させて圧力発生室のインクを加圧してノズル開口からインク滴として吐出させるインクジェット式記録ヘッドがある。 As a typical example of a liquid ejecting head mounted on a liquid ejecting apparatus, for example, a part of a pressure generating chamber communicating with a nozzle opening for ejecting ink droplets is configured by a diaphragm, and the diaphragm is deformed by a piezoelectric element. There is an ink jet recording head that pressurizes ink in a pressure generating chamber and discharges the ink as ink droplets from a nozzle opening.
このような圧電素子を構成する圧電体層として用いられる圧電材料の代表例として、チタン酸ジルコン酸鉛(以下「PZT」という)が挙げられるが、環境問題の観点から、非鉛又は鉛の含有量を抑えた圧電材料が求められている。そこで、非鉛系の圧電材料としては、例えば、Bi及びFeを含有するBiFeO3系の圧電材料がある(例えば、特許文献1参照)。 A typical example of a piezoelectric material used as a piezoelectric layer constituting such a piezoelectric element is lead zirconate titanate (hereinafter referred to as “PZT”), but from the viewpoint of environmental problems, it contains non-lead or lead. There is a need for a piezoelectric material with a reduced amount. Thus, as a lead-free piezoelectric material, for example, there is a BiFeO 3 -based piezoelectric material containing Bi and Fe (see, for example, Patent Document 1).
しかしながら、このような非鉛又は鉛の含有量を抑えた複合酸化物からなる圧電体層は、チタン酸ジルコン酸鉛(PZT)と比較すると変位量が十分ではないので、変位量の向上が求められている。 However, since the piezoelectric layer made of a composite oxide with a reduced content of lead or lead is not sufficient in displacement compared to lead zirconate titanate (PZT), an improvement in displacement is required. It has been.
なお、このような問題は、インクジェット式記録ヘッドだけではなく、勿論、インク以外の液滴を吐出する他の液体噴射ヘッドにおいても同様に存在し、また、液体噴射ヘッド以外に用いられる圧電素子においても同様に存在する。 Such a problem exists not only in the ink jet recording head, but of course in other liquid ejecting heads that eject droplets other than ink, and also in piezoelectric elements used in other than liquid ejecting heads. Exist as well.
本発明はこのような事情に鑑み、圧電材料として、ビスマス、鉄、バリウム及びチタンを含むペロブスカイト構造の複合酸化物を用いて十分な変位特性を得ることができる液体噴射装置を提供することを目的とする。 In view of such circumstances, the present invention has an object to provide a liquid ejecting apparatus that can obtain sufficient displacement characteristics using a composite oxide having a perovskite structure including bismuth, iron, barium, and titanium as a piezoelectric material. And
上記課題を解決する本発明の態様は、圧電体層および該圧電体層に設けられた電極を備えた圧電素子と、前記圧電素子を駆動する駆動波形を前記圧電素子に供給する駆動手段と、を有する液体噴射装置であって、前記圧電体層は、(100)面に優先配向した、ビスマス、鉄、バリウム及びチタンを含むペロブスカイト構造の複合酸化物からなり、前記駆動波形が、前記圧電体層の抗電圧以上の第1電圧を印加して分極状態とする分極工程と、前記第1電圧の印加状態から前記第1電圧とは逆極性の電圧を印加して前記圧電体層の分極を緩和させると共に最小電位まで降下させる第1の電圧変化工程と、前記最小電位から、前記第1電圧より大きな電圧を印加して液体を吐出すると共に最大電位まで上昇させる第2の電圧変化工程と、を有し、前記最大電位と最小電位における前記圧電体層にかかる電界の差が、6.1×107(V/m)以上であることを特徴とする液体噴射装置にある。
かかる本発明によれば、低電界で優れた圧電特性を有する液体噴射装置を実現できる。また、圧電材料を、非鉛系、すなわち、鉛を含有しないものとしているため、環境への負荷が小さい液体噴射装置を実現できる。
An aspect of the present invention that solves the above problems includes a piezoelectric element including a piezoelectric layer and an electrode provided on the piezoelectric layer, and a driving unit that supplies a driving waveform for driving the piezoelectric element to the piezoelectric element. The piezoelectric layer is made of a composite oxide having a perovskite structure including bismuth, iron, barium, and titanium preferentially oriented in the (100) plane, and the driving waveform is the piezoelectric body. A polarization step of applying a first voltage equal to or higher than the coercive voltage of the layer to obtain a polarization state; and applying a voltage having a polarity opposite to the first voltage from the application state of the first voltage to change the polarization of the piezoelectric layer. A first voltage changing step for relaxing and dropping to a minimum potential; a second voltage changing step for applying a voltage higher than the first voltage from the minimum potential to discharge the liquid and raising the voltage to the maximum potential; Have Difference in electric field applied to the piezoelectric layer in the maximum potential and the minimum potential, a liquid-jet apparatus characterized in that 6.1 × 10 7 (V / m ) or more.
According to the present invention, it is possible to realize a liquid ejecting apparatus having excellent piezoelectric characteristics with a low electric field. In addition, since the piezoelectric material is non-leaded, that is, does not contain lead, a liquid ejecting apparatus with a small environmental load can be realized.
(実施形態)
図1は、本発明にかかる液体噴射装置の一例であるインクジェット式記録装置の一例を示す概略図である。図1に示すように、インクジェット式記録装置IIにおいて、インクジェット式記録ヘッドを有する記録ヘッドユニット1A及び1Bは、インク供給手段を構成するカートリッジ2A及び2Bが着脱可能に設けられ、この記録ヘッドユニット1A及び1Bを搭載したキャリッジ3は、装置本体4に取り付けられたキャリッジ軸5に軸方向移動可能に設けられている。この記録ヘッドユニット1A及び1Bは、例えば、それぞれブラックインク組成物及びカラーインク組成物を吐出するものとしている。
(Embodiment)
FIG. 1 is a schematic diagram illustrating an example of an ink jet recording apparatus that is an example of a liquid ejecting apparatus according to the invention. As shown in FIG. 1, in an ink jet recording apparatus II, recording
そして、駆動モーター6の駆動力が図示しない複数の歯車およびタイミングベルト7を介してキャリッジ3に伝達されることで、記録ヘッドユニット1A及び1Bを搭載したキャリッジ3はキャリッジ軸5に沿って移動される。一方、装置本体4にはキャリッジ軸5に沿ってプラテン8が設けられており、図示しない給紙ローラーなどにより給紙された紙等の記録媒体である記録シートSがプラテン8に巻き掛けられて搬送されるようになっている。
Then, the driving force of the
ここで、このようなインクジェット式記録装置IIに搭載されるインクジェット式記録ヘッドについて、図2〜図4を参照して説明する。なお、図2は、本発明の実施形態に係る液体噴射ヘッドの一例であるインクジェット式記録ヘッドの概略構成を示す分解斜視図であり、図3は、図2の平面図であり、図4は図3のA−A′線断面図である。 Here, an ink jet recording head mounted on such an ink jet recording apparatus II will be described with reference to FIGS. 2 is an exploded perspective view showing a schematic configuration of an ink jet recording head which is an example of a liquid jet head according to an embodiment of the present invention, FIG. 3 is a plan view of FIG. 2, and FIG. FIG. 4 is a cross-sectional view taken along line AA ′ in FIG. 3.
