JP2013178162A - Method for analyzing structure of reaction film derived from additive of lubricant formed on metal surface - Google Patents

Method for analyzing structure of reaction film derived from additive of lubricant formed on metal surface Download PDF

Info

Publication number
JP2013178162A
JP2013178162A JP2012042194A JP2012042194A JP2013178162A JP 2013178162 A JP2013178162 A JP 2013178162A JP 2012042194 A JP2012042194 A JP 2012042194A JP 2012042194 A JP2012042194 A JP 2012042194A JP 2013178162 A JP2013178162 A JP 2013178162A
Authority
JP
Japan
Prior art keywords
additive
metal member
reaction film
analyzing
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012042194A
Other languages
Japanese (ja)
Other versions
JP5922950B2 (en
Inventor
Shinji Kato
慎治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2012042194A priority Critical patent/JP5922950B2/en
Publication of JP2013178162A publication Critical patent/JP2013178162A/en
Application granted granted Critical
Publication of JP5922950B2 publication Critical patent/JP5922950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring a structure of a surface reaction film derived from additives dominating lubrication characteristics.SOLUTION: The method for analyzing a structure of a reaction film derived from additives formed on a surface of a metal material includes: when analyzing the structure of the reaction film derived from additives of lubricant oil or hydraulic oil, formed on the surface of the metal member, obtaining a metal member from a contact face between a metal member and an organic material member that perform contact movement with the lubricant oil or the hydraulic oil including additives interposed therebetween; cleaning and removing lubricants remaining on the surface; and analyzing the metal surface by a reflection absorption spectroscopy (RAS method) in Fourier transform infrared spectroscopy (FT-IR).

Description

本発明は、機械部品におけるオイルシールなどの有機材料と金属材料面との間に封入される添加剤を配合した潤滑油または作動油に由来して、摺動後の金属部材表面に形成される反応膜の構造を解析する方法に関するものである。   The present invention is formed on the surface of a metal member after sliding, derived from a lubricating oil or hydraulic oil containing an additive sealed between an organic material such as an oil seal in a machine part and a metal material surface. The present invention relates to a method for analyzing the structure of a reaction film.

潤滑の研究は17世紀の車軸と軸受けの発達と共に始まり、21世紀初頭の自動車と蒸気機関の出現によって、基油と化学添加剤で構成される現代の複雑な潤滑剤は急速に発展してきた(非特許文献1)。機械要素の用途や使用環境に応じた応用分野の拡大により、多くの機械の摺動部で用いられる潤滑剤の中でも作動油に対する高度な要件が近年高まっている。一般的に、作動油とは石油或いは鉱物油由来の基油に様々な種類の添加剤を処方したものである(非特許文献1)、故に、特定の性能を満たすには添加剤の処方は非常に重要である。しかしながら、添加剤個々の特性については十分に解明されているとは言えず、添加剤を基油に処方する為のメカニズムが確立されていないため、経験則に依存しているのが現状である。   Lubrication research began with the development of axles and bearings in the 17th century, and with the advent of automobiles and steam engines in the early 21st century, modern complex lubricants composed of base oils and chemical additives have developed rapidly ( Non-patent document 1). Due to the expansion of application fields according to the use and use environment of machine elements, advanced requirements for hydraulic oil among lubricants used in sliding parts of many machines are increasing in recent years. In general, hydraulic oil is a base oil derived from petroleum or mineral oil, which is formulated with various types of additives (Non-Patent Document 1). Very important. However, it cannot be said that the individual characteristics of the additives are fully elucidated, and since the mechanism for formulating the additives into the base oil has not been established, the current situation depends on empirical rules. .

一方、添加剤を処方した作動油は、機械部品ではオイルシールと金属面との間に封入されることが多いため、この部分での添加剤の摩擦特性を把握することは非常に重要な課題である。しかし,添加剤の研究は,炭素鋼球と酸化クロム(III)の摺動においてオレイン酸,オレイン酸グリコール、ジブチルフォスファイトが摩擦低減効果を示すという報告(非特許文献2)やアルミニウムと鉄との摺動に伴いトリクレジルホスフェート(TCP)がリン酸塩の膜を摩擦面に形成し、摩擦摩耗低減効果を示すという報告(非特許文献3)のように金属同士の摺動に着目したものが多いのが現状である。   On the other hand, hydraulic oils formulated with additives are often enclosed between the oil seal and the metal surface in machine parts, so it is very important to understand the friction characteristics of additives in this part. It is. However, the study of additives has been reported that oleic acid, glycol oleate, and dibutyl phosphite show a friction-reducing effect in sliding between carbon steel balls and chromium (III) oxide, and aluminum and iron. As slidable, tricresyl phosphate (TCP) formed a phosphate film on the friction surface and showed a frictional wear reduction effect (Non-Patent Document 3). There are many things at present.

Stephen M. Hsu, Tribology International, 37 (2004) 553-559.Stephen M. Hsu, Tribology International, 37 (2004) 553-559. Jianjun Wei and Qunji Xue, Wear, 160 (1993) 61-65.Jianjun Wei and Qunji Xue, Wear, 160 (1993) 61-65. Keiji Sasaki et al., Wear, 268 (2010) 911-916.Keiji Sasaki et al., Wear, 268 (2010) 911-916.

潤滑油や作動油は、機械の機械要素間に働く摩擦を軽減するために、また油圧装置の中で動力伝達媒体として使用されている。これらの潤滑油などが介在した機械要素間の摩擦特性について、例えば、自動車の運動性能(操縦性・安定性、乗心地性能)にとって、サスペンション構成部品であるショックアブソーバーの寄与率は大きい。ショックアブソーバー部品におけるトライボロジー特性の要求は、従来フリクションを極力下げることであったが、様々な工夫がされ、通常の使用であれば数十ニュートンのフリクションレベルとなっている。低フリクション化を実現したことで車体重量に対し、たかだか数十ニュートンとなったフリクションではあるが、車両運動性能に影響を与えている。 Lubricating oils and hydraulic oils are used to reduce the friction acting between the machine elements of the machine and as a power transmission medium in hydraulic systems. Regarding the frictional characteristics between machine elements in which these lubricants and the like are interposed, for example, the contribution ratio of the shock absorber, which is a suspension component, is large for the motor performance (maneuverability / stability, riding comfort) of an automobile. The requirement for tribological characteristics in shock absorber parts has been to reduce friction as much as possible. However, various measures have been taken and the friction level is several tens of Newtons under normal use. Although the friction has been reduced to no more than tens of newtons relative to the weight of the vehicle body due to the low friction, it has an impact on vehicle motion performance.

しかし、フリクションの大小ではなく、フリクションの質ともいえるμ-V特性も含めたコントロールをして乗心地と、操縦性・安定性を両立させようと、ショックアブソーバーが発生する減衰力の中で極小さいフリクションに注目した。なぜならば、ショックアブソーバーの減衰力は油圧力が支配的な高速領域とフリクションが支配的となる微低速域があり、近年のように舗装率が高いと、サスペンションの動きが小さい走行頻度が多くなるために油圧力の割合が小さくなり、その結果フリクションの影響を大きく受ける走行頻度が多くなるからである。ショックアブソーバーにおけるフリクションは、ピストンとシリンダー間における摺動摩擦が影響しているものと考えられ、この摩擦特性を制御するための一方法として各種の添加剤が利用されている。
添加剤を処方した作動油あるいは潤滑油は、ピストン部材やオイルシールと金属面との間に介在することから、添加剤による摩擦特性への影響を解明することは重要な課題である。しかしながら、機械要素などで採用されることが多い金属材料と有機材料からなる摺動界面での添加剤の挙動、例えば添加剤の反応、分解などによる構造の変化について解明されているとは言えない。
However, not only the magnitude of friction but also the μ-V characteristics, which can be said to be the quality of friction, are the most important damping force generated by the shock absorber to achieve both ride comfort and maneuverability / stability. Focused on small friction. This is because the damping force of the shock absorber has a high-speed region where the oil pressure is dominant and a very low-speed region where the friction is dominant. If the pavement rate is high as in recent years, the travel frequency with low suspension movement increases. This is because the ratio of the oil pressure is reduced, and as a result, the traveling frequency is greatly affected by the friction. The friction in the shock absorber is considered to be affected by the sliding friction between the piston and the cylinder, and various additives are used as one method for controlling the friction characteristics.
Since the hydraulic oil or lubricating oil formulated with the additive is interposed between the piston member or the oil seal and the metal surface, it is an important issue to clarify the influence of the additive on the friction characteristics. However, it cannot be said that the behavior of the additive at the sliding interface composed of a metal material and an organic material, which is often employed in machine elements, for example, the structural change due to the reaction or decomposition of the additive, has been elucidated. .

