JP2013177291A - Shape control apparatus for solidified slag, shape control method for solidified slag, and solidified slag - Google Patents

Shape control apparatus for solidified slag, shape control method for solidified slag, and solidified slag Download PDF

Info

Publication number
JP2013177291A
JP2013177291A JP2013009287A JP2013009287A JP2013177291A JP 2013177291 A JP2013177291 A JP 2013177291A JP 2013009287 A JP2013009287 A JP 2013009287A JP 2013009287 A JP2013009287 A JP 2013009287A JP 2013177291 A JP2013177291 A JP 2013177291A
Authority
JP
Japan
Prior art keywords
slag
shape
solidified slag
solidified
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013009287A
Other languages
Japanese (ja)
Other versions
JP5949574B2 (en
Inventor
Nobuyuki Shigaki
伸行 紫垣
Kazuhisa Kabeya
和久 壁矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013009287A priority Critical patent/JP5949574B2/en
Publication of JP2013177291A publication Critical patent/JP2013177291A/en
Application granted granted Critical
Publication of JP5949574B2 publication Critical patent/JP5949574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain slag solidified in such a shape as to yield slag aggregate having a proper shape and a proper grain size distribution after crushing at a low cost, without increasing the solidification thickness of slag beyond necessity.SOLUTION: Different rugged shapes are separately provided to the upper and lower surfaces of solidified slag formed by pouring slag from a blast furnace into a continuously conveyed casting mold. Whereby, since a targeted grain size distribution of slag aggregate can be directly made while suppressing thermal load applied to the casting mold, slag solidified in such a shape as to yield slag aggregate having a proper shape and a proper grain size distribution after crushing at a low cost can be obtained, without increasing the solidification thickness of slag beyond necessity.

Description

本発明は、鉄鋼製造プロセス等で排出されるスラグ(鉱滓)を凝固成形する凝固スラグの形状制御装置および形状制御方法と、この形状制御方法によって凝固成形される凝固スラグとに関する。   The present invention relates to a solidified slag shape control device and a shape control method for solidifying and molding slag (mineral) discharged in a steel manufacturing process and the like, and a solidified slag solidified by the shape control method.

鉄鋼製造プロセスで排出されるスラグは、水砕処理または徐冷処理などを経て、水砕砂やスラグ骨材として利材化されている。とくにスラグ骨材は、通常、ドライピットに排出されたスラグを徐冷して固めた後、破砕処理および篩い分け等を経て所定の粒度分布(例えばJIS_A5011−1など)を有するものが製造される。なお、特許文献1には、金属製の移動鋳型を設けた鋳滓機を用いて溶融スラグを厚さ10mm〜30mmになるように凝固成形し、緻密で強度の高い板状の凝固スラグを形成した後、破砕処理および篩い分け等を行なってスラグ骨材を製造する方法が開示されている。   Slag discharged in the steel manufacturing process is used as granulated sand or slag aggregate through granulation or slow cooling. In particular, slag aggregates are usually produced having a predetermined particle size distribution (for example, JIS_A5011-1) after gradually cooling and solidifying the slag discharged into the dry pit, followed by crushing and sieving. . In Patent Document 1, molten slag is solidified and formed to have a thickness of 10 mm to 30 mm using a casting machine provided with a metal moving mold to form a dense and high-strength plate-like solidified slag. After that, a method for producing a slag aggregate by crushing and sieving is disclosed.

特開2003−82606号公報JP 2003-82606 A

一般に、コンクリート用骨材は、コンクリート施工の際に必要な流動性を得るために、骨材形状や粒度分布が明確に規定されている。このため、スラグ骨材は、破砕処理および篩い分け等を行うことで、適正な形状および粒度分布となるように調整される。図10は、板状の凝固スラグからスラグ骨材を製造する場合に、破砕した凝固スラグから採取できるスラグ骨材の粒径分布と採取位置とを示す模式図である。この図10では、破砕や篩い分けの過程で破砕片の角が削られるため、スラグ骨材を球形で示している。この図10からわかるように、破砕による粒径減少も考慮すると、目的とするスラグ骨材の粒子Bの粒径範囲の上限値の1.2〜2.0倍程度の厚さ(凝固厚T)にスラグを凝固させる必要がある。しかしながら、スラグの凝固厚を厚くした場合、破砕処理のコストが高くなってしまう。   In general, the aggregate for concrete and the particle size distribution are clearly defined in order to obtain the fluidity required for concrete construction. For this reason, a slag aggregate is adjusted so that it may become a suitable shape and a particle size distribution by performing a crushing process, sieving, etc. FIG. 10 is a schematic diagram showing the particle size distribution and sampling position of the slag aggregate that can be collected from the crushed solidified slag when the slag aggregate is produced from the plate-shaped solidified slag. In FIG. 10, since the corners of the crushed pieces are cut during the crushing and sieving processes, the slag aggregate is shown in a spherical shape. As can be seen from FIG. 10, in consideration of particle size reduction due to crushing, the thickness (solidification thickness T) is about 1.2 to 2.0 times the upper limit of the particle size range of the target particle B of the slag aggregate. ) Slag must be solidified. However, when the solidified thickness of the slag is increased, the cost of the crushing process is increased.