図2〜図4に示すように、本実施形態の流路形成基板10は、シリコン単結晶基板からなり、その一方の面には二酸化シリコンからなる弾性膜50が形成されている。
As shown in FIGS. 2 to 4, the flow
流路形成基板10には、複数の圧力発生室12がその幅方向に並設されている。また、流路形成基板10の圧力発生室12の長手方向外側の領域には連通部13が形成され、連通部13と各圧力発生室12とが、各圧力発生室12毎に設けられたインク供給路14及び連通路15を介して連通されている。連通部13は、後述する保護基板のマニホールド部31と連通して各圧力発生室12の共通のインク室となるマニホールドの一部を構成する。インク供給路14は、圧力発生室12よりも狭い幅で形成されており、連通部13から圧力発生室12に流入するインクの流路抵抗を一定に保持している。なお、本実施形態では、流路の幅を片側から絞ることでインク供給路14を形成したが、流路の幅を両側から絞ることでインク供給路を形成してもよい。また、流路の幅を絞るのではなく、厚さ方向から絞ることでインク供給路を形成してもよい。本実施形態では、流路形成基板10には、圧力発生室12、連通部13、インク供給路14及び連通路15からなる液体流路が設けられていることになる。
A plurality of
また、流路形成基板10の開口面側には、各圧力発生室12のインク供給路14とは反対側の端部近傍に連通するノズル開口21が穿設されたノズルプレート20が、接着剤や熱溶着フィルム等によって固着されている。なお、ノズルプレート20は、例えば、ガラスセラミックス、シリコン単結晶基板、ステンレス鋼等からなる。
Further, on the opening surface side of the flow
一方、このような流路形成基板10の開口面とは反対側には、上述したように弾性膜50が形成され、この弾性膜50上には、例えば厚さ30〜50nm程度の酸化チタン等からなり、弾性膜50等の第1電極60の下地との密着性を向上させるための密着層56が設けられている。なお、弾性膜50上に、必要に応じて酸化ジルコニウム等からなる絶縁体膜が設けられていてもよい。
On the other hand, the
さらに、この密着層56上には、第1電極60と、厚さが3μm以下、好ましくは0.3〜1.5μmの薄膜である圧電体層70と、第2電極80とが、積層形成されて、圧力発生室12に圧力変化を生じさせる圧力発生手段としての圧電素子300を構成している。ここで、圧電素子300は、第1電極60、圧電体層70及び第2電極80を含む部分をいう。一般的には、圧電素子300の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12毎にパターニングして構成する。本実施形態では、第1電極60を圧電素子300の共通電極とし、第2電極80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆にしても支障はない。また、ここでは、圧電素子300と当該圧電素子300の駆動により変位が生じる振動板とを合わせてアクチュエーター装置と称する。なお、上述した例では、弾性膜50、密着層56、第1電極60及び必要に応じて設ける絶縁体膜が振動板として作用するが、勿論これに限定されるものではなく、例えば、弾性膜50や密着層56を設けなくてもよい。また、圧電素子300自体が実質的に振動板を兼ねるようにしてもよい。
Further, on the
そして、本実施形態においては、圧電体層70を構成する圧電材料は、(100)面に優先配向した、ビスマス(Bi)、鉄(Fe)、バリウム(Ba)及びチタン(Ti)を含みペロブスカイト構造を有する複合酸化物である。ペロブスカイト構造、すなわち、ABO3型構造のAサイトは酸素が12配位しており、また、Bサイトは酸素が6配位して8面体(オクタヘドロン)をつくっている。このAサイトにBi及びBaが、BサイトにFe及びTiが位置している。
In this embodiment, the piezoelectric material constituting the
このようなBi、Fe、Ba及びTiを含みペロブスカイト構造を有する複合酸化物は、鉄酸ビスマスとチタン酸バリウムとの混晶のペロブスカイト構造を有する複合酸化物、または、鉄酸ビスマスとチタン酸バリウムが均一に固溶した固溶体としても表される。なお、X線回折パターンにおいて、鉄酸ビスマスや、チタン酸バリウムは、単独では検出されないものである。 Such a composite oxide containing Bi, Fe, Ba and Ti and having a perovskite structure is a composite oxide having a perovskite structure of a mixed crystal of bismuth ferrate and barium titanate, or bismuth ferrate and barium titanate. Is also expressed as a solid solution in which the solid solution is uniformly dissolved. In the X-ray diffraction pattern, bismuth ferrate and barium titanate are not detected alone.
ここで、鉄酸ビスマスやチタン酸バリウムは、それぞれペロブスカイト構造を有する公知の圧電材料であり、それぞれ種々の組成のものが知られている。例えば、鉄酸ビスマスやチタン酸バリウムとして、BiFeO3やBaTiO3以外に、元素(Bi、Fe、Ba、TiやO)が一部欠損する又は過剰であったり、元素の一部が他の元素に置換されたものも知られているが、本発明で鉄酸ビスマス、チタン酸バリウムと表記した場合、欠損・過剰により化学量論の組成からずれたものや元素の一部が他の元素に置換されたものも、鉄酸ビスマス、チタン酸バリウムの範囲に含まれるものとする。また、鉄酸ビスマスとチタン酸バリウムとの比も、種々変更することができる。 Here, bismuth ferrate and barium titanate are known piezoelectric materials each having a perovskite structure, and those having various compositions are known. For example, as bismuth ferrate or barium titanate, in addition to BiFeO 3 or BaTiO 3 , some elements (Bi, Fe, Ba, Ti, O) are partially lost or excessive, or some of the elements are other elements However, in the present invention, when expressed as bismuth ferrate or barium titanate, a component deviating from the stoichiometric composition due to deficiency or excess or a part of the element is replaced by another element. Those substituted are also included in the ranges of bismuth ferrate and barium titanate. The ratio of bismuth ferrate to barium titanate can also be changed variously.
