JP2013177474A - Device and method for carbonizing biomass - Google Patents

Device and method for carbonizing biomass Download PDF

Info

Publication number
JP2013177474A
JP2013177474A JP2010141345A JP2010141345A JP2013177474A JP 2013177474 A JP2013177474 A JP 2013177474A JP 2010141345 A JP2010141345 A JP 2010141345A JP 2010141345 A JP2010141345 A JP 2010141345A JP 2013177474 A JP2013177474 A JP 2013177474A
Authority
JP
Japan
Prior art keywords
temperature
biomass
moving bed
gas
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010141345A
Other languages
Japanese (ja)
Inventor
Keiji Tomura
啓二 戸村
Naoyuki Furumoto
直行 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010141345A priority Critical patent/JP2013177474A/en
Priority to PCT/JP2011/063966 priority patent/WO2011162185A1/en
Publication of JP2013177474A publication Critical patent/JP2013177474A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • C10B49/06Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated according to the moving bed type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for carbonizing biomass to obtain a carbonized product in a high yield, by thermally decomposing the biomass.SOLUTION: In a device 10 for carbonizing biomass provided with a carbonization furnace for producing a carbonized product, by supplying the biomass from an upper part of a vertical type carbonization furnace 11, to form a biomass-packed moving bed in the carbonization furnace, by supplying high-temperature gas from a lower side of the carbonization furnace, and by bringing the biomass into contact with the high-temperature gas, to be decomposed thermally, the device 10 for carbonizing the biomass includes a temperature control device 16 for controlling the temperature of an inside of the carbonization furnace 11, and the temperature control device 16 is set to control the temperature of the packed moving bed upper part at a drying temperature for evaporating contained moisture of the biomass to be dried, or higher, and at a tar condensation temperature for condensing tar, or lower, and to control the temperature of the packed moving bed lower part at a tar volatilization temperature for decomposing thermally the biomass to vaporize the tar, or higher, and at a gas generation temperature for decomposing thermally the biomass to generate gas, or lower, in order to establish prescribed temperature ranges.

Description

本発明は、バイオマスを炭化して炭化物を得るバイオマス炭化装置及びバイオマス炭化方法に関する。   The present invention relates to a biomass carbonization apparatus and a biomass carbonization method that carbonize biomass to obtain a carbide.

地球温暖化の防止対策として、バイオマスエネルギーの有効利用に注目が集まっている。化石資源ではない、再生可能な、生物由来の有機性資源をバイオマスと呼ぶ。バイオマスは太陽エネルギーを使い、水と二酸化炭素から生物が生成するものなので、持続的に再生可能な資源である。バイオマスは有機物であるため、燃焼させると二酸化炭素が排出される。しかし、これに含まれる炭素は、そのバイオマスが成長過程で光合成により大気中から吸収した二酸化炭素に由来するので、バイオマスを使用しても、この成長過程をも含めて全体として見れば大気中の二酸化炭素量を増加させていないと考えてよいとされる。この性質をカーボンニュートラルと呼ぶ。   Attention has been focused on the effective use of biomass energy as a measure to prevent global warming. Biomass is a renewable, organic resource that is not a fossil resource. Biomass is a continuously renewable resource because it uses solar energy and is produced from water and carbon dioxide. Since biomass is an organic substance, carbon dioxide is emitted when it is burned. However, the carbon contained in this is derived from carbon dioxide absorbed from the atmosphere by photosynthesis during the growth process. Therefore, even if biomass is used, It may be considered that the amount of carbon dioxide is not increased. This property is called carbon neutral.

特に、バイオマスの中でも植物由来のバイオマスは、植物の成長過程で光合成により二酸化炭素から変換された炭素資源を有効利用できるため、資源のライフサイクルの観点からすると大気中の二酸化炭素の増加につながらない。植物由来のバイオマスは林業系(木屑、製材廃棄物、間伐材、製紙廃棄物等)、農業系(稲わら、麦わら、サトウキビ糠、米糠、草木、アブラヤシ採油残渣等)、廃棄物系(生ごみ、庭木、建築廃材、下水汚泥等)等に分類される。   In particular, among biomass, plant-derived biomass can effectively use carbon resources converted from carbon dioxide by photosynthesis during the plant growth process, and therefore does not lead to an increase in atmospheric carbon dioxide from the viewpoint of the life cycle of the resources. Biomass derived from plants is forestry (wood scrap, sawn wood waste, thinned wood, paper waste, etc.), agriculture (rice straw, straw, sugarcane straw, rice straw, grass, oil palm oil residue, etc.), waste (food waste) , Garden trees, building waste, sewage sludge, etc.).

近年、バイオマスを熱分解してガス燃料や炭化物を製造することが開発検討されている。バイオマスから製造された炭化物を燃料や製鉄用コークスの代替品として用いることにより、二酸化炭素排出量を削減する効果が期待されている。   In recent years, development of gas fuel and carbide by pyrolyzing biomass has been studied. The use of carbides produced from biomass as an alternative to fuel and steelmaking coke is expected to reduce carbon dioxide emissions.

特許文献1には、竪型炉を用いて都市ごみ等の廃棄物を不活性ガス雰囲気下で熱分解処理して炭化物と熱分解ガスを得て、得られた炭化物を石炭やコークスの代替燃料や活性炭の代替材料とする技術が記載されている。特許文献1に記載の熱分解処理用の竪型炉を用いてバイオマスを熱分解して炭化物を得ることができる。   In Patent Document 1, wastes such as municipal waste are pyrolyzed in an inert gas atmosphere using a vertical furnace to obtain carbide and pyrolysis gas, and the obtained carbide is used as an alternative fuel for coal and coke. And a technology for replacing carbon and activated carbon. The biomass can be pyrolyzed using the vertical furnace for thermal decomposition described in Patent Document 1 to obtain a carbide.

特許文献1に記載の熱分解処理装置では、竪型炉に廃棄物を投入し、炉内を降下する廃棄物の充填移動層を形成して、炉下部から加この重点移動層内へ熱ガスを吹き込み、炉内を自重で下降する廃棄物に対して上昇する加熱ガスを向流接触させて加熱して、廃棄物が熱分解されて炭化物と熱分解ガスが生成される。   In the thermal decomposition processing apparatus described in Patent Document 1, waste is put into a vertical furnace, a waste moving moving bed descending in the furnace is formed, and hot gas is added from the lower part of the furnace to the priority moving bed. The heated gas that rises against the waste that descends due to its own weight in the furnace is heated by countercurrent contact, and the waste is pyrolyzed to generate carbide and pyrolysis gas.

特開2001−131557号公報JP 2001-131557 A

しかしながら、バイオマス原料重量に対する生成炭化物重量の比率である炭化物収率を向上させることが要望されている現状にも拘らず、特許文献1に記載の熱分解処理装置を用いて、炭化物収率を向上させることについていまだ提案されていない。   However, despite the current situation where it is desired to improve the carbide yield, which is the ratio of the generated carbide weight to the biomass raw material weight, the carbide yield is improved using the thermal decomposition treatment apparatus described in Patent Document 1. It has not yet been proposed to make it happen.

本発明は、上述したような事情に鑑みてなされたものであって、バイオマスを熱分解して炭化物を高い収率で得ることのできるバイオマス炭化装置及びバイオマス炭化方法を提供することを課題とする。   This invention is made | formed in view of the above situations, Comprising: It aims at providing the biomass carbonization apparatus and biomass carbonization method which can thermally decompose biomass and can obtain a carbide | carbonized_material with a high yield. .

本発明者らは、バイオマスを熱分解して炭化物を高い収率で得ることを可能とするプロセスを開発するために鋭意検討を進めた結果、以下の知見を得た。すなわち、バイオマスを熱分解して炭化物を生成する際にタールが生成し、このタールは発生ガスとともに炭化炉から排出されているが、タールを排出させずに炭化炉内で更に炭化物に転化させることにより炭化物を高い収率で得ることができるという知見を得て、上述の課題を解決すべく、炭化物を高い収率で得ることが可能なバイオマス炭化装置、バイオマス炭化方法を見出して本発明を完成した。   As a result of diligent investigations to develop a process that enables pyrolysis of biomass to obtain a carbide in a high yield, the present inventors have obtained the following knowledge. That is, tar is produced when pyrolyzing biomass to produce carbide, and this tar is discharged from the carbonization furnace together with the generated gas, but it is further converted into carbide in the carbonization furnace without discharging the tar. In order to solve the above problems, the inventors have found a biomass carbonization apparatus and a biomass carbonization method capable of obtaining carbide in high yield, and completed the present invention. did.

本発明によるバイオマス炭化装置そしてバイオマス炭化方法は、次のごとく構成される。   The biomass carbonization apparatus and the biomass carbonization method according to the present invention are configured as follows.

<バイオマス炭化装置>
本発明のバイオマス炭化装置は、竪型の炭化炉の上部からバイオマスを供給して炭化炉内にバイオマスの充填移動層を形成し、炭化炉の下部から高温ガスを供給し、バイオマスを高温ガスと接触させ熱分解して炭化物を生成する炭化炉を備えるバイオマス炭化装置において、バイオマス炭化装置は、炭化炉内の温度を制御する温度制御装置を有し、温度制御装置は、充填移動層上部の温度を、バイオマスをその含有水分を蒸発させ乾燥させる乾燥温度以上で、タールを凝縮させるタール凝縮温度以下に制御して所定温度範囲とするとともに、充填移動層下部の温度を、バイオマスを熱分解してタールを揮発させるタール揮発温度以上で、バイオマスを熱分解してガス発生させるガス発生温度以下に制御して所定温度範囲とすることを特徴としている。
<Biomass carbonization equipment>
The biomass carbonization apparatus of the present invention supplies biomass from the upper part of a vertical carbonization furnace to form a packed moving bed of biomass in the carbonization furnace, supplies high temperature gas from the lower part of the carbonization furnace, and converts biomass into high temperature gas. In a biomass carbonization apparatus including a carbonization furnace that is brought into contact and thermally decomposed to generate carbide, the biomass carbonization apparatus has a temperature control device that controls the temperature in the carbonization furnace, and the temperature control device is a temperature above the packed moving bed. The temperature of the lower part of the packed moving bed is thermally decomposed by controlling the temperature below the drying temperature for evaporating the moisture contained in the biomass and drying it to a predetermined temperature range. It is characterized by being controlled within a predetermined temperature range by controlling the temperature to be equal to or higher than the tar volatilization temperature for volatilizing tar and lower than the gas generation temperature for generating gas by pyrolyzing biomass. There.