本発明は、上記に鑑みてなされたものであって、スラグの凝固厚を必要以上に厚くすることなく、破砕後に適正な形状および粒度分布を有するスラグ骨材が低コストで得られる形状に凝固させた凝固スラグを得ることができる、凝固スラグの形状制御装置および形状制御方法を提供することを目的とする。また、本発明の他の目的は、破砕後に適正な形状および粒度分布を有するスラグ骨材を低コストで得ることができる凝固スラグを提供することにある。   The present invention has been made in view of the above, and solidifies into a shape in which a slag aggregate having an appropriate shape and particle size distribution after crushing can be obtained at low cost without increasing the solidification thickness of the slag more than necessary. An object of the present invention is to provide a solidified slag shape control device and a shape control method capable of obtaining a solidified slag. Another object of the present invention is to provide a solidified slag capable of obtaining a slag aggregate having an appropriate shape and particle size distribution at low cost after crushing.

上述した課題を解決し、目的を達成するために、本発明に係る凝固スラグの形状制御装置は、連続的に搬送される鋳型に高炉からのスラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与する手段を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a solidified slag shape control device according to the present invention includes an upper surface of a solidified slag formed by pouring slag from a blast furnace into a continuously conveyed mold, and Means is provided for imparting different uneven shapes to each of the lower surfaces.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、前記凝固スラグの上面の凹凸形状は、成形工具を機械的に押し込む操作により付与され、前記凝固スラグの下面の凹凸形状は、前記鋳型の底部に少なくとも1箇所以上設けられた凸状隆起部によって付与されることを特徴とする。   Moreover, in the above invention, the shape control device for the solidified slag according to the present invention, the uneven shape on the upper surface of the solidified slag is given by an operation of mechanically pushing a forming tool, and the uneven shape on the lower surface of the solidified slag is: It is provided by a convex ridge provided at least at one or more places on the bottom of the mold.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、凝固スラグの上面に凹凸形状を付与する前記成形工具の幅が、凝固スラグの下面に凹凸形状を付与する前記鋳型の底部の最小高さ位置からの高さが3mm超の領域である凸状隆起部の幅より小さいことを特徴とする。   Moreover, the solidified slag shape control device according to the present invention is the above-described invention, wherein the width of the forming tool that gives the uneven shape to the upper surface of the solidified slag is the width of the bottom of the mold that gives the uneven shape to the lower surface of the solidified slag. It is characterized in that the height from the minimum height position is smaller than the width of the convex ridge that is a region exceeding 3 mm.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、凝固スラグの上面に凹凸形状を付与する前記成形工具を押し込み面に複数並べた成形装置を有することを特徴とする。   Moreover, the shape control apparatus of the solidification slag which concerns on this invention has the shaping | molding apparatus which arranged in multiple numbers the said shaping | molding tool which gives uneven | corrugated shape to the upper surface of the solidification slag on the pressing surface in the said invention.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、凝固スラグの上面に凹凸形状を付与する前記成形工具の先端が鋭角のノッチ形状を有し、凝固スラグの下面の凹凸形状を付与する前記鋳型の底部が曲線からなる形状を有することを特徴とする。   Further, the solidified slag shape control device according to the present invention is characterized in that, in the above invention, the tip of the forming tool for imparting a concavo-convex shape on the upper surface of the solidified slag has an acute notch shape, and the concavo-convex shape on the lower surface of the solidified slag is provided. The bottom of the mold to be applied has a curved shape.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、凝固スラグの上面に凹凸形状を付与する前記成形工具の間隔が、鋳型の水平方向の位置によって異なることを特徴とする。   The solidified slag shape control apparatus according to the present invention is characterized in that, in the above-mentioned invention, the interval between the forming tools for imparting the concavo-convex shape on the upper surface of the solidified slag differs depending on the position of the mold in the horizontal direction.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、前記鋳型の底部の最小高さ位置からの高さが高いほど、凝固スラグの上面に凹凸形状を付与する前記成形工具の間隔が狭いことを特徴とする。   Further, in the solidified slag shape control apparatus according to the present invention, in the above-described invention, the interval between the forming tools that imparts an uneven shape to the upper surface of the solidified slag as the height from the minimum height position of the bottom of the mold increases. Is narrow.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、前記鋳型の底部において、最小高さ位置からの高さが0〜3mmの領域である低位部の幅が前記凝固スラグの最大凝固厚の目標値以下であり、且つ、該低位部の位置が前記鋳型の側壁部または底部の凸状隆起部に隣接していることを特徴とする。   Further, the solidified slag shape control apparatus according to the present invention is the above-described invention, wherein the width of the lower portion, which is a region having a height of 0 to 3 mm from the minimum height position, is the maximum of the solidified slag at the bottom of the mold. The solidified thickness is equal to or less than the target value of the solidified thickness, and the position of the lower portion is adjacent to the convex raised portion of the side wall or bottom of the mold.

また、本発明に係る凝固スラグの形状制御装置は、上記発明において、前記鋳型により成形された凝固スラグから採取される骨材の粒径の上限値をスラグ最大凝固厚とした場合に、前記鋳型の低位部にて凝固する凝固スラグの体積が、該凝固スラグ全体の体積の45%以下であることを特徴とする。   The shape control device for solidified slag according to the present invention is the above-mentioned mold, wherein the upper limit value of the particle size of the aggregate collected from the solidified slag formed by the mold is the maximum slag solidified thickness. The volume of the solidified slag that solidifies at the lower part of the solidified slag is 45% or less of the total volume of the solidified slag.