このようなペロブスカイト構造を有する複合酸化物からなる圧電体層70の組成は、例えば、下記一般式(1)で表される混晶として表される。また、この式(1)は、下記一般式(1’)で表すこともできる。ここで、一般式(1)及び一般式(1’)の記述は化学量論に基づく組成表記であり、上述したように、ペロブスカイト構造を取り得る限りにおいて、格子不整合、酸素欠損等による不可避な組成のずれは勿論、元素の一部置換等も許容される。例えば、化学量論比が1とすると、0.85〜1.20の範囲内のものは許容される。また、下記のように一般式で表した場合は異なるものであっても、Aサイトの元素とBサイトの元素との比が同じものは、同一の複合酸化物とみなせる場合がある。
(1−x)[BiFeO3]−x[BaTiO3] (1)
(0<x<0.40)
(Bi1−xBax)(Fe1−xTix)O3 (1’)
(0<x<0.40)
The composition of the
(1-x) [BiFeO 3 ] -x [BaTiO 3 ] (1)
(0 <x <0.40)
(Bi 1-x Ba x ) (Fe 1-x Ti x ) O 3 (1 ′)
(0 <x <0.40)
また、本実施形態の圧電体層70を構成する複合酸化物は、Bi、Fe、Ba及びTi以外の元素をさらに含んでいてもよい。他の元素としては、例えば、Mn、Co、Crなどが挙げられる。これら他の元素を含む複合酸化物である場合も、ペロブスカイト構造を有することが好ましい。
Further, the composite oxide constituting the
圧電体層70が、Mn、CoやCrを含む場合、Mn、CoやCrはペロブスカイト構造のBサイトに位置した構造の複合酸化物である。例えば、Mnを含む場合、圧電体層70を構成する複合酸化物は、鉄酸ビスマスとチタン酸バリウムが均一に固溶した固溶体のFeの一部がMnで置換された構造、又は、鉄酸マンガン酸ビスマスとチタン酸バリウムとの混晶のペロブスカイト構造を有する複合酸化物として表され、基本的な特性は鉄酸ビスマスとチタン酸バリウムとの混晶のペロブスカイト構造を有する複合酸化物と同じであるが、リーク特性が向上することがわかっている。また、CoやCrを含む場合も、Mnと同様にリーク特性が向上するものである。なお、X線回折パターンにおいて、鉄酸ビスマス、チタン酸バリウム、鉄酸マンガン酸ビスマス、鉄酸コバルト酸ビスマス、及び、鉄酸クロム酸ビスマスは、単独では検出されないものである。また、Mn、CoおよびCrを例として説明したが、その他遷移金属元素の2元素を同時に含む場合にも同様にリーク特性が向上することがわかっており、これらも圧電体層70とすることができ、さらに、特性を向上させるため公知のその他の添加物を含んでもよい。
When the
このようなBi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる圧電体層70は、例えば、下記一般式(2)で表される混晶である。また、この式(2)は、下記一般式(2’)で表すこともできる。なお一般式(2)及び一般式(2’)において、Mは、Mn、CoまたはCrである。ここで、一般式(2)及び一般式(2’)の記述は化学量論に基づく組成表記であり、上述したように、ペロブスカイト構造を取り得る限りにおいて、格子不整合、酸素欠損等による不可避な組成ずれは許容される。例えば、化学量論が1であれば、0.85〜1.20の範囲内のものは許容される。また、下記のように一般式で表した場合は異なるものであっても、Aサイトの元素とBサイトの元素との比が同じものは、同一の複合酸化物とみなせる場合がある。
(1−x)[Bi(Fe1−yMy)O3]−x[BaTiO3] (2)
(0<x<0.40、0.01<y<0.10)
(Bi1−xBax)((Fe1−yMy)1−xTix)O3 (2’)
(0<x<0.40、0.01<y<0.10)
The
(1-x) [Bi (Fe 1- y My ) O 3 ] -x [BaTiO 3 ] (2)
(0 <x <0.40, 0.01 <y <0.10)
(Bi 1-x Ba x) ((Fe 1-y M y) 1-x Ti x) O 3 (2 ')
(0 <x <0.40, 0.01 <y <0.10)
そして、圧電体層70は、(100)面に優先配向しているものである。ここで、本明細書において、「(100)面に優先配向している」とは、全ての結晶が(100)面に配向している場合と、ほとんどの結晶(例えば80%以上)が(100)面に配向している場合とを含むものである。具体的には、本実施形態の圧電体層70は、(100)面の配向度が0.80以上、好ましくは0.90以上である。なお、圧電体層70の(100)面の配向度は下記式で求められる。
The
圧電体層70の(100)面の配向度=[圧電体層70の(100)面に由来する回折ピークの面積]/[圧電体層70に由来する(100)面、(110)面及び(111)面の回折ピークの面積の総和]
Degree of orientation of (100) plane of
このような圧電素子300の個別電極である各第2電極80には、インク供給路14側の端部近傍から引き出され、弾性膜50上や必要に応じて設ける絶縁体膜上にまで延設される、例えば、金(Au)等からなるリード電極90が接続されている。
Each
このような圧電素子300が形成された流路形成基板10上、すなわち、第1電極60、弾性膜50や必要に応じて設ける絶縁体膜及びリード電極90上には、マニホールド100の少なくとも一部を構成するマニホールド部31を有する保護基板30が接着剤35を介して接合されている。このマニホールド部31は、本実施形態では、保護基板30を厚さ方向に貫通して圧力発生室12の幅方向に亘って形成されており、上述のように流路形成基板10の連通部13と連通されて各圧力発生室12の共通のインク室となるマニホールド100を構成している。また、流路形成基板10の連通部13を圧力発生室12毎に複数に分割して、マニホールド部31のみをマニホールドとしてもよい。さらに、例えば、流路形成基板10に圧力発生室12のみを設け、流路形成基板10と保護基板30との間に介在する部材(例えば、弾性膜50、必要に応じて設ける絶縁体膜等)にマニホールド100と各圧力発生室12とを連通するインク供給路14を設けるようにしてもよい。
At least a part of the manifold 100 is formed on the flow
また、保護基板30の圧電素子300に対向する領域には、圧電素子300の運動を阻害しない程度の空間を有する圧電素子保持部32が設けられている。圧電素子保持部32は、圧電素子300の運動を阻害しない程度の空間を有していればよく、当該空間は密封されていても、密封されていなくてもよい。
A piezoelectric
このような保護基板30としては、流路形成基板10の熱膨張率と略同一の材料、例えば、ガラス、セラミック材料等を用いることが好ましく、本実施形態では、流路形成基板10と同一材料のシリコン単結晶基板を用いて形成した。
As such a
また、保護基板30には、保護基板30を厚さ方向に貫通する貫通孔33が設けられている。そして、各圧電素子300から引き出されたリード電極90の端部近傍は、貫通孔33内に露出するように設けられている。
The
また、保護基板30上には、並設された圧電素子300を駆動するための駆動回路120が固定されている。この駆動回路120としては、例えば、回路基板や半導体集積回路(IC)等を用いることができる。そして、駆動回路120とリード電極90とは、ボンディングワイヤー等の導電性ワイヤーからなる接続配線121を介して電気的に接続されている。
A
また、このような保護基板30上には、封止膜41及び固定板42とからなるコンプライアンス基板40が接合されている。ここで、封止膜41は、剛性が低く可撓性を有する材料からなり、この封止膜41によってマニホールド部31の一方面が封止されている。また、固定板42は、比較的硬質の材料で形成されている。この固定板42のマニホールド100に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、マニホールド100の一方面は可撓性を有する封止膜41のみで封止されている。