そこで、本発明は、機械要素における有機材料と金属材料面との間に介在する添加剤を配合した潤滑油や作動油によってその表面に形成される反応膜の構造を解析する方法を提供することを目的とする。また、本発明は、添加剤に由来する金属表面上の反応膜の解析を可能とすることにより、油圧機械、ショックアブソーバーなどの機械要素の最適な作動条件や、最適な添加剤の化学構造を選択するために有用な情報を得ることを目的とする。より具体的には、本発明は、例えば、NBRゴムとCrメッキ表面を添加剤の存在下に摺動させて生成した金属表面の反応膜に着目し、添加剤の構造が摩擦特性に与える影響を明らかにすることを目的とする。   Therefore, the present invention provides a method for analyzing the structure of a reaction film formed on a surface of a lubricating oil or working oil containing an additive interposed between an organic material and a metal material surface in a machine element. With the goal. In addition, the present invention enables analysis of a reaction film on a metal surface derived from an additive, so that an optimum operating condition of a mechanical element such as a hydraulic machine and a shock absorber and an optimum chemical structure of the additive can be obtained. The purpose is to obtain useful information for selection. More specifically, for example, the present invention focuses on a reaction film on a metal surface produced by sliding an NBR rubber and a Cr plating surface in the presence of an additive, and the influence of the structure of the additive on friction characteristics. The purpose is to clarify.

本発明者は、添加剤個々の基礎特性を把握するために、金属部材の表面に形成された潤滑油または作動油の添加剤に由来する反応膜の構造を解析する方法を提供するものであり、添加剤を含有する潤滑油または作動油が介在して接触運動した金属部材と有機材料部材の接触面から金属部材を得て、その表面に残存する潤滑剤を洗浄、除去した後、その金属表面をフーリエ変換赤外線分光法(FT-IR)における高感度反射法(RAS法)により分析することにより、上記目的を達成した。
具体的には、鉱物油基油に添加剤を単体で混合した数種類の作動油を作製し、バウデン・レーベン型往復動試験機を用いて摺動試験を行い、Crメッキの摺動面を分析し添加剤が表面反応膜形成に与える影響の解明を試み、表面分析結果に基づく各種添加剤による表面反応膜形成と摩擦特性との関係より本発明に至った。
The present inventor provides a method for analyzing the structure of a reaction film derived from an additive of lubricating oil or hydraulic oil formed on the surface of a metal member in order to grasp the basic characteristics of each additive. The metal member obtained from the contact surface of the metal member and the organic material member moved in contact with the lubricating oil or hydraulic oil containing the additive, and the lubricant remaining on the surface was washed and removed, and then the metal The above object was achieved by analyzing the surface by high-sensitivity reflection method (RAS method) in Fourier transform infrared spectroscopy (FT-IR).
Specifically, several types of hydraulic oils are prepared by mixing mineral oil base oil with a single additive, and sliding tests are performed using a Bowden-Leven type reciprocating tester to analyze the sliding surface of the Cr plating. Attempts have been made to elucidate the influence of additives on the formation of surface reaction films, and the present invention has been achieved from the relationship between the formation of surface reaction films by various additives based on the surface analysis results and the friction characteristics.

本発明は、以下の(1)ないし(9)の摺動後表面に形成される反応膜の構造を解析する方法に関するものである。
(1)金属部材の表面に形成された潤滑油または作動油の添加剤に由来する反応膜の構造を解析するにあたり、添加剤を含有する潤滑油または作動油が介在して接触運動した金属部材と有機材料部材の接触面からの金属部材表面に残存する潤滑剤を洗浄、除去した後、その金属表面をフーリエ変換赤外線分光法(FT-IR)における高感度反射法(RAS法)により分析することを特徴とする金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(2)潤滑剤中に含有される添加剤が、油性向上剤、摩耗防止剤、または極圧剤から選ばれる上記(1)に記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(3)潤滑剤中に含有される添加剤が、アルキルもしくはアルケニル基を有するリン酸エステル、ホスホン酸エステル、ホスフィン酸エステル、またはそれらのアミン塩から選ばれた1種以上である上記(1)または(2)に記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(4)有機材料部材が、ニトリルゴム、水素化ニトリルゴム、フッ素ゴム、シリコンゴム、アクリルゴム、クロロスルホン化ポリエチレン、スチレンゴム、ブチルゴム、4フッ化エチレンゴムのいずれかから選ばれる上記(1)から(3)のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(5)金属部材の表面が、クロムメッキ面である上記(1)から(4)のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の化学構造を解析する方法。
(6)潤滑油または作動油が介在した接触運動が、回転あるいは摺動である上記(1)から(5)のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(7)添加剤の赤外線吸収スペクトルと、金属材料の表面に形成された添加剤由来の膜の赤外線吸収スペクトルを対比して、金属材料の表面に形成された添加剤由来の膜の構造を解析する上記(1)から(6)のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(8)金属部材と有機材料を、添加剤を含有する潤滑油または作動油が介在した接触運動が、平板状の金属部材の表面と有機材料部材の表面を潤滑油または作動油を介在させてバウデン−レーベン摩擦試験機により行なわれる上記(1)から(7)のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
(9)平板状の金属部材として,φ24mmの軸受鋼に硬質Crメッキを施したディスクを用い、有機材料部材として長さ8mm、幅2mm、高さ3mmの直方体を用いる上記(8)に記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。
The present invention relates to the following methods (1) to (9) for analyzing the structure of a reaction film formed on the surface after sliding.
(1) In analyzing the structure of the reaction film derived from the lubricant or hydraulic oil additive formed on the surface of the metal member, the metal member moved in contact with the lubricant or hydraulic oil containing the additive. After cleaning and removing the lubricant remaining on the metal member surface from the contact surface between the metal and the organic material member, the metal surface is analyzed by the high sensitivity reflection method (RAS method) in Fourier transform infrared spectroscopy (FT-IR) A method for analyzing the structure of an additive-derived reaction film formed on the surface of a metal member.
(2) The additive-derived reaction film formed on the surface of the metal member according to (1) above, wherein the additive contained in the lubricant is selected from an oiliness improver, an antiwear agent, or an extreme pressure agent To analyze the structure.
(3) The above (1), wherein the additive contained in the lubricant is at least one selected from a phosphoric ester, a phosphonic ester, a phosphinic ester having an alkyl or alkenyl group, or an amine salt thereof. Or the method of analyzing the structure of the reaction film derived from the additive formed in the surface of the metal member as described in (2).
(4) The above (1), wherein the organic material member is selected from any one of nitrile rubber, hydrogenated nitrile rubber, fluorine rubber, silicon rubber, acrylic rubber, chlorosulfonated polyethylene, styrene rubber, butyl rubber, and tetrafluoroethylene rubber. To (3) for analyzing the structure of the reaction film derived from the additive formed on the surface of the metal member.
(5) The method of analyzing the chemical structure of the reaction film derived from the additive formed on the surface of the metal member according to any one of (1) to (4), wherein the surface of the metal member is a chrome plating surface.
(6) The reaction film derived from the additive formed on the surface of the metal member according to any one of (1) to (5), wherein the contact motion mediated by the lubricating oil or hydraulic oil is rotation or sliding. How to analyze the structure.
(7) By comparing the infrared absorption spectrum of the additive with the infrared absorption spectrum of the additive-derived film formed on the surface of the metal material, the structure of the additive-derived film formed on the surface of the metal material is analyzed. The method of analyzing the structure of the reaction film derived from the additive formed on the surface of the metal member according to any one of (1) to (6).
(8) The contact movement of the metal member and the organic material with the lubricating oil or hydraulic oil containing the additive causes the surface of the flat metal member and the surface of the organic material member to intervene the lubricating oil or hydraulic oil. A method for analyzing a structure of a reaction film derived from an additive formed on a surface of a metal member according to any one of (1) to (7), which is performed by a Bowden-Lowen friction tester.
(9) As described in the above (8), a disk having a hard Cr plating on a φ24 mm bearing steel is used as a flat metal member, and a rectangular parallelepiped having a length of 8 mm, a width of 2 mm, and a height of 3 mm is used as the organic material member. A method for analyzing the structure of a reaction film derived from an additive formed on the surface of a metal member.

本発明により、機械部品におけるオイルシールなどの有機材料と金属材料面との間に封入される添加剤を配合した潤滑剤や作動油に由来して、摺動後の表面に形成される反応膜の構造を解析する方法を提供することができる。具体的には、一般的なオイルシール材であるNBRゴムとCrメッキ表面の摺動における表面反応膜の形成に着目し、個々の添加剤の構造などの特質が摩擦特性に与える影響を明らかにすることができる。   According to the present invention, a reaction film formed on a surface after sliding, derived from a lubricant or hydraulic oil containing an additive encapsulated between an organic material such as an oil seal in a machine part and a metal material surface It is possible to provide a method for analyzing the structure of Specifically, paying attention to the formation of surface reaction film in sliding between NBR rubber, which is a general oil seal material, and Cr plating surface, the effect of characteristics such as the structure of each additive on the friction characteristics is clarified. can do.

バウデン−レーベン摩擦試験機を説明する概略図である。It is the schematic explaining a Bowden-Lowen friction tester. RAS法(高感度反射測定法)により摺動後表面に形成される反応膜の赤外線吸収スペクトルの測定を説明する模式図であるIt is a schematic diagram explaining the measurement of the infrared absorption spectrum of the reaction film formed on the surface after sliding by the RAS method (high sensitivity reflection measurement method). 実施例で用いた基油と表1に示す各リン系添加剤のそれぞれの摩擦係数と摺動速度0〜30mm/sとの関係を示す。The relationship between the friction coefficient and the sliding speed of 0 to 30 mm / s of the base oil used in the examples and the phosphorus additives shown in Table 1 is shown. 添加剤を配合した作動油の、摺動試験によりディスク表面に観察された反応膜および添加剤の原液(摺動試験前)の赤外線吸収スペクトルを同一の図に示す。図の(a)はNo.1の添加剤、(b)はNo.4の添加剤、(c)はNo.8の添加剤である。The same figure shows the infrared absorption spectra of the reaction film and additive stock solution (before the sliding test) observed on the disk surface by the sliding test of the hydraulic oil blended with the additive. (A) in FIG. No. 1 additive, (b) is No. 1. No. 4 additive, (c) No. 8 additive.

本発明は、添加剤を含有する潤滑油または作動油が介在して摺動などの接触運動した金属材料部材と有機材料部材の接触面から金属部材を取り出し、その表面に残存する油類を洗浄、除去し、反応膜を露出させた後、その金属表面の反応膜をフーリエ変換赤外線分光法(FT-IR)における高感度反射法(RAS法)により反射スペクトル得て、これを分析することにより金属材料部材の表面に形成された添加剤由来の反応膜の構造を解析する方法である。   The present invention takes out a metal member from a contact surface between a metal material member and an organic material member that have moved in contact, such as sliding, through the presence of a lubricating oil or hydraulic oil containing an additive, and cleans oil remaining on the surface. By removing and exposing the reaction film, the reaction film on the metal surface was obtained by analyzing the reflection spectrum by high-sensitivity reflection method (RAS method) in Fourier transform infrared spectroscopy (FT-IR) and analyzing this This is a method for analyzing the structure of an additive-derived reaction film formed on the surface of a metal material member.

例えば、バウデン−レーベン摩擦試験機を用いて静摩擦係数μを算出する際に、試験対象の添加剤を基油に配合した作動油を準備し、該試験機の往復動する台盤上に固定した平板状試験片と、保持部に保持させた円柱状試験片を用い、試験前に該作動油を平板状試験片の表面に滴下し、円柱状試験片の端面を、平板状試験片の摩擦試験面である表面に、一定の負荷荷重をかけて圧接させ、この圧接状態で、台盤を往復動させて、保持部に接続した板バネに発生する、摺動方向に沿う方向の歪み量を歪みゲージで測定して、台盤往復時の起動トルクと起動後の摺動トルクとを求め、静摩擦係数μを算出すると共に、摺動後表面に形成される膜の構造をフーリエ変換赤外線分光法(FT-IR)における高感度反射法(RAS法)により分析するものであり、添加剤が摩擦特性に与える影響を解析することを可能とするものである。
本発明における説明において、潤滑油は二種類の部材が摺動、回転などにより接触運動する際にその界面のスムースな運動などの状態を得るために介在させる油組成物であり、また作動油は油圧装置の中で動力伝達媒体として使用される流体あり、潤滑、防錆、冷却などの作用をも有し、2種類の部材の接触運動にも介在しているものである。説明の便宜上、作動油および潤滑油を総称して、単に「作動油」あるいは「潤滑油」と表現することがある。
以下に、本発明について説明する。
For example, when calculating the coefficient of static friction μ using a Bauden-Lowen friction tester, a working oil in which the additive to be tested is blended with a base oil is prepared and fixed on a reciprocating platform of the tester. Using a flat test piece and a cylindrical test piece held by a holding part, before the test, the hydraulic oil is dropped on the surface of the flat test piece, and the end face of the cylindrical test piece is rubbed against the flat test piece. The amount of strain in the direction along the sliding direction that occurs in the leaf spring connected to the holding part by reciprocating the platform in this pressure contact state with a constant load applied to the test surface. Is measured with a strain gauge to determine the starting torque when the base plate reciprocates and the sliding torque after starting, calculate the static friction coefficient μ, and Fourier transform infrared spectroscopy of the structure of the film formed on the surface after sliding Analysis by the high-sensitivity reflection method (RAS method) in the FT-IR method (FT-IR), Pressurizing agent is one that makes it possible to analyze the effect on frictional properties.
In the description of the present invention, the lubricating oil is an oil composition that is interposed in order to obtain a state of smooth movement of the interface when two types of members make contact movement by sliding, rotation, etc. It is a fluid used as a power transmission medium in a hydraulic device, has functions such as lubrication, rust prevention, and cooling, and is also involved in contact movement of two types of members. For convenience of explanation, hydraulic oil and lubricating oil may be collectively referred to simply as “hydraulic oil” or “lubricating oil”.
The present invention will be described below.

[潤滑油、作動油]
オイルシールと金属面との間に封入される添加剤を配合した作動油または潤滑油は、基油として鉱油及び/又は合成油が用いられる。この鉱油や合成油については、一般に油圧作動油の基油として用いられているものであればよく、特に制限はない。このような鉱油,合成油は各種のものがあり、用途などに応じて適宜選定すればよい。鉱油としては、例えばパラフィン系鉱油,ナフテン系鉱油,中間基系鉱油などが挙げられ、具体例としては、溶剤精製または水添精製による軽質ニュートラル油,中質ニュートラル油,重質ニュートラル油,ブライトストックなどを挙げることができる。なかでも、軽質ニュートラル油,中質ニュートラル油が好ましい。一方合成油としては、例えば、ポリα−オレフィン(PAO),α−オレフィンコポリマー,ポリブテン,アルキルベンゼン,ポリオールエステル,二塩基酸エステル,ポリオキシアルキレングリコール,ポリオキシアルキレングリコールエステル,ポリオキシアルキレングリコールエーテル,ヒンダードエステル,シリコーンオイルなどを挙げることができる。これらの基油は、それぞれ単独で、あるいは二種以上を組み合わせて使用することができ、鉱油と合成油を組み合わせて使用してもよい。
[Lubricating oil, hydraulic oil]
Mineral oil and / or synthetic oil is used as a base oil for hydraulic oil or lubricating oil containing an additive encapsulated between an oil seal and a metal surface. The mineral oil or synthetic oil is not particularly limited as long as it is generally used as a base oil for hydraulic fluid. There are various kinds of such mineral oils and synthetic oils, and may be appropriately selected according to the use. Examples of mineral oils include paraffinic mineral oils, naphthenic mineral oils, intermediate base mineral oils, and specific examples include light neutral oil, medium neutral oil, heavy neutral oil, bright stock by solvent refining or hydrogenation refining. And so on. Of these, light neutral oil and medium neutral oil are preferable. On the other hand, as synthetic oil, for example, poly α-olefin (PAO), α-olefin copolymer, polybutene, alkylbenzene, polyol ester, dibasic acid ester, polyoxyalkylene glycol, polyoxyalkylene glycol ester, polyoxyalkylene glycol ether, Examples include hindered esters and silicone oils. These base oils can be used alone or in combination of two or more kinds, and mineral oil and synthetic oil may be used in combination.

[添加剤]
添加剤としては、清浄剤や分散剤からなる清浄分散剤、油性向上剤、摩耗防止剤や極圧剤からなる耐荷重添加剤、酸化防止剤、さび止め剤、腐食防止剤、金属不活性化剤、粘度指数向上剤などが挙げられ、本発明によりこれらの添加剤に由来する金属面での反応膜の有無、あるいは生成した反応膜の構造が解析される。添加剤の典型的な例としては、ベンズトリアゾールおよびその誘導体、アルカリ土類金属スルホネート、アルカリ土類金属フェネート、アルカリ土類金属サリシネート、ジチオリン酸亜鉛、コハンク酸イミド、コハク酸エステル、長鎖脂肪酸、脂肪酸エステル、アルキルアミン、アルカノールアミン、リン酸エステル、ジチオリン酸亜鉛、アルキルもしくはアルケニル基を有するリン酸エステル、ホスホン酸エステル、ホスフィン酸エステル又はそのアミン塩などを挙げることができる。
[Additive]
Additives include detergents and dispersants, detergents and dispersants, oiliness improvers, anti-load agents and extreme pressure agents, load-resistant additives, antioxidants, rust inhibitors, corrosion inhibitors, metal deactivation In the present invention, the presence or absence of a reaction film on the metal surface derived from these additives, or the structure of the generated reaction film is analyzed. Typical examples of additives include benztriazole and its derivatives, alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicinate, zinc dithiophosphate, succinimide, succinate, long chain fatty acid, Examples thereof include fatty acid esters, alkylamines, alkanolamines, phosphate esters, zinc dithiophosphate, phosphate esters having an alkyl or alkenyl group, phosphonate esters, phosphinate esters or amine salts thereof.

リン酸エステル類としては、下記の一般式(1)〜(3)で表されるリン酸エステル,酸性リン酸エステルを包含する。   Examples of phosphate esters include phosphate esters and acidic phosphate esters represented by the following general formulas (1) to (3).

(RO)3P=O ・・・・・・・・・・・(1)

(RO)(OH)P=O ・・・・・・・(2)

(RO)(OH)2P=O ・・・・・・・・(3)
(RO) 3 P = O (1)

(RO) 2 (OH) P = O (2)

(RO) (OH) 2 P = O (3)

上記一般式(1)〜(3)において、R
は炭素数4〜30のアルキル基、アルケニル基または水素を示し、R は同一でも異なっていてもよい。リン酸エステルとしては、具体的には、上記(1)式で表される化合物としては、トリブチルホスフェート,エチルジブチルホスフェート,トリヘキシルホスフェート,トリ(2−エチルヘキシル)ホスフェート,トリデシルホスフェート,トリラウリルホスフェート,トリミリスチルホスフェート,トリパルミチルホスフェート,トリステアリルホスフェート,トリオレイルホスフェートなどを挙げることができる。
In the general formulas (1) to (3), R
Represents an alkyl group, alkenyl group or hydrogen having 4 to 30 carbon atoms, and R May be the same or different. Specific examples of the phosphate ester include tributyl phosphate, ethyldibutyl phosphate, trihexyl phosphate, tri (2-ethylhexyl) phosphate, tridecyl phosphate, trilauryl phosphate. , Trimyristyl phosphate, tripalmityl phosphate, tristearyl phosphate, trioleyl phosphate, and the like.

酸性リン酸エステルとしては、具体的には、2−エチルヘキシルアシッドホスフェート,エチルアシッドホスフェート,ブチルアシッドホスフェート,テトラコシルアシッドホスフェート,イソデシルアシッドホスフェート,ラウリルアシッドホスフェート,ステアリルアシッドホスフェート,イソステアリルアシッドホスフェート,オレイルアシッドホスフェートなどを挙げることができる。
他のリン酸化合物物としては、ホスホン酸の水酸基の1または2がエステルとなった化合物を挙げることができる。
(OH)2PH=O ・・・・・・・(4)
Specific examples of the acidic phosphate ester include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, isostearyl acid phosphate, And oleyl acid phosphate.
Examples of other phosphoric acid compound products include compounds in which one or two hydroxyl groups of phosphonic acid are converted to esters.
(OH) 2 PH = O (4)

また、ホスフィン酸の水酸基の水酸基がエステルとなった化合物などを挙げることができる。
(OH)PH2=O ・・・・・・・(5)

さらに、これらとアミン塩を形成するアミン類としては、例えば下記の一般式
n NH3-n ・・・(7)
(式中、R は炭素数6〜30のアルキル基もしくはアルケニル基,炭素数6〜30のアリール基もしくはアリールアルキル基又は炭素数2〜30のヒドロキシアルキル基を示し、nは1,2又は3を示す。また、R
が複数ある場合、複数のR は同一でも異なっていてもよい。)で表されるモノ置換アミン、ジ置換アミン又はトリ置換アミンが挙げられる。上記一般式(7)におけるR
のうちの炭素数6〜30のアルキル基もしくはアルケニル基は、直鎖状、分岐状、環状のいずれであってもよい。中でも、炭素数8〜22の第三級第一級アミンが好ましく、特に炭素数12〜18の第三級第一級アミンが好ましい。
Moreover, the compound etc. which the hydroxyl group of the hydroxyl group of phosphinic acid became ester are mentioned.
(OH) PH 2 = O (5)

Furthermore, as amines that form amine salts with these, for example, the following general formula R n NH 3-n (7)
(Wherein R Represents an alkyl group or alkenyl group having 6 to 30 carbon atoms, an aryl group or arylalkyl group having 6 to 30 carbon atoms, or a hydroxyalkyl group having 2 to 30 carbon atoms, and n represents 1, 2 or 3. R
If there are multiple, multiple R May be the same or different. And mono-substituted amines, di-substituted amines, and tri-substituted amines. R in the general formula (7)
Among them, the alkyl group or alkenyl group having 6 to 30 carbon atoms may be linear, branched or cyclic. Among them, a tertiary primary amine having 8 to 22 carbon atoms is preferable, and a tertiary primary amine having 12 to 18 carbon atoms is particularly preferable.

また、ポリエチレンポリアミンと脂肪酸の縮合物である。ポリエチレンポリアミンとして、ジエチレントリアミン,トリエチレンテトラミン,テトラエチレンペンタミン,ペンタエチレンヘキサミンなどを挙げることができ、中でもテトラエチレンペンタミン,ペンタエチレンヘキサミンが好ましい。   It is also a condensate of polyethylene polyamine and fatty acid. Examples of the polyethylene polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and the like, among which tetraethylenepentamine and pentaethylenehexamine are preferable.

脂肪酸として、炭素数14〜20の脂肪酸が好ましく、飽和、不飽和でもよいし、直鎖状、分岐状でもよい。具体的には、ミリスチン酸,イソミリスチン酸,パルミチン酸,イソパルミチン酸,ステアリン酸,イソステアリン酸,アラキン酸,イソアラキン酸,ミリストレイン酸,ゾーマリン酸,オレイン酸などを挙げることができるが、イソパルミチン酸,イソステアリン酸,オレイン酸が好ましい。   The fatty acid is preferably a fatty acid having 14 to 20 carbon atoms, and may be saturated or unsaturated, or may be linear or branched. Specific examples include myristic acid, isomyristic acid, palmitic acid, isopalmitic acid, stearic acid, isostearic acid, arachidic acid, isoarachidic acid, myristoleic acid, zomarinic acid, and oleic acid. Acid, isostearic acid and oleic acid are preferred.

また、ジアルカノールアミンと脂肪酸の縮合物である。ジアルカノールアミンとして、ジエタノールアミン,ジプロパノールアミンなどを挙げることができ、中でもジエタノールアミンが好ましい。脂肪酸として、炭素数14〜20の脂肪酸が好ましく、飽和、不飽和でもよいし、直鎖状、分岐状でもよい。具体的には、ミリスチン酸,イソミリスチン酸,パルミチン酸,イソパルミチン酸,ステアリン酸,イソステアリン酸,アラキン酸,イソアラキン酸,ミリストレイン酸,ゾーマリン酸,オレイン酸などを挙げることができるが、イソパルミチン酸,イソステアリン酸,オレイン酸が好ましい。   Further, it is a condensate of dialkanolamine and fatty acid. Examples of dialkanolamines include diethanolamine and dipropanolamine, with diethanolamine being preferred. The fatty acid is preferably a fatty acid having 14 to 20 carbon atoms, and may be saturated or unsaturated, or may be linear or branched. Specific examples include myristic acid, isomyristic acid, palmitic acid, isopalmitic acid, stearic acid, isostearic acid, arachidic acid, isoarachidic acid, myristoleic acid, zomarinic acid, and oleic acid. Acid, isostearic acid and oleic acid are preferred.

これらは、単独で、あるいは二種以上を組み合わせて使用することができる。配合量については、基油に、組成物全量基準で、0.1〜10重量%の割合で配合されるのが通常である。   These can be used alone or in combination of two or more. About a compounding quantity, it is normal to mix | blend with a base oil in the ratio of 0.1-10 weight% on the basis of the composition whole quantity.

[有機材料部材]
有機材料部材は、潤滑剤が介在して金属と有機材料、例えば、ゴム類、プラスチック類と金属類の接触運動が生起する部材に使用されている材質であり、例えば、オイルシールやOリングにおいてシール体に使用されている材料が典型的な例である。これらのシール部材には主に合成ゴム製のシール体が使用されている。例えば、ニトリルゴム、MZラバー水素化ニトリルゴム、フッ素ゴム、シリコンゴム、アクリルゴム、クロロスルホン化ポリエチレン、スチレンゴム、ブチルゴム、4フッ化エチレンゴムなどを挙げることができる。これらの有機材料は、オイルダンパー、回転軸などにシール材として設置され、潤滑油と回転運動や摺動運動を受けながら金属部材と常時接触している。
[Organic materials]
The organic material member is a material used for a member in which contact movement between a metal and an organic material, for example, rubbers, plastics, and metals occurs with a lubricant, for example, in an oil seal or an O-ring. The material used for the sealing body is a typical example. A synthetic rubber seal body is mainly used for these seal members. Examples thereof include nitrile rubber, MZ rubber hydrogenated nitrile rubber, fluorine rubber, silicon rubber, acrylic rubber, chlorosulfonated polyethylene, styrene rubber, butyl rubber, and tetrafluoroethylene rubber. These organic materials are installed as sealing materials on oil dampers, rotating shafts, etc., and are always in contact with metal members while receiving rotational and sliding motions with the lubricating oil.

[バウデン−レーベン摩擦試験機による測定]
恒温室中で、バウデン−レーベン摩擦試験機の、往復動される台盤上にφ24mmの軸受鋼(SUJ2)に硬質Crメッキ(JISH8615相当,鏡面仕上げ)を施したディスク(平板状試験片)を固定し、その摩擦試験面である表面に作動油を滴下し、次いで温度を安定させた後、上記バウデン−レーベン摩擦試験機の保持部にNBRゴム試験片(長さ8mm、幅2mm、高さ3mm)(円柱状試験片)を保持させた状態で、当該円柱状試験片の摩擦試験面である端面を、平板状試験片の、作動油を滴下した面に、一定の負荷荷重をかけて圧接させ、この圧接状態で、台盤を往復動させた際に、保持部に接続した板バネに発生する、摺動方向に沿う方向の歪み量を歪みゲージで測定して、台盤往復時の起動トルクと起動後の摺動トルクとを求め、その結果から静摩擦係数μを算出する。試験機の外観と、試料の配置を図1に示す。試料1は上方から荷重5による圧力下に試験ディスク3と接触し、該ディスクの往復運動4により試料委1と試験ディスク3とが加圧下に摺動することにより金属表面に添加剤による反応膜が形成される。
[Measured with Bowden-Leven Friction Tester]
In a temperature-controlled room, a disk (flat specimen) with a hard Cr plating (equivalent to JISH8615, mirror finish) on φ24 mm bearing steel (SUJ2) on a reciprocating base plate of a Bowden-Lowen friction tester After fixing, dropping the hydraulic oil onto the friction test surface and then stabilizing the temperature, the NBR rubber test piece (length 8 mm, width 2 mm, height) is attached to the holding part of the Bowden-Leben friction tester. 3 mm) (cylindrical test piece) is held, and the end surface, which is the friction test surface of the cylindrical test piece, is applied with a certain load on the surface of the flat test piece on which the hydraulic oil is dropped. When the base plate is reciprocated in this pressure contact state, the amount of strain along the sliding direction that occurs in the leaf spring connected to the holding part is measured with a strain gauge. Starting torque and sliding torque after starting Calculated, to calculate a static friction coefficient μ from the result. The appearance of the testing machine and the arrangement of the sample are shown in FIG. The sample 1 comes into contact with the test disk 3 under pressure from the load 5 from above, and the sample film 1 and the test disk 3 slide under pressure by the reciprocating motion 4 of the disk. Is formed.

[フーリエ変換赤外線分光法(FT−IR)による好感度反射法(RAS法)による膜の構造の測定]
FT−IRとは、フーリエ変換赤外分光光度計( Fourier Transform Infrared Spectroscopy、FTIR)であり、主に有機化合物の構造推定(定性)を行う分析装置である。赤外線を分子に照射すると、分子を構成している原子間の振動エネルギーに相当する赤外線を吸収し、その吸収度合いを調べることによって化合物の構造推定や定量を行うことができる。連続光を試料に照射して干渉パターンをフーリエ変換することで分子構造に応じた吸収スペクトル物質中の原子団の情報を取得するものである。赤外分光法を行う装置としては、レーザ光による波数モニタ、移動鏡を有する干渉計、コンピュータによる電算処理部を有するフーリエ変換赤外分光光度計(FT-IR)が現在の主流となっている。
[Measurement of film structure by sensitive reflection method (RAS method) by Fourier transform infrared spectroscopy (FT-IR)]
FT-IR is a Fourier Transform Infrared Spectroscopy (FTIR), and is an analyzer that mainly performs structure estimation (qualitative) of organic compounds. When a molecule is irradiated with infrared rays, the structure of the compound can be estimated and quantified by absorbing infrared rays corresponding to vibration energy between atoms constituting the molecule and examining the degree of absorption. Information on atomic groups in the absorption spectrum material corresponding to the molecular structure is obtained by irradiating the sample with continuous light and Fourier transforming the interference pattern. Current equipment for infrared spectroscopy is a wavenumber monitor using laser light, an interferometer having a moving mirror, and a Fourier transform infrared spectrophotometer (FT-IR) having a computer processing unit. .

こうした赤外分光法には、透過法、拡散反射法、ATR法など、様々な測定法がありますが、金属板のように赤外光を透過しない材質へ吸着、あるいは塗布された物質の測定には、反射法が必要となります。反射測定では、物質の反射率を調べるために、垂直に近い角度で赤外光を入射させる方法と、水平に近い角度で赤外光を入射させ、金属などの基板上の薄い試料層(薄膜)を測定する方法があり、後者の測定法は、一般に高感度反射法、あるいは、反射吸収法(Reflection Absorption Spectrometry=RAS法)と呼ばれている。本発明での測定には日本分光社製RT/IR−6100を用いた。測定の概略は図2に示す。平行偏向された赤外線6が添加剤由来の反応膜9による吸収を受け、その反射光7のスペクトルを得て解析することにより、表面の反応膜9に関する化学構造の情報が得られる。   There are various measurement methods such as transmission method, diffuse reflection method, ATR method, etc. for such infrared spectroscopy. For measurement of substances adsorbed or coated on materials that do not transmit infrared light such as metal plates. The reflection method is required. In reflection measurement, in order to examine the reflectance of a substance, infrared light is incident at an angle close to vertical, and infrared light is incident at an angle close to horizontal, and a thin sample layer (thin film) on a substrate such as metal ), And the latter measurement method is generally called a high-sensitivity reflection method or a reflection absorption method (RAS method). RT / IR-6100 manufactured by JASCO Corporation was used for the measurement in the present invention. The outline of the measurement is shown in FIG. The parallel-polarized infrared ray 6 is absorbed by the reaction film 9 derived from the additive, and the spectrum of the reflected light 7 is obtained and analyzed to obtain information on the chemical structure of the surface reaction film 9.

本実施例では、リン系化合物を添加剤として含有する作動油を介在させて、硬質クロムメッキ表面とNBRゴムとの摺動によりクロム表面に生成する添加剤由来の反応膜の構造を解析した。
[作製した作動油]
API規格でGroupIIIに相当する鉱物油を基油として、表1に示す各リン系添加剤を0.5Wt%処方した計6種類の作動油を作製した。以下本文では表中の各番号で記す。
In this example, the structure of the reaction film derived from the additive formed on the chromium surface by sliding between the hard chromium plating surface and the NBR rubber was analyzed by interposing a hydraulic oil containing a phosphorus compound as an additive.
[Produced hydraulic oil]
A total of six types of hydraulic oils were prepared by prescribing 0.5 Wt% of each phosphorus-based additive shown in Table 1 using a mineral oil corresponding to Group III in the API standard as a base oil. In the text below, each number in the table is used.

[摺動試験]
試験には図1に示すバウデン・レーベン型往復動試験機を用いた。試験条件は表2に示す。試験片には、φ24mmの軸受鋼(SUJ2)に硬質Crメッキ(JISH8615相当、鏡面仕上げ)を施したディスクとNBRゴム試験片(長さ8mm、幅2mm、高さ3mm)を用いた。作動油は試験前に摺動面に適量滴下した。試験後、計測値より摩擦係数を算出し、比較を行った。
[Sliding test]
For the test, a Bowden-Leven type reciprocating test machine shown in FIG. 1 was used. The test conditions are shown in Table 2. The test piece used was a disc obtained by applying hard Cr plating (equivalent to JISH8615, mirror finish) to a φ24 mm bearing steel (SUJ2) and an NBR rubber test piece (length 8 mm, width 2 mm, height 3 mm). An appropriate amount of hydraulic oil was dropped on the sliding surface before the test. After the test, the friction coefficient was calculated from the measured value and compared.

[表面分析]
摺動試験を60℃で行ったところ反応膜9がディスク8の表面に観察された(図2)。反応膜の表面に付着している作動油はディスクの表面をアセトンで洗浄することにより除去した。洗浄により反応膜が除去されないことは、反応膜が形成された面が撥水性を有することにより確認される。この反応膜は、強い力で長時間摩擦することによってのみ除去することができた。FT−IR(日本分光社製FT/IR-6100)を用いて、RAS法(高感度反射測定法)により洗浄された反応膜の表面のスペクトルを測定した。また、顕微鏡IRにより添加剤原液の赤外線吸収スペクトルを測定した。測定後、試験後表面および添加剤原液の赤外線吸収スペクトルをそれぞれ正規化し、スペクトルパターンの比較を行った。各スペクトルは図4に示す。
[Surface analysis]
When the sliding test was performed at 60 ° C., the reaction film 9 was observed on the surface of the disk 8 (FIG. 2). The hydraulic oil adhering to the surface of the reaction film was removed by washing the surface of the disk with acetone. The fact that the reaction film is not removed by washing is confirmed by the fact that the surface on which the reaction film is formed has water repellency. This reaction film could only be removed by rubbing for a long time with a strong force. Using FT-IR (FT / IR-6100 manufactured by JASCO Corp.), the spectrum of the surface of the reaction film washed by the RAS method (high sensitivity reflection measurement method) was measured. Moreover, the infrared absorption spectrum of the additive stock solution was measured with a microscope IR. After the measurement, the infrared absorption spectra of the post-test surface and the additive stock solution were normalized, and the spectral patterns were compared. Each spectrum is shown in FIG.

[試験結果及び考察]
[摺動試験]
試験により得た摩擦係数と摺動速度との関係を図3に示す。図3から基油に処方する添加剤により、様々な摩擦特性を示すことが明らかとなった。アシッドフォスフェート系添加剤を添加した作動油(No.1、2)は、基油と比較して、低速域で摩擦係数が非常に小さく、速度の上昇に伴い摩擦係数の上昇が著しいことが確認された。また、同じアシッドフォスフェート系添加剤であっても、摩擦係数の値に差が見られた。これは添加剤そのものの構造あるいは摺動面に形成される膜によるものと推察される。フォスファイト系添加剤を添加した作動油(No.3)の結果から、アシッドフォスフェート系添加剤と比較し、全ての速度で摩擦係数が高いことが確認された。さらに、1mm/s以下の速度では摩擦係数がわずかに上昇した。フォスフェートアミン塩系添加剤を添加した作動油(No.4〜6)は、低速域で一度摩擦係数が上昇し、その後速度と共に摩擦係数が減少することが確認された。また、基油と比べ摩擦係数を増加させるものと減少させるものがあることが確認された。
[Test results and discussion]
[Sliding test]
The relationship between the coefficient of friction obtained by the test and the sliding speed is shown in FIG. From FIG. 3, it was clarified that the additive formulated into the base oil exhibits various friction characteristics. The hydraulic oil (No. 1, 2) to which acid phosphate additives are added has a very small coefficient of friction in the low speed range compared with the base oil, and the increase in the coefficient of friction is marked with the increase in speed. confirmed. Further, even with the same acid phosphate additive, a difference was observed in the value of the friction coefficient. This is presumably due to the structure of the additive itself or a film formed on the sliding surface. From the result of the hydraulic oil (No. 3) to which the phosphite-based additive was added, it was confirmed that the friction coefficient was high at all speeds compared to the acid phosphate-based additive. Further, the friction coefficient slightly increased at a speed of 1 mm / s or less. It was confirmed that the hydraulic oil (Nos. 4 to 6) to which the phosphate amine salt-based additive was added once increased the friction coefficient in the low speed region and then decreased with the speed. In addition, it was confirmed that there are those that increase and decrease the friction coefficient compared to the base oil.

[摺動試験後の表面分析]
図4にFT−IRによるスペクトル測定結果を示す。全体に共通して、摺動後表面では1150cm−1付近で高いP=0のピークが観察された。添加剤1のFT−IRによる測定結果を図4(a)に示す。摺動後、990cm−1付近でP-O、3000cm−1付近でC-Hの高いピークが得られた。以上から、アシッドフォスフェート系添加剤は摺動後の面に、P-O結合による強固なリン被膜が形成されるため、摩擦低減効果を発揮すると推察される。フォスファイト系添加剤3のFT−IRによる測定結果を図4(b)に示す。3000cm−1付近でC-Hのピークが得られたが、P=0に対するC-Hピークの割合は図4(a)と比較して、図4(b)の方が小さい。亜リン酸系化合物である添加剤3はリンと結合しているHまたは炭素鎖が分離し、リンがCrメッキ中の酸素と吸着するため、添加剤1と比較しリンと結合したまま残る炭素鎖が減少したと推察される。リンと結合する炭素鎖が減少することにより、フォスファイト系添加剤が潤滑効果を示さないものと推察される。フォスフェートアミン塩系添加剤5のFT−IRによる測定結果を図4(c)に示す。P=0のピークと共に、3600〜3900cm−1付近でNH系のわずかなピークが得られた。すなわち、Crメッキ表面に対し、リンの吸着と共にアミン塩の吸着も示唆された。故に、リンとアミン塩の吸着作用により不均一な膜が摺動面に対して形成され、摺動を阻害し摩擦係数が大きくなると推察される。
[Surface analysis after sliding test]
FIG. 4 shows a spectrum measurement result by FT-IR. In general, a high P = 0 peak was observed near 1150 cm −1 on the surface after sliding. The measurement result by FT-IR of additive 1 is shown in FIG. After sliding, a high peak of C—H was obtained near P-O at around 990 cm −1 and around 3000 cm −1 . From the above, it is presumed that the acid phosphate additive exhibits a friction reducing effect because a strong phosphorus film is formed by P—O bonding on the surface after sliding. The measurement result by FT-IR of the phosphite additive 3 is shown in FIG. A C—H peak was obtained in the vicinity of 3000 cm −1 , but the ratio of the C—H peak to P = 0 is smaller in FIG. 4B than in FIG. 4A. Additive 3, which is a phosphite compound, separates H or carbon chains bonded to phosphorus, and phosphorus adsorbs oxygen in the Cr plating, so that carbon remaining bonded to phosphorus compared to additive 1 remains. It is inferred that the chain has decreased. It is presumed that the phosphite-based additive does not exhibit a lubricating effect due to a decrease in the carbon chain bonded to phosphorus. The measurement result by FT-IR of the phosphate amine salt additive 5 is shown in FIG. A slight peak of NH X system was obtained in the vicinity of 3600 to 3900 cm −1 together with a peak of P = 0. That is, it was suggested that the amine salt was adsorbed on the Cr plating surface as well as phosphorus. Therefore, it is presumed that a non-uniform film is formed on the sliding surface due to the adsorption action of phosphorus and amine salt, which inhibits the sliding and increases the friction coefficient.

以上の実施例おいて、リン系作動油を用いてNBRゴムとCrメッキによる摺動試験結果及び摺動面の分析結果より、以下の知見を得た。
(1)FT−IRによるRAS法により金属部材の表面に形成された潤滑油または作動油の添加剤に由来する反応膜の構造を解析することが可能となった
(2)同じリン系の添加剤であってもその構造により、基油と比べ摩擦係数を増加させるものと減少させるものがあることが明らかになった。
(3)アシッドフォスフェート、フォスファイト、フォスフェートアミン塩系添加剤は異なる挙動を示した。
(4)FT−IRによる表面分析より、摺動表面にリン系化合物の膜が形成されることが明らかとなった。
In the above examples, the following knowledge was obtained from the sliding test results using NBR rubber and Cr plating and the analysis results of sliding surfaces using phosphorus-based hydraulic oil.
(1) It became possible to analyze the structure of the reaction film derived from the additive of lubricating oil or hydraulic oil formed on the surface of the metal member by the RAS method by FT-IR. (2) Addition of the same phosphorus system It was clarified that there are some agents that increase and decrease the coefficient of friction compared to the base oil, depending on the structure.
(3) Acid phosphate, phosphite and phosphate amine salt additives showed different behaviors.
(4) Surface analysis by FT-IR revealed that a phosphorus compound film was formed on the sliding surface.

本発明は、機械部品におけるオイルシールなどの有機材料と金属材料面との間に封入される、添加剤を配合した潤滑油や作動油に由来して摺動後表面に形成される反応膜の構造を解析する方法を提供するものであり、添加剤に由来する金属表面上の反応膜の解析を可能とすることにより、ショックアブソーバーや油圧機械類の部品の最適な作動条件や、最適な添加剤の化学構造を選択するために有用な情報を得るものである。例えば、一般的なオイルシール材であるNBRゴムとCrメッキ表面の摺動後における表面反応膜の形成とその組成を明らかとすることにより、添加剤個々が持つ化学構造などの性質が摩擦特性に与える影響を明らかにすることができる。それによって、基油に加える添加剤を選択する方法が明らかとなり、添加剤の簡便な選択方法の提供により、効率的な機械類の作動が可能となり、様々な面で有用な情報を提供する基礎となるものである。   The present invention relates to a reaction film formed on a surface after sliding, derived from a lubricating oil or hydraulic oil containing an additive, sealed between an organic material such as an oil seal in a machine part and a metal material surface. It provides a method for analyzing the structure, enabling analysis of the reaction film on the metal surface derived from the additive, so that the optimal operating conditions and optimal addition of parts of shock absorbers and hydraulic machinery can be analyzed. Information useful for selecting the chemical structure of the agent is obtained. For example, by clarifying the formation and composition of the surface reaction film after sliding between the NBR rubber, which is a general oil seal material, and the Cr plating surface, the properties such as the chemical structure of each additive can be changed to the friction characteristics. It is possible to clarify the impact. As a result, the method of selecting additives to be added to the base oil has been clarified, and by providing a simple method for selecting additives, it is possible to operate machinery efficiently, and to provide useful information in various aspects. It will be.

1:ゴム材料からなる試料
2:潤滑油(作動油)
3:試験機ディスク
4:往復運動方向
5:荷重
6:偏光した赤外線
7:反射赤外線
8:RASディスク
9:添加剤由来反応膜
1: Sample made of rubber material 2: Lubricating oil (hydraulic oil)
3: Test machine disk 4: Reciprocating direction 5: Load 6: Polarized infrared 7: Reflected infrared 8: RAS disk 9: Additive-derived reaction film

Claims (9)

金属部材の表面に形成された潤滑油または作動油の添加剤に由来する反応膜の構造を解析するにあたり、添加剤を含有する潤滑油または作動油が介在して接触運動した金属部材と有機材料部材の接触面からの金属部材表面に残存する潤滑剤を洗浄、除去した後、その金属表面をフーリエ変換赤外線分光法(FT-IR)における高感度反射法(RAS法)により分析することを特徴とする金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   In analyzing the structure of the reaction film derived from the lubricant or hydraulic oil additive formed on the surface of the metal member, the metal member and the organic material moved in contact with the lubricant or hydraulic oil containing the additive. After cleaning and removing the lubricant remaining on the metal member surface from the contact surface of the member, the metal surface is analyzed by the highly sensitive reflection method (RAS method) in Fourier transform infrared spectroscopy (FT-IR) The method of analyzing the structure of the reaction film derived from the additive formed on the surface of the metal member. 潤滑剤中に含有される添加剤が、油性向上剤、摩耗防止剤、または極圧剤から選ばれる請求項1に記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   The structure of the reaction film derived from the additive formed on the surface of the metal member according to claim 1, wherein the additive contained in the lubricant is selected from an oil improver, an antiwear agent, or an extreme pressure agent how to. 潤滑剤中に含有される添加剤が、アルキルもしくはアルケニル基を有するリン酸エステル、ホスホン酸エステル、ホスフィン酸エステル、またはそれらのアミン塩から選ばれた1種以上である請求項1または2に記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   The additive contained in the lubricant is at least one selected from phosphates, phosphonates, phosphinates, or amine salts thereof having an alkyl or alkenyl group. Of analyzing the structure of the reaction film derived from the additive formed on the surface of the metal member. 有機材料部材が、ニトリルゴム、水素化ニトリルゴム、フッ素ゴム、シリコンゴム、アクリルゴム、クロロスルホン化ポリエチレン、スチレンゴム、ブチルゴム、4フッ化エチレンゴムのいずれかから選ばれる請求項1から3のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   The organic material member is selected from any one of nitrile rubber, hydrogenated nitrile rubber, fluorine rubber, silicon rubber, acrylic rubber, chlorosulfonated polyethylene, styrene rubber, butyl rubber, and tetrafluoroethylene rubber. A method for analyzing a structure of a reaction film derived from an additive formed on a surface of a metal member according to claim 1. 金属部材の表面が、クロムメッキ面である請求項1から4のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の化学構造を解析する方法。   The method for analyzing the chemical structure of an additive-derived reaction film formed on the surface of a metal member according to any one of claims 1 to 4, wherein the surface of the metal member is a chrome plating surface. 潤滑油または作動油が介在した接触運動が、回転あるいは摺動である請求項1から5のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   The method for analyzing the structure of an additive-derived reaction film formed on the surface of a metal member according to any one of claims 1 to 5, wherein the contact motion mediated by the lubricating oil or hydraulic oil is rotation or sliding. 添加剤の赤外線吸収スペクトルと、金属材料の表面に形成された添加剤由来の膜の赤外線吸収スペクトルを対比して、金属材料の表面に形成された添加剤由来の膜の構造を解析する請求項1から6のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   Claims for analyzing the structure of the additive-derived film formed on the surface of the metal material by comparing the infrared absorption spectrum of the additive with the infrared absorption spectrum of the film derived from the additive formed on the surface of the metal material. A method for analyzing the structure of a reaction film derived from an additive formed on the surface of a metal member according to any one of 1 to 6. 金属部材と有機材料を、添加剤を含有する潤滑油または作動油が介在した接触運動が、平板状の金属部材の表面と有機材料部材の表面を潤滑油または作動油を介在させてバウデン−レーベン摩擦試験機により行なわれる請求項1から7のいずれかに記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。   The contact movement of the metal member and the organic material mediated by the lubricating oil or hydraulic oil containing the additive causes the surface of the flat metal member and the surface of the organic material member to intervene the lubricating oil or hydraulic oil, and Bowen-Leven. The method for analyzing the structure of a reaction film derived from an additive formed on the surface of a metal member according to any one of claims 1 to 7, which is performed by a friction tester. 平板状の金属部材として,φ24mmの軸受鋼に硬質Crメッキを施したディスクを用い、有機材料部材として長さ8mm、幅2mm、高さ3mm直方体を用いる請求項8に記載の金属部材の表面に形成された添加剤由来の反応膜の構造を解析する方法。

9. The surface of the metal member according to claim 8, wherein a disk having a hard Cr plating on a φ24 mm bearing steel is used as the flat metal member, and a rectangular parallelepiped having a length of 8 mm, a width of 2 mm, and a height of 3 mm is used as the organic material member. A method for analyzing the structure of a reaction film formed from an additive.

JP2012042194A 2012-02-28 2012-02-28 Method for analyzing the structure of a reaction film derived from a lubricant additive formed on a metal surface Active JP5922950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042194A JP5922950B2 (en) 2012-02-28 2012-02-28 Method for analyzing the structure of a reaction film derived from a lubricant additive formed on a metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042194A JP5922950B2 (en) 2012-02-28 2012-02-28 Method for analyzing the structure of a reaction film derived from a lubricant additive formed on a metal surface

Publications (2)

Publication Number Publication Date
JP2013178162A true JP2013178162A (en) 2013-09-09
JP5922950B2 JP5922950B2 (en) 2016-05-24

Family

ID=49269932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042194A Active JP5922950B2 (en) 2012-02-28 2012-02-28 Method for analyzing the structure of a reaction film derived from a lubricant additive formed on a metal surface

Country Status (1)

Country Link
JP (1) JP5922950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402098B (en) * 2017-09-07 2020-08-11 青岛理工大学 Lubricating film friction and wear process measuring device under different slip-to-roll ratios

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187608A (en) * 1985-02-15 1986-08-21 Koushinraido Hakuyo Suishin Plant Gijutsu Kenkyu Kumiai Piston ring for internal-combustion engine and method for detecting abrasion thereof
JPH05255682A (en) * 1992-03-11 1993-10-05 Tonen Corp Hydraulic oil composition
JPH09264848A (en) * 1996-03-29 1997-10-07 Kao Corp Method for measuring highly sensitive reflected infrared spectrum and sample for measurement
JP2000008070A (en) * 1998-06-23 2000-01-11 Asahi Denka Kogyo Kk Phosphorous lubricant additive
WO2003006590A1 (en) * 2001-07-09 2003-01-23 Nippon Oil Corporation Lubricant composition for ball joint and ball joint
JP2005003159A (en) * 2003-06-13 2005-01-06 Nsk Ltd Rolling support device
JP2008095837A (en) * 2006-10-12 2008-04-24 Ihi Corp Sliding structure and film forming method
JP2011005425A (en) * 2009-06-25 2011-01-13 Nippon Steel Corp Lubricating film coating aluminum material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187608A (en) * 1985-02-15 1986-08-21 Koushinraido Hakuyo Suishin Plant Gijutsu Kenkyu Kumiai Piston ring for internal-combustion engine and method for detecting abrasion thereof
JPH05255682A (en) * 1992-03-11 1993-10-05 Tonen Corp Hydraulic oil composition
JPH09264848A (en) * 1996-03-29 1997-10-07 Kao Corp Method for measuring highly sensitive reflected infrared spectrum and sample for measurement
JP2000008070A (en) * 1998-06-23 2000-01-11 Asahi Denka Kogyo Kk Phosphorous lubricant additive
WO2003006590A1 (en) * 2001-07-09 2003-01-23 Nippon Oil Corporation Lubricant composition for ball joint and ball joint
JP2005003159A (en) * 2003-06-13 2005-01-06 Nsk Ltd Rolling support device
JP2008095837A (en) * 2006-10-12 2008-04-24 Ihi Corp Sliding structure and film forming method
JP2011005425A (en) * 2009-06-25 2011-01-13 Nippon Steel Corp Lubricating film coating aluminum material

Also Published As

Publication number Publication date
JP5922950B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
Khemchandani et al. A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants
Ratoi et al. The impact of organic friction modifiers on engine oil tribofilms
Huang et al. Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts
Otero et al. Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact
Gul et al. Effect of TMP-based-cottonseed oil-biolubricant blends on tribological behavior of cylinder liner-piston ring combinations
Fu et al. Tribological study of oil-miscible quaternary ammonium phosphites ionic liquids as lubricant additives in PAO
Jiang et al. Synthesis and evaluation of a protic ionic liquid as a multifunctional lubricant additive
Zheng et al. Tribological properties and surface interaction of novel water-soluble ionic liquid in water-glycol
Han et al. Influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG
Hansen et al. Performance and mechanisms of silicate tribofilm in heavily loaded rolling/sliding non-conformal contacts
Aulin et al. Wear resistance increase of samples tribomating in oil composite with geo modifier КgМf-1
Kalam et al. Friction and wear characteristics of waste vegetable oil contaminated lubricants
Hu et al. Correlation between the degree of alkylation and tribological properties of amino-PEG2-amine-based organic friction modifiers
Jin et al. Online infrared spectra detection of lubricating oil during friction process at high temperature
Valdes et al. Tribometry: How is friction research quantified? A review
JP5922950B2 (en) Method for analyzing the structure of a reaction film derived from a lubricant additive formed on a metal surface
Guo et al. Tribological properties of a halogen-free ionic liquid for Inconel 690–tungsten carbide contact
Guo et al. Ionic liquids as high-performance lubricants and lubricant additives
Sappok et al. Surface Analysis of Chain Joint Components after Tribological Load and Usage of Antiwear Additives
Hashimoto et al. Correlation between nano-mechanical and macro-tribological properties of tribofilms derived from organic phosphoric additives
Rudnick Additives for industrial lubricant applications
Mandlik et al. Exprimental analysis of tribological properties of lubricating oil using nanoparticle additives
Umer et al. Effect of dispersant concentration with friction modifiers and anti-wear additives on the tribofilm composition and boundary friction
Narita Tribological properties of metal V-belt type CVT lubricant
Biswal et al. Evaluation of anti-wear properties of automobile lubricant with different additives using thin layer activation technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160415

R150 Certificate of patent or registration of utility model

Ref document number: 5922950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350