また、本発明に係る凝固スラグの形状制御装置は、連続的に搬送される鋳型に高炉からのスラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与するステップを含むことを特徴とする。   Moreover, the shape control apparatus of the solidification slag which concerns on this invention provides a different uneven | corrugated shape with respect to each of the upper surface and lower surface of the solidification slag formed by pouring the slag from a blast furnace into the casting_mold | template continuously conveyed. Including steps.

また、本発明に係る凝固スラグは、本発明に係る凝固スラグの形状制御方法により凝固成形されることを特徴とする。   Further, the solidified slag according to the present invention is characterized by being solidified by the method for controlling the shape of the solidified slag according to the present invention.

本発明によれば、スラグの凝固厚を必要以上に厚くすることなく、破砕後に適正な形状および粒度分布を有するスラグ骨材が低コストで得られる形状に凝固させた凝固スラグを得ることができる。   According to the present invention, it is possible to obtain a solidified slag solidified into a shape in which a slag aggregate having an appropriate shape and particle size distribution after crushing can be obtained at a low cost without increasing the solidified thickness of the slag more than necessary. .

図1は、本発明の一実施形態の凝固スラグの形状制御装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a solidification slag shape control apparatus according to an embodiment of the present invention. 図2は、2箇所の凸状隆起部を有した鋳型で成形される凝固スラグから採取できる粒子を示す模式図である。FIG. 2 is a schematic view showing particles that can be collected from a solidified slag formed by a mold having two convex ridges. 図3は、図2に示す鋳型によるスラグの冷却効果を示す概念図である。FIG. 3 is a conceptual diagram showing the cooling effect of the slag by the mold shown in FIG. 図4は、JIS_A5011−1で規定される粗骨材2005の粒径分布を示す図である。FIG. 4 is a diagram showing the particle size distribution of the coarse aggregate 2005 defined by JIS_A5011-1. 図5は、図2に示す鋳型により形成される凝固スラグの粗粒を採取する位置の体積を示す図である。FIG. 5 is a diagram showing the volume of a position where coarse particles of solidified slag formed by the mold shown in FIG. 2 are collected. 図6は、鋳型の凸状隆起部の配置を説明する図である。FIG. 6 is a diagram for explaining the arrangement of the convex raised portions of the mold. 図7は、図6に示す鋳型によるスラグの冷却効果を示す概念図である。FIG. 7 is a conceptual diagram showing the cooling effect of the slag by the mold shown in FIG. 図8は、スラグの上面に凹凸を成形する成形工具の形状および配置を説明する図である。FIG. 8 is a view for explaining the shape and arrangement of a forming tool for forming irregularities on the upper surface of the slag. 図9は、スラグの上面に凹凸を成形する成形工具の形状および配置を説明する図である。FIG. 9 is a diagram illustrating the shape and arrangement of a forming tool for forming irregularities on the upper surface of the slag. 図10は、板状の凝固スラグを破砕して採取できるスラグ骨材の粒子を模式的に示す図である。FIG. 10 is a diagram schematically showing particles of slag aggregate that can be collected by crushing plate-like solidified slag.

以下、図面を参照して、本発明の一実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

まず、図1を参照して本発明の一実施形態の凝固スラグの形状制御装置の概略構成について説明する。図1に示すように、形状制御装置1は、移動式の鋳型21を設けた鋳滓機2と、鋳型21に高炉からの溶融スラグ3を供給する供給装置4とを備える。鋳型21内に供給された溶融スラグ3は、鋳型21内で冷却、凝固成形され凝固スラグ5となる。鋳型21は、その底部に少なくとも1箇所の凸状隆起部を有する。なお、鋳滓機2の近傍には熱回収装置6が備えられている。熱回収装置6は、形状制御装置1から排出された凝固スラグ5の顕熱を回収する。   First, a schematic configuration of a solidification slag shape control apparatus according to an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the shape control device 1 includes a casting machine 2 provided with a movable mold 21, and a supply device 4 that supplies molten slag 3 from a blast furnace to the mold 21. The molten slag 3 supplied into the mold 21 is cooled and solidified in the mold 21 to become a solidified slag 5. The mold 21 has at least one convex raised portion at the bottom. A heat recovery device 6 is provided near the casting machine 2. The heat recovery device 6 recovers the sensible heat of the solidified slag 5 discharged from the shape control device 1.

図2は、図中に点線で囲んで示す2箇所の凸状隆起部Aを有した鋳型21と、この鋳型21で成形される凝固スラグ5から採取できる粒子Bとを示す模式図である。この鋳型21によれば、図2に示すように、凝固スラグ5に板厚差を付与して部分的に板厚を薄くすることができ、凝固厚の厚い部分から粗粒B1を採取でき、凝固厚の薄い部分から細粒B2を採取できる。   FIG. 2 is a schematic diagram showing a mold 21 having two protruding ridges A surrounded by a dotted line in the figure and particles B that can be collected from the solidified slag 5 formed by the mold 21. According to this mold 21, as shown in FIG. 2, it is possible to give a thickness difference to the solidified slag 5 to partially reduce the thickness, and to collect coarse particles B1 from a portion where the solidified thickness is thick, Fine particles B2 can be collected from the thinned portion.

