JP2013179407A - 通信制御装置、通信制御方法および通信制御プログラム - Google Patents

通信制御装置、通信制御方法および通信制御プログラム Download PDF

Info

Publication number
JP2013179407A
JP2013179407A JP2012041245A JP2012041245A JP2013179407A JP 2013179407 A JP2013179407 A JP 2013179407A JP 2012041245 A JP2012041245 A JP 2012041245A JP 2012041245 A JP2012041245 A JP 2012041245A JP 2013179407 A JP2013179407 A JP 2013179407A
Authority
JP
Japan
Prior art keywords
mobile station
metric
layer
scheduling
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041245A
Other languages
English (en)
Inventor
Yosuke Akimoto
陽介 秋元
Satoshi Konishi
聡 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2012041245A priority Critical patent/JP2013179407A/ja
Publication of JP2013179407A publication Critical patent/JP2013179407A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】通信システムにおいて、スループット特性を向上させる。
【解決手段】基地局装置1の通信制御装置は、移動局装置ごとにあらかじめ定められたメトリックを計算するメトリック計算部11と、前記メトリック計算部11により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行うスケジューリング部12と、前記スケジューリング部12により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てるDMRS系列割り当て部13と、を備える。
【選択図】図1

Description

本発明は、通信制御装置、通信制御方法および通信制御プログラムに関する。
従来、3GPP(Third Generation Partnership Project)で検討されている標準規格の一つとしてLTE(Long Term Evolution)が知られている。LTEは順次改訂されている。
LTE Rel.8〜10では、上りリンクデータ信号(PUSCH:Physical Uplink Shared Channel)と信号復調時のチャネル等化に利用するチャネルを推定する目的で送信される復調参照信号(DMRS:Demodulation Reference Signal)に対して、等電力かつ同じプレコーディングを適用して送信する。
無線通信システムにおいて、チャネル推定の誤差は伝搬路の等化を不完全にするため、チャネル推定の誤差が大きくなるほどデータ部の誤り率(例えば、BLER:Block Error Rate)が大きくなる。
このため、DMRSにおける干渉の影響はできるだけ軽減されることが望ましい。例えば、LTE Rel.10において、SU−MIMO(Single User − Multiple Input Multiple Output)を利用した複数レイヤ信号の場合、それぞれのレイヤに対応するDMRSはサイクリックシフト(CS)による完全直交により、レイヤ間干渉を低減する。
一方、LTE Rel.10の次のLTE Rel.11では、例えば、1つの移動局装置から送信された上りリンク信号を複数の基地局装置で受信する、CoMP(Coordinated Multiple Point)方式が検討されている。
上りリンクでのCoMP方式では、同一リソース(例えば、同一の時間、周波数)を利用して他の移動局装置から送信される干渉信号をキャンセルするという用途だけでなく、複数のセルで受信した所望信号を合成して利得を得ることができる一方、チャネル推定誤差の影響による特性劣化が大きいため、高精度なチャネル推定の実現が要求される。
この問題はMU−MIMO(Multi User − Multiple Input Multiple Output)にも共通であり、空間多重された移動局装置のDMRS同士が互いに干渉を与える場合には、その特性劣化の影響は特に大きい。
以上のようなデータ信号の特性劣化を回避するためには高精度なチャネル推定が求められるが、これを実現するためには、空間多重される移動局装置間で完全直交が成り立つDMRSを割り当てることにより、電波干渉の影響をキャンセルすることが有効である。
しかしながら、制御信号の制約や直交符号数の上限などの制約によってセル間で完全直交するDMRSを割り当てられないことがある。この場合には、移動局装置間で、相互相関が低い系列から生成される準直交のDMRSを割り当てることも有効である。
DMRSにおいて準直交を与える手法として、相互相関が低いルートシーケンスを割り当てる手法がある。つまり、異なるルートシーケンスにより生成されたDMRSが多重された場合には準直交が成立し、完全なキャンセルはできないもののその影響は軽減可能である。
一方、DMRSにおいて、完全直交を成立させる手法として、例えば、LTEでは、サイクリックシフトを利用することが可能である。
サイクリックシフトは、ルートシーケンスに対して、時間領域における信号シフトを行う。
DMRSはデータ信号(PUSCH)と同時に送信されるものであり、一度の送信において、その割り当て周波数は一致している。周波数領域の割り当てが完全に一致する移動局装置同士に対しては、サイクリックシフトを用いて同一のルートシーケンスを多重することにより、完全直交するDMRSを割り当てることができる。但し、CSによる多重の欠点として、遅延波の影響により直交性が低下すること、多重される二つのDMRS系列のルートシーケンスが同一であり、割り当てられる周波数帯域が完全に一致しなければならないことが挙げられる。
このサイクリックシフトの欠点を補うために、例えば、LTE Rel.10では、OCC(Orthogonal Cover Code)を使用した完全直交を利用することも可能となる。
図9は、LTEにおける上りリンク(アップリンク)のDMRSの配置の一例を示す図である。
図9には、時間および周波数の平面におけるOFDM(Orthogonal Frequency Division Multiplexing)シンボルの例を示してある。周波数方向には複数のサブキャリア(Subcarrier)がある。
また、第1スロットと第2スロットを示してある。各スロットでは、時間方向にPUSCHが配置される中で、例えば、一定の周期ごとのタイミングで、DMRSが配置される。
第1スロットにおけるDMRSには、ルートシーケンスとOCCとが乗算部1001により乗算された結果に基づいてサイクリックシフト部1002により決められた値(サイクリックシフト)が施される。
同様に、第2スロットにおけるDMRSには、ルートシーケンスとOCCとが乗算部1011により乗算された結果に基づいてサイクリックシフト部1012により決められた値(サイクリックシフト)が施される。
この例では、OCCでは、ルートシーケンスに対して、時間領域(2スロット間)におけるブロック拡散を行う。
OCCとしては、例えば、[+1、+1]または[+1、−1]を使用することが可能である。
一方で、OCCによる完全直交が成立するためには、多重される移動局装置それぞれにおいて第1のスロットと第2のスロットのDMRS系列が一致する必要がある。これに対し、LTE Rel.10では、スロット間にセル固有のサイクリックシフトホッピングが適用されるため、OCCによる直交は同一セル内でしか保証されなかった。この問題を解決するために、非特許文献1では、サイクリックシフトホッピングを無効にすることにより、セル間でのOCCの適用を可能にする技術を開示している(非特許文献1参照。)。