In addition, a
このような本実施形態のインクジェット式記録ヘッドIでは、図示しない外部のインク供給手段と接続したインク導入口からインクを取り込み、マニホールド100からノズル開口21に至るまで内部をインクで満たした後、駆動回路120からの記録信号(駆動信号)に従い、圧力発生室12に対応するそれぞれの第1電極60と第2電極80との間に電圧を印加し、弾性膜50、密着層56、第1電極60及び圧電体層70をたわみ変形させることにより、各圧力発生室12内の圧力が高まりノズル開口21からインク滴が吐出する。
In such an ink jet recording head I of this embodiment, ink is taken in from an ink introduction port connected to an external ink supply means (not shown), and the interior from the manifold 100 to the
図5は、このようなインクジェット式記録装置の制御構成例を示すブロック図である。図5を参照して、本実施形態のインクジェット式記録装置の制御について説明する。本実施形態のインクジェット式記録装置は、図5に示すように、プリンターコントローラー511とプリントエンジン512とから概略構成されている。プリンターコントローラー511は、外部インターフェース513(以下、外部I/F513という)と、各種データを一時的に記憶するRAM514と、制御プログラム等を記憶したROM515と、CPU等を含んで構成した制御部516と、クロック信号を発生する発振回路517と、インクジェット式記録ヘッドIへ供給するための駆動信号を発生する駆動信号発生回路519と、駆動信号や印刷データに基づいて展開されたドットパターンデータ(ビットマップデータ)等をプリントエンジン512に送信する内部インターフェース520(以下、内部I/F520という)とを備えている。
FIG. 5 is a block diagram showing a control configuration example of such an ink jet recording apparatus. With reference to FIG. 5, the control of the ink jet recording apparatus of the present embodiment will be described. As shown in FIG. 5, the ink jet recording apparatus of the present embodiment is schematically configured by a
外部I/F513は、例えば、キャラクターコード、グラフィック関数、イメージデータ等によって構成される印刷データを、図示しないホストコンピューター等から受信する。また、この外部I/F513を通じてビジー信号(BUSY)やアクノレッジ信号(ACK)が、ホストコンピューター等に対して出力される。RAM514は、受信バッファー521、中間バッファー522、出力バッファー523、及び、図示しないワークメモリーとして機能する。そして、受信バッファー521は外部I/F513によって受信された印刷データを一時的に記憶し、中間バッファー522は制御部516が変換した中間コードデータを記憶し、出力バッファー523はドットパターンデータを記憶する。なお、このドットパターンデータは、階調データをデコード(翻訳)することにより得られる印字データによって構成してある。
The external I /
また、ROM515には、各種データ処理を行わせるための制御プログラム(制御ルーチン)の他に、フォントデータ、グラフィック関数等を記憶させてある。
The
制御部516は、受信バッファー521内の印刷データを読み出すと共に、この印刷データを変換して得た中間コードデータを中間バッファー522に記憶させる。また、中間バッファー522から読み出した中間コードデータを解析し、ROM515に記憶させているフォントデータ及びグラフィック関数等を参照して、中間コードデータをドットパターンデータに展開する。そして、制御部516は、必要な装飾処理を施した後に、この展開したドットパターンデータを出力バッファー523に記憶させる。さらに、制御部516は、波形設定手段としても機能し、駆動信号発生回路519を制御することにより、この駆動信号発生回路519から発生される駆動信号の波形形状を設定する。かかる制御部516は、後述する駆動回路(図示なし)などと共に本発明の駆動手段を構成する。また、インクジェット式記録ヘッドIを駆動する液体噴射駆動装置としては、この駆動手段を少なくとも具備するものであればよく、本実施形態では、プリンターコントローラー511を含むものとして例示してある。
The
そして、インクジェット式記録ヘッドIの1行分に相当するドットパターンデータが得られたならば、この1行分のドットパターンデータは、内部I/F520を通じてインクジェット式記録ヘッドIに出力される。また、出力バッファー523から1行分のドットパターンデータが出力されると、展開済みの中間コードデータは中間バッファー522から消去され、次の中間コードデータについての展開処理が行われる。
If dot pattern data corresponding to one line of the ink jet recording head I is obtained, the dot pattern data for one line is output to the ink jet recording head I through the internal I /
プリントエンジン512は、インクジェット式記録ヘッドIと、紙送り機構524と、キャリッジ機構525とを含んで構成してある。紙送り機構524は、紙送りモーターとプラテン8等から構成してあり、記録紙等の印刷記憶媒体をインクジェット式記録ヘッドIの記録動作に連動させて順次送り出す。即ち、この紙送り機構524は、印刷記憶媒体を副走査方向に相対移動させる。
The
キャリッジ機構525は、図1に示すようにインクジェット式記録ヘッドIを搭載可能なキャリッジ3と、このキャリッジ3を主走査方向に沿って走行させるキャリッジ駆動部とから構成してあり、キャリッジ3を走行させることによりインクジェット式記録ヘッドIを主走査方向に移動させる。なお、キャリッジ駆動部は、上述したように駆動モーター6及びタイミングベルト7等で構成されている。
As shown in FIG. 1, the
インクジェット式記録ヘッドIは、副走査方向に沿って多数のノズル開口21を有し、ドットパターンデータ等によって規定されるタイミングで各ノズル開口21から液滴を吐出する。そして、このようなインクジェット式記録ヘッドIの圧電素子300には、図示しない外部配線を介して電気信号、例えば、後述する駆動信号(COM)や記録データ(SI)等が供給される。このように構成されるプリンターコントローラー511及びプリントエンジン512では、プリンターコントローラー511と、駆動信号発生回路519から出力された所定の駆動波形を有する駆動信号を選択的に圧電素子300に入力するラッチ532、レベルシフター533及びスイッチ534等を有する駆動回路(図示なし)とが圧電素子300に所定の駆動信号を印加する駆動手段となる。
The ink jet recording head I has a large number of