また、この鋳型21には、底部の最小高さ位置からの高さHが0〜3mmである低位部が、鋳型21の側壁部Dおよび凸状隆起部Aに隣接して配設されている。またこの低位部の幅Yが凝固スラグの最大凝固厚の目標値Tmax以下になるように配設されている。なお、鋳型21内のスラグは、凝固厚が薄いほど、また、鋳型21の側壁部Dに近いほど冷却されやすく冷却効果が高い。図3は、鋳型21によるスラグの冷却効果を示す概念図であり、図3中の矢印はその位置での冷却効果を示す。図3に示すように、鋳型21によれば、鋳型21周辺部で冷却が促進されるため、鋳型21周辺部に隣接した位置を、粗粒B1の採取する位置として設定すれば、凝固厚の違いによる凝固・冷却時間のばらつきが緩和され、スラグ骨材の材質の均一化を図ることができる。   Further, in the mold 21, a low-order part having a height H of 0 to 3 mm from the minimum height position of the bottom part is disposed adjacent to the side wall part D and the convex raised part A of the mold 21. . Further, the width Y of the lower portion is arranged so as to be equal to or less than the target value Tmax of the maximum solidified thickness of the solidified slag. Note that the slag in the mold 21 is more easily cooled as the solidification thickness is thinner or closer to the side wall portion D of the mold 21, and the cooling effect is higher. FIG. 3 is a conceptual diagram showing the cooling effect of the slag by the mold 21, and the arrow in FIG. 3 shows the cooling effect at that position. As shown in FIG. 3, according to the mold 21, cooling is promoted at the periphery of the mold 21. Therefore, if the position adjacent to the periphery of the mold 21 is set as a position where the coarse particles B <b> 1 are collected, The variation in solidification / cooling time due to the difference is alleviated, and the slag aggregate material can be made uniform.

なお、前記鋳型21の低位部の幅Yが凝固スラグの最大凝固厚の目標値Tmaxより大きくなると、採取される粗粒のサイズが要求される粒度の上限より大きくなるので、2次破砕が必要となり、2次破砕後の粗粒比率を高位に制御できず、破砕コストもかさむ。   If the width Y of the lower part of the mold 21 is larger than the target value Tmax of the maximum solidification thickness of the solidified slag, the size of the coarse particles to be collected becomes larger than the upper limit of the required particle size, so secondary crushing is necessary. Thus, the ratio of coarse particles after secondary crushing cannot be controlled to a high level, and crushing costs are increased.

図4は、JIS_A5011−1で規定される粗骨材2005(粒径範囲20mm〜5mm)の粒径分布を示す図である。粒径分布は、篩の呼び寸法と、篩を通る質量分率との関係で規定されている。粗骨材2005の粒径分布を、粒径18mm、13mm、8mmの3サイズを代表寸法として個数比に変換した場合、それぞれ概ね2:5:13くらいの個数比となる。即ち、粒径18mmの粗粒の採取数は、全体の個数に対して10分の1程度と小さい。また、粗粒が図4の上限値になるように粒径分布を設計した場合でも、15mm以上の粗粒の質量比は50%に満たない。このように、粗粒の必要量は全体に対して少ないため、上記の鋳型21により成形される凝固スラグ5の凝固厚の厚い部分から必要量の粗粒B1を採取して、粗粒B1を採取した残りの砕石や凝固厚の薄い部分を破砕処理して粒度を調整して細粒B2を形成すればよい。   FIG. 4 is a diagram showing the particle size distribution of the coarse aggregate 2005 (particle size range 20 mm to 5 mm) defined by JIS_A5011-1. The particle size distribution is defined by the relationship between the nominal size of the sieve and the mass fraction that passes through the sieve. When the particle size distribution of the coarse aggregate 2005 is converted into a number ratio using three sizes of particle sizes of 18 mm, 13 mm, and 8 mm as representative dimensions, the number ratio is approximately 2: 5: 13. That is, the number of coarse particles having a particle diameter of 18 mm is as small as 1/10 of the total number. Moreover, even when the particle size distribution is designed so that the coarse particles have the upper limit value in FIG. 4, the mass ratio of coarse particles of 15 mm or more is less than 50%. Thus, since the required amount of coarse particles is small with respect to the whole, the required amount of coarse particles B1 is collected from the thickened portion of the solidified slag 5 formed by the mold 21 to obtain the coarse particles B1. What is necessary is just to form the fine particle B2 by crushing the remaining collected crushed stone and the thinned portion of the solidification to adjust the particle size.

図5は、図2に示す鋳型21により形成される凝固スラグ5の粗粒B1を採取する位置のスラグの体積を示す図である。図5では、底部の最小高さ位置でのスラグの厚さは、最大凝固厚の目標値Tmaxである。本実施の形態の鋳型21において、上記の重量比に基づいて、粗粒B1を採取する位置のスラグの体積V(=V1+V+V)は、凝固スラグ5の全体積の45%以下になるようにしている。 FIG. 5 is a diagram showing the volume of the slag at the position where the coarse particles B1 of the solidified slag 5 formed by the mold 21 shown in FIG. 2 are collected. In FIG. 5, the thickness of the slag at the minimum height position at the bottom is the target value Tmax of the maximum solidification thickness. In the mold 21 of the present embodiment, based on the weight ratio, the volume V (= V 1 + V 2 + V 3 ) of the slag at the position where the coarse particles B1 are collected is 45% or less of the total volume of the solidified slag 5 It is trying to become.