R1−112520,Samsung,"UL DMRS Enhancements in Rel.11",3GPP TSG RAN WG1#66,August 2011
上述した非特許文献1の方法には、次のような問題がある。
すなわち、OCCを利用することによる完全直交が成り立つ多重数は2のままであるが、例えば、CoMPにおいて3セクタ間での協調通信を行うのであれば、多重数3が成立することが望ましい。このため、OCCだけでは多重が完結せず、その他の方式の利用も考慮しなければならないと考えられる。
ここで、例えば、サイクリックシフトを利用する場合には、完全直交は成立するが、周波数リソースの割り当てが完全に一致する必要がある。このため、周波数リソースの割り当てを意図的に一致させない限り、サイクリックシフトによる完全直交の利用は困難である。つまり、OCCによる完全直交を割り当てた後に、ルートシーケンスによるランダマイズが実現されるようなDMRSの割り当てを基地局装置などが行わなければならない。
これに関し、非特許文献1では、OCCの割り当てとルートシーケンスの割り当てに関するスケジューリング手法までは提供していない。
このため、特に優先度が高い移動局装置について、DMRSの直交性低下による品質劣化という観点において、リソースが割り当てられることがない。ここで、例えば、PF(Proportional Fairness)に基づくスケジューリングを行っている場合には、スループットが低い移動局装置に優先的に良いリソースが割り当てられる。
以上のように、従来では、通信システムにおいて、スループット特性に関し、さらなる向上が望まれていた。
本発明は、このような事情を考慮してなされたもので、通信システムにおいて、スループット特性を向上させることができる通信制御装置、通信制御方法および通信制御プログラムを提供することを課題とする。
(1)上記の課題を解決するために、本発明に係る通信制御装置は、移動局装置ごとにあらかじめ定められたメトリックを計算するメトリック計算部と、前記メトリック計算部により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行うスケジューリング部と、前記スケジューリング部により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てるDMRS系列割り当て部と、を備えることを特徴とする。
(2)本発明は、上記した(1)に記載の通信制御装置において、前記DMRS系列割り当て部は、最も小さい方からあらかじめ定められた数のレイヤに割り当てられた移動局装置に対して、他のレイヤと完全直交するDMRS系列を割り当てる、ことを特徴とする。
(3)本発明は、上記した(2)に記載の通信制御装置において、前記最も小さい方からあらかじめ定められた数のレイヤの数が1である、ことを特徴とする。
(4)本発明は、上記した(2)に記載の通信制御装置において、前記最も小さい方からあらかじめ定められた数のレイヤの数と、前記他のレイヤの数とは、同一である、ことを特徴とする。
(5)本発明は、上記した(2)から上記した(4)のいずれか1つに記載の通信制御装置において、前記DMRS系列割り当て部は、前記最も小さい方からあらかじめ定められた数のレイヤと前記他のレイヤのうちで、2個以上のレイヤであるものについて、それぞれのレイヤごとに異なるルートシーケンスを割り当てる、ことを特徴とする。
(6)本発明は、上記した(5)に記載の通信制御装置において、前記異なるルートシーケンスは、上りリンク信号の送信を指示する制御信号中に含まれているDMRSサイクリックシフト指示ビットによって一意に決定される、ことを特徴とする。
(7)上記の課題を解決するために、本発明に係る通信制御方法は、メトリック計算部が、移動局装置ごとにあらかじめ定められたメトリックを計算し、スケジューリング部が、前記メトリック計算部により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行い、DMRS系列割り当て部が、前記スケジューリング部により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てる、ことを特徴とする。
(8)上記の課題を解決するために、本発明に係る通信制御プログラムは、メトリック計算部が、移動局装置ごとにあらかじめ定められたメトリックを計算するステップと、スケジューリング部が、前記メトリック計算部により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行うステップと、DMRS系列割り当て部が、前記スケジューリング部により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てるステップと、をコンピュータに実行させるためのプログラムである。
本発明によれば、通信システムにおいて、スループット特性を向上させることができる。
本発明の一実施形態に係る基地局装置の概略的な構成を示すブロック図である。 CoMPの概略的な構成の一例を示すブロック図である。 本発明の第1実施形態に係るレイヤ1に対する割り当ての一例を示す図である。 本発明の第1実施形態に係るレイヤ1〜レイヤ2に対する割り当ての一例を示す図である。 本発明の第1実施形態に係るレイヤ1〜レイヤ3に対する割り当ての一例を示す図である。 本発明の第1実施形態に係るDMRS系列の割り当ての一例を示す図である。 本発明の第2実施形態に係るレイヤ1〜レイヤ4に対する割り当ての一例およびDMRS系列の割り当ての一例を示す図である。 本発明の第3実施形態に係るレイヤ1〜レイヤ4に対する割り当ての一例およびDMRS系列の割り当ての一例を示す図である。 LTEにおける上りリンクのDMRSの配置の一例を示す図である。 アップリンクグラント中のビット列(サイクリックシフトインデックスビット)とサイクリックシフトとOCCとの対応の一例を示す図である。 サイクリックシフトインデックスビットとサイクリックシフトとOCCとルートシーケンス番号との対応の一例を示す図である。
以下、図面を参照し、本発明の実施形態について説明する。
[第1実施形態]
本実施形態では、複数の基地局装置(eNB)と、複数の移動局装置(UE)を有する無線通信システムを想定して、説明する。各基地局装置と各移動局装置とが、無線により、通信する。基地局装置から移動局装置へのリンクが下りリンクであり、移動局装置から基地局装置へのリンクが上りリンクである。
また、各基地局装置は、メトリック計算の機能やスケジューリングの機能やDMRS系列割り当ての機能を有して、移動局装置との通信を制御する通信制御装置を備える。
本実施形態では、移動局装置から基地局装置への信号を送信する上りリンクを想定し、さらに、アクセススキームとして、周波数領域での割り当てを実施するOFDMA(Orthogonal Frequency Division Multiple Access)もしくはSC−FDMA(Single Carrier − Frequency Division Multiple Access)を想定して、説明する。
図1は、本発明の一実施形態に係る基地局装置1の概略的な構成を示すブロック図である。
本実施形態に係る基地局装置1は、メトリック計算部11と、スケジューリング部12と、DMRS系列割り当て部13と、制御信号生成部14と、下りリンク信号生成部15と、無線送信部16と、アンテナ17と、を備える。
本実施形態に係る基地局装置1において行われる動作の例を示す。
基地局装置1において得られる上りチャネルに関する情報(上りチャネル情報)が、メトリック計算部11に入力される。
メトリック計算部11は、入力される上りチャネル情報に基づいて、各移動局装置と基地局装置との間の信号の信号応答を考慮して、周波数ブロックごとに割り当て優先度(本実施形態において、「メトリック」とも呼称する)を計算(算出)する。メトリック計算部11は、計算したメトリックをスケジューリング部12に出力する。
ここで、本実施形態では、周波数ブロックとして、リソースブロック(RB:Resource Block)を用いる。
例えば、PFを利用する場合には、式(1)に基づいて、移動局装置ごとにメトリックMetric(n,k)が算出される。