本発明において、温度制御装置は、充填移動層上部の温度を80℃以上100℃以下に制御し、充填移動層下部の温度を400℃以上700℃以下に制御することが好ましい。   In the present invention, it is preferable that the temperature control device controls the temperature of the upper part of the packed moving bed to 80 ° C. or higher and 100 ° C. or lower and the temperature of the lower part of the packed moving bed to 400 ° C. or higher and 700 ° C. or lower.

また、本発明において、温度制御装置は、充填移動層の中央高さ部の温度を200℃以上400℃以下に制御することが好ましい。   Moreover, in this invention, it is preferable that a temperature control apparatus controls the temperature of the center height part of a filling moving bed to 200 to 400 degreeC.

本発明において、上述の制御を行うために、温度制御装置は、充填移動層上部の温度を計測する上部温度計測手段と、充填移動層下部の温度を計測する下部温度計測手段とを備え、計測した充填移動層上部の温度と充填移動層下部の温度とに基づき、これらの温度を所定温度範囲内とするように、炭化炉へ供給するバイオマス供給量及び炭化炉へ供給する高温ガス供給量のうち少なくとも一方を制御するようにすることができる。   In the present invention, in order to perform the above-described control, the temperature control apparatus includes an upper temperature measuring unit that measures the temperature of the upper part of the packed moving bed, and a lower temperature measuring unit that measures the temperature of the lower part of the packed moving bed. Based on the temperature of the upper part of the packed moving bed and the temperature of the lower part of the packed moving bed, the biomass supply amount supplied to the carbonization furnace and the high-temperature gas supply amount supplied to the carbonization furnace are set so that these temperatures are within a predetermined temperature range. At least one of them can be controlled.

また、本発明において、バイオマス炭化装置は、炭化炉から可燃ガスの供給を受けこれを部分燃焼して燃焼ガスを発生する部分燃焼炉と、上記燃焼ガスの少なくとも一部を高温ガスとして上記炭化炉へ供給する高温ガス供給手段とを、さらに有するようにすることができる。   Further, in the present invention, the biomass carbonization apparatus includes a partial combustion furnace that receives supply of combustible gas from a carbonization furnace and partially burns it to generate combustion gas, and the carbonization furnace using at least a part of the combustion gas as a high-temperature gas. It is possible to further include a hot gas supply means for supplying to the battery.

<バイオマス炭化方法>
本発明のバイオマス炭化方法は、竪型の炭化炉の上部からバイオマスを供給して炭化炉内にバイオマスの充填移動層を形成し、炭化炉の下部から高温ガスを供給し、バイオマスを高温ガスと接触させ熱分解して炭化物を生成するバイオマス炭化方法において、充填移動層下部でバイオマスを熱分解してタールを揮発させるとともに、充填移動層上部から下降したバイオマスに付着しているタールを揮発させ、充填移動層上部で充填移動層下部から上昇したガス状タールを凝縮させバイオマスの表面に付着させるように、炭化炉内の充填移動層上部と充填移動層下部の温度を所定温度範囲内に保つことを特徴としている。
<Biomass carbonization method>
In the biomass carbonization method of the present invention, biomass is supplied from the upper part of the vertical carbonization furnace to form a packed moving bed of biomass in the carbonization furnace, high temperature gas is supplied from the lower part of the carbonization furnace, In the biomass carbonization method of contacting and pyrolyzing to produce carbide, the biomass is pyrolyzed at the bottom of the packed moving bed to volatilize tar, and the tar attached to the biomass descending from the top of the packed moving bed is volatilized, Maintain the temperature of the upper part of the packed moving bed and the lower part of the packed moving bed in the carbonization furnace within the specified temperature range so that the gaseous tar rising from the lower part of the packed moving bed is condensed and attached to the surface of the biomass. It is characterized by.

本発明において、充填移動層上部の温度を80℃以上100℃以下に制御し、充填移動層下部の温度を400℃以上700℃以下に制御して所定温度範囲にすることが好ましい。   In the present invention, it is preferable to control the temperature of the upper portion of the filling and moving bed to 80 ° C. or more and 100 ° C. or less and to control the temperature of the lower portion of the filling and moving bed to 400 ° C. or more and 700 ° C. or less to a predetermined temperature range.

本発明において、充填移動層の温度制御は、充填移動層上部の温度と充填移動層下部の温度を計測し、計測した充填移動層上部の温度と充填移動層下部の温度とに基づき、これらの温度を所温度定範囲内とするように、炭化炉へ供給するバイオマス供給量及び炭化炉へ供給する高温ガス供給量のうち少なくとも一方を制御することにより実行可能である。   In the present invention, the temperature control of the filling moving bed is performed by measuring the temperature of the upper portion of the filling moving bed and the temperature of the lower portion of the filling moving bed, and based on the measured temperature of the upper portion of the filling moving bed and the temperature of the lower portion of the filling moving bed. This can be performed by controlling at least one of the biomass supply amount supplied to the carbonization furnace and the high-temperature gas supply amount supplied to the carbonization furnace so that the temperature falls within a predetermined temperature range.

本発明において、部分燃焼炉にて炭化炉から可燃ガスの供給を受けこれを部分燃焼し燃焼ガスを発生させ、上記燃焼ガスの少なくとも一部を高温ガスとして炭化炉へ供給することが可能である。   In the present invention, it is possible to receive a combustible gas from a carbonization furnace in a partial combustion furnace, partially burn it to generate combustion gas, and supply at least a part of the combustion gas to the carbonization furnace as a high-temperature gas. .

このような本発明装置そして方法によると、炭化炉の上部から供給されたバイオマスは、炭化炉内で充填移動層を形成し自重で降下しながら、下部から吹き込まれて上昇する高温ガスと接触して加熱される。バイオマスは、充填移動層上部で乾燥予熱され、降下して下部で熱分解され、炭化物が生成してこれが灰分とともに炭化炉下部から排出される。   According to such an apparatus and method of the present invention, the biomass supplied from the upper part of the carbonization furnace forms a packed moving bed in the carbonization furnace and comes into contact with the hot gas that is blown up from the lower part while descending by its own weight. Heated. Biomass is dried and preheated at the upper part of the packed moving bed, descends and is pyrolyzed at the lower part to produce carbides, which are discharged from the lower part of the carbonization furnace together with ash.

充填移動層下部ではバイオマスが高温ガスにより加熱され、熱分解して炭化物とタールとガスが生成される。この生成したタールは、従来は発生ガスとともに炭化炉から排出されていたが、本発明装置そして方法によると、タールを炭化物に転化し、バイオマスからの炭化物収率を向上させる。このタールを炭化物に転化するプロセスの原理を詳述すると次のごとくである。   In the lower part of the packed moving bed, the biomass is heated by the high-temperature gas and is pyrolyzed to generate carbide, tar and gas. The generated tar is conventionally discharged from the carbonization furnace together with the generated gas. However, according to the apparatus and method of the present invention, the tar is converted to carbide and the yield of carbide from biomass is improved. The principle of the process of converting this tar into carbide is described in detail as follows.

(1)充填移動層下部で高温ガスによりバイオマスが加熱されると、熱分解されてガス状タールが揮発して上昇する。このガス状タールは上部へ上昇する。   (1) When biomass is heated by high-temperature gas in the lower part of the packed moving bed, it is pyrolyzed and gaseous tar volatilizes and rises. This gaseous tar rises to the top.

(2)充填移動層の上部へ達すると、ガス状タールは冷却されて凝縮して液状タールとなりバイオマスの表面に付着する。   (2) When reaching the upper part of the packed moving bed, the gaseous tar is cooled and condensed to become liquid tar and adhere to the surface of the biomass.

(3)液状タールが付着したバイオマスは降下する。   (3) Biomass to which liquid tar has adhered falls.

(4)バイオマスに付着した液状タールは下部で高温ガスにより加熱され揮発し上部へ再び上昇する。   (4) The liquid tar adhering to the biomass is heated and vaporized by the high temperature gas at the lower part and rises again to the upper part.

(5)このような(1)〜(4)を繰り返し、タールが充填移動層内で上昇と下降を、そして揮発と凝縮を繰り返す過程で、バイオマスの表面に付着したタールは高温ガスにより加熱され次第にタールの熱分解反応や重合反応が進み、タールの一部は炭化物に転化する。生成した炭化物はバイオマスから直接炭化した炭化物とともに、充填移動層をさらに下降して排出される。従来、タールは炭化炉内での発生ガスとともに炭化炉外へ排出されていたが、本発明では、タールを炭化物とすることができるので、バイオマスからの炭化物収率を向上させることができる。また、本発明では、タールを炭化物に転化させるに際し、特別な触媒を使うことなく、特別な反応装置を追加することなく、また従来の触媒を用いるタールの炭化物転化反応に比べて比較的低温である700℃以下で実施することができる。そのため、経済的に優れたタールを炭化物に転化するプロセスである。   (5) By repeating the above (1) to (4), the tar adhering to the surface of the biomass is heated by the high-temperature gas in the process of tar rising and falling in the packed moving bed, and volatilization and condensation. Gradually, the thermal decomposition reaction and polymerization reaction of tar progress, and a part of tar is converted to carbide. The produced carbide is discharged further down the packed moving bed together with the carbide directly carbonized from the biomass. Conventionally, tar has been discharged to the outside of the carbonization furnace together with the gas generated in the carbonization furnace. However, in the present invention, since tar can be converted into carbide, the yield of carbide from biomass can be improved. Further, in the present invention, when tar is converted to carbide, a special catalyst is not used, a special reaction apparatus is not added, and at a relatively low temperature as compared with a tar carbide conversion reaction using a conventional catalyst. It can be carried out at a certain temperature of 700 ° C. or lower. Therefore, it is a process for converting tar that is economically excellent into carbide.

本発明のバイオマス炭化装置及びバイオマス炭化方法にもとづき、バイオマスを所定温度範囲内の温度とするように制御して、充填移動層下部でバイオマスからガス状タールを揮発させ、上部でこれを凝縮して液状タールとし、揮発と凝縮を繰り返す過程で、タールの熱分解反応や重合反応を進ませ、タールの一部を炭化物に転化することによって、バイオマスを熱分解して炭化物を得るとともに生成するタールからも炭化物を得ることとしたので、バイオマスから高い収率で炭化物を得ることができる。   Based on the biomass carbonization apparatus and the biomass carbonization method of the present invention, the biomass is controlled to have a temperature within a predetermined temperature range, the gaseous tar is volatilized from the biomass in the lower part of the packed moving bed, and this is condensed in the upper part. From a tar that is generated and produced by thermally decomposing biomass by converting the tar into a liquid tar, in the process of repeated volatilization and condensation, by promoting a thermal decomposition reaction and polymerization reaction of the tar and converting a part of the tar into a carbide. Since it was decided to obtain the carbide, the carbide can be obtained from the biomass with high yield.

本発明のバイオマス炭化装置の全体の構成を示す概略図である。It is the schematic which shows the structure of the whole biomass carbonization apparatus of this invention. 本発明のバイオマス炭化装置内の反応を説明する図である。It is a figure explaining reaction in the biomass carbonization apparatus of this invention. 本発明に係る充填移動層炭化炉内の温度分布を説明する図である。It is a figure explaining the temperature distribution in the filling moving bed carbonization furnace which concerns on this invention. 本発明のバイオマス炭化装置の充填移動層炭化炉を示す図である。It is a figure which shows the filling moving bed carbonization furnace of the biomass carbonization apparatus of this invention. 本発明のバイオマス炭化装置の充填移動層炭化炉を示す図である。It is a figure which shows the filling moving bed carbonization furnace of the biomass carbonization apparatus of this invention.

以下、添付図面にもとづき、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1において、符号10は炭化装置であり、該炭化装置10は、竪型の炭化炉11と、これにバイオマスを供給するバイオマス供給装置12と、炉内で発生すガスを部分燃焼させる部分燃焼炉13と、これらを調整して炭化炉11内の温度を制御する温度制御装置16とを備えている。   In FIG. 1, the code | symbol 10 is a carbonization apparatus, and this carbonization apparatus 10 is the vertical combustion furnace 11, the biomass supply apparatus 12 which supplies biomass to this, and the partial combustion which carries out the partial combustion of the gas generated in a furnace A furnace 13 and a temperature control device 16 that adjusts these to control the temperature in the carbonization furnace 11 are provided.

炭化炉11は竪型炉であり、上部側部にバイオマス供給口11A、発生ガス排出口11Bがそして下端に炭化物排出口11Cがそれぞれ設けられているとともに、上記炭化物排出口11Cよりも若干上方位置側部に高温ガス送入口11Dが設けられている。   The carbonization furnace 11 is a vertical furnace, and is provided with a biomass supply port 11A and a generated gas discharge port 11B at the upper side, and a carbide discharge port 11C at the lower end, and is slightly above the carbide discharge port 11C. A hot gas inlet 11D is provided on the side.

バイオマス供給装置12は、炭化炉の上部または側方上部からバイオマスを供給する。バイオマスを所定の供給量で切り出すロータリバルブやスクリューフィーダなどを用いることができる。   The biomass supply device 12 supplies biomass from the upper part or the upper side part of the carbonization furnace. A rotary valve or a screw feeder that cuts out biomass at a predetermined supply amount can be used.

上記バイオマス供給装置12は、上記炭化炉11のバイオマス供給口11Aに接続されていて、温度制御装置16からの指令にしたがって所定量ずつ炭化炉11へバイオマスを供給している。炭化炉11内にはバイオマスの充填移動層Pが形成される。この充填移動層Pは、低温の上部でタール凝縮領域A、そして高温の下部でタール揮発領域Bを形成する。   The biomass supply device 12 is connected to the biomass supply port 11 </ b> A of the carbonization furnace 11 and supplies biomass to the carbonization furnace 11 by a predetermined amount in accordance with a command from the temperature control device 16. In the carbonization furnace 11, a packed moving bed P of biomass is formed. This packed moving bed P forms a tar condensing region A at a low temperature upper portion and a tar volatilizing region B at a high temperature lower portion.

炭化炉11の上部の発生ガス排出口11Bは、ファン等の送気装置14を経て部分燃焼炉13に接続されている。この部分燃焼炉13で生じた燃焼ガスは、次工程での処理に向け排出されるが、その一部分がダンパ15を介して、炭化炉11の下部の高温ガス送入口11Dへ送られるようになっている。   The generated gas discharge port 11B in the upper part of the carbonization furnace 11 is connected to the partial combustion furnace 13 through an air supply device 14 such as a fan. The combustion gas generated in the partial combustion furnace 13 is discharged for processing in the next process, but a part of the combustion gas is sent to the hot gas inlet 11D at the lower part of the carbonization furnace 11 via the damper 15. ing.

炭化炉11には、炉内に形成されたバイオマスの充填移動層Pの上部そして下部での温度を計測する上部温度計測手段17Aと下部温度計測手段17Bとがそれぞれ設けられている。温度制御装置16は、これらの上部温度計測手段17Aそして下部温度計測手段17Bからの信号を受けて、その信号にもとづき、バイオマス供給装置12のバイオマス供給量を制御し、そして高温ガス供給量を制御するためにダンパ15の開度を制御している。   The carbonization furnace 11 is provided with an upper temperature measurement means 17A and a lower temperature measurement means 17B for measuring the temperature at the upper part and the lower part of the biomass filling moving bed P formed in the furnace. The temperature control device 16 receives signals from the upper temperature measurement means 17A and the lower temperature measurement means 17B, controls the biomass supply amount of the biomass supply device 12 based on the signals, and controls the hot gas supply amount. Therefore, the opening degree of the damper 15 is controlled.

このように構成される本実施形態装置では、炭化炉11内は、上部のバイオマス供給口11Aからバイオマスがバイオマス供給装置12により供給されて、充填移動層Pが形成されており、部分燃焼炉13で生成した燃焼ガスの少なくとも一部である高温ガスが下部の高温ガス送入口11Dへ供給される。バイオマスが充填移動層Pの上部から下部へ下降移動する間に上昇する高温ガスとの接触により、まず上部で乾燥・予熱され、下部でさらに加熱され熱分解され、炭化物が生成され底部から灰分とともに排出される。   In the apparatus of the present embodiment configured as described above, in the carbonization furnace 11, the biomass is supplied from the upper biomass supply port 11 </ b> A by the biomass supply apparatus 12, the packed moving bed P is formed, and the partial combustion furnace 13. The high-temperature gas that is at least a part of the combustion gas generated in step 1 is supplied to the lower high-temperature gas inlet 11D. By contact with the high temperature gas that rises while biomass moves downward from the upper part to the lower part of the packed moving bed P, it is first dried and preheated at the upper part, further heated and pyrolyzed at the lower part, and carbide is generated along with ash from the bottom part. Discharged.

バイオマスが熱分解する際に生じるタールは、後述する炭化炉11内でのプロセスで炭化物となり底部の炭化物排出口11Cから排出される。また、熱分解によって生成した可燃ガスを含む発生ガスは頂部の発生ガス排出口11Bから送気装置14により部分燃焼炉13に導かれる。   Tar generated when the biomass is pyrolyzed becomes carbide in a process in the carbonization furnace 11 described later, and is discharged from the bottom carbide discharge port 11C. Further, the generated gas containing the combustible gas generated by the thermal decomposition is guided to the partial combustion furnace 13 by the air supply device 14 from the top generated gas discharge port 11B.

炭化炉11でのバイオマスの熱分解・炭化反応においては、炭化物収率を最大化する条件においても、ガスが発生する。この発生ガスの主成分は水素、一酸化炭素、メタン等の可燃ガスであり燃料として発熱量をもつことから、この発生ガスを部分燃焼炉13に送り、この部分燃焼炉13で空気を供給して部分燃焼して、生じる高温の燃焼ガスの少なくとも一部を炭化炉11へ供給する高温ガスとして用いることが望ましい。   In the pyrolysis and carbonization reaction of biomass in the carbonization furnace 11, gas is generated even under conditions that maximize the carbide yield. The main component of this generated gas is a combustible gas such as hydrogen, carbon monoxide, methane, etc., and has a calorific value as fuel, so this generated gas is sent to the partial combustion furnace 13 and air is supplied in this partial combustion furnace 13. It is desirable to use at least a part of the high-temperature combustion gas generated by partial combustion as a high-temperature gas supplied to the carbonization furnace 11.