図6は、1箇所の凸状隆起部Aを有した鋳型21と、この鋳型21で成形される凝固スラグ5から採取できる粒子Bとを示す模式図である。ここでは、鋳型21の底部の最小高さ位置からの高さHが3mm超の領域を凸状隆起部Aとする。また、図7は、鋳型21によるスラグの冷却効果を示す概念図であり、図7中の矢印はその位置での冷却効果を示す。図6に示す鋳型21では、低位部(底部の最小高さ位置からの高さHが0〜3mmの位置)が、鋳型21の側壁部Dに隣接して配置される。加えて、鋳型21の低位部の幅Yが凝固スラグの最大凝固厚の目標値Tmax以下になるように、凸状隆起部Aが配置される。これにより、凝固スラグから得られる骨材の粒度分布を制御できる。さらに、図7に示すように、最も凝固しにくい粗粒B1を採取する位置で、側壁部Dに近いほど冷却されやすいという効果によって冷却が促進されるため、凝固厚の違いによる冷却速度のばらつきが緩和され、スラグ骨材の材質の均一化も図ることができる。   FIG. 6 is a schematic diagram showing a mold 21 having one convex raised portion A and particles B that can be collected from the solidified slag 5 formed by the mold 21. Here, a region where the height H from the minimum height position of the bottom of the mold 21 is more than 3 mm is defined as a convex raised portion A. FIG. 7 is a conceptual diagram showing the cooling effect of the slag by the mold 21, and the arrow in FIG. 7 shows the cooling effect at that position. In the mold 21 shown in FIG. 6, the lower portion (the position where the height H from the minimum height position of the bottom portion is 0 to 3 mm) is disposed adjacent to the side wall portion D of the mold 21. In addition, the convex raised portion A is arranged so that the width Y of the lower portion of the mold 21 is equal to or less than the target value Tmax of the maximum solidified thickness of the solidified slag. Thereby, the particle size distribution of the aggregate obtained from the solidified slag can be controlled. Furthermore, as shown in FIG. 7, cooling is promoted by the effect that the closer to the side wall portion D, the easier it is to cool at the position where the coarse particles B1 that are most difficult to solidify are collected. Can be mitigated, and the slag aggregate material can be made uniform.

また、本実施の形態の形状制御装置1は、凝固スラグ上面の凹凸形状付与手段として、鋳型21の搬送に応じて上下昇降可能な成形ロール22を備え、鋳型21内のスラグの上面に凹凸を成形する。この成形ロール22は、鋳型21内のスラグを成形可能な程度に小径で、成形工具を押し込み面に複数並べたものである。また、凝固スラグの縦方向および横方向のそれぞれに凹凸形状を付与する複数の成形ロール(221,222)を備える。本実施の形態の成形ロール22には、図8および図9に成形ロール22のスラグに接する部分(押し込み面)の断面図を例示するように、凝固スラグ5に同一方向の凹凸形状を付与する成形工具7を複数並列配置させて、山−谷の繰り返し形状を設けている。   Moreover, the shape control apparatus 1 of this Embodiment is equipped with the shaping | molding roll 22 which can be raised-lowered up and down according to conveyance of the casting_mold | template 21 as an uneven | corrugated shape provision means of the solidification slag upper surface, and unevenness | corrugation is carried out on the upper surface of the slag in the casting_mold | template 21. Mold. The forming roll 22 has a small diameter to the extent that the slag in the mold 21 can be formed, and a plurality of forming tools are arranged on the pressing surface. Moreover, the some forming roll (221,222) which provides uneven | corrugated shape to each of the vertical direction and horizontal direction of solidification slag is provided. As shown in FIG. 8 and FIG. 9, the forming roll 22 of the present embodiment is provided with an uneven shape in the same direction in the solidified slag 5 so as to illustrate a cross-sectional view of a portion (pressing surface) in contact with the slag of the forming roll 22. A plurality of forming tools 7 are arranged in parallel to provide a mountain-to-valley repetitive shape.

このような成形ロール22によれば、凝固スラグ5に鋭いノッチ状の凹凸形状を付与することができる。鋭いノッチ状の凹凸形状を付与するためには、成型工具7の幅Wは鋳型21に設けた凸状隆起部Aの幅Cより小さいことが好ましい。ここで、凸状隆起部Aの幅Cとは、鋳型21の底部の最小高さ位置からの高さHが3mm超の領域の幅とする。また、各成形工具7の間隔(隣合う成形工具7の山と山との間隔)X(X,X,X,・・・)に応じて、凝固スラグ5に付与される凹凸形状の間隔が変化する。これにより、凝固スラグ5が破砕しやすい形状となり、破砕時に粗粒を採取する位置をより明確に定めることが可能となる。 According to such a forming roll 22, a sharp notched uneven shape can be imparted to the solidified slag 5. In order to give a sharp notch-shaped uneven shape, the width W of the molding tool 7 is preferably smaller than the width C of the convex raised portion A provided in the mold 21. Here, the width C of the convex raised portion A is a width of a region where the height H from the minimum height position of the bottom of the mold 21 is more than 3 mm. Further, irregular shape (mountain and interval between peaks of adjacent forming tools 7) X intervals of the forming tools 7 (X 1, X 2, X 3, ···) in accordance with, applied to solidify the slag 5 The interval of changes. Thereby, the solidification slag 5 becomes a shape which is easy to crush, and it becomes possible to define more clearly the position which collects coarse particles at the time of crushing.