[数1]
Metric(n, k)=B(log(1+SINR(k)))/throughput(n−x)
・・・(1)
ここで、nは、サブフレームを表し、kはリソースブロック(もしくはリソースブロックのグループ)の位置を示すインデックスである。Bはメトリックの算出に利用したリソースブロックに一致する周波数帯域幅(Hz)に相当する。
SINR(k)は、信号等化後のSINR(本実施形態において、等化SINRとも呼称する)を単位リソースブロック(k)あたりで算出したものを表す。
throughputは、SINRを算出した単位リソースブロックに相当する周波数帯域幅を表す。throughput(n−x)は、移動局装置ごとに算出されるサブフレームn−xまでに実現されたスループットを表す。xは基地局装置の処理遅延時間である。
サブフレームとは、基地局装置におけるスケジューリングの最小単位であり、例えば、LTEでは1msに相当する。
式(1)により、スループットが低い移動局装置ほどメトリックが高くなる。
ここで、等化SINRに関して、例えば、それぞれ2本のアンテナを有する3個の基地局装置により3個のセクタが構成されおり、その3個での信号受信を実施するCoMPを想定すると、合計で6本の受信アンテナを想定したSINRが計算される。
図2は、CoMPの概略的な構成の一例を示すブロック図である。
この例では、第1の基地局装置の2本のアンテナ111、112により第1のセクタ(セクタ1)が構成されており、第2の基地局装置の2本のアンテナ121、122により第2のセクタ(セクタ2)が構成されており、第3の基地局装置の2本のアンテナ131、132により第3のセクタ(セクタ3)が構成されている。また、各移動局装置201〜203から無線送信される信号は、各基地局装置のアンテナ111、112、121、122、131、132により受信される。
スケジューリング部12は、メトリック計算部11から入力されるメトリックに基づいて、移動局装置の周波数スケジューリングを行う。スケジューリング部12は、周波数スケジューリングの最終の結果をDMRS系列割り当て部13に出力する。また、スケジューリング部12は、周波数スケジューリングの結果を、フィードバックのために、メトリック計算部11に出力する。
ここで、スケジューリング部12により行われる周波数スケジューリングについて説明する。
本実施形態では、割り当ての方針として、リソースブロックもしくはリソースブロックグループ(複数のリソースブロックをまとめたもの)に対し、メトリックが最大となる移動局装置を割り当てる動作を行い、優先度(メトリック)が高い移動局装置から順に低いレイヤから移動局装置を割り当てて多重する。
本実施形態では、まず、MIMOによる空間多重を考慮した複数のレイヤへの割り当ては行わず、1番目のレイヤ(レイヤ1)に対してのみ割り当てを行う。
図3は、レイヤ1に対する割り当ての一例を示す図である。横軸は周波数を表す。
この例では、スケジューリング部12により行われる1回目の割り当てにおいて、レイヤ1の周波数について、第3の移動局装置(UE3)、第1の移動局装置(UE1)、第4の移動局装置(UE4)、第10の移動局装置(UE10)に割り当てが行われたものとする。
図3に示されるように、この段階においては、同一の周波数リソース(RB)に対する複数の移動局装置の割り当ては行われない。
スケジューリング部12は、レイヤ1の割り当てが完了すると、この周波数割り当ての情報(周波数スケジューリングの途中の結果)を、フィードバックのために、メトリック計算部11に出力する。
メトリック計算部11は、スケジューリング部12から入力される周波数割り当ての情報(周波数スケジューリングの途中の結果)に基づいて、既に割り当てられた移動局装置の存在を考慮したメトリックを計算する(メトリックを再計算する)。メトリックを計算する具体的な手順は、先に説明したものと同じである。メトリック計算部11は、計算したメトリックをスケジューリング部12に出力する。
続いて、スケジューリング部12は、メトリック計算部11から入力されるメトリックに基づいて、移動局装置の周波数スケジューリングを行う。
このときの割り当ての手順の概略は先に説明したものと同様であるが、先の処理と異なる点として、レイヤ1の存在を考慮して、今回は、2番目のレイヤ(レイヤ2)のみの割り当てを行う。
ここで、「レイヤ1の存在を考慮」する点について説明する。
すなわち、既にレイヤ1に割り当てられている移動局装置(UE3、UE1、UE4、UE10)については、レイヤ2への割り当てにより干渉の影響を受け、レイヤ2に割り当てられる移動局装置に応じたメトリックの低下が発生する。なお、レイヤ1とレイヤ2とは、空間的に多重されたとしても、レイヤ間干渉の影響により少なからずメトリックの低下が発生する。このメトリックの低下量はチャネル状態に依存するため、UEごとに異なる値となる。
このため、スケジューリング部12は、このようなメトリックの低下を考慮して、合計のメトリックが最大となる移動局装置をレイヤ2に割り当てる。
図4は、レイヤ1〜レイヤ2に対する割り当ての一例を示す図である。横軸は周波数を表す。
レイヤ1に対する割り当ては、図3に示されるものと同じである。
この例では、スケジューリング部12により行われる2回目の割り当てにおいて、レイヤ2の周波数について、第2の移動局装置(UE2)、第6の移動局装置(UE6)、第9の移動局装置(UE9)に割り当てが行われたものとする。
なお、図4に示される「割り当て無し」の部分には、移動局装置が割り当てられていない。つまり、UEを割り当てることにより増加するメトリックと、減少するUE3のメトリックの合計が負の値となるようなケースにおいて、このような状況が発生する。
スケジューリング部12は、レイヤ2の割り当てが完了すると、この周波数割り当ての情報(周波数スケジューリングの途中の結果)を、フィードバックのために、メトリック計算部11に出力する。
メトリック計算部11は、スケジューリング部12から入力される周波数割り当ての情報(周波数スケジューリングの途中の結果)に基づいて、既に割り当てられた移動局装置の存在を考慮したメトリックを計算する(メトリックを再計算する)。メトリックを計算する具体的な手順は、先に説明したものと同じである。メトリック計算部11は、計算したメトリックをスケジューリング部12に出力する。
このようなメトリック計算部11およびスケジューリング部12の再帰的処理は、基地局装置により決められた最大レイヤ数まで、同様に繰り返すことができる。
この例では、最大レイヤ数が3であるとする。
図5は、この例において最終的な割り当てである、レイヤ1〜レイヤ3に対する割り当ての一例を示す図である。
レイヤ1およびレイヤ2に対する割り当ては、図4に示されるものと同じである。
この例では、スケジューリング部12により行われる3回目の割り当てにおいて、3番目のレイヤ(レイヤ3)の周波数について、第7の移動局装置(UE7)、第5の移動局装置(UE5)、第8の移動局装置(UE8)に割り当てが行われたものとする。
なお、図5に示される「割り当て無し」の部分には、移動局装置が割り当てられていない。
スケジューリング部12は、レイヤ3までの割り当てが完了すると、この周波数割り当ての情報(本実施形態において、周波数スケジューリングの最終の結果)を、DMRS系列割り当て部13に出力する。
このように、スケジューリング部12における規定の回数の割り当てを終えた後の出力は、DMRS系列割り当て部13に入力される。
DMRS系列割り当て部13は、スケジューリング部12から入力される周波数スケジューリングの最終の結果に基づいて、DMRS系列の割り当てを行う。DMRS系列割り当て部13は、DMRS系列の割り当ての結果を制御信号生成部14に出力する。
本実施形態では、DMRS系列割り当て部13は、レイヤごとに、割り当てるDMRS系列を決定して、決定したDMRS系列を当該レイヤごとの移動局装置に割り当てる。
図6は、DMRS系列の割り当ての一例を示す図である。
この例では、DMRS系列割り当て部13は、図5に示されるものと同じ周波数スケジューリングの最終の結果について、レイヤ1に対してOCCの[+1、+1]を割り当て、レイヤ2およびレイヤ3に対してOCCの[+1、−1]を割り当てる。また、DMRS系列割り当て部13は、レイヤ2に第1のルートシーケンス(ルートシーケンス1)を割り当て、レイヤ3に第2のルートシーケンス(ルートシーケンス2)を割り当てることで、レイヤ2、3の間ではDMRS系列をランダマイズする。