以下、図1に用いられている炭化炉及びこれに接続されている主要装置及びこれらにおけるバイオマスの挙動について詳述する。   Hereinafter, the carbonization furnace used in FIG. 1, main apparatuses connected thereto, and the behavior of biomass in these will be described in detail.

<炭化炉>
本発明における炭化炉の炉形式は竪型炉またはシャフト型炉であり、炭化炉の上部または側方上部からバイオマスを供給し、炭化炉内に充填移動層を形成し、バイオマスが上部から下部へ下降移動する間に熱分解され、炭化物を生成する。
<Carbonization furnace>
The furnace type of the carbonization furnace in the present invention is a vertical type furnace or a shaft type furnace, supplying biomass from the upper part or the lateral upper part of the carbonization furnace, forming a packed moving bed in the carbonization furnace, and the biomass from the upper part to the lower part Pyrolysis occurs during the downward movement, producing carbide.

炭化炉の下部または側方下部から、部分燃焼炉から高温ガスの供給を受け、該高温ガスが炭化炉の充填移動層内を上昇する。充填移動層に高温ガスを流通させることで、降下するバイオマスに高温ガスを接触させて加熱する。供給されたバイオマスは充填移動層の上部で乾燥され水分を除去され、バイオマスが充填移動層の上部から下部に下降する過程で高温ガスと接触しさらに加熱され熱分解されて炭化物とタールとガスが生成される。   High temperature gas is supplied from the partial combustion furnace from the lower side or the lower side of the carbonization furnace, and the high temperature gas rises in the filling moving bed of the carbonization furnace. By circulating the hot gas through the packed moving bed, the hot gas is brought into contact with the descending biomass and heated. The supplied biomass is dried at the upper part of the packed moving bed to remove moisture, and in the process where the biomass descends from the upper part to the lower part of the packed moving bed, it is contacted with high-temperature gas and further heated and pyrolyzed to convert carbides, tar and gas. Generated.

炭化物は炭化炉の下部または側方下部に設けられた炭化物排出口から排出される。炭化物排出手段としてはスクリューフィーダを用いて炭化物を切り出すようにすることが好ましい。可燃ガスを含む発生ガスが炭化炉の上部または側方上部に設けられた発生ガス排出口から排出される。   The carbide is discharged from a carbide discharge port provided at a lower portion or a lower side portion of the carbonization furnace. As the carbide discharging means, it is preferable to cut out the carbide using a screw feeder. The generated gas containing the combustible gas is discharged from the generated gas discharge port provided at the upper part or the upper side part of the carbonization furnace.

(充填移動層内でのタールの反応)
図2に見られるように、炭化炉内の充填移動層下部の領域でバイオマスが高温ガスにより加熱され、熱分解して炭化物とタールとガスが生成される(「タール揮発領域」といい、符号Bで示す領域)。このタール揮発領域でガス状タールが揮発し、ガス状タールが上昇する高温ガスと発生ガスに随伴され充填移動層内を上昇し、充填移動層上部の比較的低い温度領域で冷却され、ガス状タールは凝縮して液状タールになり(「タール凝縮領域」といい、符号Aで示す領域)、このタール凝縮領域で液状(ミスト状)タールはバイオマスの表面に付着する。タールが付着したバイオマスが充填移動層内を下降する。下降したバイオマスは充填移動層の下部でのタール揮発領域で再び加熱されタールが揮発し、ガス状タールが高温ガスと発生ガスに随伴され充填移動層内を上昇し、タール凝縮領域に運ばれる。このように、タールが充填移動層内で上昇と下降を、そして揮発と凝縮を繰り返す過程で、バイオマスの表面に付着したタールは高温ガスにより加熱され次第にタールの熱分解反応や重合反応が進み、タールの一部は炭化物に転化する。
(Tar reaction in packed moving bed)
As shown in FIG. 2, biomass is heated by a high-temperature gas in a region below the packed moving bed in the carbonization furnace, and pyrolyzed to generate carbide, tar, and gas (referred to as “tar volatilization region”). Region indicated by B). Gaseous tar is volatilized in this tar volatilization region, the gas tar rises along with the high temperature gas and the generated gas, rises in the packed moving bed, is cooled in a relatively low temperature region above the packed moving layer, Tar condenses into liquid tar (referred to as “tar condensation region”, indicated by symbol A), and the liquid (mist) tar adheres to the surface of biomass in this tar condensation region. The biomass with tar attached descends in the packed moving bed. The lowered biomass is heated again in the tar volatilization region at the lower part of the packed moving bed, the tar is volatilized, the gaseous tar is accompanied by the high temperature gas and the generated gas, rises in the packed moving bed, and is carried to the tar condensing region. In this way, in the process where tar rises and falls in the packed moving bed and repeats volatilization and condensation, the tar adhering to the surface of the biomass is heated by the high-temperature gas, and the thermal decomposition reaction and polymerization reaction of tar progress gradually. Part of the tar is converted to carbide.

タール揮発領域とする充填移動層下部領域としては、充填移動層底部から充填移動層全体高さ寸法の10%程度上方の位置から、40%程度上方の位置までの領域とするのが好ましい。また、タール凝縮領域とする充填移動層上部領域としては、充填移動層頂部から充填移動層全体高さ寸法の30%程度〜50%程度下方の位置までの領域とするのが好ましい。   The lower region of the packed moving bed as the tar volatilization region is preferably a region from a position about 10% above the height of the entire packed moving bed to a position about 40% above the bottom of the packed moving layer. Further, the upper region of the packed moving bed as the tar condensing region is preferably a region from the top of the packed moving layer to a position about 30% to 50% below the entire height of the packed moving layer.

(高温ガスの供給手段)
炭化炉で発生した発生ガスは送気装置により部分燃焼炉に導かれる。部分燃焼炉に供給された発生ガスは、空気を供給され部分燃焼して燃焼ガスを生成し、この燃焼ガスの少なくとも一部が高温ガスとして炭化炉に送られる。
(High temperature gas supply means)
The generated gas generated in the carbonization furnace is guided to the partial combustion furnace by an air supply device. The generated gas supplied to the partial combustion furnace is supplied with air and partially burned to generate combustion gas, and at least a part of the combustion gas is sent to the carbonization furnace as a high-temperature gas.

炭化炉の下部または側方下部に部分燃焼炉から導いた高温ガスを吹き込むための高温ガス送入口11Dとしてのノズルを設ける。このノズルは複数設け周方向に分布配置することが好ましい。   A nozzle serving as a high temperature gas inlet 11D for blowing high temperature gas introduced from the partial combustion furnace is provided at the lower part or the lower side part of the carbonization furnace. It is preferable that a plurality of nozzles are provided and distributed in the circumferential direction.

部分燃焼炉から排出される燃焼ガスの少なくとも一部を高温ガスとして炭化炉へ供給するダクト、供給量を調整するダンパ15を設ける。   A duct for supplying at least part of the combustion gas discharged from the partial combustion furnace to the carbonization furnace as a high-temperature gas and a damper 15 for adjusting the supply amount are provided.

(炭化炉内のガス流速)
炭化炉に供給された高温ガスは、発生ガスとともに充填移動層内を上昇するが、その際のガス流速を適切な範囲とすることが必要である。ガス流速の調整は高温ガスの供給量を調整して行う。ガス流速が大きすぎると充填層を通過するガスの圧力損失が大きすぎるため、送気装置の負荷が大きくなりすぎたり、バイオマスの微粒が発生ガスに随伴されて炭化炉から排出され、その結果、炭化物収率が低下するという問題が生じる。 そのため、ガス流速(線速度)を0.5Nm/sec未満とするように、高温ガス供給量を調整する。 一方、ガス流速が小さすぎると、炉内のガス流れを均一にすることが難しくなるため、ガス流速(線速度)を0.02Nm/sec以上とするように、高温ガス供給量を調整する。
(Gas flow rate in the carbonization furnace)
The high-temperature gas supplied to the carbonization furnace rises in the packed moving bed together with the generated gas, but the gas flow rate at that time needs to be in an appropriate range. The gas flow rate is adjusted by adjusting the amount of hot gas supplied. If the gas flow rate is too large, the pressure loss of the gas passing through the packed bed is too large, so the load on the air supply device becomes too large, or the biomass particles are accompanied by the generated gas and discharged from the carbonization furnace, There arises a problem that the yield of carbide is lowered. Therefore, the high-temperature gas supply amount is adjusted so that the gas flow rate (linear velocity) is less than 0.5 Nm / sec. On the other hand, if the gas flow rate is too small, it becomes difficult to make the gas flow in the furnace uniform, so the high-temperature gas supply amount is adjusted so that the gas flow rate (linear velocity) is 0.02 Nm / sec or more.

(炭化炉の温度)
供給する高温ガスの条件(温度、供給量)及び供給するバイオマスの条件(種類、供給量)を調整することにより、炭化炉における充填移動層の温度を好ましい範囲に調整する。なお、本発明において充填移動層の温度とは、充填移動層の構成物質である固体(バイオマス、炭化物)、気体(高温ガス)、液体(タール)の総合的な温度をいい、充填移動層内に設置した熱電対等の温度計測器により測定された測定値を充填移動層の温度としてもよい。
(Carbonization furnace temperature)
The temperature of the packed moving bed in the carbonization furnace is adjusted to a preferable range by adjusting the conditions (temperature, supply amount) of the high-temperature gas to be supplied and the conditions (kind, supply amount) of the biomass to be supplied. In the present invention, the temperature of the packed moving bed refers to the total temperature of solid (biomass, carbide), gas (high temperature gas), and liquid (tar), which are constituent materials of the packed moving bed, A measured value measured by a temperature measuring instrument such as a thermocouple installed in the container may be used as the temperature of the packed moving bed.

充填移動層下部の温度は400℃以上700℃以下に調整する。温度が上記の下限値(400℃)より低いとタールの揮発が十分に進まず、また、バイオマスの炭化も進まず、炭化物収率が低くなる。また、温度が上記の上限値(700℃)より高いとバイオマスの熱分解反応がガス発生の多い反応となり炭化物の収率が低下する上に、過剰に温度を高くすることによって設備費用や運転費用が嵩む。充填移動層下部の温度は500℃程度とするのが最も好ましい。   The temperature at the bottom of the packed moving bed is adjusted to 400 ° C. or higher and 700 ° C. or lower. When the temperature is lower than the lower limit (400 ° C.), tar volatilization does not proceed sufficiently, and carbonization of biomass does not proceed, resulting in a low carbide yield. Moreover, if the temperature is higher than the above upper limit (700 ° C.), the pyrolysis reaction of biomass becomes a reaction in which gas is generated frequently, and the yield of carbides is reduced. Is bulky. Most preferably, the temperature at the bottom of the packed moving bed is about 500 ° C.

充填移動層上部の温度は80℃以上100℃以下に調整する。温度が上記下限値(80℃)より低いとバイオマスの乾燥が十分に進まず水分が充填移動層から十分に排出されなくなる。また、温度が上記上限値(100℃)より高いと充填移動層上部でタールの凝縮が十分に行われず、ガス状タール分が発生ガスとともに移動層炭化炉から排出されるため、炭化物収率が低くなるので好ましくない。   The temperature at the top of the packed moving bed is adjusted to 80 ° C. or higher and 100 ° C. or lower. When the temperature is lower than the lower limit (80 ° C.), the drying of the biomass does not proceed sufficiently and the moisture is not sufficiently discharged from the packed moving bed. Further, if the temperature is higher than the upper limit (100 ° C.), the condensation of tar is not sufficiently performed at the upper part of the packed moving bed, and the gaseous tar is discharged from the moving bed carbonization furnace together with the generated gas. Since it becomes low, it is not preferable.

(充填移動層内の好ましい温度分布)
かかる充填移動層内での温度分布は、上記「タール凝縮領域」Aと「タール揮発領域」Bとのそれぞれの領域範囲(高さ方向範囲)を大きくして反応を促進させるために、上記それぞれの領域範囲内での温度の変化を小さくすることが望ましく、したがって、充填移動層炭化炉内の温度分布を示す図3(A)のようになることが好ましい。図3(B)のような温度分布は、上記条件に合わず、不適である。充填移動層炭化炉内の温度分布を図3(A)のようにするためには、充填移動層下部の温度と充填移動層上部の温度を前述のような温度範囲とするとともに、充填移動層の中央高さ部の温度を200℃以上400℃以下とすることが好ましい。
(Preferred temperature distribution in packed moving bed)
In order to promote the reaction by increasing the respective range (height direction range) of the “tar condensation region” A and the “tar volatilization region” B, the temperature distribution in the packed moving bed is as described above. It is desirable to reduce the change in temperature within the range of the region of FIG. 3, and therefore, it is preferable that the temperature distribution in the packed moving bed carbonization furnace be as shown in FIG. The temperature distribution as shown in FIG. 3B does not meet the above conditions and is inappropriate. In order to make the temperature distribution in the filling moving bed carbonization furnace as shown in FIG. 3A, the temperature of the lower portion of the filling moving bed and the temperature of the upper portion of the filling moving bed are set within the above-described temperature range, and the filling moving bed It is preferable that the temperature of the central height portion of the glass be 200 ° C. or more and 400 ° C. or less.

炭化炉内の充填移動層の温度を図3(A)に示すような好ましい温度分布とするように、充填移動層上部及び下部の適切な位置に温度センサを設ける。上部と下部それぞれに複数の温度センサを設けると、より確実に好ましい温度分布とすることができるので、より好ましい。   Temperature sensors are provided at appropriate positions above and below the filling moving bed so that the temperature of the filling moving bed in the carbonization furnace has a preferable temperature distribution as shown in FIG. It is more preferable to provide a plurality of temperature sensors in each of the upper part and the lower part because a preferable temperature distribution can be obtained more reliably.

<温度制御装置>
温度制御装置は、充填移動層上部の温度を計測する上部温度計測手段(温度センサ)と、充填移動層下部の温度を計測する下部温度計測手段(温度センサ)とを備え、計測した充填移動層上部の温度と充填移動層下部の温度とに基づき、上部温度と下部温度が所定範囲とするように、炭化炉へ供給するバイオマス供給量及び炭化炉へ供給する高温ガス供給量のうち少なくとも一つを制御する。
<Temperature control device>
The temperature control device includes an upper temperature measuring means (temperature sensor) for measuring the temperature of the upper part of the filling moving bed, and a lower temperature measuring means (temperature sensor) for measuring the temperature of the lower part of the filling moving bed. Based on the temperature of the upper part and the temperature of the lower part of the packed moving bed, at least one of the biomass supply amount supplied to the carbonization furnace and the hot gas supply amount supplied to the carbonization furnace so that the upper temperature and the lower temperature are within a predetermined range To control.

バイオマス供給量の制御は、バイオマス供給装置によるバイオマス切出量を調整したり、バイオマス供給に用いられるロータリバルブの回転数や供給路に設けられたダンパの開度を調整することにより行われる。   Control of the biomass supply amount is performed by adjusting the biomass cut-out amount by the biomass supply device, or by adjusting the number of rotations of a rotary valve used for biomass supply and the opening of a damper provided in the supply path.

高温ガス供給量の制御は、高温ガス供給ラインに設けたダンパの開度を調整することにより行われる。   The control of the hot gas supply amount is performed by adjusting the opening of a damper provided in the hot gas supply line.

詳細な温度制御の手順を以下に説明する。
・充填移動層上部の温度が所定範囲より低い場合には、バイオマス供給量を減少、高温ガス供給量を増加のうち少なくとも一つの操作を行う。
・充填移動層上部の温度が所定範囲より高い場合には、バイオマス供給量を増加、高温ガス供給量を減少のうち少なくとも一つの操作を行う。
・充填移動層下部の温度が所定範囲より低い場合には、バイオマス供給量を減少、高温ガス供給量を増加のうち少なくとも一つの操作を行う。
・充填移動層下部の温度が所定範囲より高い場合には、バイオマス供給量を増加、高温ガス供給量を減少のうち少なくとも一つの操作を行う。
A detailed temperature control procedure will be described below.
-When the temperature of the upper part of the packed moving bed is lower than the predetermined range, at least one operation of decreasing the biomass supply amount and increasing the hot gas supply amount is performed.
-When the temperature of the upper part of the packed moving bed is higher than the predetermined range, at least one operation is performed among increasing the biomass supply amount and decreasing the high temperature gas supply amount.
When the temperature of the lower part of the packed moving bed is lower than the predetermined range, at least one operation is performed among decreasing the biomass supply amount and increasing the high temperature gas supply amount.
-When the temperature in the lower part of the packed moving bed is higher than the predetermined range, at least one operation is performed among increasing the biomass supply amount and decreasing the high temperature gas supply amount.

(充填移動層の中央高さ部の温度制御)
充填移動層内での「タール凝縮領域」Aと「タール揮発領域」Bとのそれぞれの領域範囲(高さ方向範囲)を大きくして反応を促進させるために、充填移動層炭化炉内の温度分布を図3(A)のようにすることが好ましい。そのためには、充填移動層下部の温度を400℃以上700℃以下とし、充填移動層上部の温度を80℃以上100℃以下とするとともに、充填移動層の中央高さ部の温度を200℃以上400℃以下とすることが好ましい。充填移動層の中央高さ部及び中央高さ部より上部の温度の制御について、詳述する。
(Temperature control at the central height of the packed moving bed)
In order to promote the reaction by increasing the respective region ranges (height direction ranges) of the “tar condensation region” A and the “tar volatilization region” B in the packed moving bed, the temperature in the packed moving bed carbonization furnace The distribution is preferably as shown in FIG. For this purpose, the temperature of the lower part of the packed moving bed is set to 400 ° C. or higher and 700 ° C. or lower, the temperature of the upper part of the packed moving bed is set to 80 ° C. or higher and 100 ° C. or lower. It is preferable to set it to 400 ° C. or lower. The control of the central height portion of the packed moving bed and the temperature above the central height portion will be described in detail.

この温度の制御について、図4に基づき、具体的に一例を説明する。炭化炉の充填移動層の中央高さ部に温度調整ガス送入口11Eを設け、温度調整ガスを充填移動層の中央高さ部に供給し、充填移動層の中央高さ部及び中央高さ部より上部の温度を制御する。充填移動層の中部に温度を計測する温度計測計を設け、測定値に基づき温度調整ガスの成分(酸素濃度)と供給量のうち少なくとも一方を調整して温度を制御する。   A specific example of this temperature control will be described with reference to FIG. A temperature adjustment gas inlet 11E is provided at the central height portion of the filling moving bed of the carbonization furnace, the temperature adjusting gas is supplied to the center height portion of the filling moving bed, and the center height portion and the center height portion of the filling moving bed are supplied. Control the upper temperature. A temperature meter for measuring the temperature is provided in the middle of the packed moving bed, and the temperature is controlled by adjusting at least one of the component (oxygen concentration) and the supply amount of the temperature adjusting gas based on the measured value.

充填移動層中央高さ部及び中央高さ部より上部の温度を低下させる場合には、温度調整ガスとして無酸素又は低酸素濃度(1vol%以下)の低温(例えば200℃以下)のガスを供給する。無酸素又は低酸素濃度の低温ガスとしては、例えば炭化炉内で発生した発生ガスを冷却塔に導き水スプレーにより直接冷却したガスを用いることができる。   When lowering the temperature above the center of the packed moving bed and the center height, supply oxygen-free or low-oxygen (1 vol% or less) low-temperature (eg, 200 ° C. or less) gas as the temperature adjustment gas. To do. As an oxygen-free or low-oxygen low-temperature gas, for example, a gas obtained by directing a generated gas generated in a carbonization furnace to a cooling tower and directly cooling it with water spray can be used.

充填移動層中央高さ部及び中央高さ部より上部の温度を低下させる場合に、上記とは別の制御方法として、以下の制御方法を用いてもよい。温度調整ガスとして、上記のような無酸素又は低酸素濃度の低温ガスにタールを混合したガスを供給してもよい。ガス中にタールを混合して充填移動層内に供給することにより、温度制御とともにタールを炭化物に転化させ炭化物収率を向上させることもできる。タールを混合した無酸素又は低酸素濃度の低温ガスとしては、例えば炭化炉内で発生した発生ガスを冷却塔に導き水スプレーにより直接冷却したガスに、炭化炉から排出された発生ガスから分離回収されたタールを混合して用いることができる。   The following control method may be used as a control method different from the above when lowering the temperature of the filling moving bed central height part and the upper part of the central height part. As the temperature adjustment gas, a gas obtained by mixing tar with a low temperature gas having no oxygen or low oxygen concentration as described above may be supplied. By mixing the tar in the gas and supplying it into the packed moving bed, the tar can be converted into a carbide together with the temperature control, and the carbide yield can be improved. As an oxygen-free or low-oxygen low-temperature gas mixed with tar, for example, the generated gas generated in the carbonization furnace is led to the cooling tower and directly cooled by water spray, and separated and recovered from the generated gas discharged from the carbonization furnace. Mixed tars can be used.

充填移動層中央高さ部及び中央高さ部より上部の温度を上昇させる場合には、温度調整ガスとして無酸素又は低酸素濃度(1vol%以下)の高温(例えば500〜1000℃)のガスを供給する。無酸素又は低酸素濃度の高温ガスとしては、例えば炭化炉内で発生した可燃ガスを含む発生ガスを部分燃焼炉に導いて、可燃ガスに対して空気比1以下となるように空気を供給し、部分燃焼して生じる500〜1000℃の高温の燃焼ガスの一部を用いることができる。   When raising the temperature above the packed moving bed central height part and the central height part, oxygen-free or low-oxygen concentration (1 vol% or less) high-temperature (for example, 500 to 1000 ° C.) gas is used as the temperature adjustment gas. Supply. As an oxygen-free or low-oxygen concentration high-temperature gas, for example, a generated gas containing a combustible gas generated in a carbonization furnace is guided to a partial combustion furnace, and air is supplied so that the air ratio becomes 1 or less with respect to the combustible gas. A part of high-temperature combustion gas of 500 to 1000 ° C. generated by partial combustion can be used.

充填移動層中央高さ部及び中央高さ部より上部の温度を上昇させる場合に、上記とは別の制御方法として、以下の制御方法を用いてもよい。温度調整ガスとして酸素を含むガス、例えば空気を供給する。酸素を含むガスを充填移動層中央高さ部に供給し、炉内ガスの可燃ガスを燃焼してその燃焼熱で充填移動層中央高さ部及び中央高さ部より上部の温度を上昇させる。酸素を含むガスを供給する場合、充填移動層の中央高さ部より上部の温度が300℃を超えないように供給量などを制御する。300℃を超えると充填移動層内のバイオマスや炭化物が燃焼して焼失する反応が顕著になり、炭化物収率が低下するため、これを避ける必要がある。   The following control method may be used as a control method different from the above when the temperature of the filling moving bed central height portion and the temperature above the central height portion is increased. A gas containing oxygen, such as air, is supplied as the temperature adjusting gas. A gas containing oxygen is supplied to the central height portion of the packed moving bed, the combustible gas in the furnace is burned, and the temperature of the central portion of the packed moving bed and the central height portion is raised by the combustion heat. When supplying a gas containing oxygen, the supply amount and the like are controlled so that the temperature above the central height of the packed moving bed does not exceed 300 ° C. When the temperature exceeds 300 ° C., the reaction in which the biomass and carbides in the packed moving bed burn and burn out becomes significant, and the carbide yield decreases, so this must be avoided.

さらに、充填移動層の中央高さ部についての温度の制御は、図5に示す形態のもとでも行うことができる。この制御について、図5に基づき説明する。   Furthermore, the temperature control of the central height portion of the filling moving bed can be performed under the form shown in FIG. This control will be described with reference to FIG.

図5では、図4の炭化炉に、高温ガス送入口より下部に生成した炭化物を冷却する炭化物冷却領域を形成している。炭化物冷却領域に設けた炉内ガス排出口11Fから炉内ガスを抜き出し、冷却塔に導き水スプレーにより直接冷却したガスを送風機を介し炭化物冷却領域に設けた冷却ガス送入口11Gから炭化物冷却領域に供給し、炭化物を冷却する。冷却ガスの温度は200℃以下とすることが好ましく、100℃以下とすることがより好ましい。炭化炉の充填移動層の中央高さ部に温度調整ガス送入口11Eを設け、冷却塔から導く冷却ガスの一部を温度調整ガスとして充填移動層の中央高さ部に供給し、充填移動層の中央高さ部及び中央高さ部より上部の温度を低下させるように制御する。   In FIG. 5, the carbide cooling area | region which cools the carbide | carbonized_material produced | generated to the lower part from the hot gas inlet is formed in the carbonization furnace of FIG. The gas in the furnace is extracted from the in-furnace gas discharge port 11F provided in the carbide cooling region, and the gas that has been led to the cooling tower and directly cooled by water spray is supplied to the carbide cooling region from the cooling gas inlet 11G provided in the carbide cooling region via the blower. Supply and cool carbide. The temperature of the cooling gas is preferably 200 ° C. or less, and more preferably 100 ° C. or less. A temperature adjustment gas inlet 11E is provided at the center height portion of the filling moving bed of the carbonization furnace, and a part of the cooling gas led from the cooling tower is supplied to the center height portion of the filling moving bed as the temperature adjustment gas. Control is made so that the temperature at the center height portion and the temperature above the center height portion are lowered.

(炭化炉の雰囲気)
炭化炉内の雰囲気の酸素濃度は1vol%以下にすることが好ましい。雰囲気の酸素濃度が1vol%より高いとバイオマスが燃焼して、熱分解されず炭化物収率が低くなる。
(Atmosphere of carbonization furnace)
The oxygen concentration in the atmosphere in the carbonization furnace is preferably 1 vol% or less. If the oxygen concentration in the atmosphere is higher than 1 vol%, the biomass burns and is not pyrolyzed, resulting in a low carbide yield.

炭化炉の充填移動層の高さ(層高)を所定範囲とすることが好ましい。層高が小さいとガス状タールが充填移動層上部で凝縮するのに十分な領域がないため、充填移動層から吹き抜け、発生ガスに随伴され炭化炉から排出されるので、層高を2m以上とすることが適当である。 層高が大きすぎると充填移動層を通過するガスの圧力損失が大きくなりすぎるので、層高を8m未満とすることが適当である。   It is preferable to set the height (layer height) of the filling moving bed of the carbonization furnace within a predetermined range. If the bed height is small, there is not enough area for the gaseous tar to condense in the upper part of the packed moving bed, so it blows out from the packed moving bed and is discharged from the carbonization furnace accompanied by the generated gas. It is appropriate to do. If the bed height is too large, the pressure loss of the gas passing through the packed moving bed will be too high, so it is appropriate to set the bed height to less than 8 m.

<部分燃焼炉>
炭化炉で発生した可燃ガスを含む発生ガスを部分燃焼炉に導いて、可燃ガスに対して空気比1以下となるように空気を供給し、部分燃焼して、生じる500〜1000℃の高温の燃焼ガスの少なくとも一部を炭化炉に供給する高温ガスとして用いる。ここで、空気比とは可燃ガスの燃焼に必要な理論空気量に対する実際に供給する空気量の比率をいう。
<Partial combustion furnace>
The generated gas containing the combustible gas generated in the carbonization furnace is guided to the partial combustion furnace, air is supplied so that the air ratio becomes 1 or less with respect to the combustible gas, and partial combustion is performed, resulting in a high temperature of 500 to 1000 ° C. At least part of the combustion gas is used as a high temperature gas supplied to the carbonization furnace. Here, the air ratio refers to the ratio of the actually supplied air amount to the theoretical air amount necessary for combustion of the combustible gas.

<バイオマス>
熱分解して炭化物を生成する原料として検討されているバイオマスとして、木屑、籾殻、アブラヤシ(パームヤシ)からパーム油を採取する際に生じる副生物がある。アブラヤシ果房には直径数cmの小粒の果実が数百個ついており、この果実を脱果した空果房(Empty Fruit Bunch, EFB)、アブラヤシ古木(Trunk)、果実から搾油した搾粕(Palm Kernel Shell,PKS)が大量に副生され、これらのアブラヤシバイオマスを炭化物原料として用いることが検討されている。バイオマスとして、木屑、籾殻、アブラヤシ空果房(EFB)、アブラヤシ古木(Trunk)、アブラヤシ果実搾粕(PKS)を用いることが好ましい。
<Biomass>
As a biomass studied as a raw material for pyrolyzing to generate carbides, there are by-products generated when palm oil is collected from wood chips, rice husks and oil palm (palm palm). There are hundreds of small fruits with a diameter of several centimeters in the oil palm bunches. Empty fruit bunches (Empty Fruit Bunch, EFB), old oil palm trees (Trunk), and squeezed oil from the fruits (Palm) Kernel Shell (PKS) is produced as a by-product in large quantities, and the use of these oil palm biomass as carbide raw materials is being studied. As biomass, it is preferable to use wood chips, rice husks, oil palm empty fruit bunches (EFB), old oil palm trees (Trunk), and oil palm fruit squeezed (PKS).

<バイオマスの好ましい粒径>
凝縮したタールが付着しやすいバイオマスの特性として、体積あたりの表面積の比である比表面積がある一定値より大きいことが好ましい。ここで、表面積は幾何学的表面積のことであり、BET法などで測定されるミクロレベルの凹凸まで含まれる表面積ではなく、物体の形状を測定した数値により計算した表面積である。
<Preferred particle size of biomass>
It is preferable that the specific surface area, which is the ratio of the surface area per volume, is larger than a certain value as a characteristic of the biomass to which the condensed tar easily adheres. Here, the surface area is a geometric surface area, not a surface area including even micro-level irregularities measured by the BET method or the like, but a surface area calculated from numerical values obtained by measuring the shape of an object.

バイオマスの比表面積が、ある値より大きいと、バイオマスの表面にタールが付着しやすいため好ましい。 具体的には、バイオマスの比表面積(幾何学的表面積/幾何学的体積)が0.5mm-1 より大きいものが好ましい。 例えば、50×100mm程度の大きな木の塊では比表面積が0.15mm-1より小さい値となり、不適である。PKSは粒径が4mm程度であり。比表面積が2mm-1であり、EFBは繊維状なので比表面積が3mm-1 程度であり、それぞれ好ましい比表面積であり、本発明に用いるバイオマスとして好適である。 It is preferable that the specific surface area of the biomass is larger than a certain value because tar easily adheres to the surface of the biomass. Specifically, a biomass having a specific surface area (geometric surface area / geometric volume) larger than 0.5 mm −1 is preferable. For example, a large wooden block of about 50 × 100 mm is not suitable because the specific surface area is smaller than 0.15 mm −1 . PKS has a particle size of about 4 mm. The specific surface area is 2 mm −1 , and the EFB is fibrous, so the specific surface area is about 3 mm −1 , and each is a preferable specific surface area, which is suitable as the biomass used in the present invention.

<炭化炉温度とバイオマス水分率の関係>
充填移動層上部にタール凝縮を行わせる80〜100℃程度の温度のタール凝縮領域を存在させるために、バイオマスの含水量がある程度以上であることが好ましい。バイオマスの含水率が10重量%以上であると、充填移動層上部でバイオマスの水分除去のため高温ガスの熱エネルギーが適度に用いられ、上部の温度を80〜100℃程度の温度とすることができるので、好ましい。 一方、含水率が高すぎるとバイオマスの乾燥にために高温ガスの熱エネルギーが過剰に使われ、バイオマスの熱分解、炭化のための熱エネルギーが不足するため、含水率は50重量%未満とすることが好ましい。
<Relationship between carbonization furnace temperature and biomass moisture content>
In order to allow a tar condensation region having a temperature of about 80 to 100 ° C. to cause tar condensation to be performed on the upper part of the packed moving bed, it is preferable that the moisture content of the biomass is not less than a certain level. When the moisture content of the biomass is 10% by weight or more, the thermal energy of the high-temperature gas is appropriately used for removing moisture from the biomass in the upper part of the packed moving bed, and the upper part temperature is set to a temperature of about 80 to 100 ° C. This is preferable because it is possible. On the other hand, if the moisture content is too high, the thermal energy of the high-temperature gas is excessively used for drying the biomass, and the thermal energy for biomass pyrolysis and carbonization is insufficient, so the moisture content should be less than 50% by weight. It is preferable.

[実施例]
図1に示すバイオマス炭化装置を用いて、試験を実施した。炭化炉は竪型円筒状で内径は1mであり、充填移動層の高さは5mである。炭化炉にバイオマスとしてスギ細粒(粒径4〜5mm程度で、幾何学的表面積/幾何学的体積は1.5mm−1 程度、水分率15重量%)を10kg/時間の供給量で供給し、充填移動層炭化炉に高温ガスを0.2Nm/secの供給量で供給し、充填移動層上部の温度を80℃に、充填移動層下部の温度を500℃に調整し、炭化物を生成した。
[Example]
The test was implemented using the biomass carbonization apparatus shown in FIG. The carbonization furnace has a vertical cylindrical shape with an inner diameter of 1 m, and the height of the packed moving bed is 5 m. Sugi fine granules (particle size of about 4 to 5 mm, geometric surface area / geometric volume of about 1.5 mm −1 , moisture content of 15% by weight) as biomass are supplied to the carbonization furnace at a supply rate of 10 kg / hour. The high temperature gas is supplied to the packed moving bed carbonization furnace at a supply rate of 0.2 Nm 3 / sec, the temperature of the upper part of the packed moving bed is adjusted to 80 ° C., the temperature of the lower part of the packed moving bed is adjusted to 500 ° C., and carbide is generated. did.

充填移動層下部でタールの揮発、充填移動層上部でタールの凝縮が行われ、バイオマスから発生するタールをも炭化物とすることができ、炭化物収率は37重量%であり、後述する比較例に比べて炭化物収率を向上させることができた。炭化物中の固定炭素は78重量%であり、炭化物の品質上も優れたものを得ることができた。   The tar is volatilized at the lower part of the packed moving bed, the tar is condensed at the upper part of the packed moving bed, and the tar generated from the biomass can also be made into carbide, and the carbide yield is 37% by weight. Compared with this, the carbide yield was improved. The fixed carbon in the carbide was 78% by weight, and it was possible to obtain an excellent carbide in terms of quality.

[比較例]
実施例と同様のバイオマス炭化装置とバイオマスとを用い、バイオマス供給量を同様にし、高温ガス供給量を調整して充填移動層上部の温度を250℃に、充填移動層下部の温度を500℃に調整して、炭化物を生成した。
[Comparative example]
Using the same biomass carbonization apparatus and biomass as in the example, the biomass supply amount is the same, the high temperature gas supply amount is adjusted, the temperature of the upper part of the packed moving bed is set to 250 ° C., and the temperature of the lower part of the packed moving bed is set to 500 ° C. Adjusted to produce carbides.

充填移動層上部でタールが凝縮せず、ガス状タールのまま炭化炉から排出された。炭化物収率は29重量%であり、低い収率であった。   Tar did not condense at the upper part of the packed moving bed and was discharged from the carbonization furnace as gaseous tar. The carbide yield was 29% by weight, which was a low yield.

10 バイオマス炭化装置
11 炭化炉
11D 高温ガス供給手段(高温ガス送入口)
13 部分燃焼炉
16 温度制御装置
17A 上部温度計測手段
17B 下部温度計測手段
10 Biomass carbonization equipment 11 Carbonization furnace 11D Hot gas supply means (hot gas inlet)
13 Partial combustion furnace 16 Temperature control device 17A Upper temperature measurement means 17B Lower temperature measurement means

Claims (9)