ここで、上記のような鋳型21の凸状隆起部Aの形状は、熱応力による鋳型21の破損を起こり難くするため、曲線からなる比較的緩やかな凸形状とすることが望ましい。そこで、スラグとの接触時間が長く熱負荷が大きい鋳型21を緩やかな凸形状として、凝固スラグ5の下面に板厚分布のみを付与する。一方、スラグとの接触時間が短く熱負荷が小さい成形ロール22に配置した成型工具7の先端を鋭角のノッチ形状として、凝固スラグ5の上面に急峻な凹凸を付与する。すなわち、図8および図9に示すように、凝固スラグの上面に凹凸形状を付与する成形工具の幅Wと、凝固スラグの下面に凹凸形状を付与する鋳型21底部の凸状隆起部Aの幅Cとの関係を、C>Wとすると共に、成形工具7の先端が鋭角のノッチ形状を有し、鋳型21の底部が曲線からなる形状を有するのが好ましい。また、押し込み面に配置する複数の成型工具7は、図8に示すように連続して配置しても良いし、図9に示すように間隔をおいて配置しても良い。そして、これらの組み合わせ効果により、凝固スラグ5を破砕した場合に狙いとする粒度分布のスラグ骨材を採取できるような凹凸形状を凝固スラグ5に付与することができる。   Here, the shape of the convex raised portion A of the mold 21 as described above is desirably a relatively gentle convex shape made of a curve in order to prevent the mold 21 from being damaged by thermal stress. Therefore, the mold 21 having a long contact time with the slag and a large heat load is formed to have a gentle convex shape, and only the plate thickness distribution is given to the lower surface of the solidified slag 5. On the other hand, the tip of the molding tool 7 disposed on the molding roll 22 having a short contact time with the slag and a small thermal load is formed into an acute notch shape to give steep irregularities on the upper surface of the solidified slag 5. That is, as shown in FIG. 8 and FIG. 9, the width W of the forming tool that gives the uneven shape to the upper surface of the solidified slag, and the width of the convex raised portion A at the bottom of the mold 21 that gives the uneven shape to the lower surface of the solidified slag. The relationship with C is preferably C> W, the tip of the forming tool 7 has an acute notch shape, and the bottom of the mold 21 preferably has a curved shape. Further, the plurality of molding tools 7 arranged on the pushing surface may be arranged continuously as shown in FIG. 8, or may be arranged at intervals as shown in FIG. And by these combined effects, when the solidified slag 5 is crushed, it is possible to provide the solidified slag 5 with an uneven shape that enables sampling of the slag aggregate having a targeted particle size distribution.

そして、本実施の形態では、図8および9に示すように、粗粒B1を採取する鋳型21の水平方向の位置と細粒B2を採取する鋳型21の水平方向の位置とを、鋳型21の凸状隆起部Aの形状から予め決めておき、凸状隆起部Aの直上のスラグの上面に対して細粒B2を採取するように成形ロール22で凹凸を成形する。すなわち、鋳型21でのスラグの凝固厚が薄くなる位置ほど、成形ロール22により付与する凹凸形状の間隔を小さくするよう成形工具7の間隔Xを小さくする。これにより、凝固スラグ5から得られるスラグ骨材の粗粒から細粒までの粒径分布の制御を上下両面から行うことができる。   In this embodiment, as shown in FIGS. 8 and 9, the horizontal position of the mold 21 for collecting the coarse particles B1 and the horizontal position of the mold 21 for collecting the fine particles B2 are Unevenness is formed by the forming roll 22 so as to collect fine particles B2 with respect to the upper surface of the slag immediately above the convex raised portion A, which is determined in advance from the shape of the convex raised portion A. That is, the interval X of the forming tool 7 is reduced so that the interval between the uneven shapes provided by the forming roll 22 becomes smaller as the solidified thickness of the slag in the mold 21 becomes thinner. Thereby, control of the particle size distribution from the coarse grain of the slag aggregate obtained from the solidification slag 5 to a fine grain can be performed from both upper and lower sides.

以上、説明したように、本実施の形態の凝固スラグの形状制御装置および形状制御方法によれば、スラグの凝固厚を必要以上に厚くすることなく、また、上面および下面に対してそれぞれ異なる形状の凹凸形状を付与することで、鋳型の熱負荷を抑えながら、スラグ骨材の形状および粒度分布を直接的に造り込むことができる。そのため、スラグの凝固厚を必要以上に厚くすることなく、破砕後に適正な形状および粒度分布を有するスラグ骨材が得られるような形状に凝固させたスラグを低コストで得ることができ、スラグ骨材の歩留り改善および破砕コスト低減の2つの観点から好ましい。   As described above, according to the solidification slag shape control device and shape control method of the present embodiment, the solidification thickness of the slag does not increase more than necessary, and the shapes different from each other on the upper surface and the lower surface. By providing the uneven shape, it is possible to directly build the shape and particle size distribution of the slag aggregate while suppressing the thermal load of the mold. Therefore, the slag can be obtained at low cost by solidifying the slag into such a shape that a slag aggregate having an appropriate shape and particle size distribution can be obtained after crushing without increasing the solidification thickness of the slag more than necessary. It is preferable from the two viewpoints of improving the yield of the material and reducing the crushing cost.