なお、第1のルートシーケンスと第2のルートシーケンスとは、異なるものである。
また、本実施形態では、レイヤ1に対してOCCの[+1、+1]を割り当て、レイヤ2およびレイヤ3に対してOCCの[+1、−1]を割り当てるが、これとは逆に、レイヤ1に対してOCCの[+1、−1]を割り当て、レイヤ2およびレイヤ3に対してOCCの[+1、+1]を割り当てることも可能である。
また、例えば、レイヤ1に対しては、任意のルートシーケンスが割り当てられてもよい。
ここで、本実施形態では、DMRSにおける完全直交はOCCのみにより達成されるものとし、その符号は[+1、+1]、[+1、−1]のみが存在するものとする。また、本実施形態では、DMRSのルートシーケンスをランダマイズさせるための系列の指定が可能であり、基地局装置から移動局装置に送信する制御信号により当該指定を実現することが可能であるとする。
具体的には、本実施形態では、基地局装置から移動局装置に対して第1のルートシーケンスおよび第2のルートシーケンスを指定することが可能であり、これらのルートシーケンスの相互相関は十分に低いと想定する。
上述したスケジューリング部12の動作の説明の通り、優先度(メトリック)が高い移動局装置は低い番号のレイヤに割り当てられている。このため、最も低い番号のレイヤであるレイヤ1を他のレイヤと完全直交させて、DMRSのチャネル推定精度の影響を低減させることにより、通信の公平性を高めることができる。
一方、他のレイヤ(本実施形態では、レイヤ2およびレイヤ3)には優先度が低い移動局装置が割り当てられる傾向があることから、これらのレイヤの間には異なるルートシーケンスを割り当てることにより、系列のランダマイズが可能となる。
制御信号生成部14は、DMRS系列割り当て部13から入力されるDMRS系列の割り当ての結果に基づいて、制御信号を生成する。制御信号生成部14は、生成した制御信号を下りリンク信号生成部15に出力する。
具体的には、DMRS系列割り当て部13から制御信号生成部14に出力されるDMRS系列の割り当ての結果には、OCCの割り当ての結果とルートシーケンスの割り当ての結果が含まれる。そして、制御信号生成部14は、DMRS系列割り当て部13から入力されるDMRS系列の割り当ての結果(OCCの割り当ての結果とルートシーケンスの割り当ての結果)に基づいて、それぞれの移動局装置に送信する制御信号を生成する。
ここで、制御信号生成部14により生成される制御信号は、上りリンク信号の送信を指示するものであり、アップリンクグラント(UL Grant)と呼称する。
アップリンクグラントには、割り当てリソースブロックの情報、変調方式の情報、符号化率の情報などとともに、DMRSの系列の情報が含まれる。
DMRSの系列の情報は、本実施形態では、OCCを特定する情報と、ルートシーケンスを特定する情報を有し、具体的には、OCCが[+1、+1]であるかまたは[+1、−1]であるかを特定する情報と、ルートシーケンスが第1のルートシーケンスであるかまたは第2のルートシーケンスであるかを特定する情報である。
アップリンクグラントによるOCCとルートシーケンスの具体的な通知方法の例としては、以下のような(通知方法の例1)〜(通知方法の例2)が考えられる。
(通知方法の例1)
(A)異なるセル間でOCCの完全直交を成立させるためには、第1スロットと第2スロットで全てのセクタで共通のサイクリックシフトホッピングパターンを適用させる必要がある。一方で、後方互換性のために、セルごとに決定されるサイクリックシフトホッピングパターンにも対応しなければならない。これを識別するための1ビット(切り替えビットと呼称する)をアップリンクグラントに導入する。例えば、このビットが0であれば全てのセクタで共通のサイクリックシフトホッピングパターンを利用し、このビットが1であれば、セルごとに決定されるサイクリックシフトホッピングパターンを利用する。
(B)LTE Rel.10において、DMRSに適用するサイクリックシフトおよびOCCは、アップリンクグラントに付与された3ビット(サイクリックシフトインデックスビット)によって図10に示されるように指定される。図10において、サイクリックシフトおよびOCCの列に示された0〜3の値は、SU−MIMO(Single User MIMO)を利用した時に、複数のストリームを空間多重して送信した場合の、各ストリームに適用されるサイクリックシフト、およびOCCを表すものである。シングルストリームの場合は「0」の列のサイクリックシフトおよびOCCが利用される。切り替えビットが0のときは、この図の通りのサイクリックシフトおよびOCCの指定を行う。一方、切り替えビットが1の場合はサイクリックシフトインデックスビットによってルートシーケンスも指定可能なようにする。この一例を図11に示す。
図10は、アップリンクグラント中のビット列(サイクリックシフトインデックスビット)とサイクリックシフトとOCCとの対応の一例を示す図である。
図11は、サイクリックシフトインデックスビット(DMRSサイクリックシフト指示ビット)とサイクリックシフトとOCCとルートシーケンス番号との対応の一例を示す図である。
図6に示されたUEの割り当てを例とし、各UEに対するサイクリックシフトインデックスビットの割り当ての一例を示す。まず、切り替えビットはすべてのUEに対して1が指定される。次に、レイヤ1に割り当てられたUE1、UE3、UE4、UE10はOCC[+1、+1]を割り当てるため、サイクリックシフトインデックスビットは000(もしくは011、100、111)をセットする。レイヤ2に割り当てられたUE2、UE6、UE9は[+1、−1]を割り当てる一方、レイヤ3とは異なるルートシーケンスを割り当てたいため、すべて共通のルートシーケンス(ここではS1とする)を割り当てるためにサイクリックシフトインデックスビットは001(もしくは110)をセットする。レイヤ3に割り当てられたUE5、UE7は[+1、−1]を割り当てる一方、レイヤ2とは異なるルートシーケンスを割り当てるため、ルートシーケンスS2を指定できるサイクリックシフトインデックスビット010(もしくは101)をセットする。一方、UE8については、UE9と割り当て帯域が一致しているため、サイクリックシフトによる完全直交が可能となる。この場合、UE9と同じOCC[+1、−1]、同じルートシーケンスS1で、異なるサイクリックシフトを割り当てることが適切であるため、サイクリックシフトインデックスビットには110を指定する。
(通知方法の例2)
(A)切り替えビット2ビットをアップリンクグラントに導入する。例えば、このビットが00であれば、全てのセクタで共通のサイクリックシフトホッピングパターンを利用し、このビットが01であれば、セルごとに決定されるサイクリックシフトホッピングパターンを利用すると同時に、ルートシーケンスにS1を利用する。切り替えビットが10であれば、セルごとに決定されるサイクリックシフトホッピングパターンを利用すると同時に、ルートシーケンスにS2を利用する。
なお、ルートシーケンスS1、S2は、ルートシーケンスを発生させる疑似ランダム系列の発生の種(Seed)として指定することができる。
基地局装置1において得られる下り送信データが、下りリンク信号生成部15に入力される。
下りリンク信号生成部15は、入力される下り送信データの信号と、制御信号生成部14から入力される制御信号(アップリンクグラント)と、必要であればそのほかの下り信号と、を多重して下りリンク信号を生成する。下りリンク信号生成部15は、生成した下りリンク信号を無線送信部16に出力する。
無線送信部16は、下りリンク信号生成部15から入力される下りリンク信号を、無線送信用の信号にして、アンテナ17に出力する。この信号は、アンテナ17から無線により、それぞれの移動局装置に送信される。
それぞれの移動局装置は、基地局装置1(アンテナ17)から自局(当該移動局装置)あてに送信された制御信号(アップリンクグラント)を検出し、検出した制御信号(アップリンクグラント)の情報に従った処理を行う。本実施形態では、それぞれの移動局装置は、例えば、検出した自局あての制御信号(アップリンクグラント)の情報の通りに、DMRSを生成して基地局装置に送信する。