竪型の炭化炉の上部からバイオマスを供給して炭化炉内にバイオマスの充填移動層を形成し、炭化炉の下部から高温ガスを供給し、バイオマスを高温ガスと接触させ熱分解して炭化物を生成する炭化炉を備えるバイオマス炭化装置において、
バイオマス炭化装置は、炭化炉内の温度を制御する温度制御装置を有し、
温度制御装置は、充填移動層上部の温度を、バイオマスをその含有水分を蒸発させ乾燥させる乾燥温度以上で、タールを凝縮させるタール凝縮温度以下に制御して所定温度範囲とするとともに、充填移動層下部の温度を、バイオマスを熱分解してタールを揮発させるタール揮発温度以上で、バイオマスを熱分解してガス発生させるガス発生温度以下に制御して所定温度範囲とすることを特徴とするバイオマス炭化装置。
The biomass is supplied from the upper part of the vertical carbonization furnace to form a packed moving bed of biomass in the carbonization furnace, the high temperature gas is supplied from the lower part of the carbonization furnace, the biomass is brought into contact with the high temperature gas and pyrolyzed to produce the carbide. In a biomass carbonization apparatus including a carbonizing furnace to be generated,
The biomass carbonization device has a temperature control device that controls the temperature in the carbonization furnace,
The temperature control device controls the temperature of the upper portion of the packed moving bed to a predetermined temperature range by controlling the temperature above the drying temperature for evaporating the moisture contained in the biomass and drying it to below the tar condensation temperature for condensing tar. The biomass carbonization characterized in that the temperature of the lower part is controlled to be equal to or higher than a tar volatilization temperature at which biomass is pyrolyzed to volatilize tar and below a gas generation temperature at which biomass is pyrolyzed to generate gas to be within a predetermined temperature range. apparatus.
温度制御装置は、充填移動層上部の温度を80℃以上100℃以下に制御し、充填移動層下部の温度を400℃以上700℃以下に制御することとする請求項1に記載のバイオマス炭化装置。   The biomass carbonization apparatus according to claim 1, wherein the temperature control device controls the temperature of the upper portion of the packed moving bed to 80 ° C or higher and 100 ° C or lower and controls the temperature of the lower portion of the packed moving bed to 400 ° C or higher and 700 ° C or lower. . 温度制御装置は、充填移動層の中央高さ部の温度を200℃以上400℃以下に制御することとする請求項2に記載のバイオマス炭化装置。   The biomass carbonization apparatus according to claim 2, wherein the temperature control device controls the temperature of the central height portion of the packed moving bed to 200 ° C or more and 400 ° C or less. 温度制御装置は、
充填移動層上部の温度を計測する上部温度計測手段と、
充填移動層下部の温度を計測する下部温度計測手段とを備え、
計測した充填移動層上部の温度と充填移動層下部の温度とに基づき、これらの温度を所定温度範囲内とするように、炭化炉へ供給するバイオマス供給量及び炭化炉へ供給する高温ガス供給量のうち少なくとも一方を制御することを特徴とする請求項1ないし請求項3のいずれか一つに記載のバイオマス炭化装置。
The temperature control device
Upper temperature measuring means for measuring the temperature of the upper part of the packed moving bed,
A lower temperature measuring means for measuring the temperature of the lower part of the packed moving bed,
Based on the measured temperature of the upper part of the packed moving bed and the temperature of the lower part of the packed moving bed, the biomass supply amount to be supplied to the carbonization furnace and the high temperature gas supply amount to be supplied to the carbonization furnace so that these temperatures are within a predetermined temperature range. The biomass carbonization apparatus according to any one of claims 1 to 3, wherein at least one of them is controlled.
バイオマス炭化装置は、炭化炉から可燃ガスの供給を受けこれを部分燃焼して燃焼ガスを発生する部分燃焼炉と、上記燃焼ガスの少なくとも一部を高温ガスとして上記炭化炉へ供給する高温ガス供給手段とを、さらに有することとする請求項1ないし請求項4のいずれか一つに記載のバイオマス炭化装置。   The biomass carbonization apparatus receives a combustible gas from a carbonization furnace, partially burns it to generate combustion gas, and a high-temperature gas supply that supplies at least a part of the combustion gas to the carbonization furnace as a high-temperature gas The biomass carbonization apparatus according to any one of claims 1 to 4, further comprising means. 竪型の炭化炉の上部からバイオマスを供給して炭化炉内にバイオマスの充填移動層を形成し、炭化炉の下部から高温ガスを供給し、バイオマスを高温ガスと接触させ熱分解して炭化物を生成するバイオマス炭化方法において、
充填移動層下部でバイオマスを熱分解してタールを揮発させるとともに、充填移動層上部から下降したバイオマスに付着しているタールを揮発させ、充填移動層上部で充填移動層下部から上昇したガス状タールを凝縮させバイオマスの表面に付着させるように、炭化炉内の充填移動層上部と充填移動層下部の温度を所定温度範囲内に保つことを特徴とするバイオマス炭化方法。
The biomass is supplied from the upper part of the vertical carbonization furnace to form a packed moving bed of biomass in the carbonization furnace, the high temperature gas is supplied from the lower part of the carbonization furnace, the biomass is brought into contact with the high temperature gas and pyrolyzed to produce the carbide. In the biomass carbonization method to be produced,
At the bottom of the packed moving bed, the biomass is pyrolyzed to volatilize tar, and the tar adhering to the biomass that has descended from the top of the packed moving bed is volatilized, and the gaseous tar that has risen from the bottom of the packed moving bed at the top of the packed moving bed The biomass carbonization method characterized by maintaining the temperature of the upper part of the filling moving bed and the lower part of the filling moving bed in the carbonization furnace within a predetermined temperature range so as to condense and adhere to the surface of the biomass.
充填移動層上部の温度を80℃以上100℃以下に制御し、充填移動層下部の温度を400℃以上700℃以下に制御して所定温度範囲にすることとする請求項6に記載のバイオマス炭化方法。   The biomass carbonization according to claim 6, wherein the temperature of the upper part of the packed moving bed is controlled to 80 ° C. or higher and 100 ° C. or lower, and the temperature of the lower part of the packed moving bed is controlled to 400 ° C. or higher and 700 ° C. or lower. Method. 充填移動層上部の温度と充填移動層下部の温度を計測し、計測した充填移動層上部の温度と充填移動層下部の温度とに基づき、これらの温度を所温度定範囲内とするように、炭化炉へ供給するバイオマス供給量及び炭化炉へ供給する高温ガス供給量のうち少なくとも一方を制御することとする請求項6又は請求項7に記載のバイオマス炭化方法。   Measure the temperature of the upper part of the packed moving bed and the temperature of the lower part of the packed moving bed, and based on the measured temperature of the upper part of the packed moving bed and the temperature of the lower part of the packed moving bed, so that these temperatures are within a certain temperature range, The biomass carbonization method according to claim 6 or 7, wherein at least one of a biomass supply amount supplied to the carbonization furnace and a high-temperature gas supply amount supplied to the carbonization furnace is controlled. 部分燃焼炉にて炭化炉から可燃ガスの供給を受けこれを部分燃焼し燃焼ガスを発生させ、上記燃焼ガスの少なくとも一部を高温ガスとして炭化炉へ供給することとする請求項6ないし請求項8のいずれか一つに記載のバイオマス炭化方法。   6. A combustible gas supplied from a carbonization furnace in a partial combustion furnace is partially combusted to generate combustion gas, and at least a part of the combustion gas is supplied to the carbonization furnace as a high temperature gas. The biomass carbonization method according to any one of 8.
JP2010141345A 2010-06-22 2010-06-22 Device and method for carbonizing biomass Pending JP2013177474A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010141345A JP2013177474A (en) 2010-06-22 2010-06-22 Device and method for carbonizing biomass
PCT/JP2011/063966 WO2011162185A1 (en) 2010-06-22 2011-06-17 Biomass carbonization device and biomass carbonization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141345A JP2013177474A (en) 2010-06-22 2010-06-22 Device and method for carbonizing biomass

Publications (1)

Publication Number Publication Date
JP2013177474A true JP2013177474A (en) 2013-09-09

Family

ID=45371372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141345A Pending JP2013177474A (en) 2010-06-22 2010-06-22 Device and method for carbonizing biomass

Country Status (2)

Country Link
JP (1) JP2013177474A (en)
WO (1) WO2011162185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382262B1 (en) * 2020-10-28 2022-04-04 에이티이 주식회사 Biochar manufacturing apparatus and manufacturing method equipped with divided temperature control and cooling facilities

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013094749A1 (en) * 2011-12-21 2015-04-27 Jfeエンジニアリング株式会社 Biomass carbonization method and biomass carbonization apparatus
TWI449782B (en) * 2012-02-03 2014-08-21 China Steel Corp Production method of raw coal
JP2013216780A (en) * 2012-04-09 2013-10-24 Jfe Engineering Corp Biomass carbonization device and biomass carbonization method
CN102640617B (en) * 2012-05-03 2013-09-18 浙江大学 Device integrating rice and wheat harvesting and straw carbonization and returning to field
CN103060504B (en) * 2013-01-24 2015-01-07 北京科技大学 Method for preparing sponge iron by biomass char
CN107099312A (en) * 2017-05-16 2017-08-29 大庆亚太实验设备制造有限公司 Straw recycles chemical plant installations and processing method
CN112265976B (en) * 2020-10-20 2022-06-07 北京市农林科学院 Device for in-situ carbonization of biomass and using method
CN114517099A (en) * 2022-02-25 2022-05-20 北京丰润铭科贸有限责任公司 Method for producing biomass coal by carbonizing biomass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734741B1 (en) * 1995-05-31 1997-08-22 Beaumartin Sa PROCESS FOR RECYCLING TREATED WOOD AND INSTALLATION FOR IMPLEMENTING THE PROCESS
JPH10118614A (en) * 1996-10-22 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Process and device for exhausting pyrolysis gas in industrial waste thermal decomposition furnace
JP4078771B2 (en) * 1999-11-05 2008-04-23 株式会社Ihi Waste pyrolysis treatment equipment
JP4741686B2 (en) * 2009-02-27 2011-08-03 バイオコーク技研株式会社 Gasification method, power generation method, gasification device, power generation device, wood chip, and liquid phase light oil that can be used as an energy source and water in which water-soluble organic substances are dissolved

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382262B1 (en) * 2020-10-28 2022-04-04 에이티이 주식회사 Biochar manufacturing apparatus and manufacturing method equipped with divided temperature control and cooling facilities

Also Published As

Publication number Publication date
WO2011162185A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
WO2011162185A1 (en) Biomass carbonization device and biomass carbonization method
KR101319737B1 (en) Method for producing biomass charcoal and device for producing biomass charcoal to be used therefor
EP2385096B1 (en) Process for biomass torrefaction
JP5501644B2 (en) Biomass coal production method and biomass coal production apparatus used therefor
JP5464355B2 (en) Biomass carbonization apparatus and biomass carbonization method
JP5316948B2 (en) Biomass pyrolysis equipment
WO2013094749A1 (en) Biomass carbonization method and biomass carbonization device
JP5800235B2 (en) Apparatus and method for producing molded carbide from biomass
JP2009242180A (en) Nanocarbon production apparatus
JP6167777B2 (en) Production method of biomass charcoal
JP5117252B2 (en) Nanocarbon and carbide continuous production equipment
JP2012006993A (en) Biomass carbonization apparatus and biomass carbonization method
JP2005075925A (en) Method for thermally cracking and carbonizing organic waste material
WO2014053083A1 (en) Process and device for production of compacted fertilizer charcoal
JP2013216780A (en) Biomass carbonization device and biomass carbonization method
JP2012017387A (en) Biomass carbonization apparatus
EP2883941A1 (en) Co-current gasifier
JP5347763B2 (en) Biomass pyrolysis method
JP2012006995A (en) Biomass carbonization apparatus
JP5656022B2 (en) Biomass pyrolysis apparatus and pyrolysis method
RU2730063C1 (en) Method of solid fuel gasification and device for implementation thereof
CA2773493C (en) Method of drying biomass
OKUMURA et al. Pyrolysis and gasification experiments of biomass under elevated pressure condition
JP2023085580A (en) Biomass gasification device
JP5566620B2 (en) Biomass coal production method and biomass coal production apparatus used therefor