なお、鋳型21は、金属製のもの、内面キャスタブル施工など、複層化して耐熱・断熱仕様とした構造のものなどが適用可能である。また、スラグの上面に凹凸形状を付与する成形手段は、成形ロール22に限らず、例えばプレス状に上下昇降する加工方式や、自重で押し付け成形を行う方式の成形工具などでもよい。その場合、成形手段の凹凸形状は、鋳型21でのスラグの凝固厚が薄くなる位置ほど凹凸形状の間隔Xが小さくなるように配置される。   The mold 21 can be made of a metal or a structure having a multi-layered structure with heat resistance and heat insulation, such as inner surface castable construction. Moreover, the shaping | molding means which provides uneven | corrugated shape to the upper surface of a slag is not restricted to the shaping | molding roll 22, For example, the shaping | molding tool etc. of the processing system which raises / lowers up and down to a press shape, and the method of pressing-molding with dead weight may be sufficient. In that case, the uneven shape of the forming means is arranged so that the interval X of the uneven shape becomes smaller as the solidified thickness of the slag in the mold 21 becomes thinner.

また、上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様などに応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。   The above embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto, and various modifications according to the specifications are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the present invention.

1 形状制御装置
2 鋳滓機
21 鋳型
22 成形ロール
3 溶融スラグ
4 供給装置
5 凝固スラグ
6 熱回収装置
7 成型工具
DESCRIPTION OF SYMBOLS 1 Shape control apparatus 2 Casting machine 21 Mold 22 Molding roll 3 Molten slag 4 Supply apparatus 5 Solidification slag 6 Heat recovery apparatus 7 Molding tool

Claims (11)

連続的に搬送される鋳型に高炉からのスラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与する手段を備えることを特徴とする凝固スラグの形状制御装置。   A solidified slag shape control device comprising means for imparting different uneven shapes to the upper and lower surfaces of the solidified slag formed by pouring slag from a blast furnace into a continuously conveyed mold. . 前記凝固スラグの上面の凹凸形状は、成形工具を機械的に押し込む操作により付与され、前記凝固スラグの下面の凹凸形状は、前記鋳型の底部に少なくとも1箇所以上設けられた凸状隆起部によって付与されることを特徴とする請求項1に記載の凝固スラグの形状制御装置。   The concavo-convex shape on the upper surface of the solidified slag is provided by an operation of mechanically pushing a forming tool, and the concavo-convex shape on the lower surface of the solidified slag is provided by a convex raised portion provided at least one place on the bottom of the mold. The shape control apparatus of the solidification slag of Claim 1 characterized by the above-mentioned. 凝固スラグの上面に凹凸形状を付与する前記成形工具の幅が、凝固スラグの下面に凹凸形状を付与する前記鋳型の底部の最小高さ位置からの高さが3mm超の領域である凸状隆起部の幅より小さいことを特徴とする請求項2に記載の凝固スラグの形状制御装置。   Convex ridges in which the width of the forming tool that gives an uneven shape to the upper surface of the solidified slag is a region where the height from the minimum height position of the bottom of the mold that gives the uneven shape to the lower surface of the solidified slag is more than 3 mm The shape control device for solidified slag according to claim 2, wherein the shape control device is smaller than the width of the portion. 凝固スラグの上面に凹凸形状を付与する前記成形工具を押し込み面に複数並べた成形装置を有することを特徴とする請求項2または請求項3に記載の凝固スラグの形状制御装置。   The solidification slag shape control device according to claim 2 or 3, further comprising: a molding device in which a plurality of the molding tools for imparting an uneven shape to the upper surface of the solidification slag are arranged on the pushing surface. 凝固スラグの上面に凹凸形状を付与する前記成形工具の先端が鋭角のノッチ形状を有し、凝固スラグの下面の凹凸形状を付与する前記鋳型の底部が曲線からなる形状を有することを特徴とする請求項2ないし請求項4のいずれか1項に記載の凝固スラグの形状制御装置。   The tip of the forming tool that gives an uneven shape to the upper surface of the solidified slag has an acute notch shape, and the bottom of the mold that gives the uneven shape on the lower surface of the solidified slag has a curved shape. The shape control apparatus of the solidification slag of any one of Claim 2 thru | or 4. 凝固スラグの上面に凹凸形状を付与する前記成形工具の間隔が、鋳型の水平方向の位置によって異なることを特徴とする請求項4または請求項5に記載の凝固スラグの形状制御装置。   The shape control device for a solidified slag according to claim 4 or 5, wherein an interval between the forming tools for imparting a concavo-convex shape to the upper surface of the solidified slag is different depending on a horizontal position of the mold. 前記鋳型の底部の最小高さ位置からの高さが高いほど、凝固スラグの上面に凹凸形状を付与する前記成形工具の間隔が狭いことを特徴とする請求項6に記載の凝固スラグの形状制御装置。   The shape control of the solidified slag according to claim 6, wherein the higher the height from the minimum height position of the bottom of the mold, the narrower the interval between the forming tools that gives the uneven shape to the upper surface of the solidified slag. apparatus. 前記鋳型の底部において、最小高さ位置からの高さが0〜3mmの領域である低位部の幅が前記凝固スラグの最大凝固厚の目標値以下であり、且つ、該低位部の位置が前記鋳型の側壁部または底部の凸状隆起部に隣接していることを特徴とする請求項2〜7のいずれか1項に記載の凝固スラグの形状制御装置。   At the bottom of the mold, the width of the lower portion that is a region having a height from the minimum height position of 0 to 3 mm is equal to or less than the target value of the maximum solidification thickness of the solidified slag, and the position of the lower portion is the The shape control device for a solidified slag according to any one of claims 2 to 7, wherein the shape control device is adjacent to a convex raised portion on a side wall or a bottom of the mold. 前記鋳型により成形された凝固スラグから採取される骨材の粒径の上限値をスラグ最大凝固厚とした場合に、前記鋳型の低位部にて凝固する凝固スラグの体積が、該凝固スラグ全体の体積の45%以下であることを特徴とする請求項8に記載の凝固スラグの形状制御装置。   When the upper limit of the particle size of the aggregate collected from the solidified slag formed by the mold is the maximum solidified thickness of the slag, the volume of the solidified slag solidified at the lower part of the mold is the total solidified slag. The shape control device for solidified slag according to claim 8, wherein the shape control device is 45% or less of the volume. 連続的に搬送される鋳型に高炉からのスラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与するステップを含むことを特徴とする凝固スラグの形状制御方法。   A method for controlling the shape of solidified slag, comprising the step of imparting different uneven shapes to the upper and lower surfaces of the solidified slag formed by pouring slag from a blast furnace into a continuously conveyed mold. . 請求項10に記載の凝固スラグの形状制御方法により凝固成形されることを特徴とする凝固スラグ。   A solidified slag formed by the solidified slag shape control method according to claim 10.
JP2013009287A 2012-01-31 2013-01-22 Solidified slag shape control device, solidified slag shape control method, and solidified slag manufacturing method Expired - Fee Related JP5949574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009287A JP5949574B2 (en) 2012-01-31 2013-01-22 Solidified slag shape control device, solidified slag shape control method, and solidified slag manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012018504 2012-01-31
JP2012018504 2012-01-31
JP2013009287A JP5949574B2 (en) 2012-01-31 2013-01-22 Solidified slag shape control device, solidified slag shape control method, and solidified slag manufacturing method