このように、本実施形態では、基地局装置1は、スケジューリングを行った後に、移動局装置に対するDMRS系列の割り当て(本実施形態では、OCCおよびルートシーケンスの割り当て)を行って、そのDMRS系列の割り当ての結果の情報を各移動局装置に無線送信することで通知する。各移動局装置は、基地局装置1から通知(無線受信)されたDMRS系列の割り当ての結果の情報に基づいて、DMRS系列の生成(本実施形態では、OCCおよびルートシーケンスを用いたDMRS系列の生成)を行って、送信信号を生成する。
以上のように、本実施形態に係る無線通信システムでは、複数の移動局装置から無線送信される信号が空間多重により多重されたものを受信する基地局装置1において、当該基地局装置1は、移動局装置ごとに優先性を考慮したメトリック(あらかじめ定められたメトリック)を計算するメトリック計算部11と、計算されるメトリックに応じて、優先度(メトリック)が高い移動局装置から順に、低いレイヤから移動局装置を割り当てて多重するスケジューリング部12と、レイヤごとに割り当てるDMRS系列を決定するDMRS系列割り当て部13と、を備える。
また、本実施形態に係る基地局装置1では、DMRS系列割り当て部13は、最も小さい1個のレイヤ(本実施形態では、レイヤ1)に割り当てられた移動局装置に対して、他のレイヤ(本実施形態では、レイヤ2およびレイヤ3)と完全直交するDMRS系列を割り当て、また、前記1個のレイヤ以外のレイヤに割り当てられた移動局装置に対して、それぞれのレイヤ(本実施形態では、レイヤ2およびレイヤ3)ごとに異なるルートシーケンスを割り当てる。
以上のように、本実施形態に係る無線通信システムにおける基地局装置1によると、優先度(メトリック)が高い移動局装置のチャネル推定精度を高めるDMRS系列の割り当てを実現することができ、この結果として、通信システムにおいて、スループット特性を向上させることができる。
[第2実施形態]
本実施形態では、第1実施形態とは異なる点について詳しく説明し、第1実施形態と同様な点については詳しい説明を省略する。また、本実施形態では、図1に示されるのと同じ符号を用いて説明する。
スケジューリング部12により行われる周波数スケジューリングに関し、第1実施形態では最大レイヤ数が3である場合の例を示したが、同様な技術を、最大レイヤ数が4以上である場合に拡張して適用することが可能である。本実施形態では、この場合について説明する。
なお、本実施形態では、最大レイヤ数が4である場合の例を示すが、最大レイヤ数が5以上である場合についても同様に適用することが可能である。
図7は、この例において最終的な割り当てである、レイヤ1〜レイヤ4に対する割り当ての一例およびDMRS系列の割り当ての一例を示す図である。
レイヤ1〜レイヤ3に対する割り当ては、図5に示されるものと同じである。
この例では、スケジューリング部12により行われる4回目の割り当てにおいて、4番目のレイヤ(レイヤ4)の周波数について、第11の移動局装置(UE11)に割り当てが行われたものとする。
なお、図7に示される「割り当て無し」の部分には、移動局装置が割り当てられていない。
本実施形態では、スケジューリング部12は、レイヤ4の割り当てが完了すると、この周波数割り当ての情報(本実施形態において、周波数スケジューリングの最終の結果)を、DMRS系列割り当て部13に出力する。
ここで、本実施形態では、最大で3個のルートシーケンスを使用することが可能であるとする。
具体的には、本実施形態では、基地局装置から移動局装置に対して第1のルートシーケンス、第2のルートシーケンスおよび第3のルートシーケンスを指定することが可能であり、これらのルートシーケンスの相互相関は十分に低いと想定する。
図7に示される例では、DMRS系列割り当て部13は、周波数スケジューリングの最終の結果について、レイヤ1に対してOCCの[+1、+1]を割り当て、他のレイヤ(レイヤ2〜レイヤ4)に対してOCCの[+1、−1]を割り当てる。また、DMRS系列割り当て部13は、レイヤ2に第1のルートシーケンス(ルートシーケンス1)を割り当て、レイヤ3に第2のルートシーケンス(ルートシーケンス2)を割り当て、レイヤ4に第3のルートシーケンス(ルートシーケンス3)を割り当てることで、レイヤ2、3、4の間ではDMRS系列をランダマイズする。
なお、第1のルートシーケンスと第2のルートシーケンスと第3のルートシーケンスは、それぞれ異なるものである。
また、本実施形態では、レイヤ1に対してOCCの[+1、+1]を割り当て、他のレイヤ(本実施形態では、レイヤ2〜レイヤ4)に対してOCCの[+1、−1]を割り当てるが、これとは逆に、レイヤ1に対してOCCの[+1、−1]を割り当て、他のレイヤ(本実施形態では、レイヤ2〜レイヤ4)に対してOCCの[+1、+1]を割り当てることも可能である。
また、例えば、レイヤ1に対しては、任意のルートシーケンスが割り当てられてもよい。
また、本実施形態では、アップリンクグラントに含まれるDMRSの系列の情報は、OCCを特定する情報と、ルートシーケンスを特定する情報を有し、具体的には、OCCが[+1、+1]であるかまたは[+1、−1]であるかを特定する情報と、ルートシーケンスが第1のルートシーケンスであるかまたは第2のルートシーケンスであるかまたは第3のルートシーケンスであるかを特定する情報である。
このように、本実施形態では、DMRS系列割り当て部13は、最も優先度が高いレイヤ(レイヤ1)とそれ以外のレイヤ(2番目以降の全てのレイヤ)とで異なるOCCを割り当て、また、当該それ以外のレイヤ(2番目以降の全てのレイヤ)の中ではそれぞれのレイヤに異なるルートシーケンスを割り当てることにより、DMRS系列を割り当てる。
以上のように、本実施形態に係る基地局装置1では、DMRS系列割り当て部13は、最も小さい1個のレイヤ(本実施形態では、レイヤ1)に割り当てられた移動局装置に対して、他のレイヤ(2番目以降のレイヤ)と完全直交するDMRS系列を割り当て、また、前記1個のレイヤ以外のレイヤに割り当てられた移動局装置に対して、それぞれのレイヤ(2番目以降のレイヤ)ごとに異なるルートシーケンスを割り当てる。
以上のように、本実施形態に係る無線通信システムにおける基地局装置1によると、優先度(メトリック)が高い移動局装置のチャネル推定精度を高めるDMRS系列の割り当てを実現することができ、この結果として、通信システムにおいて、スループット特性を向上させることができる。
[第3実施形態]
本実施形態では、第1実施形態とは異なる点について詳しく説明し、第1実施形態と同様な点については詳しい説明を省略する。また、本実施形態では、図1に示されるのと同じ符号を用いて説明する。
スケジューリング部12により行われる周波数スケジューリングに関し、第1実施形態では最大レイヤ数が3である場合の例を示したが、本実施形態では、最大レイヤ数が4以上である場合について説明する。
なお、本実施形態では、最大レイヤ数が4である場合を例として説明する。
図8は、この例において最終的な割り当てである、レイヤ1〜レイヤ4に対する割り当ての一例およびDMRS系列の割り当ての一例を示す図である。
レイヤ1〜レイヤ3に対する割り当ては、図5に示されるものと同じである。
この例では、スケジューリング部12により行われる4回目の割り当てにおいて、4番目のレイヤ(レイヤ4)の周波数について、第11の移動局装置(UE11)に割り当てが行われたものとする。
なお、図8に示される「割り当て無し」の部分には、移動局装置が割り当てられていない。
本実施形態では、スケジューリング部12は、レイヤ4の割り当てが完了すると、この周波数割り当ての情報(本実施形態において、周波数スケジューリングの最終の結果)を、DMRS系列割り当て部13に出力する。
ここで、本実施形態では、2個のルートシーケンスを使用することが可能であるとする。
具体的には、本実施形態では、基地局装置から移動局装置に対して第1のルートシーケンスおよび第2のルートシーケンスを指定することが可能であり、これらのルートシーケンスの相互相関は十分に低いと想定する。
図8に示される例では、DMRS系列割り当て部13は、周波数スケジューリングの最終の結果について、レイヤ1およびレイヤ2に対してOCCの[+1、+1]を割り当て、他のレイヤ(レイヤ3〜レイヤ4)に対してOCCの[+1、−1]を割り当てる。また、DMRS系列割り当て部13は、レイヤ1に第1のルートシーケンス(ルートシーケンス1)を割り当て、レイヤ2に第2のルートシーケンス(ルートシーケンス2)を割り当てることで、レイヤ1、2の間ではDMRS系列をランダマイズする。また、DMRS系列割り当て部13は、レイヤ3に第1のルートシーケンス(ルートシーケンス1)を割り当て、レイヤ4に第2のルートシーケンス(ルートシーケンス2)を割り当てることで、レイヤ3、4の間ではDMRS系列をランダマイズする。
なお、第1のルートシーケンスと第2のルートシーケンスと第3のルートシーケンスは、それぞれ異なるものである。
また、本実施形態では、レイヤ1およびレイヤ2に対してOCCの[+1、+1]を割り当て、他のレイヤ(本実施形態では、レイヤ3〜レイヤ4)に対してOCCの[+1、−1]を割り当てるが、これとは逆に、レイヤ1およびレイヤ2に対してOCCの[+1、−1]を割り当て、他のレイヤ(本実施形態では、レイヤ3〜レイヤ4)に対してOCCの[+1、+1]を割り当てることも可能である。
図8に示される例では、レイヤ1およびレイヤ2のグループとレイヤ3およびレイヤ4のグループとにグループ分けして、OCCによる完全直交を各グループの間で実現している。
このように2個のレイヤごとのグループに分けると、必要となるルートシーケンスが2個となり、ルートシーケンスを指示する制御信号の情報量を削減することが可能である。
以上のように、本実施形態に係る基地局装置1では、DMRS系列割り当て部13は、最も小さい方から2個のレイヤ(本実施形態では、レイヤ1およびレイヤ2)に割り当てられた移動局装置に対して、他の2個のレイヤ(本実施形態では、レイヤ3およびレイヤ4)と完全直交するDMRS系列を割り当て、また、2個のレイヤのグループのそれぞれに割り当てられた移動局装置に対して、それぞれのグループにおいて、それぞれのレイヤごとに異なるルートシーケンスを割り当てる。
以上のように、本実施形態に係る無線通信システムにおける基地局装置1によると、それぞれの大きさの優先度(メトリック)を有する移動局装置のチャネル推定精度を同等程度にするようなDMRS系列の割り当てを実現することができ、この結果として、通信システムにおいて、スループット特性を向上させることができる。
また、本実施形態に係る基地局装置1によると、2個ずつのレイヤでグループ分けすることで、必要となるルートシーケンスの個数を少なくする(つまり、2個とする)ことが可能である。
[以上の実施形態に関する構成例]
以上の実施形態に関する構成例を示す。
最大レイヤ数がM(Mは、3以上の整数)であるとする。
すなわち、基地局装置1では、DMRS系列割り当て部13は、最も小さい方からN(Nは1以上で(M−1)以下である整数)個のレイヤに割り当てられた移動局装置に対して、他のレイヤと完全直交するDMRS系列を割り当てる。また、前記Nが2以上である場合には、前記N個のレイヤに割り当てられた移動局装置に対して、それぞれのレイヤごとに異なるルートシーケンスを割り当てる。また、前記N個のレイヤ以外のレイヤ(前記他のレイヤであって、(M−N)個のレイヤ)の数が2以上である場合には、前記N個のレイヤ以外のレイヤ(前記他のレイヤ)に割り当てられた移動局装置に対して、それぞれのレイヤごとに異なるルートシーケンスを割り当てる。
ここで、第1実施形態では、図6に、M=3、N=1の例を示した。
また、第2実施形態では、図7に、M=4、N=1の例を示した。
また、第3実施形態では、図8に、M=4、N=2の例を示した。
なお、第1実施形態や第2実施形態のように、優先度(メトリック)が高い移動局装置のチャネル推定精度を高めるDMRS系列の割り当てを実現するという点では、例えば、N=1が最も好ましいと考えられ、また、Nが2以上である場合には、N<(M/2)で、Nの値が小さい方が好ましいと考えられる。
また、第3実施形態のように、それぞれの大きさの優先度(メトリック)を有する移動局装置のチャネル推定精度を同等程度にするようなDMRS系列の割り当てを実現するという点では、N=(M/2)であるか、または、Nがそれに近い値である方が好ましいと考えられる。
また、NとMの値については、これらに限られず、任意の値を用いる構成とすることが可能である。
[通信制御装置の構成例]
通信制御装置の構成例である(構成例1)〜(構成例5)を示す。
なお、以上の実施形態では、基地局装置1に通信制御装置の機能を備えたが、通信制御装置の機能が基地局装置1とは別に備えられる構成が用いられてもよい。
(構成例1)
移動局装置ごとにあらかじめ定められたメトリックを計算するメトリック計算部11と、前記メトリック計算部11により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行うスケジューリング部12と、前記スケジューリング部12により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てるDMRS系列割り当て部13と、を備えることを特徴とする通信制御装置である。
なお、具体例は、第1実施形態〜第3実施形態である。
(構成例2)
前記DMRS系列割り当て部13は、最も小さい方からあらかじめ定められた数のレイヤに割り当てられた移動局装置に対して、他のレイヤと完全直交するDMRS系列(以上の実施形態では、OCC)を割り当てる、ことを特徴とする(構成例1)に記載の通信制御装置である。
なお、具体例は、第1実施形態〜第3実施形態である。
(構成例3)
前記最も小さい方からあらかじめ定められた数のレイヤの数が1である、ことを特徴とする(構成例2)に記載の通信制御装置である。
なお、具体例は、第1実施形態〜第2実施形態である。
(構成例4)
前記最も小さい方からあらかじめ定められた数のレイヤの数と、前記他のレイヤの数とは、同一である、ことを特徴とする(構成例2)に記載の通信制御装置である。
なお、具体例は、第3実施形態である。
(構成例5)
前記DMRS系列割り当て部13は、前記最も小さい方からあらかじめ定められた数のレイヤと前記他のレイヤのうちで、2個以上のレイヤであるものについて、それぞれのレイヤごとに異なるルートシーケンスを割り当てる、ことを特徴とする(構成例2)から(構成例4)のいずれか1つに記載の通信制御装置である。
なお、具体例は、第1実施形態〜第3実施形態である。
(構成例6)
前記異なるルートシーケンスは、上りリンク信号の送信を指示する制御信号中に含まれているDMRSサイクリックシフト指示ビットによって一意に決定される、ことを特徴とする(構成例5)に記載の通信制御装置である。
なお、具体例は、第1実施形態である。
[以上の実施形態のまとめ]
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
また、以上に示した各実施形態に係る基地局装置1などの機能(例えば、基地局装置1が有する通信制御装置などの機能)を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、処理を行ってもよい。
なお、ここで言う「コンピュータシステム」とは、オペレーティング・システム(Operating System;OS)や周辺機器等のハードウェアを含むものであってもよい。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disk)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことを言う。
さらに、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことを言う。
また、上記のプログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
1…基地局装置、11…メトリック計算部、12…スケジューリング部、13…DMRS系列割り当て部、14…制御信号生成部、15…下りリンク信号生成部、16…無線送信部、17、111、112、121、122、131、132…アンテナ、201〜203…移動局装置、1001、1011…乗算部、1002、1012…サイクリックシフト部

Claims (8)

  1. 移動局装置ごとにあらかじめ定められたメトリックを計算するメトリック計算部と、
    前記メトリック計算部により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行うスケジューリング部と、
    前記スケジューリング部により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てるDMRS系列割り当て部と、
    を備えることを特徴とする通信制御装置。
  2. 前記DMRS系列割り当て部は、最も小さい方からあらかじめ定められた数のレイヤに割り当てられた移動局装置に対して、他のレイヤと完全直交するDMRS系列を割り当てる、
    ことを特徴とする請求項1に記載の通信制御装置。
  3. 前記最も小さい方からあらかじめ定められた数のレイヤの数が1である、
    ことを特徴とする請求項2に記載の通信制御装置。
  4. 前記最も小さい方からあらかじめ定められた数のレイヤの数と、前記他のレイヤの数とは、同一である、
    ことを特徴とする請求項2に記載の通信制御装置。
  5. 前記DMRS系列割り当て部は、前記最も小さい方からあらかじめ定められた数のレイヤと前記他のレイヤのうちで、2個以上のレイヤであるものについて、それぞれのレイヤごとに異なるルートシーケンスを割り当てる、
    ことを特徴とする請求項2から請求項4のいずれか1項に記載の通信制御装置。
  6. 前記異なるルートシーケンスは、上りリンク信号の送信を指示する制御信号中に含まれているDMRSサイクリックシフト指示ビットによって一意に決定される、
    ことを特徴とする請求項5に記載の通信制御装置。
  7. メトリック計算部が、移動局装置ごとにあらかじめ定められたメトリックを計算し、
    スケジューリング部が、前記メトリック計算部により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行い、
    DMRS系列割り当て部が、前記スケジューリング部により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てる、
    ことを特徴とする通信制御方法。
  8. メトリック計算部が、移動局装置ごとにあらかじめ定められたメトリックを計算するステップと、
    スケジューリング部が、前記メトリック計算部により計算されるメトリックに基づいて、メトリックが高い移動局装置から順に、低いレイヤから移動局装置を割り当てるスケジューリングを行うステップと、
    DMRS系列割り当て部が、前記スケジューリング部により行われたスケジューリングの結果に基づいて、レイヤごとにDMRS系列を割り当てるステップと、
    をコンピュータに実行させるための通信制御プログラム。
JP2012041245A 2012-02-28 2012-02-28 通信制御装置、通信制御方法および通信制御プログラム Pending JP2013179407A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041245A JP2013179407A (ja) 2012-02-28 2012-02-28 通信制御装置、通信制御方法および通信制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041245A JP2013179407A (ja) 2012-02-28 2012-02-28 通信制御装置、通信制御方法および通信制御プログラム

Publications (1)

Publication Number Publication Date
JP2013179407A true JP2013179407A (ja) 2013-09-09

Family

ID=49270691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041245A Pending JP2013179407A (ja) 2012-02-28 2012-02-28 通信制御装置、通信制御方法および通信制御プログラム

Country Status (1)

Country Link
JP (1) JP2013179407A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125831A (ja) * 2018-01-11 2019-07-25 富士通株式会社 基地局装置及び割当方法
JP2021508988A (ja) * 2017-12-29 2021-03-11 中興通訊股▲ふん▼有限公司Zte Corporation 測定参照信号の伝送方法および装置
US11469808B2 (en) 2018-02-13 2022-10-11 Zte Corporation Channel state information (CSI) report sending and receiving methods, devices and electronic devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508988A (ja) * 2017-12-29 2021-03-11 中興通訊股▲ふん▼有限公司Zte Corporation 測定参照信号の伝送方法および装置
US11343128B2 (en) 2017-12-29 2022-05-24 Xi'an Zhongxing New Software Co., Ltd. Method and device for transmitting measurement reference signal
JP7083560B2 (ja) 2017-12-29 2022-06-13 中興通訊股▲ふん▼有限公司 測定参照信号の伝送方法および装置
US11831482B2 (en) 2017-12-29 2023-11-28 Xi'an Zhongxing New Software Co., Ltd. Method and device for transmitting measurement reference signal
JP2019125831A (ja) * 2018-01-11 2019-07-25 富士通株式会社 基地局装置及び割当方法
US11469808B2 (en) 2018-02-13 2022-10-11 Zte Corporation Channel state information (CSI) report sending and receiving methods, devices and electronic devices

Similar Documents

Publication Publication Date Title
US9154276B2 (en) Wireless communication system, mobile station apparatus, and base station apparatus using demodulation reference signal
CN110535607B (zh) 通信方法、装置和可读存储介质
JP6179825B2 (ja) 通信装置、通信方法及び集積回路
CN111587564B (zh) 短序列信号的分组和使用
JP2019534589A (ja) 多入力多出力通信のための方法およびデバイス
TW201306514A (zh) 用於參考信號型樣之序列導數
WO2014038460A1 (ja) 移動局装置および通信方法
JP5744335B2 (ja) 拡張物理ダウンリンク制御チャネルのための干渉除去方法および装置
JP2013179407A (ja) 通信制御装置、通信制御方法および通信制御プログラム
JP6237844B2 (ja) 移動局、および方法
JP7464594B2 (ja) 復調用参照信号シーケンス生成方法および装置
JP2013157937A (ja) 基地局装置および通信制御方法
JP5376080B2 (ja) 移動局、基地局、割当装置及びそれらを用いるシステム並びにそれらに用いる方法
JP5644902B2 (ja) 移動局、基地局、割当装置及びそれらを用いるシステム並びにそれらに用いる方法
JP5348281B2 (ja) 無線通信システム、割り当て装置及びそれらに用いる割り当て方法
JP2012222723A (ja) 無線通信システム、移動局装置および基地局装置
JP6458839B2 (ja) 移動局及び方法
JP5131364B2 (ja) 無線通信システム、パイロット系列割り当て装置及びそれらに用いるパイロット系列割り当て方法
JP6350600B2 (ja) 移動局、基地局、及び方法
JP6943320B2 (ja) 移動局及びその方法
JP6465195B2 (ja) 基地局
JP5943054B2 (ja) 移動局、基地局、割当装置及びそれらを用いるシステム並びにそれらに用いる方法
JP5842960B2 (ja) 移動局、基地局、割当装置及びそれらを用いるシステム並びにそれらに用いる方法
JP5991408B2 (ja) 移動局、基地局、割当装置及びそれらを用いるシステム並びにそれらに用いる方法
JP2019024231A (ja) 移動局