なお、これらのシフトレジスター(SR)531、ラッチ532、レベルシフター533、スイッチ534及び圧電素子300は、それぞれ、インクジェット式記録ヘッドIの各ノズル開口21毎に設けられており、これらのシフトレジスター531、ラッチ532、レベルシフター533及びスイッチ534は、駆動信号発生回路519が発生した吐出駆動信号や緩和駆動信号から駆動パルスを生成する。ここで、駆動パルスとは実際に圧電素子300に印加される印加パルスのことである。
The shift register (SR) 531, the
このようなインクジェット式記録ヘッドIでは、最初に発振回路517からのクロック信号(CK)に同期して、ドットパターンデータを構成する記録データ(SI)が出力バッファー523からシフトレジスター531へシリアル伝送され、順次セットされる。この場合、まず、全ノズル開口の印字データにおける最上位ビットのデータがシリアル伝送され、この最上位ビットのデータシリアル伝送が終了したならば、上位から2番目のビットのデータがシリアル伝送される。以下同様に、下位ビットのデータが順次シリアル伝送される。
In such an ink jet recording head I, first, recording data (SI) constituting dot pattern data is serially transmitted from the
そして、当該ビットの記録データの全ノズル分が各シフトレジスター531にセットされたならば、制御部516は、所定のタイミングでラッチ532へラッチ信号(LAT)を出力させる。このラッチ信号により、ラッチ532は、シフトレジスター531にセットされた印字データをラッチする。このラッチ532がラッチした記録データ(LATout)は、電圧増幅器であるレベルシフター533に印加される。このレベルシフター533は、記録データが例えば「1」の場合に、スイッチ534が駆動可能な電圧値、例えば、数十ボルトまでこの記録データを昇圧する。そして、この昇圧された記録データは各スイッチ534に印加され、各スイッチ534は、当該記録データにより接続状態になる。
When all the nozzles of the recording data of the bit are set in each
そして、各スイッチ534には、駆動信号発生回路519が発生した駆動信号(COM)も印加されており、スイッチ534が選択的に接続状態になると、このスイッチ534に接続された圧電素子300に選択的に駆動信号が印加される。このように、例示したインクジェット式記録ヘッドIでは、記録データによって圧電素子300に吐出駆動信号を印加するか否かを制御することができる。例えば、記録データが「1」の期間においてはラッチ信号(LAT)によりスイッチ534が接続状態となるので、駆動信号(COMout)を圧電素子300に供給することができ、この供給された駆動信号(COMout)により圧電素子300が変位(変形)する。また、記録データが「0」の期間においてはスイッチ534が非接続状態となるので、圧電素子300への駆動信号の供給は遮断される。この記録データが「0」の期間において、各圧電素子300は直前の電位を保持するので、直前の変位状態が維持される。
The drive signal (COM) generated by the drive
なお、上記の圧電素子300は、撓み振動モードの圧電素子300である。この、撓み振動モードの圧電素子300を用いると、圧電体層70が電圧印加に伴い電圧と垂直方向(31方向)に縮むことで、圧電素子300および振動板が圧力発生室12側に撓み、これにより圧力発生室12を収縮させる。一方電圧を減少させることにより圧電体層70が31方向に伸びることで、圧電素子300および振動板が圧力発生室12の逆側に撓み、これにより圧力発生室12を膨張させる。このようなインクジェット式記録ヘッドIでは、圧電素子300に対する充放電に伴って対応する圧力発生室12の容積が変化するので、圧力発生室12の圧力変動を利用してノズル開口21から液滴を吐出させることができる。
The
ここで、圧電素子300に入力される本実施形態の駆動信号(COM)を表す駆動波形について説明する。なお、図6は、本実施形態の駆動信号を示す駆動波形である。
Here, a drive waveform representing the drive signal (COM) of this embodiment input to the
圧電素子300に入力される駆動波形は、共通電極(第1電極60)を基準電位(本実施形態ではVbs)として、個別電極(第2電極80)に印加されるものである。すなわち、駆動波形によって個別電極(第2電極80)に印加される電圧は、基準電位(Vbs)を基準としての電位として示される。
The drive waveform input to the
本実施形態の基準となる駆動波形は、図6に示すように、駆動波形を入力する準備状態(駆動待機状態)となると、例えば、抗電圧以上の中間電位Vmが印加される状態となる。この中間電位Vmを維持する工程は、圧電体層70を分極状態とする分極工程P01であり、これに続いて中間電位Vmを維持した状態から中間電位Vmとは逆極性の最小電位である第1電位V1まで降下させると共に圧力発生室12を膨張させる第1の電圧変化工程P02と、第1電位V1を一定時間維持する第1のホールド工程P03と、第1電位V1から第1電位V1とは逆極性で中間電位Vmとは同極性で当該中間電位Vmより大きい最大電位である第2電位V2まで上昇させて圧力発生室12を収縮させる第2の電圧変化工程P04と、第2電位V2を一定時間維持する第2のホールド工程P05と、第2電位V2から中間電位Vmより小さな第3電位V3まで下降させて圧力発生室12を膨張させる第3の電圧変化工程P06と、第3電位V3を一定時間維持する第3のホールド工程P07と、第3電位V3から中間電位Vmまで電位を上昇させる第4の電圧変化工程P08と、中間電位Vmを維持する第4のホールド工程P09とで構成されるようにしてもよい。ここで、第2電位V2から中間電位Vmより少し低い第3電位V3まで下降させる第3の電圧変化工程P06と、第3電位V3を一定時間維持する第3のホールド工程P07と、第3電位V3から中間電位Vmまで電位を上昇させる第4の電圧変化工程P08とは、液滴を吐出した後のメニスカスを安定化させるためのものであり、従来より公知のものである。
As shown in FIG. 6, the drive waveform serving as a reference in the present embodiment is in a state in which, for example, an intermediate potential Vm higher than the coercive voltage is applied when the drive waveform is in a preparation state (drive standby state). The step of maintaining the intermediate potential Vm is a polarization step P01 in which the
本発明のBi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、電源オフの状態では、分極が維持されておらず、非分極状態(極一部は分極が維持されているが、実質的に非分極状態といえる場合を含む)であり、上述した駆動波形200が圧電素子300に出力される準備状態(駆動待機状態)になると、中間電位Vmが印加された状態となり、圧電体層70が分極状態となる。そして、上述した駆動波形が入力されると、第1の電圧変化工程P02によって中間電位Vmから逆極性の最小電位V1まで電位が変化し、圧電体層70の分極が緩和される。これと同時に圧電素子300が圧力発生室12の容積を膨張させる方向に変形して、ノズル開口21内のメニスカスが圧力発生室12側に引き込まれる。次いで、第2の電圧変化工程P04によって、圧電素子300が圧力発生室12の容積を収縮させる方向に変形することにより、ノズル開口21内のメニスカスが圧力発生室12側から大きく押し出され、ノズル開口21から液滴が吐出される。
The predetermined
ここで、第1電位V1は、マイナス電位であり、例えば、−1V〜−15Vとしている。この電位は、電界に換算すると、−1.1V/μm〜−16.7V/μmである。そして、第2の電圧変化工程P04で、第1電位V1から第1電位V1とは逆極性で中間電位Vmとは同極性で当該中間電位Vmより大きい最大電位である第2電位V2まで上昇させる。本発明では、第1電位V1と第2電位V2との電位差を、55V以上、電界に換算すると、6.1×107(V/m)以上として圧力発生室12を収縮させる。
Here, the first potential V1 is a negative potential, and is set to, for example, −1V to −15V. This potential is −1.1 V / μm to −16.7 V / μm in terms of electric field. Then, in the second voltage changing step P04, the first potential V1 is increased to the second potential V2, which has the opposite polarity to the first potential V1, the same polarity as the intermediate potential Vm, and the maximum potential greater than the intermediate potential Vm. . In the present invention, when the potential difference between the first potential V1 and the second potential V2 is converted to an electric field of 55 V or more, the
本発明は、上述した所定の圧電材料からなる圧電体層70を具備する圧電素子300を駆動する場合、駆動波形が、抗電圧以上の中間電位Vmに保持して当該圧電素子を分極状態とする工程と、中間電位Vmの印加状態から当該中間電位Vmとは逆極性の最小電圧である第1電位V1を印加して前記圧電体層の分極を緩和させる工程と、第1電位V1の印加状態から前記中間電位Vmより大きな最大電圧である第2電位V2を印加して液体を吐出する工程とを有するようにし、第1電位V1と第2電位V2との電位差を、55V以上、電界に換算すると、6.1×107(V/m)以上として圧力発生室12を収縮させることで、大きな変位量を確保するという効果を奏するものである。ここで、抗電圧以上の中間電圧とは、低い周波数(例えば66Hz〜1kHz)で圧電体層70のヒステリシスカーブを描いたときの抗電圧の電圧以上の電圧のことを指すが、駆動波形が高周波化することで実質的な抗電圧は高い方向に変化することに留意が必要である。本実施形態では、10V以上であり、電界では11.1V/μm以上となる。
In the present invention, when the
かかる本発明を完成するにあたって、まず、Bi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、分極状態を維持できず、電界を受けて分極して歪んだ状態から、電界が除去されると時間と共に分極緩和が生じて歪がない状態となり、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られることを知見した。また、分極緩和した状態から最大電圧である第2電位V2まで電圧を変化させると、(100)面と(110)面に優先配向したビスマス(Bi)、鉄(Fe)、バリウム(Ba)及びチタン(Ti)を含みペロブスカイト構造を有する複合酸化物では、配向性の違いにより変位量が異なることを知見した。具体的には、(100)面配向の複合酸化物の変位量は、電界印加に伴い線形的に増加するが、(110)面配向の変位量は、非線形的に増加する。本実施形態で用いる、菱面対称構造の(100)面配向の複合酸化物は、自発分極の方向がすべて電界方向に対して45°程度の傾きをもち、分極方向の合成ベクトルが電界印加方向と一致する。このため、(100)面配向の複合酸化物では、変位が安定した状態で起こり、前記駆動波形の第2の電圧変化工程P04で、本来の圧電定数に比例した所望の変位量を得ることができ、電圧変化を大きくするほど大きな変位量が得られる。一方、菱面対称構造の(110)面配向のBi、Fe、Ba及びTiを含みペロブスカイト構造を有する複合酸化物、すなわち、BFO−BT系圧電材料では、分極方向が電界に対して2つの状態をとる。そして、その一方である、電界方向に対して垂直方向の分極軸は、前記駆動波形の第2の電圧変化工程P04で、自発分極の向きの変化、すなわち、非180度ドメインローテーションが発生し、本来の圧電定数に基づく変位量よりも大きな変位が発生するが、この非180度ドメインローテーション現象の大部分は比較的低電界領域で起こる。よって、高電界領域で圧電素子を駆動する場合は、(100)面配向の複合酸化物を圧電素子に用いた方が、より大きな変位量を得ることができる。この大きな変位量は、一般的に圧電材料として用いられているPZTを圧電素子に用いた場合と比較すると、例えば、第2電位V2と第1電位V1との電位差が60V、電界に換算すると、電界が6.7×107(V/m)において、ほぼ同じ変位量となる。
In completing the present invention, first, the predetermined
(実施例)(100)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの膜厚で形成した後、同じくDCスパッター法により(111)面に配向し厚さ50nmの白金膜(第1電極60)を形成した。この白金膜上に、スパッター法もしくはゾル−ゲル法にてニッケル酸ランタン(LaNiO3)を40nmの厚さで成膜し、配向制御のシード層とした。
(Example) (100) Planar Orientation First, a silicon oxide (SiO 2 ) film having a thickness of 1200 nm was formed on the surface of a (110) single crystal silicon (Si) substrate by thermal oxidation. Next, a 400 nm-thickness zirconium film was formed on the SiO 2 film by DC sputtering, and this was heat-treated (RTA) in an oxygen atmosphere to form a zirconia layer. Zirconium was formed on the zirconia layer as an adhesion layer by DC sputtering with a film thickness of 40 nm, and then a platinum film (first electrode 60) having a thickness of 50 nm and oriented in the (111) plane was formed by DC sputtering. On this platinum film, a lanthanum nickelate (LaNiO 3 ) film having a thickness of 40 nm was formed by sputtering or sol-gel method to form an orientation control seed layer.
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
Next, a piezoelectric film was laminated on the
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
And this precursor solution was dripped on the board | substrate with which the 1st electrode was formed, the board | substrate was rotated at 3000 rpm, and the piezoelectric precursor film | membrane was formed (application | coating process). Next, it was dried at 180 ° C. for 2 minutes on a hot plate (drying process). Subsequently, degreasing was performed at 350 ° C. for 4 minutes (degreasing step). Next, in an oxygen atmosphere, a piezoelectric film was formed by baking at 650 ° C. for 5 minutes with a RTA (Rapid Thermal Annealing) apparatus (baking step). A series of steps of the coating step, the drying step, the degreasing step, and the firing step was repeated 12 times to form a
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
Thereafter, an iridium film (second electrode 80) having a thickness of 50 nm is formed as a
(比較例)(110)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
(Comparative Example) (110) Planar Orientation First, a silicon oxide (SiO 2 ) film having a thickness of 1200 nm was formed on the surface of a (110) single crystal silicon (Si) substrate by thermal oxidation. Next, a 400 nm-thickness zirconium film was formed on the SiO 2 film by DC sputtering, and this was heat-treated (RTA) in an oxygen atmosphere to form a zirconia layer. Zirconium was formed to a thickness of 40 nm as an adhesion layer on this zirconia layer by DC sputtering, and then a platinum film (first electrode 60) having a thickness of 100 nm and oriented to the (111) plane was also formed by DC sputtering.
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
Next, a piezoelectric film was laminated on the
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
And this precursor solution was dripped on the board | substrate with which the 1st electrode was formed, the board | substrate was rotated at 3000 rpm, and the piezoelectric precursor film | membrane was formed (application | coating process). Next, it was dried at 180 ° C. for 2 minutes on a hot plate (drying process). Subsequently, degreasing was performed at 350 ° C. for 4 minutes (degreasing step). Next, the film was baked at 750 ° C. for 5 minutes with an RTA (Rapid Thermal Annealing) apparatus in an oxygen atmosphere to form a piezoelectric film (firing step). A series of steps of the coating step, the drying step, the degreasing step, and the firing step was repeated 12 times to form a
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
Thereafter, an iridium film (second electrode 80) having a thickness of 50 nm is formed as a
(試験例)
実施例の(100)面配向の圧電体層70を具備する圧電素子300と比較例の(110)面配向の圧電体層70を具備する圧電素子300の変位量を測定した。
(Test example)
The displacement amounts of the
図6に示す駆動波形を基本波形として用い、前記駆動波形の中間電位をVm=20Vとし、最小電位である第1電位V1を各配向において変位量が最も高くなる電位、すなわち、(100)面配向の場合はV1=−7V、(110)面配向の場合はV1=−10Vとした。そして、前記駆動波形の最小電位V1から最大電位V2までの電位差ΔVを駆動電圧(V)として、この電位差ΔVを変化させた波形を200ms間隔と十分なディレイタイムをとった状態で印加することにより、圧電素子300の変位量を求めた。なお、前記駆動電圧(V)と圧電体層70の膜厚(900nm)との関係から電界(V/m)を算出した。変位量は、グラフテック社製のレーザードップラー振動計で計測した速度データを、デクロイ社製のオシロスコープにて時間積分することにより算出している(25℃)。測定サンプルは図3の形状に加工され、キャビティーが形成されているセグメントを使用し、各駆動波形を印加して測定した。
The drive waveform shown in FIG. 6 is used as a basic waveform, the intermediate potential of the drive waveform is Vm = 20 V, and the first potential V1, which is the minimum potential, is the potential at which the displacement amount is highest in each orientation, that is, the (100) plane. In the case of orientation, V1 = -7V, and in the case of (110) plane orientation, V1 = -10V. Then, the potential difference ΔV from the minimum potential V1 to the maximum potential V2 of the driving waveform is set as a driving voltage (V), and a waveform in which the potential difference ΔV is changed is applied with an interval of 200 ms and a sufficient delay time. The displacement amount of the
上記の手法で測定した各圧電素子300の変位量(nm)と電界(V/m)との関係を図7に示す。なお、電界(V/m)は、図6に示す駆動波形の第2電位V2と第1電位V1との電位差ΔVと圧電体層70の膜厚(900nm)とを考慮して、印加された電界の変化として示した。
FIG. 7 shows the relationship between the displacement (nm) of each
この結果、実施例の(100)面配向の圧電素子を駆動すると、前記駆動波形の第2電位V2と第1電位V1との電位差から換算した電界が6.1×107(V/m)より大きい領域で、変位量が(110)面配向の比較例より大きくなり、電界が6.1×107(V/m)より小さくなると、(110)面配向より小さくなることがわかった。よって、(100)面配向のBFO−BT系圧電材料を用いた圧電素子を所定の駆動波形で、電界が6.1×107(V/m)以上となるように駆動することにより、変位量の向上の効果を得ることができる。また、(100)面配向の圧電素子の変位量は、低電界から高電界領域にかけて、線形的に増加するので、(100)面配向のBFO−BT系圧電材料を用いることにより、電界強度に対応する所望の変位量を得ることができる。 As a result, when the (100) plane oriented piezoelectric element of the example is driven, the electric field converted from the potential difference between the second potential V2 and the first potential V1 of the driving waveform is 6.1 × 10 7 (V / m). It was found that in a larger region, the displacement amount becomes larger than that of the comparative example of (110) plane orientation, and when the electric field is smaller than 6.1 × 10 7 (V / m), it becomes smaller than (110) plane orientation. Accordingly, the piezoelectric element using the (100) -oriented BFO-BT piezoelectric material is driven with a predetermined driving waveform so that the electric field is 6.1 × 10 7 (V / m) or more. The effect of improving the amount can be obtained. Further, since the displacement amount of the (100) plane-oriented piezoelectric element increases linearly from the low electric field to the high electric field region, the electric field strength can be increased by using the (100) plane-oriented BFO-BT piezoelectric material. A corresponding desired displacement amount can be obtained.
(他の実施形態)
以上、本発明の一実施形態を説明したが、本発明の基本的構成は上述したものに限定されるものではない。例えば、上述した実施形態では、流路形成基板10として、シリコン単結晶基板を例示したが、特にこれに限定されず、例えば、SOI基板、ガラス等の材料を用いるようにしてもよい。
(Other embodiments)
As mentioned above, although one Embodiment of this invention was described, the basic composition of this invention is not limited to what was mentioned above. For example, in the above-described embodiment, the silicon single crystal substrate is exemplified as the flow
さらに、上述した実施形態では、基板(流路形成基板10)上に第1電極60、圧電体層70及び第2電極80を順次積層した圧電素子300を例示したが、特にこれに限定されず、例えば、圧電材料と電極形成材料とを交互に積層させて軸方向に伸縮させる縦振動型の圧電素子を具備する液体噴射装置にも本発明を適用することができる。
Furthermore, in the above-described embodiment, the
なお、上記各実施形態においては、液体噴射ヘッドの一例としてインクジェット式記録ヘッドを、また液体噴射装置の一例としてインクジェット式記録装置を挙げて説明したが、本発明は、広く液体噴射装置全般を対象としたものであり、インク以外の液体を噴射する液体噴射装置にも勿論適用することができる。その他の液体噴射ヘッドとしては、例えば、プリンター等の画像記録装置に用いられる各種の記録ヘッド、液晶ディスプレイ等のカラーフィルターの製造に用いられる色材噴射ヘッド、有機ELディスプレイ、FED(電界放出ディスプレイ)等の電極形成に用いられる電極材料噴射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられ、かかる液体噴射ヘッドを備えた液体噴射装置にも適用できる。 In each of the above embodiments, an ink jet recording head has been described as an example of a liquid ejecting head, and an ink jet recording apparatus has been described as an example of a liquid ejecting apparatus. However, the present invention covers a wide range of liquid ejecting apparatuses in general. Of course, the present invention can also be applied to a liquid ejecting apparatus that ejects liquid other than ink. Other liquid ejecting heads include, for example, various recording heads used in image recording apparatuses such as printers, color material ejecting heads used in the manufacture of color filters such as liquid crystal displays, organic EL displays, and FEDs (field emission displays). Examples thereof include an electrode material ejection head used for electrode formation, a bio-organic matter ejection head used for biochip production, and the like, and can also be applied to a liquid ejection apparatus including such a liquid ejection head.
I インクジェット式記録ヘッド(液体噴射ヘッド)、 II インクジェット式記録装置(液体噴射装置)、 10 流路形成基板、 12 圧力発生室、 13 連通部、 14 インク供給路、 20 ノズルプレート、 21 ノズル開口、 30 保護基板、 31 マニホールド部、 32 圧電素子保持部、 40 コンプライアンス基板、 50 弾性膜、 60 第1電極、 70 圧電体層、 80 第2電極、 90 リード電極、 100 マニホールド、 120 駆動回路、 300 圧電素子 I ink jet recording head (liquid ejecting head), II ink jet recording apparatus (liquid ejecting apparatus), 10 flow path forming substrate, 12 pressure generating chamber, 13 communicating portion, 14 ink supply path, 20 nozzle plate, 21 nozzle opening, 30 protective substrate, 31 manifold portion, 32 piezoelectric element holding portion, 40 compliance substrate, 50 elastic film, 60 first electrode, 70 piezoelectric layer, 80 second electrode, 90 lead electrode, 100 manifold, 120 drive circuit, 300 piezoelectric element
Claims (1)
前記圧電体層は、(100)面に優先配向した、ビスマス、鉄、バリウム及びチタンを含むペロブスカイト構造を有する複合酸化物からなり、
前記駆動波形は、
前記圧電体層の抗電圧以上の第1電圧を印加して分極状態とする分極工程と、
前記第1電圧の印加状態から前記第1電圧とは逆極性の電圧を印加して前記圧電体層の分極を緩和させると共に最小電位まで降下させる第1の電圧変化工程と、
前記最小電位から、前記第1電圧より大きな電圧を印加して液体を吐出すると共に最大電位まで上昇させる第2の電圧変化工程と、を有し、
前記最大電位と最小電位における前記圧電体層にかかる電界の差が、6.1×107(V/m)以上であることを特徴とする液体噴射装置。
A liquid ejecting apparatus comprising: a piezoelectric element including a piezoelectric layer and an electrode provided on the piezoelectric layer; and a driving unit that supplies a driving waveform for driving the piezoelectric element to the piezoelectric element,
The piezoelectric layer is made of a complex oxide having a perovskite structure including bismuth, iron, barium and titanium, preferentially oriented in the (100) plane,
The drive waveform is
A polarization step of applying a first voltage equal to or higher than the coercive voltage of the piezoelectric layer to obtain a polarization state;
A first voltage changing step in which a voltage having a polarity opposite to that of the first voltage is applied from the application state of the first voltage to relax the polarization of the piezoelectric layer and drop it to a minimum potential;
A second voltage changing step of applying a voltage higher than the first voltage to discharge the liquid from the minimum potential and raising the voltage to the maximum potential;
A liquid ejecting apparatus, wherein a difference in electric field applied to the piezoelectric layer between the maximum potential and the minimum potential is 6.1 × 10 7 (V / m) or more.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012047422A JP2013180530A (en) | 2012-03-02 | 2012-03-02 | Liquid ejecting apparatus |
US13/767,283 US8752926B2 (en) | 2012-02-16 | 2013-02-14 | Liquid ejecting apparatus |
EP13155520.3A EP2628596B1 (en) | 2012-02-16 | 2013-02-15 | Liquid ejecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012047422A JP2013180530A (en) | 2012-03-02 | 2012-03-02 | Liquid ejecting apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013180530A true JP2013180530A (en) | 2013-09-12 |
Family
ID=49271534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012047422A Pending JP2013180530A (en) | 2012-02-16 | 2012-03-02 | Liquid ejecting apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013180530A (en) |
-
2012
- 2012-03-02 JP JP2012047422A patent/JP2013180530A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5577844B2 (en) | Liquid ejector | |
US8668310B2 (en) | Liquid-ejecting head, liquid-ejecting apparatus, piezoelectric element, and piezoelectric material | |
JP5453960B2 (en) | Liquid ejecting head, liquid ejecting apparatus, and actuator device | |
JP5534179B2 (en) | Piezoelectric film, piezoelectric element, liquid ejecting head, and liquid ejecting apparatus | |
JP6115720B2 (en) | Liquid ejecting apparatus and liquid ejecting head driving method | |
US8752926B2 (en) | Liquid ejecting apparatus | |
JP2010089470A (en) | Liquid injection head, liquid injection device, and actuator device | |
JP6145992B2 (en) | Liquid ejector | |
US9162455B2 (en) | Liquid ejecting apparatus | |
JP5888344B2 (en) | Piezoelectric element driving method and piezoelectric device | |
JP2013125914A (en) | Liquid injection device | |
US9061493B2 (en) | Liquid ejecting apparatus and manufacturing method thereof | |
JP2013180530A (en) | Liquid ejecting apparatus | |
JP2013139096A (en) | Liquid ejecting apparatus | |
JP2013180531A (en) | Liquid ejecting apparatus | |
JP2013166330A (en) | Liquid ejecting apparatus | |
JP2013166329A (en) | Liquid ejecting apparatus | |
JP2015208925A (en) | Design method of piezoelectric element, liquid injection device and driving method of liquid injection head | |
JP2010194834A (en) | Liquid discharge head, liquid discharge device, method for setting bias voltage of liquid discharge head, method for driving liquid discharge head | |
JP5733374B2 (en) | Liquid ejecting head, liquid ejecting apparatus, and actuator device |