Publications (2)

Publication Number Publication Date
JP2013177291A true JP2013177291A (en) 2013-09-09
JP5949574B2 JP5949574B2 (en) 2016-07-06

Family

ID=49269377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009287A Expired - Fee Related JP5949574B2 (en) 2012-01-31 2013-01-22 Solidified slag shape control device, solidified slag shape control method, and solidified slag manufacturing method

Country Status (1)

Country Link
JP (1) JP5949574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270516A1 (en) * 2021-06-23 2022-12-29 Jfeスチール株式会社 Method for producing granular solidified slag, and production facility line for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221379A (en) * 1982-06-18 1983-12-23 住友金属工業株式会社 Manufacture of metallurgical slag lump
JPH07305970A (en) * 1994-05-11 1995-11-21 Daido Steel Co Ltd Device for air-cooling solidification of molten slag
JPH09301750A (en) * 1996-05-08 1997-11-25 Rasa Shoji Kk Production of artificial gravel from fused slag of incineration ash and equipment therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221379A (en) * 1982-06-18 1983-12-23 住友金属工業株式会社 Manufacture of metallurgical slag lump
JPH07305970A (en) * 1994-05-11 1995-11-21 Daido Steel Co Ltd Device for air-cooling solidification of molten slag
JPH09301750A (en) * 1996-05-08 1997-11-25 Rasa Shoji Kk Production of artificial gravel from fused slag of incineration ash and equipment therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270516A1 (en) * 2021-06-23 2022-12-29 Jfeスチール株式会社 Method for producing granular solidified slag, and production facility line for same
JPWO2022270516A1 (en) * 2021-06-23 2022-12-29
JP7448033B2 (en) 2021-06-23 2024-03-12 Jfeスチール株式会社 Granular solidified slag manufacturing method and its manufacturing equipment

Also Published As

Publication number Publication date
JP5949574B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
CN101435064B (en) High sound intensity ultrasonic processing apparatus for metal and alloy solidification and processing method thereof
JP2017509791A5 (en)
US20160016231A1 (en) Method and facility for transforming a liquid-state metal into a solid-state metal
JP5998845B2 (en) Heat recovery system and heat recovery method for solidified slag
JP5949574B2 (en) Solidified slag shape control device, solidified slag shape control method, and solidified slag manufacturing method
JP5788691B2 (en) Melting furnace for melting metal and method for melting metal using the same
JP5949575B2 (en) Heat recovery system and heat recovery method for solidified slag
KR101046007B1 (en) Plate manufacturing method including width and thickness forging process
CN201997669U (en) Water-cooling metal pattern die for wear-resisting casting ball
WO2016084416A1 (en) Mold shakeout method and device
CN104801366B (en) The breaking wall of spindle breaker and method be made of Mn13 and rich chromium cast iron
CN104759606A (en) Rapid progressive solidification technique device for high manganese steel rolling mortal wall casting
CN103071802B (en) Method and device for producing ferroalloy by mechanical crushing
JP6060921B2 (en) Slag continuous casting equipment
CN107931608A (en) It is a kind of to scrape knife plate with compacting functions
CN210208619U (en) Copper plate crystallizer
CN104801381B (en) Two-component circular cone sand making machine crushing wall and production method
CN104801369B (en) The gyratory crusher rolled mortar wall and method being made of Mn13 and rich chromium cast iron
CN201592229U (en) Blanking mold of frame mounting side special-shaped forging
CN206678147U (en) A kind of mould for making cushion block
CN104801370B (en) Two-component gyratory crusher rolled mortar wall and production method
JP5892143B2 (en) Solidified slag manufacturing apparatus, concrete coarse aggregate manufacturing apparatus, solidified slag manufacturing method, concrete coarse aggregate manufacturing method
CN205182818U (en) Broken wall of cone crusher that constitutes by mn13 and rich chromium cast iron
KR102135062B1 (en) Apparatus and method for continuous manufacture of casting chip
CN203077450U (en) Abrasive block demoulding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees