JP2013176984A - Method of manufacturing molded product including rib structure - Google Patents

Method of manufacturing molded product including rib structure Download PDF

Info

Publication number
JP2013176984A
JP2013176984A JP2013020094A JP2013020094A JP2013176984A JP 2013176984 A JP2013176984 A JP 2013176984A JP 2013020094 A JP2013020094 A JP 2013020094A JP 2013020094 A JP2013020094 A JP 2013020094A JP 2013176984 A JP2013176984 A JP 2013176984A
Authority
JP
Japan
Prior art keywords
molding material
preform
molding
rib structure
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013020094A
Other languages
Japanese (ja)
Other versions
JP6075094B2 (en
Inventor
Atsuki Tsuchiya
敦岐 土谷
Hideaki Sasaki
英晃 佐々木
Masato Honma
雅登 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013020094A priority Critical patent/JP6075094B2/en
Publication of JP2013176984A publication Critical patent/JP2013176984A/en
Application granted granted Critical
Publication of JP6075094B2 publication Critical patent/JP6075094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molded product of a fiber-reinforced composite material capable of achieving both formation of a face plate portion excellent in surface appearance, dimension accuracy and reliability and formation of a rib structure in press molding using sheet-shaped molding materials.SOLUTION: A preform includes: a sheet-shaped molding material (A) containing discontinuous reinforcement fiber and thermoplastic resin and having ≥1×10and ≤1×10of a density parameter p; and a sheet-shaped molding material (B) containing discontinuous reinforcement fiber and thermoplastic resin and having ≥1×10of a density parameter p which is 0.1 time as large as the density parameter of the molding material (A). By performing press molding of the preform by using an opening die having an opening for forming a rib structure and an opposing die opposing to the opening die, a molded product including the rib structure is manufactured. In a method for manufacturing the molded product, an area of the molding material (A) is set 70% or more of an projection area of the molded product, and the molding material (B) is disposed at an opening position of the opening.

Description

本発明は、強化繊維と熱可塑性樹脂からなる成形材料を用いプレス成形でリブ構造を有する成形品を製造する方法に関する。   The present invention relates to a method for producing a molded article having a rib structure by press molding using a molding material composed of reinforcing fibers and a thermoplastic resin.

繊維強化複合材料(FRP)、とりわけ強化繊維として炭素繊維を用いた炭素繊維強化複合材料(CFRP)は超軽量で比強度、比剛性に優れ、宇宙・航空機の構造部材をはじめ、スポーツ用品、自動車の部材、二輪車の部材、電気・電子機器の部品といった産業用途に広く活用されている。   Fiber reinforced composite material (FRP), especially carbon fiber reinforced composite material (CFRP) using carbon fiber as the reinforced fiber, is super lightweight and excellent in specific strength and specific rigidity, including structural members for space and aircraft, sports equipment, automobiles It is widely used in industrial applications such as parts for motorcycles, parts for motorcycles, and parts for electrical and electronic equipment.

近年、地球規模での温室効果ガスの削減が大きな課題となっており、自動車産業をはじめとして環境面に配慮した素材の要望が高まっている。FRPからなる構造体は車体の軽量化に有効であり、とりわけCFRPを金属部材に置き換えることで大幅な車体軽量化を達成でき、燃費の向上によるCOの削減に加え、電気自動車など環境負荷の小さな次世代パワートレインの実現に向けて注目を集めている。 In recent years, the reduction of greenhouse gases on a global scale has become a major issue, and there is an increasing demand for environmentally friendly materials including the automobile industry. Structure made of FRP is effective for weight reduction of the vehicle body, especially CFRP and can achieve significant body weight reduction by replacing the metal member, in addition to the reduction of CO 2 by improving fuel efficiency, such as an electric vehicle environmental impact It is drawing attention for the realization of a small next generation powertrain.

そこで、FRPをさらに普及させるため、生産性と経済性を高める製造方法について、活発な技術開発がなされている。ここで、プレス成形は、比較的複雑な形状をした成形品の大量多品種生産に適しているため好ましく用いられるが、従来より高品質で高精度の複雑形状の成形品を得ることは難しいことが課題であった。   Therefore, in order to further spread FRP, active technological development has been made on manufacturing methods that increase productivity and economy. Here, press molding is preferably used because it is suitable for mass production of a large number of molded products having a relatively complicated shape, but it is difficult to obtain a molded product with a complicated shape with higher quality and higher accuracy than before. Was an issue.

例えば、シートモールディングコンパウンド(SMC)、ガラスマットサーモプラスチック(GMT)などの成形材料をプレス成形で短時間で製造されてなるFRPが公知であるが、これらは成形の際に金型のキャビティ内を樹脂と繊維が大きく流動しながら成型されるため、流動に沿って特性が大きく変動する問題や、部位によって特性が大きく低下する問題や、成形品に反りや捻れといった問題が発生する。   For example, FRPs are known in which molding materials such as sheet molding compound (SMC) and glass mat thermoplastic (GMT) are manufactured in a short time by press molding. Since the resin and the fiber are molded while greatly flowing, there arises a problem that the characteristics greatly fluctuate along the flow, a problem that the characteristics are greatly decreased depending on a part, and a problem that the molded product is warped or twisted.

一方、強化繊維と熱可塑性樹脂からなる成形材料のプレス成形方法において、均質な成形材料を用いて、これら成形材料を金型のキャビティよりも大きな面積で配置することで、大きな流動を伴うことなくプレス成形する技術が提案されている(特許文献1)。   On the other hand, in a press molding method for molding materials composed of reinforcing fibers and thermoplastic resins, by using homogeneous molding materials and arranging these molding materials in a larger area than the mold cavity, there is no significant flow. A technique for press molding has been proposed (Patent Document 1).

この技術によれば、前記のような大きな流動による問題は発生せず、かつ得られる成形品は高い強度と均質な特性が得られるが、狭い流路かつ高さのあるリブ形状を有する成形品を製造する場合、リブ部に繊維が十分に充填できる技術の開発が望まれていた。   According to this technique, the problem due to the large flow as described above does not occur, and the obtained molded product can obtain high strength and uniform characteristics, but a molded product having a narrow flow path and a high rib shape. In the case of manufacturing, it has been desired to develop a technique capable of sufficiently filling the rib portion with fibers.

また、厚み方向に強化繊維の長さを変えた基材を用いて、スタンピング成形することで、流動性と高い強度を両立する技術が提案されている(特許文献2)。しかしながら、基材を一体で製造しているため流動性の制御が困難であり、形状が複雑になると成形材料全体の流動を伴い、成形品に反りや捻れといった問題が生じることとなる。何よりも、流動させたい形状と、流動させたくない形状といった、場所により基材を選択的に配置できないため、結局は従来のプレス成形の課題を解決するには至っていない。   In addition, a technique has been proposed that achieves both fluidity and high strength by performing stamping molding using a base material in which the length of the reinforcing fiber is changed in the thickness direction (Patent Document 2). However, since the base material is manufactured integrally, it is difficult to control the fluidity. When the shape is complicated, the entire molding material is caused to flow, causing problems such as warping and twisting of the molded product. Above all, since the base material cannot be selectively arranged depending on the location such as the shape to be flowed and the shape not to be flowed, the problem of conventional press molding has not been solved in the end.

さらに、強化繊維と熱可塑性樹脂からなる均質な成形材料を用いて、これらのサイズの異なる基材を使い分けてプリフォーム化することで、リブ形状をプレス成形する技術が提案されている(特許文献3)。この方法によれば、リブ部に基材を選択的に配置することでより充填しやすくなるが、より細かく、高いリブを精度よく成形するには、さらなる技術開発が要求される。   Furthermore, a technology has been proposed in which a rib shape is press-molded by using a uniform molding material composed of reinforcing fibers and a thermoplastic resin, and using these differently-sized base materials for preforming (Patent Literature). 3). According to this method, it becomes easier to fill the substrate by selectively disposing the base material on the rib portion, but further technical development is required to form a finer and higher rib with high accuracy.

特開2010−235779号公報JP 2010-235777 A 特開平8−052735号公報Japanese Patent Laid-Open No. 8-052735 特開2009―196146号公報JP 2009-196146 A

本発明の課題は、かかる従来技術の問題点を解消し、シート状の成形材料を用いたプレス成形において、表面外観、寸法精度、信頼性に優れた面板部の形成と、リブ構造の形成を両立した繊維強化複合材料の成形品を得ることである。   The object of the present invention is to eliminate the problems of the prior art and to form a face plate portion with excellent surface appearance, dimensional accuracy, and reliability and rib structure formation in press molding using a sheet-like molding material. It is to obtain a molded product of compatible fiber reinforced composite material.

上記の課題を解決するため、本発明は以下の構成からなる。すなわち、不連続な強化繊維と熱可塑性樹脂を含み、次の一般式(1)で表される濃度パラメーターpが1×10以上であって1×10以下であるシート状の成形材料(A)と、不連続な強化繊維と熱可塑性樹脂を含み、次の一般式(1)で表される濃度パラメーターpが1×10以上であって前記成形材料(A)の濃度パラメーターの0.1倍以下であるシート状の成形材料(B)を含むプリフォームを、リブ構造を形成するための開口部を有する開口金型とそれに対向する対向金型とを用いてプレス成形してリブ構造を有する成形品を製造するにあたり、前記成形材料(A)の面積を成形品の投影面積の70%以上とし、前記成形材料(B)を前記開口部の開口位置に配置する、リブ構造を有する成形品の製造方法である。 In order to solve the above problems, the present invention has the following configuration. That is, a sheet-like molding material containing discontinuous reinforcing fibers and a thermoplastic resin and having a concentration parameter p represented by the following general formula (1) of 1 × 10 4 or more and 1 × 10 8 or less ( A), a discontinuous reinforcing fiber and a thermoplastic resin, the concentration parameter p represented by the following general formula (1) is 1 × 10 1 or more, and the concentration parameter 0 of the molding material (A) is 0 A rib containing a preform containing a sheet-shaped molding material (B) that is less than 1 times is press-molded using an opening mold having an opening for forming a rib structure and an opposing mold facing the preform. In manufacturing a molded article having a structure, a rib structure in which the area of the molding material (A) is 70% or more of the projected area of the molded article, and the molding material (B) is disposed at the opening position of the opening. It is a manufacturing method of the molded article which has.

n:成形材料の単位面積(1mm)当たりに含まれる強化繊維からなる流動単位の数
h:成形材料の厚み(mm)
Ln:強化繊維の数平均繊維長(mm)
n: Number of flow units made of reinforcing fibers per unit area (1 mm 2 ) of molding material h: Thickness of molding material (mm)
Ln: number average fiber length of reinforcing fibers (mm)

本発明によれば、不連続な強化繊維と熱可塑性樹脂を含むシート状の成形材料を積層し、プレス成形するにあたり、構成の異なる2種類以上の成形材料を用いることで、表面外観、寸法精度、信頼性に優れた面板部の形成と、リブ構造の形成を両立した、リブ構造を有する成形品を得ることができる。   According to the present invention, when laminating a sheet-like molding material containing discontinuous reinforcing fibers and a thermoplastic resin and press molding, the surface appearance and dimensional accuracy can be obtained by using two or more molding materials having different configurations. Thus, a molded product having a rib structure can be obtained in which the formation of a highly reliable face plate portion and the formation of a rib structure are compatible.

実施例および比較例に用いた一文字リブ成形用金型の透視斜視図Perspective perspective view of a single-character rib molding die used in Examples and Comparative Examples 単糸分散した強化繊維の模式図Schematic diagram of reinforcing fiber dispersed with single yarn 繊維束で分散した強化繊維の模式図Schematic diagram of reinforcing fiber dispersed in fiber bundle 繊維束とみなす判断基準の説明図Explanatory drawing of criteria for judging as a fiber bundle 流動単位を構成する単繊維の本数における測定方法の説明図Explanatory drawing of the measuring method in the number of single fibers constituting the flow unit 成形品の投影面の説明図Illustration of projection surface of molded product 開口部の投影面を説明するための開口金型の概略図Schematic diagram of an opening mold for explaining the projection plane of the opening 開口部のリブ厚みおよびリブ構造の高さを説明するための開口金型の概略図Schematic diagram of opening die for explaining rib thickness of opening and height of rib structure 成形材料における強化繊維の分散状態を表した模式図Schematic representation of the dispersion state of reinforcing fibers in the molding material 実施例および比較例に用いた一文字リブ成形用金型の開口金型の簡略図Simplified drawing of opening mold of single-character rib molding mold used in Examples and Comparative Examples 実施例および比較例に用いた一文字リブ、十字リブ成形用金型の対向金型の簡略図Simplified view of the opposing mold of the mold for forming single-character ribs and cross ribs used in Examples and Comparative Examples 実施例および比較例に用いた十字リブ成形用金型の透視斜視図Perspective perspective view of a mold for forming a cross rib used in Examples and Comparative Examples 実施例および比較例に用いた十字リブ成形用金型の開口金型の簡略図Simplified drawing of opening mold of cross rib forming mold used in Examples and Comparative Examples

以下に、本発明の望ましい実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明では、プリフォームを、対向する一対の金型を用いてプレス成形して、リブ構造を有する成形品を製造する。一対の金型における一方の金型は、リブ構造を形成するための開口部を有しており、開口金型と称する。また、一対の金型におけるもう一方の金型は、開口金型に対向しており、対向金型と称する。かかる一対の金型の例を図1に示す。図1に示す一対の金型は、プレス装置(図示せず)に取り付けられており、凹部と凸部の雌雄一対の成形型である。さらに、図1に示すように、凹部の成形型1には、開口部3があり、これは成形品のリブ部に対応する部分であり、さらに開口部の空洞部分の体積を開口部のキャビティ体積とする。   In the present invention, a preform is press-molded using a pair of opposed molds to produce a molded product having a rib structure. One mold in the pair of molds has an opening for forming a rib structure, and is called an opening mold. The other mold in the pair of molds faces the opening mold and is referred to as an opposed mold. An example of such a pair of molds is shown in FIG. The pair of molds shown in FIG. 1 is attached to a press device (not shown), and is a pair of male and female molds having a concave portion and a convex portion. Further, as shown in FIG. 1, the concave mold 1 has an opening 3, which corresponds to the rib portion of the molded product, and further the volume of the hollow portion of the opening is defined as the cavity of the opening. Volume.

一般に金型は大きく2種類に分類され、1つは鋳造や射出成形などに使用される密閉金型であり、もう1つはプレス成形や鍛造などに使用される開放金型である。密閉金型は主に内部に材料を流し込んで成形する金型であり、開放金型は主に材料を流さずに変形させて成形する金型である。成形時に基材に過度な流動を起こすことなく、成形時に成形材料またはプリフォームの繊維配向を乱したり、成形時の流動によって繊維配向に異方性を生じさせたりすることを極力抑えて、成形材料またはプリフォームの繊維配向を活かした成形品を得るために、開放金型を用いることが好ましい。また、成形時の分解ガスや混入空気を型外に排除する観点からも開放金型が好ましい。   In general, molds are roughly classified into two types, one is a sealed mold used for casting or injection molding, and the other is an open mold used for press molding or forging. The hermetically sealed mold is a mold mainly formed by pouring a material into the interior, and the open mold is a mold formed mainly by deforming without flowing the material. Without causing excessive flow to the base material during molding, disturbing the fiber orientation of the molding material or preform during molding, or suppressing the occurrence of anisotropy in the fiber orientation due to flow during molding, as much as possible, In order to obtain a molded article utilizing the fiber orientation of the molding material or preform, it is preferable to use an open mold. An open mold is also preferable from the viewpoint of eliminating decomposition gas and mixed air from the mold during molding.

さらに、金型には打ち抜き機構、パンチング機構、タッピング機構から選択される少なくとも一種を有する金型が好ましい。プレス成形で得られた成形品は、成形材料またはプリフォームのチャージ率を、金型のキャビティ総投影面積に対し100%より大きくしてプレス成形する場合もあり、成形品として必要な部分と不必要な部分(端部)を有することがある。従って、成形後に成形品の形状を仕上げるために、この端部を除去する工程が必要となる場合がある。また、成形品は、その使用目的などによっては発生ガスや熱交換のための通気口や排気口、成形品の掴み部分、加工用のネジ孔やボルト接合用の孔、意匠性の付与を目的とした孔や打ち抜き模様などで利用する孔部を有する成形品に加工することが想定される。前記した3つの機構から選択される少なくとも一種を有することで、プレス成形後に端部を除去する工程や必要な孔部を形成する工程をプレス成形と同時に実施することができ、工程の簡略化を図ることができるために好ましい。   Further, the mold is preferably a mold having at least one selected from a punching mechanism, a punching mechanism, and a tapping mechanism. Molded products obtained by press molding may be molded by pressing with the charge rate of the molding material or preform larger than 100% of the total projected area of the cavity of the mold. May have necessary parts (ends). Therefore, in order to finish the shape of the molded product after molding, a step of removing this end portion may be necessary. Depending on the purpose of use of the molded product, the purpose is to provide gas and heat exchange vents and exhaust ports, gripping parts of molded products, screw holes for processing, holes for bolt connection, and design. It is assumed to be processed into a molded product having a hole portion used for the hole or punching pattern. By having at least one selected from the three mechanisms described above, the step of removing the end portion after press molding and the step of forming the necessary hole can be performed simultaneously with press molding, simplifying the process. This is preferable because it can be achieved.

プレス成形の種類は、得られる成形品に応じ選択が可能である。ここで、プレス成形とは、加工機械および型、工具等を用いて、前記積層プリフォームに曲げ、剪断、圧縮等の変形を与えて成形体を得る方法であるが、その成形形態として絞り、深絞り、フランジ、コールゲート、エッジカーリング、型打ちなどが例示される。また、プレス成形の方法としては、各種存在するプレス成形の方法のなかでも、成形圧力、温度の自由度の観点から、金属製の型を用いて成形をおこなう金型プレス法を用いる。   The type of press molding can be selected according to the obtained molded product. Here, press molding is a method of obtaining a molded body by applying deformation such as bending, shearing, compression, etc. to the laminated preform using a processing machine and a mold, a tool, etc. Examples include deep drawing, flange, call gate, edge curling, stamping and the like. As a press molding method, among various existing press molding methods, a die pressing method in which molding is performed using a metal mold is used from the viewpoint of flexibility in molding pressure and temperature.

金型プレス法には、成形材料あるいはプリフォームを型内に予め配置しておき、型締とともに加圧、加熱をおこない、次いで型締をおこなったまま、金型の冷却により該積層プリフォームの冷却をおこない成形品を得るホットプレス法や、基材の樹脂が熱可塑性樹脂である場合には、予め成形材料あるいはプリフォームを、熱可塑性樹脂の溶融温度以上に、遠赤外線ヒーター、加熱板、高温オーブン、誘電加熱などに例示される加熱装置で加熱し、熱可塑性樹脂を溶融、軟化させた状態で、前記成形型の下面となる型の上に配置し、次いで型を閉じて型締を行い、その後加圧冷却する方法であるスタンピングプレス成形を採用することができる。プレス成形方法については、特に制限はないが、成形サイクルを早めて生産性を高める観点からは、スタンピングプレス成形であることが好ましい。   In the mold pressing method, a molding material or a preform is placed in a mold in advance, pressed and heated together with mold clamping, and then cooled while the mold is being clamped. In the case of a hot press method for obtaining a molded product by cooling, or when the resin of the base material is a thermoplastic resin, the molding material or preform is previously set to a temperature higher than the melting temperature of the thermoplastic resin, a far infrared heater, a heating plate, Heated with a heating device exemplified by a high-temperature oven, dielectric heating, etc., in a state where the thermoplastic resin has been melted and softened, placed on the mold that will be the lower surface of the mold, and then closed and clamped Stamping press molding, which is a method of performing and then pressurizing and cooling, can be employed. The press molding method is not particularly limited, but stamping press molding is preferable from the viewpoint of increasing the productivity by increasing the molding cycle.

成形品には、剛性を高め、またソリを低減する観点からリブが形成されていることが重要である。本発明では、シート状の成形材料をプレス成形することにより、材料を面外にある開口金型の開口部に流動させ充填させてリブ構造を形成する。プレス成形により材料を開口金型の開口部へ流動させる方法により、一度の成形でリブ構造を形成できる。また、リブの形状は特に限定されないが、一文字リブ、十字リブ、格子リブなどが好ましく挙げられる。さらに、成形品の剛性を高める観点から、成形品中に複数のリブが形成されていることが好ましい。   In the molded product, it is important that ribs are formed from the viewpoint of increasing rigidity and reducing warpage. In the present invention, a rib structure is formed by press-molding a sheet-like molding material to flow and fill the material into the opening of the opening mold that is out of plane. The rib structure can be formed by a single molding by a method in which the material is flowed to the opening of the opening mold by press molding. The shape of the rib is not particularly limited, but a single character rib, a cross rib, a lattice rib, and the like are preferable. Furthermore, it is preferable that a plurality of ribs are formed in the molded product from the viewpoint of increasing the rigidity of the molded product.

本発明において、プリフォームは不連続な強化繊維と熱可塑性樹脂を含むシート状の成形材料を含んでいる。プリフォームとは、少なくとも強化繊維に樹脂が含浸した成形材料を含み、成形材料を積層、あるいは横並びに配置して構成され、直接もしくは二次加工工程を経て、成形工程に供されるものであり、成形品に加工される前の状態のものを意味し、本発明におけるプリフォームは成形材料として後述する成形材料(A)と成形材料(B)を含んでいる。ここで、積層とは少なくとも成形材料どうしの一部が重なる状態をいい、また横並びとは実質的に成形材料どうしの一部も重ならない、隣り合った配置のことをいう。さらに、本発明では、2つ以上のプリフォームを組み合わせてプレス成形に供しても良い。また、金型の型締め時におけるプリフォーム形態のことを最終形態のプリフォームと呼ぶこととする。なお、二次加工工程には特に制限はないが、成形材料を所定のサイズや形状にカットする切削工程、成形材料同士を接着してプリフォームの取扱性を向上させるボンディング工程、プリフォームからエアを抜く脱泡工程などが例示できる。次に、本発明に用いられる、不連続な強化繊維と熱可塑性樹脂を含むシート状の成形材料について説明する。本発明で用いる成形材料の形態はシート状であり、成形材料の構成は不連続な強化繊維と熱可塑性樹脂とからなり、不連続な強化繊維で補強された熱可塑性樹脂であれば、特に制限はされない。強化繊維の形態としては、成形材料あるいはプリフォームの賦形性を考慮して不連続な強化繊維であることが重要である。ここで、本発明でいう不連続な強化繊維とは、強化繊維からなる中間体あるいは成形材料を製造する過程で強化繊維が実質的に切断される工程を含んで得られる強化繊維を指す。不連続な強化繊維の形態としては、例えば不連続な強化繊維が束状および/または単繊維に分散された状態で強化繊維を一方向にひきそろえた形態や、不連続な強化繊維が束状および/または単繊維に分散された状態で強化繊維がランダムに配向した形態などが挙げられる。積層の方向を厳密に考慮しなくても良いという観点からは、成形材料に含まれる強化繊維の配置が、不連続な強化繊維の束状および/または単繊維に分散された状態で、該強化繊維がランダムに配向した形態であることが好ましい。   In the present invention, the preform includes a sheet-like molding material containing discontinuous reinforcing fibers and a thermoplastic resin. A preform includes at least a molding material in which a reinforcing fiber is impregnated with a resin, and is formed by laminating or arranging the molding materials side by side, and is provided to the molding process directly or through a secondary processing process. The preform in the present invention includes a molding material (A) and a molding material (B) described later as molding materials. Here, “lamination” means a state in which at least a part of molding materials overlap each other, and “side-by-side” means an adjacent arrangement in which parts of the molding materials do not substantially overlap each other. Furthermore, in the present invention, two or more preforms may be combined and used for press molding. In addition, a preform form at the time of mold clamping is referred to as a final form preform. The secondary processing process is not particularly limited, but a cutting process for cutting the molding material into a predetermined size and shape, a bonding process for bonding the molding materials together to improve the handling of the preform, and air from the preform. An example is a defoaming step of removing. Next, a sheet-shaped molding material containing discontinuous reinforcing fibers and a thermoplastic resin used in the present invention will be described. The form of the molding material used in the present invention is a sheet, and the configuration of the molding material is not particularly limited as long as it is a thermoplastic resin composed of discontinuous reinforcing fibers and thermoplastic resin and reinforced with discontinuous reinforcing fibers. Not done. As the form of the reinforcing fiber, it is important that the reinforcing fiber is a discontinuous reinforcing fiber in consideration of the shaping property of the molding material or the preform. Here, the discontinuous reinforcing fiber referred to in the present invention refers to a reinforcing fiber obtained by including a step of substantially cutting the reinforcing fiber in the process of manufacturing an intermediate or a molding material made of the reinforcing fiber. As the form of the discontinuous reinforcing fibers, for example, the discontinuous reinforcing fibers are bundled and / or dispersed in a single fiber, and the reinforcing fibers are arranged in one direction, or the discontinuous reinforcing fibers are bundled. And / or a form in which reinforcing fibers are randomly oriented in a state of being dispersed in a single fiber. From the viewpoint that it is not necessary to strictly consider the direction of lamination, the reinforcing fiber arrangement included in the molding material is in a state of discontinuous reinforcing fiber bundles and / or dispersed in a single fiber. It is preferable that the fibers are randomly oriented.

本発明で用いる成形材料としては、例えば不連続な複数本のストランド状強化繊維に針を突き刺し、互いに繊維を絡まり合わせたマット状ストランド強化繊維に熱可塑性樹脂を積層し、これを加熱、加圧して得られる成形材料、不連続な強化繊維束をランダムに配置したものと、粉末形状、繊維形状、フィルム形状、不織布形状の熱可塑性樹脂とを加熱、加圧して得られる成形材料、強化繊維と溶融させた熱可塑性樹脂とを混練したものを加圧して得られる成形材料、強化繊維のみ、あるいは粉末形状、繊維形状の熱可塑性樹脂を空中で分散させたものを加熱、加圧して得られる成形材料、強化繊維と粉末形状、繊維形状の熱可塑性樹脂を水中に分散、混合した懸濁液から抄造して得られる不織材料を加熱、加圧して得られる成形材料、強化繊維のみを水中に分散した懸濁液から抄造して得られる不織材料に粉末形状、繊維形状、フィルム形状、不織布形状の熱可塑性樹脂を加熱、加圧して、抄造して得られた該強化繊維の不織布材料に該熱可塑性樹脂を接着してなる成形材料などの成形材料が挙げられる。これらの中でも、成形材料中に長い繊維を残すことで高剛性、かつ等方性にも優れる観点から、強化繊維の不織布材料に熱可塑性樹脂が接着してなる成形材料が好ましく用いられる。また、短い強化繊維を成形材料中に分散させる方法として、経済性の観点から、強化繊維と溶融させた熱可塑性樹脂とを混練したものを加圧して得られる成形材料が好ましく用いられる。   As a molding material used in the present invention, for example, a needle is pierced into a plurality of discontinuous strand-like reinforcing fibers, a thermoplastic resin is laminated on mat-like strand reinforcing fibers in which fibers are entangled with each other, and this is heated and pressurized. A molding material obtained by randomly discontinuous reinforcing fiber bundles, and a molding material obtained by heating and pressurizing a thermoplastic resin having a powder shape, a fiber shape, a film shape, and a nonwoven fabric shape, and a reinforcing fiber Molding material obtained by heating and pressurizing a molding material obtained by pressurizing a kneaded melted thermoplastic resin, only reinforcing fibers, or a dispersion of powdered and fiber-shaped thermoplastic resin in the air Materials, molding materials obtained by heating and pressurizing nonwoven materials obtained by making paper from suspensions in which dispersed fibers and fiber-shaped thermoplastic resins are dispersed and mixed in water The reinforcement obtained by papermaking by heating and pressing a thermoplastic resin in the form of powder, fiber, film, and nonwoven fabric to a nonwoven material obtained by papermaking from a suspension in which only fibers are dispersed in water. Examples of the molding material include a molding material obtained by bonding the thermoplastic resin to a fiber nonwoven material. Among these, a molding material obtained by adhering a thermoplastic resin to a nonwoven fabric material of reinforcing fibers is preferably used from the viewpoint of leaving a long fiber in the molding material and having high rigidity and isotropic properties. Further, as a method for dispersing short reinforcing fibers in a molding material, a molding material obtained by pressurizing a kneaded mixture of reinforcing fibers and a molten thermoplastic resin is preferably used from the viewpoint of economy.

本発明で用いる強化繊維としては特に制限はなく、例えば、アルミニウム、黄銅、ステンレスなどの金属繊維や、ポリアクリロニトリル(以下、PAN)系、レーヨン系、リグニン系、ピッチ系などの炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレンなどの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。また、これらの繊維に表面処理が施されているものであってもよい。表面処理としては、導電体として金属の被着処理のほかに、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、比強度、比剛性が高く軽量化効果の観点から、PAN系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。また、得られる成形品の経済性を高める観点から、ガラス繊維が好ましく用いることができ、とりわけ力学特性と経済性のバランスから炭素繊維とガラス繊維を併用することが好ましい。さらに、得られる成形品の衝撃吸収性や賦形性を高める観点から、アラミド繊維が好ましく用いることができ、とりわけ力学特性と衝撃吸収性のバランスから炭素繊維とアラミド繊維を併用することが好ましい。また、得られる成形品の導電性を高める観点から、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維を用いることもできる。これらの中で、強度と弾性率などの力学的特性と価格とのバランスに優れるPAN系の炭素繊維は、より好ましく用いられる。   The reinforcing fiber used in the present invention is not particularly limited, and examples thereof include metal fibers such as aluminum, brass and stainless steel, carbon fibers such as polyacrylonitrile (PAN), rayon, lignin and pitch, and graphite. Examples thereof include fibers, insulating fibers such as glass, organic fibers such as aramid, PBO, polyphenylene sulfide, polyester, acrylic, nylon, and polyethylene, and inorganic fibers such as silicon carbide and silicon nitride. Moreover, the surface treatment may be given to these fibers. Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, and an adhesion treatment of an additive in addition to a treatment for depositing a metal as a conductor. Moreover, these reinforcing fibers may be used individually by 1 type, and may use 2 or more types together. Of these, PAN-based, pitch-based and rayon-based carbon fibers are preferably used from the viewpoints of high specific strength and specific rigidity and a light weight reduction effect. In addition, glass fibers can be preferably used from the viewpoint of improving the economical efficiency of the obtained molded product, and in particular, it is preferable to use carbon fibers and glass fibers in combination from the balance of mechanical properties and economy. Furthermore, aramid fibers can be preferably used from the viewpoint of improving the impact absorbability and formability of the obtained molded article, and it is particularly preferable to use carbon fibers and aramid fibers in combination from the balance of mechanical properties and impact absorbability. In addition, reinforcing fibers coated with a metal such as nickel, copper, or ytterbium can be used from the viewpoint of increasing the conductivity of the obtained molded product. Among these, PAN-based carbon fibers that are excellent in balance between mechanical properties such as strength and elastic modulus and price are more preferably used.

次に、本発明の成形材料に用いられる熱可塑性樹脂について説明する。樹脂の種類としては特に制限はなく、以下に例示される熱可塑性樹脂のいずれの樹脂も用いることができ、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステルや、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィンや、ポリオキシメチレン、ポリアミド、ポリフェニレンスルフィド、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルニトリル、ポリテトラフルオロエチレンなどのフッ素系樹脂、液晶ポリマーなどの結晶性樹脂、スチレン系樹脂の他や、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリアリレートなどの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系、およびアクリロニトリル系等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。とりわけ、耐熱性、難燃性、耐薬品性の観点からは、PPS樹脂が、成形体外観、寸法安定性の観点からは、ポリカーボネート樹脂やスチレン系樹脂が、成形体の強度、耐衝撃性の観点からは、ポリアミド樹脂が、軽量性の観点からはポリエチレン、ポリプロピレンなどのポリオレフィンおよびそれらの酸変性体がより好ましく用いられる。   Next, the thermoplastic resin used for the molding material of the present invention will be described. The type of resin is not particularly limited, and any of the thermoplastic resins exemplified below can be used. For example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, liquid crystal polyester, etc. Fluorine such as polyester, polyolefin such as polyethylene, polypropylene, polybutylene, polyoxymethylene, polyamide, polyphenylene sulfide, polyketone, polyetherketone, polyetheretherketone, polyetherketoneketone, polyethernitrile, polytetrafluoroethylene Resins, crystalline resins such as liquid crystal polymers, styrene resins, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polyphenylene ether, Amorphous resins such as lyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyarylate, etc., phenolic resin, phenoxy resin, polystyrene, polyolefin, polyurethane, polyester, polyamide, Examples thereof include thermoplastic elastomers such as polybutadiene, polyisoprene, fluorine, and acrylonitrile, and thermoplastic resins selected from these copolymers and modified products. In particular, from the viewpoints of heat resistance, flame retardancy, and chemical resistance, PPS resins are used, and from the viewpoint of molded product appearance and dimensional stability, polycarbonate resins and styrenic resins are used for the strength and impact resistance of the molded products. From the viewpoint, polyamide resins are more preferably used, and from the viewpoint of lightness, polyolefins such as polyethylene and polypropylene and acid-modified products thereof are more preferably used.

上記群に例示された熱可塑性樹脂には、本発明の目的を損なわない範囲で、エラストマーあるいはゴム成分などの耐衝撃性向上剤、他の充填材や添加剤を添加しても良い。これら充填材や添加剤の例としては、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤が挙げられる。   To the thermoplastic resins exemplified in the above group, an impact improver such as an elastomer or a rubber component, and other fillers and additives may be added as long as the object of the present invention is not impaired. Examples of these fillers and additives include inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, and coloring prevention. Agents, heat stabilizers, release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, foam control agents, or coupling agents.

また、例示した前記成形材料は、強化繊維、あるいは熱可塑性樹脂の種類、形態、配置、配合割合などにより流動性が異なることが一般に知られている。プレス成形によりリブを形成させるには、流動性が高い成形材料を用いることが好ましく、また面板の形成には等方性の確保の観点から、均一な成形材料を流動させないように、流動性が低い成形材料を用いることが好ましい。このように、流動させたい部位と流動させたくない部位に応じて、成形材料を選択するが、その流動性の大小を判断する基準として、次にいくつか例示する。   Further, it is generally known that the exemplified molding material has different fluidity depending on the type, form, arrangement, blending ratio, etc. of the reinforcing fiber or thermoplastic resin. In order to form the ribs by press molding, it is preferable to use a molding material with high fluidity, and for the formation of the face plate, from the viewpoint of ensuring isotropy, the fluidity is to prevent the uniform molding material from flowing. It is preferable to use a low molding material. As described above, the molding material is selected in accordance with the portion that is desired to flow and the portion that is not desired to be flowed. Several examples are given below as criteria for determining the magnitude of the fluidity.

まず、成形材料のみかけ粘度から流動性の大きさを比較する方法が挙げられる。みかけ粘度が高い成形材料ほど、流動性が乏しくなる。この見かけ粘度の測定方法として、メルトフローレート、レオメータなどを挙げられることができる。2つ目として、繊維干渉の程度から流動性の大きさを比較する方法が挙げられる。溶融した樹脂に含まれる強化繊維どうしの干渉が大きくなるほど、他の強化繊維に拘束されることで、強化繊維の自由度が小さくなるため、繊維干渉の程度が大きい成形材料ほど流動性が乏しくなる。3つ目として、成形材料の伸長率から流動性の大きさを比較する方法が挙げられる。伸長率とは、融点以上に加熱された円盤形状の成形材料をプレス成形し、そのプレス前後での成形材料の面積比をパーセント表示したものである。伸長率が小さい成形材料ほど、流動性が乏しくなる。   First, there is a method of comparing the magnitude of fluidity from apparent viscosity of the molding material. A molding material having a higher apparent viscosity has poor fluidity. Examples of the method for measuring the apparent viscosity include a melt flow rate and a rheometer. Second, there is a method of comparing the magnitude of fluidity based on the degree of fiber interference. As the interference between the reinforcing fibers contained in the molten resin increases, the degree of freedom of the reinforcing fibers decreases by being constrained by other reinforcing fibers, so that the molding material having a higher degree of fiber interference becomes less fluid. . The third is a method of comparing the magnitude of fluidity from the elongation rate of the molding material. The elongation rate is obtained by press-molding a disk-shaped molding material heated to a melting point or higher and expressing the area ratio of the molding material before and after the press as a percentage. A molding material having a smaller elongation rate becomes less fluid.

上述した、成形材料の流動性の判定方法の中で、本発明では繊維干渉、および伸長率を用いて、成形材料の流動性の比較を行うものとする。まず、繊維干渉の大小の判断する指標である、濃度パラメーターpについて説明する。   In the method for determining the fluidity of the molding material described above, the present invention compares the fluidity of the molding material using fiber interference and the elongation rate. First, the concentration parameter p, which is an index for determining the magnitude of fiber interference, will be described.

本発明に用いられる成形材料の濃度パラメーターpとは、繊維干渉の程度の指標であり、強化繊維の配合量、繊維長、繊維径、流動単位を構成する単繊維の本数などによって決まるパラメーターであり、前述した式(1)で表せる。ここで、nは成形材料の単位面積(1mm)当たりに含まれる強化繊維からなる流動単位の数、hは成形材料の厚み(mm)、Lnは強化繊維の数平均繊維長(mm)である。 The concentration parameter p of the molding material used in the present invention is an index of the degree of fiber interference, and is a parameter determined by the blending amount of the reinforcing fiber, the fiber length, the fiber diameter, the number of single fibers constituting the flow unit, and the like. Can be expressed by the above-described formula (1). Here, n is the number of flow units composed of reinforcing fibers contained per unit area (1 mm 2 ) of the molding material, h is the thickness (mm) of the molding material, and Ln is the number average fiber length (mm) of the reinforcing fibers. is there.

さらに、成形材料の単位面積(1mm)当たりに含まれる強化繊維からなる流動単位の数nは、次式(2)により導出される。ここで、wfは成形材料に含まれる強化繊維の目付け(g/m)、d0は単繊維の径(μm)、Lnは強化繊維の数平均繊維長(mm)、ρfは強化繊維の密度(g/cm)、kは流動単位の平均集束数である。ここで、流動単位について説明する。流動単位とは強化繊維からなる1個の集合体あるいは単体のことであり、たとえば図2に示すように、単糸分散した強化繊維の場合では単繊維の1本1本がそれぞれ流動単位となり、図3に示すSMCのように強化繊維が繊維束で存在する場合はその1つ1つの繊維束が流動単位となる。ここで、繊維束の場合において、1つの流動単位とみなす判断基準として図4を用いて説明する。ある強化繊維からなる繊維束とそれに隣接する単繊維あるいは繊維束とのなす角の角度が5°以下かつ実質的にそれらどうしが隣り合っている場合は1つの繊維束であり、つまりは1つの流動単位とみなし、それ以外に該当する場合は別々の流動単位として扱うものとする。 Furthermore, the number n of flow units composed of reinforcing fibers contained per unit area (1 mm 2 ) of the molding material is derived by the following equation (2). Here, wf is the basis weight of the reinforcing fiber contained in the molding material (g / m 2 ), d0 is the diameter of the single fiber (μm), Ln is the number average fiber length (mm) of the reinforcing fiber, and ρf is the density of the reinforcing fiber (G / cm 3 ), k is the average focusing number of flow units. Here, the flow unit will be described. The flow unit is an aggregate or a single body made of reinforcing fibers. For example, as shown in FIG. 2, in the case of reinforcing fibers dispersed with a single yarn, each single fiber becomes a flow unit, When the reinforcing fibers are present as fiber bundles as in the SMC shown in FIG. 3, each of the fiber bundles becomes a flow unit. Here, in the case of a fiber bundle, it demonstrates using FIG. 4 as a judgment standard considered as one flow unit. When the angle between the fiber bundle composed of a certain reinforcing fiber and the adjacent single fiber or fiber bundle is 5 ° or less and they are substantially adjacent to each other, it is one fiber bundle, that is, one fiber bundle It is regarded as a current unit, and in other cases, it is treated as a separate current unit.

濃度パラメーターの導出に用いる、各パラメーターについて、以下に詳細に説明する。ここで、以下に示す、濃度パラメーターの導出に用いる成形材料に関する各パラメーターは、加熱前の成形材料を前提として計算する。この限定は、成形材料を加熱することで、例えば発泡剤が添加された成形材料が膨張し、体積変化を生じる場合、または加熱により熱可塑性樹脂が溶融することで、拘束が解けた強化繊維の弾性回復によるスプリングバックが生じる場合があるが、これらは体積変化を伴うため、実質の強化繊維と熱可塑性樹脂との配合割合が加熱前後で同じであっても、得られる濃度パラメーターが異なる問題を排除するためである。このため、成形材料は実質的にボイドレスであり、樹脂が完全含浸した状態で計算する。   Each parameter used for deriving the concentration parameter will be described in detail below. Here, each parameter relating to the molding material used for derivation of the concentration parameter shown below is calculated on the assumption of the molding material before heating. This limitation is due to the heating of the molding material, for example, when the molding material to which the foaming agent is added expands and changes in volume, or when the thermoplastic resin melts by heating, Springback may occur due to elastic recovery, but these involve volume changes, so even if the mixing ratio of the real reinforcing fiber and the thermoplastic resin is the same before and after heating, the resulting concentration parameter is different. This is to eliminate it. For this reason, the molding material is substantially voidless, and the calculation is performed with the resin completely impregnated.

まず、平均集束数kについて記述する。平均集束数kとは、流動単位を構成する単繊維の本数である。平均集束数kの導出は、強化繊維からなる流動単位を観察し、単繊維を1本1本数え出し、本数を直接求める方法、あるいは図5に示す、あらかじめ単繊維の直径d0(μm)を測定した後、流動単位の幅と高さからおおよその単繊維の本数を求める方法が例示できる。流動単位を構成する単繊維の本数が多い場合は、流動単位の幅と高さから求める方法が好ましく用いることができる。強化繊維からなる流動単位の観察には、走査型電子顕微鏡(SEM)あるいは光学顕微鏡を用いることができる。なお、単繊維の直径d0の観察には、特に制限はないが、走査型電子顕微鏡(SEM)を用いることができる。また、単繊維が真円でない場合は、無作為に測定した10点の平均値を採用することができる。ここで、成形材料に含まれる樹脂成分を除去し、強化繊維のみを取り出す方法について説明する。成形材料の樹脂のみを溶解する溶剤を用いて溶解させる方法(溶解法)、あるいは樹脂を溶解する溶剤がない場合には、強化繊維が酸化減量しない温度範囲において樹脂のみを焼き飛ばし、強化繊維を分別する方法(焼き飛ばし法)などを例示することができる。測定は、強化繊維からなる流動単位を無作為に100本選び出し、その流動単位を構成する単繊維の本数を測定し、その平均値を平均集束数kとすることができる。なお、成形材料から焼き飛ばし法や溶解法で強化繊維を摘出する方法は、条件を適切に選定することで、得られる結果に特別な差異を生じることはない。   First, the average focusing number k will be described. The average focusing number k is the number of single fibers constituting the flow unit. The average focusing number k is derived by observing the flow unit composed of reinforcing fibers, counting the single fibers one by one, and directly obtaining the number, or the single fiber diameter d0 (μm) shown in FIG. 5 in advance. After the measurement, a method for obtaining an approximate number of single fibers from the width and height of the flow unit can be exemplified. When the number of single fibers constituting the flow unit is large, a method of obtaining from the width and height of the flow unit can be preferably used. A scanning electron microscope (SEM) or an optical microscope can be used for observation of a flow unit made of reinforcing fibers. The observation of the diameter d0 of the single fiber is not particularly limited, but a scanning electron microscope (SEM) can be used. Moreover, when a single fiber is not a perfect circle, the average value of 10 points | pieces measured at random is employable. Here, a method of removing the resin component contained in the molding material and taking out only the reinforcing fibers will be described. A method of dissolving using a solvent that dissolves only the resin of the molding material (dissolution method), or if there is no solvent that dissolves the resin, burn out only the resin in a temperature range in which the reinforcing fiber does not lose weight by oxidation. A method of sorting (burn-off method) and the like can be exemplified. In the measurement, 100 flow units made of reinforcing fibers can be selected at random, the number of single fibers constituting the flow unit can be measured, and the average value can be set as the average focusing number k. In addition, the method of extracting reinforcing fibers from the molding material by a burning method or a melting method does not cause a special difference in the obtained results by appropriately selecting the conditions.

次に、成形材料に含有される強化繊維の数平均繊維長Lnの測定方法としては、例えば、溶解法、あるいは焼き飛ばし法により、成形材料に含まれる樹脂成分を除去し、残った強化繊維を濾別した後、顕微鏡観察により測定する方法がある。測定は強化繊維を無作為に400本選び出し、その長さを1μm単位まで光学顕微鏡にて測定し、次式(3)により数平均繊維長Lnを算出する。なお、成形材料から焼き飛ばし法や溶解法で強化繊維を摘出する方法は、条件を適切に選定することで、得られる結果に特別な差異を生じることはない。   Next, as a method for measuring the number average fiber length Ln of the reinforcing fibers contained in the molding material, for example, the resin component contained in the molding material is removed by a melting method or a burning method, and the remaining reinforcing fibers are removed. There is a method of measuring by microscopic observation after filtering. For the measurement, 400 reinforcing fibers are selected at random, the length is measured with an optical microscope up to the 1 μm unit, and the number average fiber length Ln is calculated by the following equation (3). In addition, the method of extracting reinforcing fibers from the molding material by a burning method or a melting method does not cause a special difference in the obtained results by appropriately selecting the conditions.

Li:測定した繊維長(i=1、2、3、・・・、400)   Li: measured fiber length (i = 1, 2, 3,..., 400)

成形材料に含まれる強化繊維の目付けwfの測定方法としては、特に限定はされないが、成形材料に含まれる樹脂成分を除去し、残った強化繊維のみの重量を測定して求めることができる。成形材料に含まれる樹脂成分を除去する方法として、溶解法、あるいは焼き飛ばし法などを例示することができる。重量の測定には、電子はかり、電子天秤を用いて測定することができる。測定する成形材料の大きさは、100mm×100mm角が好ましく、測定数はn=3で行い、その平均値を用いることができる。   The method for measuring the basis weight wf of the reinforcing fibers contained in the molding material is not particularly limited, but can be determined by removing the resin component contained in the molding material and measuring the weight of only the remaining reinforcing fibers. Examples of the method for removing the resin component contained in the molding material include a melting method and a burning method. The weight can be measured using an electronic scale or an electronic balance. The size of the molding material to be measured is preferably 100 mm × 100 mm square, the number of measurements is n = 3, and the average value can be used.

強化繊維の密度ρfは、特に限定はされないが、水中置換法、ピクノメーター法、あるいは浮沈法などを用いることにより求めることができる。10mm×10mm角の成形材料から溶解法、あるいは焼き飛ばし法により樹脂成分のみを除去し、残った強化繊維を用いて測定することができる。測定数はn=3で行い、その平均値を用いることができる。   The density ρf of the reinforcing fibers is not particularly limited, but can be determined by using an underwater substitution method, a pycnometer method, a floatation method, or the like. Only a resin component can be removed from a 10 mm × 10 mm square molding material by a melting method or a burning method, and the remaining reinforcing fibers can be used for measurement. The number of measurements is n = 3, and the average value can be used.

成形材料の厚みhの測定方法として、特に限定はされないが、ノギス、マイクロメーターやレーザー変位計、厚みをカメラ撮影して計測するなどの既存の計測手段を用いて測定できる。簡便かつ精度よく測定できる方法としては、マイクロメーターを用いて、23℃の温度雰囲気下に10分間放置した成形材料に対して、およそ100mm間隔で無作為に測定した10点の平均値を成形材料の厚みとする方法が好ましい。また、成形材料(A)の厚みは、プリフォームの取り扱い性の観点から、0.1〜1mmであることが好ましい。0.1mmより薄い成形材料では、所定厚みにするのに積層数が多くなり、プリフォーム時の作業が煩雑になる。一方、1mmより厚い成形材料は、所定厚みに対して積層構成の制約を受ける場合がある。より好ましくは、0.2mm〜0.8mmであり、さらに好ましくは0.4mm〜0.6mmである。   The method for measuring the thickness h of the molding material is not particularly limited, but can be measured using a caliper, a micrometer, a laser displacement meter, or an existing measuring means such as measuring the thickness by photographing with a camera. As a method that can be measured easily and accurately, an average value of 10 points measured randomly at intervals of about 100 mm is used for the molding material left for 10 minutes in a 23 ° C. temperature atmosphere using a micrometer. The method of making this thickness is preferred. Moreover, it is preferable that the thickness of a molding material (A) is 0.1-1 mm from a viewpoint of the handleability of a preform. If the molding material is thinner than 0.1 mm, the number of layers increases to obtain a predetermined thickness, and the work at the time of preforming becomes complicated. On the other hand, a molding material thicker than 1 mm may be subject to restrictions on the laminated structure with respect to a predetermined thickness. More preferably, it is 0.2 mm-0.8 mm, More preferably, it is 0.4 mm-0.6 mm.

次に、本発明に用いられる伸長率について説明する。伸長率の測定方法として、対向する一対の凹凸の内平面を有した金型の上に、円盤形状に切り出した成形材料を配置し、成形材料を軟化温度あるいは融点+35℃に加熱した後、20MPaでプレス成形する。伸長率は、下式(4)に示すとおり、プレス前後での成形材料の面積比をパーセント表示したものと定義する。また、切り出す円盤の大きさは、直径150mmであり、厚みは2.5mmとする。測定はn=3とし、その平均を伸長率とする。円盤形状をした成形材料の直径を測定する方法として、直径を任意に3箇所測定し、その平均値を用いることができる。   Next, the expansion rate used in the present invention will be described. As a method for measuring the elongation rate, a molding material cut into a disk shape is placed on a mold having a pair of opposing concave and convex inner surfaces, and after heating the molding material to a softening temperature or a melting point + 35 ° C., 20 MPa Press molding. The elongation rate is defined as the percentage of the area ratio of the molding material before and after pressing as shown in the following formula (4). Further, the size of the disk to be cut out is 150 mm in diameter and 2.5 mm in thickness. The measurement is n = 3, and the average is the elongation rate. As a method for measuring the diameter of the disk-shaped molding material, the diameter can be measured arbitrarily at three locations, and the average value can be used.

本発明では濃度パラメーターpが1×10以上であって1×10以下である成形材料を成形材料(A)とし、主に面板部を形成する成形材料となる。また、面板部における表面外観を改善するには繊維長が短いことが好ましく、また剛性を高めるには繊維長が長いことが好ましい。表面外観および剛性のバランスから、成形材料(A)の濃度パラメーターpが1×10以上であって1×10以下であることがより好ましい。一方、濃度パラメーターpが1×10以上であって、前記成形材料(A)の濃度パラメーターの0.1倍以下である成形材料を成形材料(B)とし、主にリブ部を形成する成形材料となる。また、リブ部における表面外観では繊維長を短くすることで改善できるため、成形材料(B)の濃度パラメーターpは1×10以上であって1×10以下であることが好ましく、リブ部における補強効果では繊維長を長くすることで高めることができるため、1×10以上であって前記成形材料(A)の濃度パラメーターの0.1倍以下であることが好ましい。 In the present invention, a molding material having a concentration parameter p of 1 × 10 4 or more and 1 × 10 8 or less is used as the molding material (A), and the molding material mainly forms the face plate portion. Moreover, it is preferable that the fiber length is short to improve the surface appearance of the face plate portion, and it is preferable that the fiber length is long to increase the rigidity. From the balance of surface appearance and rigidity, the concentration parameter p of the molding material (A) is more preferably 1 × 10 4 or more and 1 × 10 6 or less. On the other hand, a molding material in which the concentration parameter p is 1 × 10 1 or more and is 0.1 times or less the concentration parameter of the molding material (A) is used as the molding material (B), and molding mainly for forming the rib portion Become a material. Further, since the surface appearance in the rib portion can be improved by shortening the fiber length, the concentration parameter p of the molding material (B) is preferably 1 × 10 1 or more and 1 × 10 3 or less, and the rib portion Since the reinforcing effect in can be increased by increasing the fiber length, it is preferably 1 × 10 2 or more and 0.1 times or less the concentration parameter of the molding material (A).

本発明に用いられる成形材料(A)は、面板部の等方性確保の観点から、非流動あるいは低流動であることが好ましいため、該成形材料(A)の伸長率R(%)は100%以上350%未満であることが好ましい。より好ましくは、100%以上250%未満であり、さらに好ましくは100%以上150%未満である。一方、成形材料(B)は、リブ部へ容易に充填することが好ましいため、成形材料(B)の伸長率R(%)は成形材料(A)の伸長率Rより大きいことが好ましく、350%より大きいことがより好ましく、450%より大きいことがさらに好ましい。成形材料(B)の伸長率R(%)の上限については、特に制限はないが、強化繊維を含む成形材料の伸長率の上限と考えられる、1000%以下を例示することができる。   Since the molding material (A) used in the present invention is preferably non-flowing or low-flowing from the viewpoint of securing the isotropy of the face plate part, the elongation ratio R (%) of the molding material (A) is 100. % Or more and less than 350%. More preferably, they are 100% or more and less than 250%, More preferably, they are 100% or more and less than 150%. On the other hand, since it is preferable that the molding material (B) is easily filled into the rib portion, the elongation rate R (%) of the molding material (B) is preferably larger than the elongation rate R of the molding material (A). % Is more preferable, and it is more preferable that it is larger than 450%. Although there is no restriction | limiting in particular about the upper limit of the elongation rate R (%) of a molding material (B), 1000% or less considered as the upper limit of the elongation rate of the molding material containing a reinforcement fiber can be illustrated.

ここで、本発明では、成形材料(A)の面積を、プレス成形により得られる成形品の投影面積の70%以上とし、前記成形材料(B)を開口金型における開口部の開口位置に配置する。   Here, in the present invention, the area of the molding material (A) is 70% or more of the projected area of the molded product obtained by press molding, and the molding material (B) is disposed at the opening position of the opening in the opening mold. To do.

成形品の投影面積とは、図6に示すように、金型における成形品部分の投影面(斜線部)の面積を指す。成形材料(A)の面積を成形品の投影面積の70%以上とすることで、成形時に成形材料に過度な流動を起こすことなく、成形材料の繊維配向を保ったままで成形が可能となる。成形材料の等方性を確保する観点から、成形材料(A)の面積は成形品の投影面積の80%以上であることがより好ましく、成形品の投影面積の100%以上であることがさらに好ましい。成形材料(A)の面積の上限については、特に制限はないが、成形材料を有効に使用し、無駄を省く観点からは成形品の投影面積の150%以下であることが好ましい。   As shown in FIG. 6, the projected area of the molded product refers to the area of the projected surface (shaded portion) of the molded product portion in the mold. By setting the area of the molding material (A) to 70% or more of the projected area of the molded product, molding can be performed while maintaining the fiber orientation of the molding material without causing excessive flow of the molding material during molding. From the viewpoint of securing the isotropic property of the molding material, the area of the molding material (A) is more preferably 80% or more of the projected area of the molded product, and more preferably 100% or more of the projected area of the molded product. preferable. The upper limit of the area of the molding material (A) is not particularly limited, but is preferably 150% or less of the projected area of the molded product from the viewpoint of effectively using the molding material and saving waste.

開口部の投影位置に成形材料を配置するとは、例えば、図7に示すように、開口部の投影面11に対して、成形材料が実質的に開口部の投影面の領域内に配置される、または成形材料が開口部の投影面の全領域を包括して配置される、または成形材料が開口部の投影面の領域の一部に含まれて配置されることである。開口部への充填を促進する観点から、成形材料が開口部の投影面の全領域を包括して配置されていることが好ましい。   For example, as shown in FIG. 7, the molding material is disposed substantially in the region of the projection surface of the opening with respect to the projection surface 11 of the opening. Or the molding material is arranged so as to cover the entire area of the projection surface of the opening, or the molding material is arranged so as to be included in a part of the area of the projection surface of the opening. From the viewpoint of promoting the filling of the opening, it is preferable that the molding material is disposed so as to cover the entire area of the projection surface of the opening.

本発明で用いるプリフォームにおける、成形材料(A)と成形材料(B)の配置については、成形材料(A)と成形材料(B)とが積層、あるいは横並びに配置されてなるプリフォームであることが好ましく、さらに好ましくは成形材料(A)が開口部を有する金型に対向する金型面側に配置されてなるプリフォームである。また、成形品のソリ軽減の観点から対称積層がより好ましいため、さらに成形材料(A)が前記開口部を有する金型面側に配置され、成形材料(A)の間に成形材料(B)が積層されてなるプリフォームであることが好ましい。   Regarding the arrangement of the molding material (A) and the molding material (B) in the preform used in the present invention, the molding material (A) and the molding material (B) are laminated or arranged side by side. It is preferable that the preform is formed by arranging the molding material (A) on the mold surface facing the mold having the opening. Moreover, since symmetrical lamination is more preferable from the viewpoint of reducing warpage of the molded product, the molding material (A) is further arranged on the mold surface side having the opening, and the molding material (B) is interposed between the molding materials (A). A preform formed by laminating is preferable.

本発明で用いられる成形材料(B)の面積は、リブ部に成形材料(B)が十分に充填させるために、リブ部を形成する開口部の投影面積の0.5倍以上が好ましい。開口部の投影面積とは、図7に示すように、金型における開口部の投影面(斜線部)の面積を指す。成形材料(B)の面積がこれより小さいと、リブ部に充填するよりも平面部に流動する量が多くなり、リブ部の充填が不足する場合がある。より好ましくは、成形材料(B)の面積は、開口部の投影面積の1倍以上が好ましい。該開口部の投影面積が小さい場合、それに応じて切り出した成形材料のサイズが小さいことから取り扱いが悪くなるため、工業的に成形材料(B)の面積が5倍以上であることがより好ましく、さらに好ましくは10倍以上である。成形材料(B)の面積の上限については、特に制限はないが、面板部に位置する成形材料(B)が流動することにより、成形材料(A)の等方性を乱す恐れがあることと、成形材料(B)の内、リブ部に実質的に充填されるのは該開口部の投影面の領域内に配置される成形材料(B)がほとんどであることから、50倍より小さいことが好ましく、さらに好ましくは30倍より小さいことである。   The area of the molding material (B) used in the present invention is preferably at least 0.5 times the projected area of the opening forming the rib portion so that the molding material (B) is sufficiently filled in the rib portion. As shown in FIG. 7, the projected area of the opening refers to the area of the projected surface (shaded portion) of the opening in the mold. If the area of the molding material (B) is smaller than this, the amount of fluid flowing to the flat portion is larger than filling the rib portion, and the rib portion may be insufficiently filled. More preferably, the area of the molding material (B) is preferably 1 or more times the projected area of the opening. When the projected area of the opening is small, the size of the molding material cut out accordingly is small and the handling becomes worse. Therefore, the area of the molding material (B) is more preferably 5 times or more industrially, More preferably, it is 10 times or more. Although there is no restriction | limiting in particular about the upper limit of the area of a molding material (B), there exists a possibility that the isotropy of a molding material (A) may be disturb | confused by the molding material (B) located in a faceplate part flowing. Of the molding material (B), the rib portion is substantially filled with the molding material (B) arranged in the region of the projection surface of the opening, and is therefore smaller than 50 times. Is more preferable, and more preferably less than 30 times.

さらに、本発明で用いられるプリフォームに含まれる成形材料(B)は、該成形材料(B)の総体積Vbを前記開口部のキャビティ体積Vrより大きくすることで、開口部に材料を十分に充填することができるため好ましい。より好ましくはVbがVrの5倍より大きいことであり、さらに好ましくはVbがVrの10倍より大きいことである。ここで、開口部のキャビティ体積Vrとは、図1に示す、開口部3(図1中の斜線部)に相当する領域の体積である。なお、成形材料(B)の総体積は、前記開口部の投影面積と成形材料(B)の面積との関係を考慮することが好ましい。たとえば、開口部の投影面積に対して配置した成形材料(B)の面積が大きい場合、リブ部に実質的に充填されるのは該開口部の投影面の領域内に配置される成形材料(B)がほとんどであることから、開口部の投影面積の領域内の上に配置された成形材料(B)の体積が開口部のキャビティ体積より大きいことがより好ましい。   Further, the molding material (B) contained in the preform used in the present invention has a sufficient material in the opening by making the total volume Vb of the molding material (B) larger than the cavity volume Vr of the opening. It is preferable because it can be filled. More preferably, Vb is greater than 5 times Vr, and even more preferably, Vb is greater than 10 times Vr. Here, the cavity volume Vr of the opening is a volume of a region corresponding to the opening 3 (shaded portion in FIG. 1) shown in FIG. The total volume of the molding material (B) preferably takes into account the relationship between the projected area of the opening and the area of the molding material (B). For example, when the area of the molding material (B) arranged relative to the projected area of the opening is large, the rib material is substantially filled with the molding material (in the area of the projection surface of the opening) ( Since B) is almost all, it is more preferable that the volume of the molding material (B) arranged in the region of the projected area of the opening is larger than the cavity volume of the opening.

本発明で用いられるプリフォームの形態として、成形材料(B)の横並びに成形材料(A)を配置することがより好ましい。成形材料(A)を成形材料(B)の横に配置することで、成形材料(B)が平面方向に流動することを抑制し、リブ部への充填を促す効果があり、より好ましい。さらに、成形材料(B)の上に成形材料(A)を配置することで、型締めした際に加圧効果が増し、リブ部への充填を高める効果があり、より好ましい。   As the form of the preform used in the present invention, it is more preferable to arrange the molding material (B) next to the molding material (B). By disposing the molding material (A) beside the molding material (B), the molding material (B) is suppressed from flowing in the plane direction, and has an effect of promoting filling into the rib portion, which is more preferable. Furthermore, by disposing the molding material (A) on the molding material (B), the pressurizing effect increases when the mold is clamped, and the effect of increasing the filling of the rib portion is more preferable.

本発明で用いられるプリフォームとして、成形材料(B)と前記開口金型との間に配置される成形材料(A)において、開口金型における開口部の投影面の領域に、該成形材料(A)に切り込みや切り欠きなどの貫通部を設けてあることは、貫通部から成形材料(B)が流動しやすくなり、リブ部への充填を高める効果があるため、好ましい。貫通部は、開口金型における開口部の投影面以外に施すと、面板部の強度を損ねる恐れがあるため、該開口部の投影面の領域内に留めることが好ましい。貫通部の形成方法に特に制限はないが、カッターナイフ、ドリル、糸ノコなどが好ましく用いることができる。また、貫通部の形状は、特に制限はないが、たとえば1つ以上の一文字の切り込み、あるいは四角形状、または楕円形状の切り欠きを施すことができる。さらに、貫通部は少なくても1つ以上、または組み合わせて設けてもよい。   As a preform used in the present invention, in the molding material (A) disposed between the molding material (B) and the opening mold, the molding material (in the region of the projection surface of the opening in the opening mold) It is preferable that a penetration part such as a notch or a notch is provided in A) because the molding material (B) easily flows from the penetration part and has an effect of increasing the filling of the rib part. If the penetrating portion is provided on a portion other than the projection surface of the opening in the opening mold, the strength of the face plate portion may be impaired. Therefore, it is preferable to keep the penetrating portion within the region of the projection surface of the opening. Although there is no restriction | limiting in particular in the formation method of a penetration part, A cutter knife, a drill, a thread saw, etc. can be used preferably. Further, the shape of the penetrating portion is not particularly limited, but for example, one or more cuts of one character, or a rectangular or elliptical cutout can be made. Further, at least one penetrating portion may be provided or a combination thereof may be provided.

本発明で用いられる成形材料(B)の数平均繊維長Lbは、成形材料(B)に含まれる強化繊維が開口金型の開口部に十分に流入することでリブ強度が増すため、図8に示す前記開口部のリブ厚みTrに対して、LbがTrの2倍以下であることが好ましい。強化繊維の繊維長が短くなるほど開口部への充填を高めることができるため、より好ましくはLbがTrの4倍以下であり、さらに好ましくはLbがTrの10倍以下である。また、成形材料(B)は高流動であることが好ましいが、リブ構造での補強効果を望む場合、ある程度の繊維長が必要であるため、成形材料(B)の数平均繊維長Lbは0.1mm以上、2mm以下であることが好ましく、さらに好ましくは、0.1mm以上、1mm以下である。   The number average fiber length Lb of the molding material (B) used in the present invention increases the rib strength when the reinforcing fibers contained in the molding material (B) sufficiently flow into the opening of the opening mold. It is preferable that Lb is 2 times or less of Tr with respect to the rib thickness Tr of the opening shown in FIG. Since the filling into the opening can be increased as the fiber length of the reinforcing fiber becomes shorter, Lb is more preferably 4 times or less of Tr, and even more preferably Lb is 10 times or less of Tr. In addition, the molding material (B) preferably has a high flow rate, but when a reinforcing effect in the rib structure is desired, a certain length of fiber length is required, so the number average fiber length Lb of the molding material (B) is 0. It is preferably 1 mm or more and 2 mm or less, more preferably 0.1 mm or more and 1 mm or less.

本発明で用いられる成形材料(A)の数平均繊維長Laは、面板部の強度を確保するために、2mm以上であることが好ましい。より好ましくは、3mm以上である。成形材料(A)の数平均繊維長Laの上限については、特に制限はないが、長すぎる繊維長は面板部の賦形性を損ねる恐れがあるため、20mm以下であることが好ましく、より好ましくは、10mm以下である。   The number average fiber length La of the molding material (A) used in the present invention is preferably 2 mm or more in order to ensure the strength of the face plate portion. More preferably, it is 3 mm or more. The upper limit of the number average fiber length La of the molding material (A) is not particularly limited, but an excessively long fiber length may impair the shapeability of the face plate portion, and is preferably 20 mm or less, more preferably. Is 10 mm or less.

本発明における強化繊維の配向としては、二次元配向角で整理することができる。一般的に強化繊維からなる基材は強化繊維が束状になって構成されているケースが多く、このため成形材料として等方性を確保することが難しく、かつ束内への樹脂含浸が十分でなく、成形品の強度低下の原因となる場合がある。強化繊維束が単糸に分散したとしても、強化繊維の単糸同士が平行して接触してしまうと同様の結果となる。さらには、厚み方向への繊維配向は、成形材料またはそれを積層して得られるプリフォームの厚み膨張の原因となり、取扱い性や成形性を著しく損なう場合がある。   The orientation of the reinforcing fibers in the present invention can be arranged by a two-dimensional orientation angle. In general, base materials made of reinforcing fibers often have a configuration in which reinforcing fibers are bundled. Therefore, it is difficult to ensure isotropy as a molding material, and resin impregnation into the bundle is sufficient. In addition, the strength of the molded product may be reduced. Even if the reinforcing fiber bundle is dispersed in the single yarn, the same result is obtained if the single yarns of the reinforcing fibers come in contact with each other in parallel. Furthermore, the fiber orientation in the thickness direction causes the expansion of the thickness of the molding material or a preform obtained by laminating the molding material, and the handling property and moldability may be significantly impaired.

ここで、二次元配向角としては、本発明における、強化繊維である単繊維と該単繊維と交差する単繊維とで形成される二次元配向角について図面を用いて説明する。図9は本発明の成形材料の一例の強化繊維のみを面方向から観察した場合の、強化繊維の分散状態を表した模式図である。単繊維4−1に着目すると、単繊維4−1は他の単繊維4−2〜4−7と交差している。ここで交差とは、観察した二次元平面において着目した単繊維が他の単繊維と交わって観察される状態のことを意味する。ここで実際の成形材料において、単繊維4−1と単繊維4−2〜4−7が必ずしも接触している必要はない。二次元配向角は交差する2つの単繊維が形成する2つの角度のうち、0度以上90度以下の角度12と定義する。   Here, as the two-dimensional orientation angle, a two-dimensional orientation angle formed by a single fiber that is a reinforcing fiber and a single fiber that intersects the single fiber will be described with reference to the drawings. FIG. 9 is a schematic view showing a dispersion state of reinforcing fibers when only reinforcing fibers as an example of the molding material of the present invention are observed from the surface direction. Focusing on the single fiber 4-1, the single fiber 4-1 intersects with the other single fibers 4-2 to 4-7. The term “intersection” as used herein means a state in which a single fiber focused on the observed two-dimensional plane is observed crossing another single fiber. Here, in the actual molding material, the single fibers 4-1 and the single fibers 4-2 to 4-7 are not necessarily in contact with each other. The two-dimensional orientation angle is defined as an angle 12 that is not less than 0 degrees and not more than 90 degrees among two angles formed by two intersecting single fibers.

具体的に成形材料から二次元配向角の平均値を測定する方法には特に制限はないが、例えば、成形材料の表面から強化繊維の配向を観察する方法が例示できる。この場合、成形材料表面を研磨して繊維を露出させることで、より強化繊維を観察しやすくなるため好ましい。また、成形材料に透過光を利用して強化繊維の配向を観察する方法が例示できる。この場合、成形材料を薄くスライスすることで、より強化繊維を観察しやすくなるため好ましい。さらに、成形材料をX線CT透過観察して強化繊維の配向画像を撮影する方法も例示できる。X線透過性の高い強化繊維の場合には、強化繊維にトレーサ用の繊維を混合しておく、あるいは強化繊維にトレーサ用の薬剤を塗布しておくと、より強化繊維を観察しやすくなるため好ましい。   Although there is no restriction | limiting in particular in the method of measuring the average value of a two-dimensional orientation angle from a molding material specifically, For example, the method of observing the orientation of a reinforced fiber from the surface of a molding material can be illustrated. In this case, polishing the surface of the molding material to expose the fibers is preferable because the reinforcing fibers can be more easily observed. Moreover, the method of observing the orientation of a reinforced fiber using transmitted light for a molding material can be illustrated. In this case, it is preferable to slice the molding material thinly because it becomes easier to observe the reinforcing fibers. Furthermore, a method of photographing the orientation image of the reinforcing fiber by observing the molding material by X-ray CT transmission can be exemplified. In the case of reinforcing fibers with high X-ray permeability, it is easier to observe reinforcing fibers by mixing tracer fibers with reinforcing fibers or applying tracer chemicals to reinforcing fibers. preferable.

また、上記方法で測定が困難な場合には、強化繊維の構造を崩さないように樹脂を除去した後に強化繊維の配向を観察する方法が例示できる。例えば、成形材料をアルミホイルで包み、樹脂成分を焼き飛ばし、得られる強化繊維からなる基材を光学顕微鏡または電子顕微鏡で観察して測定することができる。本発明の二次元配向角の平均値とは、以下の手順i、iiで測定する。
i.無作為に選択した強化繊維である単糸(図9における単繊維4−1)に対して交差している全ての単繊維(図1における単繊維4−2〜4−7)との二次元配向角の平均値を測定する。たとえばある単繊維に交差する別の単繊維が多数の場合には、交差する別の単繊維を無作為に20本選び測定した平均値を代用してもよい。
ii.上記iの測定を別の単繊維に着目して合計5回繰り返し、その平均値を二次元配向角の平均値として算出する。本発明での強化繊維の二次元配向角の平均値は10〜80度であることが好ましい。より好ましくは20〜70度であり、さらに好ましくは30〜60度であり、理想的な角度である45度に近づくほど好ましい。二次元配向角の平均値が10度未満または80度より大きいと、強化繊維が束状のまま多く存在していることを意味しており、力学特性が低下するだけでなく、二次元の等方性が損なう場合や、厚み方向の強化繊維が無視できず積層工程での経済的負担が大きくなる場合がある。
Moreover, when measurement is difficult by the above method, a method of observing the orientation of the reinforcing fibers after removing the resin so as not to destroy the structure of the reinforcing fibers can be exemplified. For example, it can be measured by wrapping the molding material with aluminum foil, burning off the resin component, and observing the substrate made of the resulting reinforcing fibers with an optical microscope or an electron microscope. The average value of the two-dimensional orientation angle of the present invention is measured by the following procedures i and ii.
i. Two-dimensional with all single fibers (single fibers 4-2 to 4-7 in FIG. 1) intersecting with a single yarn (single fiber 4-1 in FIG. 9) which is a reinforcing fiber selected at random. The average value of the orientation angle is measured. For example, when there are a large number of other single fibers that cross a certain single fiber, an average value obtained by randomly selecting and measuring 20 other single fibers that intersect may be used instead.
ii. The measurement of i is repeated 5 times in total focusing on another single fiber, and the average value is calculated as the average value of the two-dimensional orientation angle. The average value of the two-dimensional orientation angle of the reinforcing fiber in the present invention is preferably 10 to 80 degrees. More preferably, it is 20 to 70 degrees, more preferably 30 to 60 degrees, and it is more preferable as it approaches 45 degrees which is an ideal angle. When the average value of the two-dimensional orientation angle is less than 10 degrees or greater than 80 degrees, it means that many reinforcing fibers are present in a bundle, and not only the mechanical properties are deteriorated but also two-dimensional etc. In some cases, the directivity is impaired, or the reinforcing fibers in the thickness direction cannot be ignored, and the economic burden in the laminating process increases.

成形材料の引張強度は、成形材料から試験片を切り出し、JIS K−7073(1988)に従い引張特性を測定して求める。試験片は、任意の方向を0度方向とし、+45度、−45度、90度方向の4方向について測定する。それぞれの方向について測定数はn=5以上とし、平均値を引張強度とした。4方向全てにおいて測定される引張強度のうち、最大値をσMax、最小値をσMinとし、それらの比を引張強度比(σcMax/σcMin)とした。成形材料(A)の最大引張強度σMaxと、最小引張強度σMinとの関係が、面板部の等方性確保の観点から、σMaxがσMinの2倍以下であることが好ましい。また、σMaxがσMinの1.5倍以下であることがより好ましく、さらに好ましくはσMaxがσMinの1.3倍以下であり、σMaxがσMinの1.1倍以下であることはほぼ等方とみなせることから極めて好ましい。   The tensile strength of the molding material is obtained by cutting a test piece from the molding material and measuring the tensile properties according to JIS K-7073 (1988). The test piece is measured in four directions of +45 degrees, −45 degrees, and 90 degrees with an arbitrary direction set to 0 degrees. The number of measurements in each direction was n = 5 or more, and the average value was the tensile strength. Of the tensile strengths measured in all four directions, the maximum value was σMax, the minimum value was σMin, and the ratio was the tensile strength ratio (σcMax / σcMin). The relationship between the maximum tensile strength σMax and the minimum tensile strength σMin of the molding material (A) is preferably not more than twice as large as σMin from the viewpoint of ensuring isotropy of the face plate portion. More preferably, σMax is 1.5 times or less of σMin, more preferably σMax is 1.3 times or less of σMin, and σMax is 1.1 times or less of σMin. It is extremely preferable because it can be considered.

本発明で用いられる成形材料(B)の成分として、前記成形材料(A)を製造または加工する過程で得られる端材を含んでいてもよい。成形材料(B)にリサイクル材を用いる場合、リブ部の補強効果を高める観点から、比較的長い繊維長を有する成形材料(A)を含むことが好ましい。リサイクル材の製造方法としては、特に制限はされないが、簡便な方法として混練機を用いて混練する方法を用いることができる。   As a component of the molding material (B) used in the present invention, an end material obtained in the process of manufacturing or processing the molding material (A) may be included. When a recycled material is used for the molding material (B), it is preferable to include the molding material (A) having a relatively long fiber length from the viewpoint of enhancing the reinforcing effect of the rib portion. The method for producing the recycled material is not particularly limited, but as a simple method, a method of kneading using a kneader can be used.

本発明におけるプレス成形としては、スタンピングプレス成形を採用するのが好ましく、次にスタンピングプレス成形について詳しく説明する。スタンピングプレス成形は次の工程(I)〜(IV)を含んでいる。   As the press molding in the present invention, it is preferable to employ stamping press molding. Next, the stamping press molding will be described in detail. Stamping press molding includes the following steps (I) to (IV).

工程(I)はプリフォームを、該プリフォームに含まれる熱可塑性樹脂の軟化温度あるいは融点以上に加熱する工程である。積層あるいは横並びに配置された成形材料を成形可能な温度以上まで加熱する必要があるため、遠赤外線ヒーター、加熱板、高温オーブン、誘電加熱などに例示される加熱装置を用いることができる。中でも、遠赤外線ヒーターが加熱状態のコントロールの容易さから好ましく用いることができる。また、加熱時におけるプリフォームの形態は、成形材料(A)のみ、または成形材料(B)のみからなるプリフォーム、あるいは成形材料(A)および(B)からなるプリフォーム、さらには最終形態のプリフォームのいずれかであってもよい。   Step (I) is a step of heating the preform to a temperature equal to or higher than the softening temperature or melting point of the thermoplastic resin contained in the preform. Since it is necessary to heat the laminated or side-by-side arranged molding material to a temperature above which it can be molded, a heating device exemplified by a far-infrared heater, a heating plate, a high-temperature oven, dielectric heating and the like can be used. Among these, a far infrared heater can be preferably used because of easy control of the heating state. In addition, the form of the preform at the time of heating is a preform made of only the molding material (A) or the molding material (B), or a preform made of the molding materials (A) and (B), and the final form. Any of the preforms may be used.

工程(II)は、工程(I)で加熱したプリフォームを搬送し、金型に配置する工程である。すなわち、工程(II)では、熱可塑性樹脂の軟化温度あるいは融点以上に加熱せしめた成形材料を搬送し、開放された成形金型へ配置する。加熱された成形材料は、作業上の安全面や、プレス成形が行われる成形型への成形材料の配置精度の観点から、人手、ロボットなどで搬送し、開放された成形型へ配置される。   Step (II) is a step in which the preform heated in step (I) is transported and placed in a mold. That is, in the step (II), the molding material heated to the softening temperature or melting point of the thermoplastic resin or higher is transported and placed in an open molding die. The heated molding material is transported by a hand, a robot, etc., and placed in an open molding die from the viewpoint of safety in terms of work and placement accuracy of the molding material on a molding die in which press molding is performed.

工程(III)は、熱可塑性樹脂の軟化温度あるいは融点より20℃〜150℃低い温度を有する金型を型締めすることにより、プリフォームを加圧冷却する工程である。すなわち、工程(III)では、成形型を型締めすることにより、軟化温度あるいは融点より高い温度の成形材料を加圧冷却する。成形金型の温度は、成形材料に含まれる熱可塑性樹脂の軟化温度あるいは融点より20℃〜150℃低い温度の範囲内で行われることが成形材料の賦形のしやすさや、成形体の表面外観の観点から好ましい。   Step (III) is a step of pressurizing and cooling the preform by clamping a mold having a temperature lower by 20 ° C. to 150 ° C. than the softening temperature or melting point of the thermoplastic resin. That is, in step (III), the molding material having a temperature higher than the softening temperature or the melting point is pressurized and cooled by clamping the mold. The temperature of the molding die is such that the molding material is easily shaped and the surface of the molded body is within a temperature range of 20 ° C. to 150 ° C. lower than the softening temperature or melting point of the thermoplastic resin contained in the molding material. It is preferable from the viewpoint of appearance.

工程(IV)は、冷却後、金型を開放し、金型から成形品を取り出す工程である。前工程(III)の加圧冷却により、成形材料に含まれる熱可塑性樹脂の軟化温度あるいは融点以下まで冷却させることで、形状を形成させた後、金型を開いて、金型から成形品を取り出すのである。   Step (IV) is a step of opening the mold after cooling and taking out the molded product from the mold. After forming the shape by cooling to the softening temperature or melting point of the thermoplastic resin contained in the molding material by pressure cooling in the previous step (III), the mold is opened and the molded product is removed from the mold. Take it out.

工程(III)の型締めにおいては、プリフォームと該プリフォームに接近する金型とが接触する時点において、当該接近する金型側のプリフォームの表面温度が前記熱可塑性樹脂の軟化温度あるいは融点より20℃以上高いことが好ましい。一般に、加熱されたプリフォームは、プリフォームの中心部温度より表面温度の方が低いため、表面温度が前記熱可塑性樹脂の軟化温度あるいは融点より20℃以上高く保つことで、プリフォームの全体が成形可能な温度であるとみなすことができ、好ましい。プリフォームの表面温度は、加熱を終えてから金型への搬送中に外気により冷却されるため、加熱終了から型締めまでの時間をなるべく短縮することで、熱可塑性樹脂の軟化温度あるいは融点より20℃以上高い状態で加熱冷却できるため、表面外観を高める上でも極めて好ましい。   In the mold clamping in the step (III), when the preform comes into contact with the mold approaching the preform, the surface temperature of the preform on the approaching mold side is the softening temperature or melting point of the thermoplastic resin. It is preferably higher by 20 ° C or more. Generally, a heated preform has a surface temperature lower than the center temperature of the preform. Therefore, by keeping the surface temperature at least 20 ° C. above the softening temperature or melting point of the thermoplastic resin, It can be considered that the temperature is moldable, which is preferable. Since the surface temperature of the preform is cooled by the outside air during transportation to the mold after the heating is completed, by reducing the time from the end of heating to the mold clamping as much as possible, the softening temperature or melting point of the thermoplastic resin Since heating and cooling can be performed in a state of 20 ° C. or higher, it is extremely preferable for enhancing the surface appearance.

工程(III)において、成形品の投影面にかかる加圧力が10〜40MPaの範囲であることが、成形材料の賦形のしやすさや、成形品の厚み制御のしやすさの観点から好ましい。とりわけ、15〜30MPaの範囲内がプレス成形機の設備コストの観点から好ましく、さらには好ましくは15〜20MPaである。
工程(I)において、少なくとも前記プリフォームを構成する成形材料(A)および/または(B)を0.1〜10mmの厚みの範囲で分割し、別々に加熱し、前記熱可塑性樹脂を軟化温度あるいは融点以上にすることが好ましい。成形材料あるいはプリフォームの厚みが厚い場合や、加熱により膨張、あるいは厚み方向にスプリングバックする成形材料では、加熱効率は低減するが、積層した成形材料を分割して加熱することにより、1つの積層体の厚みが小さくなることで加熱時間の短縮を図ることができるため、好ましい。より好ましくは分割された成形材料またはプリフォームの厚みが0.1〜5mmであり、さらには0.1〜2mmであることが好ましい。分割された成形材料またはプリフォームは、金型へ配置する工程までに最終形態のプリフォームに形成されることができる。
In the step (III), it is preferable that the pressure applied to the projection surface of the molded product is in the range of 10 to 40 MPa from the viewpoint of easy shaping of the molding material and easy control of the thickness of the molded product. In particular, the range of 15 to 30 MPa is preferable from the viewpoint of the equipment cost of the press molding machine, and more preferably 15 to 20 MPa.
In step (I), at least the molding material (A) and / or (B) constituting the preform is divided in a thickness range of 0.1 to 10 mm, and heated separately to soften the thermoplastic resin. Or it is preferable to make it more than melting | fusing point. If the molding material or preform is thick, or if the molding material expands by heating or springs back in the thickness direction, the heating efficiency is reduced. It is preferable because the heating time can be shortened by reducing the thickness of the body. More preferably, the thickness of the divided molding material or preform is 0.1 to 5 mm, and further preferably 0.1 to 2 mm. The divided molding material or preform can be formed into a final form preform by the step of placing it in a mold.

前記工程(I)と(II)の間において、最終形態のプリフォームを形成する工程を含むことが好ましい。加熱装置から取り出した、プリフォームは時間とともに徐々に冷えていくため、金型の上でプリフォームを作製するよりも、プリフォーム化したものを搬送する方がより高い温度の状態でプレス成形ができるため好ましい。さらには、炉内で最終形態のプリフォーム化を行うことは、十分に高い温度を維持したままプリフォームを搬送できるため、より好ましい。   It is preferable to include a step of forming a final form preform between the steps (I) and (II). Since the preform taken out from the heating device gradually cools with time, it is possible to press-mold at a higher temperature when the preform is transported than when the preform is produced on the mold. This is preferable because it is possible. Furthermore, it is more preferable to perform the final form in the furnace because the preform can be conveyed while maintaining a sufficiently high temperature.

本発明で得られる成形品は、リブ構造の高さHr(mm)が、リブが付随している面板部厚みH0(mm)に対し、Hr≧3×H0の関係を満足することが好ましい。ここで、図8にリブ構造の高さHrを示す。成形品の面板部厚みH0の測定方法として、特に限定はされないが、前記した成形材料の厚みh0の測定方法と同様に、ノギス、マイクロメーターやレーザー変位計、厚みをカメラ撮影して計測するなどの既存の計測手段を用いて測定することができる。簡便かつ精度よく測定できる方法としては、マイクロメーターを用いて、23℃の温度雰囲気下に10分間放置した成形品の面板部に対して、およそ100mm間隔で無作為に測定した10点の平均値を面板部の厚みとする方法が好ましい。リブ構造の高さは、なるべく高い方が面板部の補強効果を高めることができるため、Hr≧3×H0の関係を満足することが好ましい。また、リブ構造の高さの上限については、特に制限はないが、たとえば面板部からプレス成形により面外に材料が流動することでリブ構造を形成する場合、面板部の厚みが薄いとリブ部に流動できる材料量に限界があるため、通常HrはH0の50倍以下である。また、高過ぎるリブ構造は成形が困難であるため、背の低いリブ構造をいくつか設けることで、成形性と面板部の補強効果を満足することができる。   In the molded product obtained in the present invention, it is preferable that the height Hr (mm) of the rib structure satisfies the relationship of Hr ≧ 3 × H0 with respect to the face plate thickness H0 (mm) accompanied by the rib. Here, FIG. 8 shows the height Hr of the rib structure. The method for measuring the thickness H0 of the face plate portion of the molded product is not particularly limited, but in the same manner as the method for measuring the thickness h0 of the molding material, a caliper, a micrometer, a laser displacement meter, the thickness is measured with a camera, etc. Can be measured using existing measuring means. As a method that can be measured easily and accurately, an average value of 10 points randomly measured at intervals of about 100 mm with respect to a face plate portion of a molded product left for 10 minutes in a temperature atmosphere of 23 ° C. using a micrometer. Is preferable to make the thickness of the face plate part. As the height of the rib structure is as high as possible, the reinforcing effect of the face plate portion can be enhanced. Therefore, it is preferable that the relationship of Hr ≧ 3 × H0 is satisfied. Further, the upper limit of the height of the rib structure is not particularly limited. For example, when the rib structure is formed by material flowing from the face plate portion to the surface by press molding, the rib portion is thin when the face plate portion is thin. Since there is a limit to the amount of material that can flow, Hr is usually 50 times or less of H0. Moreover, since it is difficult to mold a rib structure that is too high, the formability and the reinforcing effect of the face plate portion can be satisfied by providing several rib structures having a short height.

以下、実施例によって、本発明のプリフォーム、およびそのプリフォームを用いたプレス成形方法について具体的に説明するが、下記の実施例は本発明を制限するものではない。
実施例に用いた測定方法を下記する。
Hereinafter, although the Example demonstrates the preform of this invention and the press molding method using the preform concretely, the following Example does not restrict | limit this invention.
The measurement methods used in the examples are described below.

(1)サイジング剤の付着量の測定
試料として、サイジング剤が付着している炭素繊維束をおよそ5g採取し、耐熱性の容器に投入した。次に、この容器を120℃で3時間乾燥した。デシケータ中で室温まで冷却後、秤量した質量をw1(g)とした。続いて、容器ごと、窒素雰囲気中で、450℃で15分間加熱後、同様にデシケータ中で室温まで冷却後、秤量した質量をw2(g)とした。以上の処理を経て、炭素繊維のサイジング剤の付着量を下式(5)を用いて求めた。なお、測定は3回行い、その平均値を付着量として採用した。
(1) Measurement of adhesion amount of sizing agent As a sample, about 5 g of a carbon fiber bundle to which the sizing agent was adhered was collected and put into a heat-resistant container. Next, this container was dried at 120 ° C. for 3 hours. After cooling to room temperature in a desiccator, the weighed mass was designated as w1 (g). Subsequently, the whole container was heated in a nitrogen atmosphere at 450 ° C. for 15 minutes, and similarly cooled to room temperature in a desiccator, and the weighed mass was defined as w2 (g). Through the above treatment, the amount of carbon fiber sizing agent deposited was determined using the following equation (5). In addition, the measurement was performed 3 times and the average value was employ | adopted as adhesion amount.

(2)強化繊維の密度
液中置換法にて計測。強化繊維の密度ρfとする。
(2) Reinforcement fiber density Measured by submerged substitution method. The density of the reinforcing fiber is ρf.

(3)成形材料の濃度パラメーターp
各成形材料の高さh(mm)をマイクロメーターにて測定する。23℃の温度雰囲気下に10分間放置した成形材料を、約100mm間隔で無作為に測定し、その10点の平均値を採用した。
(3) Concentration parameter p of molding material
The height h (mm) of each molding material is measured with a micrometer. The molding material left for 10 minutes in a 23 ° C. temperature atmosphere was measured randomly at intervals of about 100 mm, and the average value of the 10 points was adopted.

各成形材料の目付、および繊維重量分率を測定する。成形材料から100mm×100mmの角板を切り出し、その重量w0(g)を測定した。次に、切り出した成形材料を、空気中で500℃×1時間加熱し、樹脂成分を焼き飛ばして残った強化繊維の重量w1(g)を測定した。ここで、強化繊維の重量w1(g)から成形材料に含まれる強化繊維の目付け(g/m)を導出した。また、下式(6)を用いて、繊維重量分率(wt%)を求めた。いずれの測定もn=3で行い、その平均値を用いた。 The basis weight and fiber weight fraction of each molding material are measured. A 100 mm × 100 mm square plate was cut out from the molding material, and its weight w0 (g) was measured. Next, the cut molding material was heated in air at 500 ° C. for 1 hour, and the weight w1 (g) of the reinforcing fiber remaining after burning the resin component was measured. Here, the basis weight (g / m 2 ) of the reinforcing fiber contained in the molding material was derived from the weight w1 (g) of the reinforcing fiber. Moreover, the fiber weight fraction (wt%) was calculated | required using the following Formula (6). All measurements were performed at n = 3, and the average value was used.

各成形材料に含有される強化繊維の流動単位数nを算出するため、強化繊維の平均集束数kを、次の方法で測定する。ここで、単糸の直径d0(μm)を走査型電子顕微鏡(SEM)で予め測定する。また、真円でない場合は、無作為に測定した10点の平均値を採用した。   In order to calculate the flow unit number n of reinforcing fibers contained in each molding material, the average focusing number k of reinforcing fibers is measured by the following method. Here, the diameter d0 (μm) of the single yarn is measured in advance with a scanning electron microscope (SEM). Moreover, when it was not a perfect circle, the average value of 10 points | pieces measured at random was employ | adopted.

まず、成形材料から100mm×100mmの角板を切り出し、その角板を空気中で500℃×1時間加熱し、樹脂成分を焼き飛ばして残った強化繊維を光学顕微鏡にて観測し、強化繊維からなる流動単位の平均集束数kを計算する。流動単位の幅と高さがおおよそd0であれば単糸であり集束数kは1である。流動単位の代表幅と代表高さから、d0のおおよその倍数を導き出し、流動単位の集束数kを求める。強化繊維からなる流動単位を無作為に100個選び出し、該操作による測定した平均値を採用した。   First, a 100 mm × 100 mm square plate is cut out from the molding material, the square plate is heated in air at 500 ° C. for 1 hour, the resin component is burned off, and the remaining reinforcing fiber is observed with an optical microscope. The average focusing number k of the flow unit is calculated. If the width and height of the flow unit is approximately d0, it is a single yarn and the convergence number k is 1. From the representative width and representative height of the flow unit, an approximate multiple of d0 is derived to determine the convergence number k of the flow unit. 100 flow units made of reinforcing fibers were selected at random, and the average value measured by the operation was adopted.

各成形材料に含有される強化繊維の数平均繊維長Lnを測定する。成形材料の一部を切り出し、電気炉にて空気中500℃で30分間加熱して樹脂を十分に焼却除去して強化繊維を分離し、分離した強化繊維から無作為に400本以上抽出した。これらの抽出した強化繊維の繊維長の測定は、光学顕微鏡を用いて行い、400本の繊維の長さを1μm単位まで測定して、前述した式(3)を用いて数平均繊維長Lnを算出した。   The number average fiber length Ln of the reinforcing fibers contained in each molding material is measured. A part of the molding material was cut out, heated in air at 500 ° C. for 30 minutes in an electric furnace to sufficiently incinerate and remove the resin to separate reinforcing fibers, and 400 or more pieces were randomly extracted from the separated reinforcing fibers. The fiber lengths of these extracted reinforcing fibers are measured using an optical microscope, the lengths of 400 fibers are measured to the 1 μm unit, and the number average fiber length Ln is calculated using the above-described formula (3). Calculated.

以上の測定値を用いて、成形材料の単位面積(1mm)当たりに含まれる強化繊維からなる流動単位の数nは前述した式(2)により導出される。 Using the above measured values, the number n of flow units made of reinforcing fibers contained per unit area (1 mm 2 ) of the molding material is derived from the above-described equation (2).

さらに、成形材料の濃度パラメーターpは前述した式(1)により導出される。   Further, the concentration parameter p of the molding material is derived from the above-described equation (1).

(4)成形材料の伸長率
成形材料の伸長率を測定する。まず、成形材料から直径150mmの円盤を切り出した。厚みを2.0mmに調整した円盤状の成形材料を測定サンプルとし、遠赤外線ヒーターを具備したオーブン中に配置し、10分間予熱した。この際、マルチ入力データ収集システム(キーエンス(株)社製、NR−600)を用いて、サンプルの表面かつ円盤の中央に熱電対を設置し、熱履歴を計測した。計測した温度が、樹脂単体の融点+35℃であることを確認した後、オーブンから取り出したサンプルを下金型の上に配置し、上金型を降下させ、面圧20MPaでプレス成形した。この状態で1分間加圧、冷却した後、上金型を上昇させ、成形品を得た。得られた成形品はほぼ真円の円盤形状であった。
(4) Elongation rate of molding material The elongation rate of the molding material is measured. First, a disk having a diameter of 150 mm was cut out from the molding material. A disc-shaped molding material whose thickness was adjusted to 2.0 mm was used as a measurement sample, placed in an oven equipped with a far infrared heater, and preheated for 10 minutes. At this time, using a multi-input data collection system (manufactured by Keyence Corporation, NR-600), a thermocouple was installed on the surface of the sample and in the center of the disk, and the thermal history was measured. After confirming that the measured temperature was the melting point of the resin alone + 35 ° C., the sample taken out of the oven was placed on the lower mold, the upper mold was lowered, and press molding was performed at a surface pressure of 20 MPa. After pressurizing and cooling in this state for 1 minute, the upper mold was raised to obtain a molded product. The obtained molded product had a substantially circular disk shape.

成形品の直径を任意の2箇所について測定し、その平均値を用いて成形後の成形品の面積を導出した。また、成形前の成形材料の面積は、直径を150mmとして計算した。ここで、成形材料の伸長率を前述した式(4)で定義し求めた。   The diameter of the molded product was measured at two arbitrary locations, and the area of the molded product after molding was derived using the average value. The area of the molding material before molding was calculated with a diameter of 150 mm. Here, the elongation ratio of the molding material was defined and obtained by the above-described formula (4).

(5)成形材料の引張強度比(σcMax/σcMin)
成形材料より測定用の試験片として、長さ250mm±1mm、幅25±0.2mmの引張用試験片を切り出す。試験片は、任意の方向を0°方向とした場合に+45°、−45°、90°方向の4方向について切り出した試験片を作製し、それぞれの方向について測定数はn=5とし、平均値を引張強度とした。測定する成形品における0°、+45°、−45°、90°の4方向全てにおいて測定される引張強度のうち、最大値をσcMax、最小値をσcMinとし、それらの比を引張強度比(σcMax/σcMin)とした。JIS K−7073(1988)に規定する試験方法に従い、標準間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
(5) Tensile strength ratio of molding material (σcMax / σcMin)
As a test piece for measurement, a tensile test piece having a length of 250 mm ± 1 mm and a width of 25 ± 0.2 mm is cut out from the molding material. Test specimens were prepared by cutting out test specimens in four directions of + 45 °, −45 °, and 90 ° when an arbitrary direction was set to 0 °, and the number of measurements in each direction was n = 5, and the average The value was taken as the tensile strength. Of the tensile strengths measured in all four directions of 0 °, + 45 °, −45 °, and 90 ° in the molded article to be measured, the maximum value is σcMax, the minimum value is σcMin, and the ratio is the tensile strength ratio (σcMax). / ΣcMin). According to the test method specified in JIS K-7073 (1988), the tensile strength was measured at a standard head distance of 150 mm and a crosshead speed of 2.0 mm / min. As the measuring device, “Instron (registered trademark)” 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used.

(6)成形材料中の強化繊維の二次元配向角
5cm角に切り出した成形材料をアルミホイルで包み、これを空気中500℃で1時間加熱し、樹脂成分を焼き飛ばした。成形材料を包んだアルミホイルを開き、顕微鏡のステージの上に配置した。得られた強化繊維からなる基材を顕微鏡で観察し、無作為にある単繊維を1本選定し、該単繊維に交差する別の単繊維との二次元配向角を画像観察より測定した。配向角は交差する2つの単繊維とのなす2つの角度のうち、0°以上90°以下の角度(鋭角側)を採用した。選定した単繊維1本あたりの二次元配向角の測定数はn=20とした。同様の測定を合計5本の単繊維を選定しておこない、その平均値を二次元配向角とした。
(6) Two-dimensional orientation angle of reinforcing fiber in molding material The molding material cut into 5 cm square was wrapped in aluminum foil, and this was heated in air at 500 ° C. for 1 hour to burn off the resin component. The aluminum foil wrapped with the molding material was opened and placed on the microscope stage. The obtained substrate made of reinforcing fibers was observed with a microscope, one single filament was selected at random, and the two-dimensional orientation angle with another single fiber intersecting with the single fiber was measured by image observation. Of the two angles formed by the two intersecting single fibers, the angle between 0 ° and 90 ° (acute angle side) was adopted as the orientation angle. The number of measured two-dimensional orientation angles per selected single fiber was n = 20. The same measurement was performed by selecting a total of 5 single fibers, and the average value was taken as the two-dimensional orientation angle.

(7)成形品面板の表面外観
面板表面を目視にて観察し、以下の基準で評価した。A、Bが合格であり、Cが不合格である。
A:面板にかすれ状の跡、穴あきが無く、優れた表面外観である。
B:実用上問題はないものの、面板の一部にかすれ状の跡が見られる。
C:面板に未充填や穴あき、全体的にかすれがあり劣る。
(7) Surface appearance of molded product face plate The face plate surface was visually observed and evaluated according to the following criteria. A and B are acceptable and C is unacceptable.
A: The face plate has no faint marks or holes, and has an excellent surface appearance.
B: Although there is no practical problem, a faint mark is seen on a part of the face plate.
C: The face plate is unfilled or perforated, and the entire surface is faint and inferior.

(8)成形品面板のソリ
成形品のリブ側を上面にし、面板面を平らな台に接地させ、接地面から面板面までの最大高さを測定した。成形品面板のソリは小さいことが好ましいため、測定した最大高さが10mm未満を合格とした。
(8) Warpage of molded product face plate The rib side of the molded product was the upper surface, the face plate surface was grounded to a flat base, and the maximum height from the ground contact surface to the face plate surface was measured. Since the warpage of the molded product face plate is preferably small, the measured maximum height was determined to be less than 10 mm.

(9)成形品リブ部の外観品位
リブ部を目視にて観察し、以下の基準で評価した。リブへは材料が完全に充填していることが好ましい観点から、AA、A、Bを合格とした。
AA: 完全充填、かつ樹脂リッチ部なし、かつかすれ跡なし
A:完全充填、かつ樹脂リッチ部なし、かつ一部かすれ状の跡あり
B:樹脂リッチ部はあるが、完全充填
C:80%以上100%未満の充填量
D:80%未満の充填量
(9) Appearance quality of molded product rib part The rib part was visually observed and evaluated according to the following criteria. From the viewpoint that it is preferable that the rib is completely filled with the material, AA, A, and B were set as acceptable.
AA: Completely filled, no resin rich part, and no trace of blur A: Completely filled, no resin rich part, and partially blurred trace B: Resin rich part is present, but completely filled C: 80% or more Filling amount less than 100% D: Filling amount less than 80%

(10)成形品の面内平均曲げ強度、および曲げ強度の面内ばらつき
成形品より測定用の試験片を切り出し、ISO178法(1993)に従い曲げ強度を測定した。切り出し部は成形品の端部を避け、できるだけ中央付近の面板部で、リブがない面板部分を用いた。試験片は各面部において、任意の方向を0°方向とした場合に+45°、−45°、90°方向の4方向について切り出した試験片を作製し、それぞれの方向について測定数はn=5とし、平均値を曲げ強度とした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
(10) In-plane average bending strength of molded product and in-plane variation of bending strength A test piece for measurement was cut out from the molded product, and the bending strength was measured according to ISO 178 method (1993). The cut-out part was a face plate part as close to the center as possible, avoiding the end of the molded product, and a face plate part without ribs was used. Test specimens were prepared by cutting out test specimens in four directions of + 45 °, −45 °, and 90 ° when any direction was set to 0 ° in each surface portion, and the number of measurements in each direction was n = 5. And the average value was taken as the bending strength. As the measuring apparatus, “Instron (registered trademark)” 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used.

測定する面板部における0°、+45°、−45°、90°の個別の曲げ強度の平均値を面内平均曲げ強度とした。面板部は高強度であることが好ましいため、面内平均曲げ強度は150MPa以上を合格とした。   The average value of individual bending strengths of 0 °, + 45 °, −45 °, and 90 ° in the face plate portion to be measured was defined as the in-plane average bending strength. Since it is preferable that the face plate portion has high strength, the in-plane average bending strength is determined to be 150 MPa or more.

測定する面板部における0°、+45°、−45°、90°の個別の曲げ強度と、4方向全てにおいて測定される曲げ強度の平均値とを用いて次式(7)を用いて、算出した。面板部は等方性を有することが好ましいため、成形品の曲げ強度の面内ばらつきは12%未満を合格とした。   Using the following equation (7), the individual bending strengths of 0 °, + 45 °, −45 °, 90 ° in the face plate portion to be measured and the average value of the bending strength measured in all four directions are used. did. Since the face plate portion preferably has isotropic properties, the in-plane variation of the bending strength of the molded product was accepted as less than 12%.

(11)成形品リブ部の繊維充填率、および空隙率
成形品のリブ部から切り出したサンプルを用いて、ISO1183(1987)に準拠して比重ρr1(g/cm)を測定した。測定サンプル数は、n=3とした。切り出し位置は、リブ付け根から5mm内側を基準とし、幅10mm×長さ50mmのサイズに切り出した。ここで、空気中で測定したサンプルの重量の平均値を重量w6(g)とする。
(11) Fiber filling rate and porosity of molded product rib part Using the sample cut out from the rib part of the molded product, the specific gravity ρr1 (g / cm 3 ) was measured according to ISO 1183 (1987). The number of measurement samples was n = 3. The cut-out position was cut into a size of width 10 mm × length 50 mm with reference to the inside 5 mm from the rib root. Here, let the average value of the weight of the sample measured in the air be weight w6 (g).

さらに、前記で切り出したサンプルを、空気中で500℃×1時間加熱し、樹脂成分を焼き飛ばして残った強化繊維の重量w7(g)を測定する。各測定はn=3とし、下式(8)、(9)、(10)を用いて導出した平均値を、リブ部の繊維重量分率Wfr(%)、繊維体積分率Vfr(%)、密度ρr2(g/cm)とした。なお、強化繊維の密度ρF、樹脂の密度ρRとする。 Furthermore, the sample cut out above is heated in air at 500 ° C. for 1 hour, and the weight w7 (g) of the reinforcing fiber left after burning the resin component is measured. For each measurement, n = 3, and the average values derived using the following formulas (8), (9), and (10) are used as the fiber weight fraction Wfr (%) and the fiber volume fraction Vfr (%) of the rib part. And density ρr2 (g / cm 3 ). It is assumed that the density ρF of the reinforcing fiber and the density ρR of the resin.

次に、リブ部の繊維充填率を導出した。成形材料が1種類の場合は、その成形材料の繊維重量分率Wf(%)に対するリブ部の繊維重量分率Wfrの比をリブ部の繊維充填率とした。また、成形材料が2種類以上用いる場合は、最も濃度パラメーターが小さい成形材料の繊維重量分率Wf(%)に対するリブ部の繊維重量分率Wfrの比をリブ部の繊維充填率とした。リブ部の繊維充填率は、繊維充填率が高いほどリブ強度が増し、天板の補強効果が上がる観点から、十分な補強効果が望めるものと考える0.7以上を合格とした。また、リブ部への充填量が少なくサンプルを切り出せないものは測定不可とした。   Next, the fiber filling rate of the rib portion was derived. In the case of one type of molding material, the ratio of the fiber weight fraction Wfr of the rib portion to the fiber weight fraction Wf (%) of the molding material was defined as the fiber filling rate of the rib portion. Further, when two or more kinds of molding materials were used, the ratio of the fiber weight fraction Wfr of the rib portion to the fiber weight fraction Wf (%) of the molding material having the smallest concentration parameter was defined as the fiber filling rate of the rib portion. The fiber filling rate of the rib part was set to 0.7 or more, which is considered to be sufficient from the viewpoint of increasing the rib strength and increasing the reinforcing effect of the top plate as the fiber filling rate increases. In addition, it was determined that measurement was not possible if the amount of filling in the rib portion was small and the sample could not be cut out.

また、リブ部の空隙率は、下式(11)を用いて求めた。リブは天板の補強部材である観点から、リブ部の許容できる空隙率は8%未満と考え、合格ラインとした。   Moreover, the porosity of the rib part was calculated | required using the following Formula (11). From the viewpoint that the rib is a reinforcing member for the top plate, the allowable void ratio of the rib portion is considered to be less than 8%, and it was set as an acceptable line.

(12)予熱時における成形材料の温度測定方法
マルチ入力データ収集システム(キーエンス(株)社製、NR−600)を用いて、予熱時における成形材料の温度を測定する。積層された奇数(2n−1)枚の成形材料の温度を測定する場合は、中間(n枚目)に位置する成形材料の表面かつ端に熱電対を取り付ける。また、積層数が偶数(2n)枚の場合は、n枚目とn+1枚目の間に位置する、n枚目の表面かつ端に熱電対を取り付ける。ただし、サイズが異なる成形材料を用いる場合は、面積が最も大きい成形材料のみを対象とし、積層数をカウントして熱電対を設置する。なお、1枚の成形材料を予熱する場合は、その成形材料の表面かつ端に熱電対を取り付け、測定を行う。
(12) Method for measuring temperature of molding material during preheating The temperature of the molding material during preheating is measured using a multi-input data collection system (manufactured by Keyence Corporation, NR-600). When measuring the temperature of the laminated odd (2n-1) molding materials, a thermocouple is attached to the surface and end of the molding material located in the middle (nth sheet). When the number of stacked layers is an even number (2n), a thermocouple is attached to the surface and end of the nth sheet located between the nth sheet and the (n + 1) th sheet. However, when molding materials having different sizes are used, only the molding material having the largest area is targeted, and the number of layers is counted to install a thermocouple. In the case of preheating a single molding material, a thermocouple is attached to the surface and end of the molding material, and measurement is performed.

(13)型締め時における成形材料の表面温度の測定方法
マルチ入力データ収集システム(キーエンス(株)社製、NR−600)を用いて、成形材料に接近する金型と成形材料とが接触する時点において、成形材料の表面温度を測定する。熱電対の取り付け箇所は、接近する金型に対して、最近傍の成形材料の金型側に位置する表面かつ端である。
(13) Method for measuring surface temperature of molding material during mold clamping Using a multi-input data collection system (NR-600, manufactured by Keyence Corporation), the mold approaching the molding material and the molding material come into contact with each other. At the time, the surface temperature of the molding material is measured. The attachment location of the thermocouple is the surface and end located on the mold side of the nearest molding material with respect to the approaching mold.

(参考例1)炭素繊維の調整
ポリアクリロニトリルを主成分とする重合体から紡糸、焼成処理を行い、総フィラメント数12000本の炭素繊維連続束を得た。該炭素繊維連続束に浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維束を得た。このPAN系炭素繊維束の特性は次の通りであった。
(Reference Example 1) Preparation of carbon fiber Spinning and firing were performed from a polymer mainly composed of polyacrylonitrile to obtain a continuous bundle of carbon fibers having a total filament number of 12,000. A sizing agent was applied to the carbon fiber continuous bundle by an immersion method and dried in heated air at a temperature of 120 ° C. to obtain a PAN-based carbon fiber bundle. The characteristics of this PAN-based carbon fiber bundle were as follows.

単繊維径;7μm
単位長さ当たりの質量:0.83g/m
比重:1.8g/cm
引張強度:4.0GPa
引張弾性率:235GPa
サイジング種類:ポリオキシエチレンオレイルエーテル
サイジング付着量:2質量%
(参考例2)チョップド炭素繊維束1
カートリッジカッターを用いて、参考例1の炭素繊維をカットし、繊維長9mmのチョップド炭素繊維束を得た。
Single fiber diameter: 7 μm
Mass per unit length: 0.83 g / m
Specific gravity: 1.8 g / cm 3
Tensile strength: 4.0 GPa
Tensile modulus: 235 GPa
Sizing type: Polyoxyethylene oleyl ether Sizing adhesion amount: 2% by mass
(Reference Example 2) Chopped carbon fiber bundle 1
Using a cartridge cutter, the carbon fiber of Reference Example 1 was cut to obtain a chopped carbon fiber bundle having a fiber length of 9 mm.

(参考例3)チョップド炭素繊維束2
参考例2と同様にして、繊維長6mmのチョップド炭素繊維束2を得た。
Reference Example 3 Chopped carbon fiber bundle 2
In the same manner as in Reference Example 2, a chopped carbon fiber bundle 2 having a fiber length of 6 mm was obtained.

(参考例4)チョップド炭素繊維束3
参考例2と同様にして、繊維長100mmのチョップド炭素繊維束3を得た。
(Reference Example 4) Chopped carbon fiber bundle 3
In the same manner as in Reference Example 2, a chopped carbon fiber bundle 3 having a fiber length of 100 mm was obtained.

(参考例5)チョップド炭素繊維束4
参考例2と同様にして、繊維長3mmのチョップド炭素繊維束4を得た。
(Reference Example 5) Chopped carbon fiber bundle 4
In the same manner as in Reference Example 2, a chopped carbon fiber bundle 4 having a fiber length of 3 mm was obtained.

(参考例6)チョップドガラス繊維束
日東紡製、商品名 CS13G−874
単繊維径;10μm
比重:2.5g/cm
繊維長:13mm(カタログ値)
(Reference Example 6) Chopped glass fiber bundle, manufactured by Nittobo, trade name CS13G-874
Single fiber diameter: 10 μm
Specific gravity: 2.5 g / cm 3
Fiber length: 13mm (catalog value)

(参考例7)無変性ポリプロピレン樹脂
プライムポリマー(株)社製、“プライムポリプロ”(登録商標)J105G、融点160℃
Reference Example 7 Unmodified Polypropylene Resin Prime Polymer Co., Ltd. “Prime Polypro” (registered trademark) J105G, melting point 160 ° C.

(参考例8)酸変性ポリプロピレン樹脂
三井化学(株)社製、“アドマー” (登録商標) QE510、融点160℃
(Reference Example 8) Acid-modified polypropylene resin “Admer” (registered trademark) QE510, melting point 160 ° C., manufactured by Mitsui Chemicals, Inc.

(参考例9)ナイロン6樹脂
東レ(株)社製、“アミラン” (登録商標)CM1001、融点225℃
(Reference Example 9) Nylon 6 resin “Amilan” (registered trademark) CM1001, manufactured by Toray Industries, Inc., melting point 225 ° C.

(参考例10)炭素繊維マット1の調製
界面活性剤(和光純薬工業(株)社製、「n−ドデシルベンゼンスルホン酸ナトリウム」(製品名))の1.5wt%水溶液100リットルを攪拌し、予め泡立てた分散液を作製した。この分散液に、参考例2で得られたチョップド炭素繊維束1を投入し、10分間撹拌した後、長さ500mm×幅500mmの抄紙面を有する抄紙機に流し込み、吸引により脱水後、150℃の温度で2時間乾燥し、炭素繊維からなる炭素繊維マット1を得た。
(Reference Example 10) Preparation of carbon fiber mat 1 100 liters of a 1.5 wt% aqueous solution of a surfactant (manufactured by Wako Pure Chemical Industries, Ltd., “sodium n-dodecylbenzenesulfonate” (product name)) was stirred. A pre-foamed dispersion was prepared. To this dispersion, the chopped carbon fiber bundle 1 obtained in Reference Example 2 was added, stirred for 10 minutes, then poured into a paper machine having a paper surface of 500 mm length × 500 mm width, dehydrated by suction, and 150 ° C. The carbon fiber mat 1 made of carbon fibers was obtained by drying at a temperature of 2 hours.

(参考例11)炭素繊維マット2の調製
参考例10と同様にして、参考例3で得られたチョップド炭素繊維束2を用いて、炭素繊維からなる炭素繊維マット2を得た。
Reference Example 11 Preparation of Carbon Fiber Mat 2 In the same manner as in Reference Example 10, using the chopped carbon fiber bundle 2 obtained in Reference Example 3, a carbon fiber mat 2 made of carbon fibers was obtained.

(参考例12)炭素繊維マット3の調製
参考例10と同様にして、参考例4で得られたチョップド炭素繊維束3を用いて、炭素繊維からなる炭素繊維マット3を得た。
Reference Example 12 Preparation of Carbon Fiber Mat 3 In the same manner as in Reference Example 10, the chopped carbon fiber bundle 3 obtained in Reference Example 4 was used to obtain a carbon fiber mat 3 made of carbon fibers.

(参考例13)ガラス繊維マットの調整
参考例10と同様にして、参考例6のチョップドガラス繊維を用いて、ガラス繊維からなるガラス繊維マットを得た。
Reference Example 13 Adjustment of Glass Fiber Mat In the same manner as in Reference Example 10, a chopped glass fiber of Reference Example 6 was used to obtain a glass fiber mat made of glass fiber.

(参考例14)ポリプロピレン樹脂フィルムの調整
参考例7の無変性ポリプロピレン樹脂90質量%と、参考例8の酸変性ポリプロピレン樹脂10質量%を用意し、これらをドライブレンドした。このドライブレンド品を二軸押出機のホッパーから投入し、押出機にて溶融混練した後、T字ダイ(500mm幅)から押出した。その後、60℃のチルロールで引き取ることによって冷却固化させ、ポリプロピレン樹脂フィルムを得た。
Reference Example 14 Preparation of Polypropylene Resin Film 90% by mass of the unmodified polypropylene resin of Reference Example 7 and 10% by mass of the acid-modified polypropylene resin of Reference Example 8 were prepared and dry blended. This dry blend product was put in from a hopper of a twin screw extruder, melt kneaded in the extruder, and then extruded from a T-die (500 mm width). Then, it cooled and solidified by taking up with a 60 degreeC chill roll, and obtained the polypropylene resin film.

(参考例15)ナイロン6樹脂フィルムの調整
参考例9のナイロン6樹脂を、参考例14と同様に溶融混練し、ナイロン6樹脂フィルムを得た。
Reference Example 15 Preparation of Nylon 6 Resin Film Nylon 6 resin of Reference Example 9 was melt-kneaded in the same manner as in Reference Example 14 to obtain a nylon 6 resin film.

(参考例16)成形材料1の調製
参考例10で得られた炭素繊維マット1と参考例14で得られたポリプロピレン樹脂フィルムとを交互積層し、積層体を用意した。金属製のツール板の上に離型シートで挟んだ積層体を載せ、さらに上にツール板を配置した。離型シートとしてテフロン(登録商標)シート(厚さ1mm)を用いた。ついで、210℃に加熱された上下の熱盤面から構成される油圧式プレス機の熱盤面間に該積層体を配置し、面圧5MPaでプレスした。次に、80℃の温度に温度制御された別の油圧式プレス機に搬送し、冷却盤間に配置後、面圧5MPaで冷却プレスを行い、炭素繊維マットとポリプロピレン樹脂からなる長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が33.3wt%の成形材料1を得た。その他の材料特性は、表1に示す。
Reference Example 16 Preparation of Molding Material 1 The carbon fiber mat 1 obtained in Reference Example 10 and the polypropylene resin film obtained in Reference Example 14 were alternately laminated to prepare a laminate. A laminate sandwiched between release sheets was placed on a metal tool plate, and a tool plate was further disposed thereon. A Teflon (registered trademark) sheet (thickness 1 mm) was used as a release sheet. Next, the laminate was placed between the hot platen surfaces of a hydraulic press machine composed of upper and lower hot platen surfaces heated to 210 ° C. and pressed at a surface pressure of 5 MPa. Next, it is transported to another hydraulic press controlled at a temperature of 80 ° C., placed between cooling boards, and then subjected to a cooling press at a surface pressure of 5 MPa, and a length of 500 mm made of carbon fiber mat and polypropylene resin, A molding material 1 having a width of 500 mm, a thickness of 0.5 mm, and a fiber weight fraction of 33.3 wt% was obtained. Other material properties are shown in Table 1.

(参考例17)成形材料2の調製
参考例16と同様にして、参考例11で得られた炭素繊維マット2と参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み2.0mm、繊維重量分率が14.8wt%の成形材料2を得た。その他の材料特性は、表1に示す。
Reference Example 17 Preparation of Molding Material 2 In the same manner as in Reference Example 16, the carbon fiber mat 2 obtained in Reference Example 11 and the polypropylene resin film obtained in Reference Example 14 were used. Length 500 mm, width 500 mm A molding material 2 having a thickness of 2.0 mm and a fiber weight fraction of 14.8 wt% was obtained. Other material properties are shown in Table 1.

(参考例18)成形材料3の調製
参考例16と同様にして、参考例10で得られた炭素繊維マット1と参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が18.2wt%の成形材料3を得た。その他の材料特性は、表1に示す。
Reference Example 18 Preparation of Molding Material 3 In the same manner as in Reference Example 16, the carbon fiber mat 1 obtained in Reference Example 10 and the polypropylene resin film obtained in Reference Example 14 were used. Length 500 mm, width 500 mm A molding material 3 having a thickness of 0.5 mm and a fiber weight fraction of 18.2 wt% was obtained. Other material properties are shown in Table 1.

(参考例19)成形材料4の調製
参考例16と同様にして、参考例10で得られた炭素繊維マット1と参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が57.1wt%の成形材料4を得た。その他の材料特性は、表1に示す。
Reference Example 19 Preparation of Molding Material 4 In the same manner as in Reference Example 16, the carbon fiber mat 1 obtained in Reference Example 10 and the polypropylene resin film obtained in Reference Example 14 were used. Length 500 mm, width 500 mm A molding material 4 having a thickness of 0.5 mm and a fiber weight fraction of 57.1 wt% was obtained. Other material properties are shown in Table 1.

(参考例20)成形材料5の調製
参考例16と同様にして、参考例12で得られた炭素繊維マット3と参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が33.3wt%の成形材料5を得た。その他の材料特性は、表1に示す。
Reference Example 20 Preparation of Molding Material 5 In the same manner as in Reference Example 16, the carbon fiber mat 3 obtained in Reference Example 12 and the polypropylene resin film obtained in Reference Example 14 were used. Length 500 mm, width 500 mm A molding material 5 having a thickness of 0.5 mm and a fiber weight fraction of 33.3 wt% was obtained. Other material properties are shown in Table 1.

(参考例21)成形材料6の調整
参考例16と同様にして、参考例11で得られた炭素繊維マット2と参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が33.3wt%の成形材料6を得た。その他の材料特性は、表1に示す。
(Reference Example 21) Adjustment of molding material 6 In the same manner as in Reference Example 16, the carbon fiber mat 2 obtained in Reference Example 11 and the polypropylene resin film obtained in Reference Example 14 were made to have a length of 500 mm and a width of 500 mm. A molding material 6 having a thickness of 0.5 mm and a fiber weight fraction of 33.3 wt% was obtained. Other material properties are shown in Table 1.

(参考例22)成形材料7の調整
参考例16と同様にして、参考例10で得られた炭素繊維マット1と参考例15で得られたナイロン6樹脂フィルムとからなる、長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が28.6wt%の成形材料7を得た。ただし、プレス機の熱盤面温度は250℃とした。その他の材料特性は、表1に示す。
(Reference Example 22) Adjustment of molding material 7 In the same manner as in Reference Example 16, a length of 500 mm, a width consisting of the carbon fiber mat 1 obtained in Reference Example 10 and the nylon 6 resin film obtained in Reference Example 15 A molding material 7 having a thickness of 500 mm, a thickness of 0.5 mm, and a fiber weight fraction of 28.6 wt% was obtained. However, the hot platen surface temperature of the press machine was 250 ° C. Other material properties are shown in Table 1.

(参考例23)成形材料8の調製
参考例16と同様にして、参考例13で得られたガラス繊維マットと参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み0.5mm、繊維重量分率が64.9wt%の成形材料8を得た。その他の材料特性は、表2に示す。
(Reference Example 23) Preparation of molding material 8 In the same manner as in Reference Example 16, the length of the glass fiber mat obtained in Reference Example 13 and the polypropylene resin film obtained in Reference Example 14 was 500 mm long, 500 mm wide, A molding material 8 having a thickness of 0.5 mm and a fiber weight fraction of 64.9 wt% was obtained. Other material properties are shown in Table 2.

(参考例24)成形材料9の調製
参考例16と同様にして、参考例13で得られたガラス繊維マットと参考例14で得られたポリプロピレン樹脂フィルムとからなる、長さ500mm、幅500mm、厚み2.0mm、繊維重量分率が2.7wt%の成形材料9を得た。その他の材料特性は、表2に示す。
(Reference Example 24) Preparation of molding material 9 In the same manner as in Reference Example 16, the length of the glass fiber mat obtained in Reference Example 13 and the polypropylene resin film obtained in Reference Example 14 was 500 mm long, 500 mm wide, A molding material 9 having a thickness of 2.0 mm and a fiber weight fraction of 2.7 wt% was obtained. Other material properties are shown in Table 2.

(参考例25)成形材料10の調製
参考例7の無変性ポリプロピレン樹脂90質量%と、参考例8の酸変性ポリプロピレン樹脂10質量%を用意し、ドライブレンドを行った。200℃の二軸押出機で該ドライブレンド品を溶融混練させた後、該押出機のサイドフィーダーから参考例3で得られたチョッブド炭素繊維束2を投入し、さらに混練した。該押出機にて溶融混練した後、T字ダイ(500mm幅)から押出した。その後、60℃のチルロールで引き取ることによって冷却固化させ、厚み0.5mmのCF/PPシートを得た。
Reference Example 25 Preparation of Molding Material 10 90% by mass of the unmodified polypropylene resin of Reference Example 7 and 10% by mass of the acid-modified polypropylene resin of Reference Example 8 were prepared and dry blended. After the dry blend product was melted and kneaded with a 200 ° C. twin screw extruder, the chopped carbon fiber bundle 2 obtained in Reference Example 3 was charged from the side feeder of the extruder and further kneaded. After melt-kneading with the extruder, it was extruded from a T-shaped die (500 mm width). Then, it cooled and solidified by taking up with a 60 degreeC chill roll, and obtained the CF / PP sheet of thickness 0.5mm.

次に、参考例16と同様の方法を用いてプレス成形を行い、長さ500mm、幅500mm、厚み2.0mm、繊維重量分率が33.3wt%の成形材料10を得た。その他の材料特性は、表2に示す。   Next, press molding was performed using the same method as in Reference Example 16 to obtain a molding material 10 having a length of 500 mm, a width of 500 mm, a thickness of 2.0 mm, and a fiber weight fraction of 33.3 wt%. Other material properties are shown in Table 2.

(参考例26)成形材料11の調製
参考例25と同様にして、参考例3で得られたチョッブド炭素繊維束2と参考例9で得られたナイロン6樹脂とからなる、長さ500mm、幅500mm、厚み2.0mm、繊維重量分率が28.6wt%の成形材料11を得た。ただし、プレス機の熱盤面温度は250℃とした。その他の材料特性は、表2に示す。
Reference Example 26 Preparation of Molding Material 11 In the same manner as Reference Example 25, a length of 500 mm, a width consisting of the chopped carbon fiber bundle 2 obtained in Reference Example 3 and the nylon 6 resin obtained in Reference Example 9 A molding material 11 having a thickness of 500 mm, a thickness of 2.0 mm, and a fiber weight fraction of 28.6 wt% was obtained. However, the hot platen surface temperature of the press machine was 250 ° C. Other material properties are shown in Table 2.

(参考例27)成形材料12の調製
金属製のツール板の上に離型シート(テフロン(登録商標)、厚さ1mm)を配置し、さらに参考例14で得られたポリプロピレン樹脂フィルムを上に配置した。該ポリプロピレン樹脂フィルムの上に参考例5のチョップド炭素繊維束4をランダムに散りばめ、炭素繊維束がランダム方向に分布していることを目視で確認した。さらに、その上に参考例14で得られたポリプロピレン樹脂フィルム、離型シート、ツール板の順番で配置した。
Reference Example 27 Preparation of Molding Material 12 A release sheet (Teflon (registered trademark), thickness 1 mm) was placed on a metal tool plate, and the polypropylene resin film obtained in Reference Example 14 was placed on top. Arranged. The chopped carbon fiber bundles 4 of Reference Example 5 were randomly scattered on the polypropylene resin film, and it was visually confirmed that the carbon fiber bundles were distributed in a random direction. Furthermore, the polypropylene resin film obtained in Reference Example 14, the release sheet, and the tool plate were arranged in that order.

次に、参考例16と同様の方法を用いてプレス成形を行い、長さ500mm、幅500mm、厚み2.0mm、繊維重量分率が57.1wt%の成形材料12を得た。その他の材料特性は、表2に示す。   Next, press molding was performed using the same method as in Reference Example 16 to obtain a molding material 12 having a length of 500 mm, a width of 500 mm, a thickness of 2.0 mm, and a fiber weight fraction of 57.1 wt%. Other material properties are shown in Table 2.

(参考例28)一文字リブ成形用金型
図1に示す、面板と一文字のリブからなる形状を有した成形品を得るための、対向する一対の金型であり、下記に示す寸法を有する。また、上金型(開口金型)、下金型(対向金型)の寸法をそれぞれ図10、11に示す。
・図10:W1;2mm、W2;199mm、W3;199mm、W4;400mm、W5;500mm、W6;200mm、W7;300mm、H1;10mm、H2;20mm、H3;120mm
・図11:W1;392mm、W2;500mm、W3;192mm、W4;300mm、H1;7mm、H2;150mm
Reference Example 28 Single-character Rib Molding Mold A pair of opposed molds for obtaining a molded product having a shape composed of a face plate and a single-character rib shown in FIG. 1, and having the dimensions shown below. The dimensions of the upper mold (opening mold) and the lower mold (opposing mold) are shown in FIGS.
Fig. 10: W1; 2mm, W2; 199mm, W3; 199mm, W4; 400mm, W5; 500mm, W6; 200mm, W7; 300mm, H1; 10mm, H2; 20mm, H3;
FIG. 11: W1; 392 mm, W2; 500 mm, W3; 192 mm, W4; 300 mm, H1; 7 mm, H2; 150 mm

(参考例29)十字リブ成形用金型
図12に示す、面板と十字のリブからなる形状を有した、対向する一対の金型であり、下記に示す寸法を有する。また、上金型(開口金型)、下金型(対向金型)の寸法をそれぞれ図13、11に示す。
・図13:W1;2mm、W2;199mm、W3;199mm、W4;400mm、W5;500mm、W6;200mm、W7;300mm、W8;2mm、H1;10mm、H2;20mm、H3;120mm
・図11:W1;392mm、W2;500mm、W3;192mm、W4;300mm、H1;7mm、H2;150mm
(実施例1)
参考例16で得た成形材料1と参考例25で得た成形材料10とを用いた。ここで、成形材料1、成形材料10の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料10は成形材料(B)に分類される。成形材料1、成形材料10を以下の寸法に裁断し、成形材料1を8枚、成形材料10を10枚用意した。
成形材料1:長さ440mm、幅220mm
成形材料10:長さ200mm、幅20mm
次に成形材料のプリフォームとして、2枚の成形材料1の上にリブの真上の位置に成形材料10を10枚配置した。この積層体をプリフォーム1Aとする。また、成形材料1を2枚積層した積層体をプリフォーム1Bとし、3体用意した。成形金型は参考例27を用い、金型温度を80℃に温調した。
Reference Example 29 Cross Rib Mold A pair of opposed molds having a shape composed of a face plate and a cross rib shown in FIG. 12, and having the dimensions shown below. The dimensions of the upper mold (opening mold) and the lower mold (opposing mold) are shown in FIGS.
FIG. 13: W1; 2 mm, W2; 199 mm, W3; 199 mm, W4; 400 mm, W5; 500 mm, W6; 200 mm, W7; 300 mm, W8; 2 mm, H1;
FIG. 11: W1; 392 mm, W2; 500 mm, W3; 192 mm, W4; 300 mm, H1; 7 mm, H2; 150 mm
Example 1
The molding material 1 obtained in Reference Example 16 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 1 and the molding material 10, the molding material 1 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B). The molding material 1 and the molding material 10 were cut into the following dimensions to prepare 8 molding materials 1 and 10 molding materials 10.
Molding material 1: length 440mm, width 220mm
Molding material 10: length 200 mm, width 20 mm
Next, 10 molding materials 10 were placed on the two molding materials 1 at positions directly above the ribs as preforms of the molding material. This laminate is designated as preform 1A. Moreover, the laminated body which laminated | stacked two molding materials 1 was used as the preform 1B, and three bodies were prepared. As the molding die, Reference Example 27 was used, and the die temperature was adjusted to 80 ° C.

遠赤外線ヒーターを具備したオーブン中に、各プリフォームを個別に配置し、10分間予熱した。各プリフォームの成形材料に設置した熱電対の温度が210℃に達していることを確認した後、オーブン中でプリフォーム1Bの上にプリフォーム1Aを、さらにその上にプリフォーム1Bを2体積層し、プリフォーム1Cとした。   Each preform was placed individually in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in the molding material of each preform has reached 210 ° C., two preforms 1A and two preforms 1B are placed on the preform 1B in the oven. Laminated to make a preform 1C.

ついで、予熱したプリフォーム1Cを下金型の凸部の上に配置し、リブの真上の位置に成形材料10が配置されていることを確認した後、該上金型を降下させ、面圧20MPaでプレス成形した。この状態で3分間加圧、冷却した後、上金型を上昇させ、成形体を得た。リブ部の一部にかすれ状の跡が見られたが、その他は良好な表面外観であり、得られた成形品にソリは見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られなかった。特性および評価結果は、まとめて表3に記載した。   Next, the preheated preform 1C is disposed on the convex portion of the lower mold, and after confirming that the molding material 10 is disposed immediately above the rib, the upper mold is lowered, Press molding was performed at a pressure of 20 MPa. After pressing and cooling for 3 minutes in this state, the upper mold was raised to obtain a molded body. Although a trace of faintness was seen in a part of the rib part, the others had a good surface appearance, and no warpage was found in the obtained molded product. Furthermore, the rib was completely filled with the material, and no resin rich portion was observed. Properties and evaluation results are summarized in Table 3.

(実施例2)
参考例16で得た成形材料1と参考例25で得た成形材料10とを用いた。ここで、成形材料1、成形材料10の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料10は成形材料(B)に分類される。成形材料1、成形材料10を以下の寸法に裁断し、成形材料1を4枚、成形材料10を1枚用意した。
成形材料1:長さ440mm、幅220mm
成形材料10:長さ440mm、幅220mm
(Example 2)
The molding material 1 obtained in Reference Example 16 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 1 and the molding material 10, the molding material 1 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B). The molding material 1 and the molding material 10 were cut into the following dimensions to prepare four molding materials 1 and one molding material 10.
Molding material 1: length 440mm, width 220mm
Molding material 10: length 440 mm, width 220 mm

次に成形材料のプリフォームとして、成形材料1を2枚積層したものをプリフォーム2Aとし、2体用意した。成形金型は参考例23を用い、金型温度を80℃に温調した。   Next, two preforms 2A were prepared as the preforms of the molding material. As a molding die, Reference Example 23 was used, and the die temperature was adjusted to 80 ° C.

遠赤外線ヒーターを具備したオーブン中に、プリフォーム2Aが2体と成形材料10とを個別に配置し、10分間予熱した。各プリフォームの成形材料に設置した熱電対の温度が210℃に達していることを確認した後、オーブン中でプリフォーム2Aを2体重ねた上に、成形材料10を積層し、プリフォーム2Bとした。   Two preforms 2A and the molding material 10 were individually placed in an oven equipped with a far-infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in the molding material of each preform has reached 210 ° C., two preforms 2A are stacked in the oven, and then the molding material 10 is laminated, and the preform 2B It was.

ついで、予熱したプリフォーム2Bを下金型の凸部の上に配置した後、該上金型を降下させ、面圧20MPaでプレス成形した。この状態で3分間加圧、冷却した後、上金型を上昇させ、成形体を得た。得られた成形品の面板のソリがやや大きくなっていた。しかし、リブ部は完全に充填しており、かすれ状の跡、樹脂リッチもなく良好であった。特性および評価結果は、まとめて表3に記載した。   Next, the preheated preform 2B was placed on the convex portion of the lower mold, and then the upper mold was lowered and press molded at a surface pressure of 20 MPa. After pressing and cooling for 3 minutes in this state, the upper mold was raised to obtain a molded body. The warpage of the face plate of the obtained molded product was slightly large. However, the rib part was completely filled, and it was good without a faint trace and resin richness. Properties and evaluation results are summarized in Table 3.

(実施例3)
下金型の凸部の上に参考例25で得た成形材料10を配置し、その上に前記プリフォーム2Aを配置する以外は、実施例2と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品は、面板のソリがやや大きくなっていた。また、リブ部は完全に充填していたが、表面の一部にかすれ状の跡が見られた。特性および評価結果は、まとめて表3に記載した。
(Example 3)
Preform, preheating and molding are performed in the same manner as in Example 2 except that the molding material 10 obtained in Reference Example 25 is placed on the convex portion of the lower mold and the preform 2A is placed thereon. A molded product was obtained. The obtained molded product had a slightly larger warp on the face plate. Moreover, although the rib part was completely filled, a faint trace was seen in a part of the surface. Properties and evaluation results are summarized in Table 3.

(実施例4)
下金型の凸部の上に前記プリフォーム2Aを配置し、その上に参考例25で得た成形材料10、プリフォーム2Aの順で配置する以外は、実施例2と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の面板部にソリはほぼなく、表面外観も良好であった。また、リブ部の一部にかすれ状の跡が見られたが、充填は十分であった。特性および評価結果は、まとめて表3に記載した。
Example 4
Preform 2A is arranged on the convex part of the lower mold and the molding material 10 obtained in Reference Example 25 and the preform 2A are arranged in this order on the preform 2A. Then, preheating and molding were performed to obtain a molded product. There was almost no warp in the face plate portion of the obtained molded product, and the surface appearance was good. In addition, although a faint trace was seen in a part of the rib portion, the filling was sufficient. Properties and evaluation results are summarized in Table 3.

(実施例5)
実施例1と同様にして、参考例16で得た成形材料1と参考例25で得た成形材料10とを裁断した。ただし、成形材料1は長さ320mm、幅200mmのサイズに裁断し、10枚用意した。
(Example 5)
In the same manner as in Example 1, the molding material 1 obtained in Reference Example 16 and the molding material 10 obtained in Reference Example 25 were cut. However, the molding material 1 was cut into a size of 320 mm in length and 200 mm in width, and 10 sheets were prepared.

次に成形材料のプリフォームとして、4枚の成形材料1の上にリブの真上の位置に成形材料10を10枚配置した。この積層体をプリフォーム5Aとする。また、成形材料1を3枚積層した積層体をプリフォーム5Bとし、2体用意した。成形金型は参考例23を用い、金型温度を80℃に温調した。   Next, 10 molding materials 10 were arranged on the four molding materials 1 at positions directly above the ribs as preforms of the molding material. This laminate is designated as preform 5A. Moreover, the laminated body which laminated | stacked three molding materials 1 was used as the preform 5B, and two bodies were prepared. As a molding die, Reference Example 23 was used, and the die temperature was adjusted to 80 ° C.

遠赤外線ヒーターを具備したオーブン中に、各プリフォームを個別に配置し、10分間予熱した。各プリフォームの成形材料に設置した熱電対の温度が210℃に達していることを確認した後、オーブン中でプリフォーム5Bの上にプリフォーム5Aを積層し、プリフォーム5Cとした。   Each preform was placed individually in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in the molding material of each preform reached 210 ° C., the preform 5A was laminated on the preform 5B in an oven to obtain a preform 5C.

ついで、予熱したプリフォーム5Cを下金型の凸部の上に配置し、リブの位置に成形材料10が配置されていることを確認した後、実施例1と同様にして成形を行い、成形品を得た。リブには、樹脂リッチ部はあるものの、完全充填であった。また、面板部は等方性がやや低くなっていた。特性および評価結果は、まとめて表3に記載した。   Next, the preheated preform 5C is placed on the convex portion of the lower mold, and after confirming that the molding material 10 is placed at the rib position, molding is performed in the same manner as in Example 1, and molding is performed. I got a product. The rib was completely filled although there was a resin rich part. Further, the isotropicity of the face plate portion was slightly low. Properties and evaluation results are summarized in Table 3.

(実施例6)
参考例20で得た成形材料5と参考例25で得た成形材料10とを用いた。ここで、成形材料5、成形材料10の濃度パラメーターpから、成形材料5は成形材料(A)に、成形材料10は成形材料(B)に分類される。
(Example 6)
The molding material 5 obtained in Reference Example 20 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 5 and the molding material 10, the molding material 5 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B).

成形材料1の代わりに成形材料5を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。面板に一部かすれ状の跡が見られた。また、リブには、樹脂リッチ部はあるものの、完全充填であった。特性および評価結果は、まとめて表4に記載した。   Except that the molding material 5 was used instead of the molding material 1, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. Some faint marks were seen on the face plate. The rib was completely filled although there was a resin-rich part. Properties and evaluation results are summarized in Table 4.

(実施例7)
参考例21で得た成形材料6と参考例25で得た成形材料10とを用いた。ここで、成形材料6、成形材料10の濃度パラメーターpから、成形材料6は成形材料(A)に、成形材料10は成形材料(B)に分類される。
(Example 7)
The molding material 6 obtained in Reference Example 21 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 6 and the molding material 10, the molding material 6 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B).

成形材料1の代わりに成形材料6を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。リブ部の一部にかすれ状の跡が見られたが、面板は良好な表面外観であった。また、面板にソリは見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られなかった。特性および評価結果は、まとめて表4に記載した。   Except that the molding material 6 was used instead of the molding material 1, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. Although a faint trace was seen in a part of the rib portion, the face plate had a good surface appearance. Also, no warpage was found on the face plate. Furthermore, the rib was completely filled with the material, and no resin rich portion was observed. Properties and evaluation results are summarized in Table 4.

(実施例8)
参考例18で得た成形材料3と参考例25で得た成形材料10とを用いた。ここで、成形材料3、成形材料10の濃度パラメーターpから、成形材料3は成形材料(A)に、成形材料10は成形材料(B)に分類される。
(Example 8)
The molding material 3 obtained in Reference Example 18 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 3 and the molding material 10, the molding material 3 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B).

成形材料1の代わりに成形材料3を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品は、リブ部の一部にかすれ状の跡が見られたが、その他は良好な表面外観であり、また天板のソリはほぼ見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られなかった。しかし、天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表4に記載した。   Except that the molding material 3 was used instead of the molding material 1, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. In the obtained molded product, a faint trace was seen in a part of the rib part, but the other was a good surface appearance, and the warp of the top plate was hardly seen. Furthermore, the rib was completely filled with the material, and no resin rich portion was observed. However, the top plate was slightly less isotropic. Properties and evaluation results are summarized in Table 4.

(実施例9)
参考例19で得た成形材料4と参考例25で得た成形材料10とを用いた。ここで、成形材料4、成形材料10の濃度パラメーターpから、成形材料4は成形材料(A)に、成形材料10は成形材料(B)に分類される。
Example 9
The molding material 4 obtained in Reference Example 19 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 4 and the molding material 10, the molding material 4 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B).

成形材料1の代わりに成形材料4を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品は、天板およびリブ部の一部にかすれ状の跡が見られた。また、天板のソリは見られず、等方性に優れていた。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られなかった。特性および評価結果は、まとめて表4に記載した。   Except that the molding material 4 was used instead of the molding material 1, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. In the obtained molded product, faint marks were seen on the top plate and part of the rib portion. Moreover, the warp of the top plate was not seen, and the isotropic property was excellent. Furthermore, the rib was completely filled with the material, and no resin rich portion was observed. Properties and evaluation results are summarized in Table 4.

(実施例10)
成形材料10が長さ200mm、幅2mmのサイズであること以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。天板の表面外観は良好であったが、リブ部に樹脂リッチが見られた。その他は良好な成形品であった。特性および評価結果は、まとめて表4に記載した。
(Example 10)
Except that the molding material 10 has a length of 200 mm and a width of 2 mm, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. Although the surface appearance of the top plate was good, resin richness was seen in the ribs. Others were good molded products. Properties and evaluation results are summarized in Table 4.

(実施例11)
成形材料10が長さ200mm、幅60mmのサイズであること以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。リブ部の一部にかすれ跡があったが、完全充填していた。天板の表面外観は良好であった。特性および評価結果は、まとめて表5に記載した。
(Example 11)
Except that the molding material 10 has a length of 200 mm and a width of 60 mm, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. There was a faint trace in part of the rib, but it was completely filled. The surface appearance of the top plate was good. Properties and evaluation results are summarized in Table 5.

(実施例12)
成形材料10が長さ200mm、幅140mmのサイズであること以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。リブ部の一部にかすれ跡があったが、完全充填していた。しかし、天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表5に記載した。
(Example 12)
Except that the molding material 10 has a length of 200 mm and a width of 140 mm, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. There was a faint trace in part of the rib, but it was completely filled. However, the top plate was slightly less isotropic. Properties and evaluation results are summarized in Table 5.

(実施例13)
参考例16で得た成形材料1と参考例25で得た成形材料10とを用いた。ここで、成形材料1、成形材料10の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料10は成形材料(B)に分類される。成形材料1、成形材料10を以下の寸法に裁断し、成形材料1−1を7枚、成形材料1−2を2枚、成形材料10を10枚用意した。
成形材料1−1:長さ440mm、幅220mm
成形材料1−2:長さ190mm、幅200mm
成形材料10:長さ200mm、幅20mm
(Example 13)
The molding material 1 obtained in Reference Example 16 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 1 and the molding material 10, the molding material 1 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B). The molding material 1 and the molding material 10 were cut into the following dimensions to prepare seven molding materials 1-1, two molding materials 1-2, and ten molding materials 10.
Molding material 1-1: length 440mm, width 220mm
Molding material 1-2: length 190mm, width 200mm
Molding material 10: length 200 mm, width 20 mm

次に成形材料のプリフォームとして、1枚の成形材料1−1の上にリブの真上の位置に成形材料10を10枚配置した。さらに成形材料10が配置されている両脇に成形材料1−2を1枚ずつ、成形材料どうしが重ならないことを確認して配置した。この積層体をプリフォーム13Aとする。また、成形材料1−1を2枚積層した積層体をプリフォーム13Bとし、3体用意した。成形金型は参考例23を用い、金型温度を80℃に温調した。   Next, as a molding material preform, ten molding materials 10 were placed on the one molding material 1-1 at a position directly above the ribs. Further, one molding material 1-2 was placed on both sides where the molding material 10 was placed, and it was placed after confirming that the molding materials did not overlap. This laminate is designated as preform 13A. Moreover, the laminated body which laminated | stacked two molding materials 1-1 was used as the preform 13B, and three bodies were prepared. As a molding die, Reference Example 23 was used, and the die temperature was adjusted to 80 ° C.

遠赤外線ヒーターを具備したオーブン中に、各プリフォームを個別に配置し、10分間予熱した。各プリフォームの成形材料に設置した熱電対の温度が210℃に達していることを確認した後、オーブン中で1体のプリフォーム11Bの上にプリフォーム11Aを積層し、さらにプリフォーム11Bを2体積層したものをプリフォーム13Cとした。   Each preform was placed individually in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in the molding material of each preform has reached 210 ° C., the preform 11A is laminated on one preform 11B in an oven, and the preform 11B is further laminated. A laminate of two bodies was designated as preform 13C.

ついで、予熱したプリフォーム13Cを下金型の凸部の上に配置し、リブの位置に成形材料10が配置されていることを確認した後、後、実施例1と同様にして成形を行い、成形品を得た。天板部は良好な表面外観であり、得られた成形品にソリは見られなかった。さらに、リブの一部にかすれ状の跡が見られたが、完全充填しており、樹脂リッチ部は見られない良好な成形品であった。特性および評価結果は、まとめて表5に記載した。   Next, the preheated preform 13C is placed on the convex portion of the lower mold, and after confirming that the molding material 10 is placed at the position of the rib, molding is performed in the same manner as in Example 1. A molded product was obtained. The top plate portion had a good surface appearance, and no warpage was found in the obtained molded product. Furthermore, although a faint trace was seen in a part of the rib, it was a good molded product that was completely filled and no resin-rich part was seen. Properties and evaluation results are summarized in Table 5.

(実施例14)
まず、参考例16で得た成形材料1を長さ200mm、幅20mmに裁断した1枚を、実施例13のプリフォーム13Aに配置する成形材料10の上にさらに積層し、プリフォーム14Aとした。プリフォーム13Aの代わりにプリフォーム14Aを用いた以外は、実施例13と同様にして、予熱、プリフォームおよび成形を行い、成形品を得た。天板、リブ部ともに良好な表面外観であり、得られた成形品にソリは見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られない非常に良好な成形品であった。特性および評価結果は、まとめて表5に記載した。
(Example 14)
First, one sheet obtained by cutting the molding material 1 obtained in Reference Example 16 into a length of 200 mm and a width of 20 mm was further laminated on the molding material 10 to be placed on the preform 13A of Example 13 to obtain a preform 14A. . Except that the preform 14A was used instead of the preform 13A, preheating, preforming and molding were performed in the same manner as in Example 13 to obtain a molded product. Both the top plate and the rib portion had a good surface appearance, and no warpage was found in the obtained molded product. Further, the rib was completely filled with the material, and it was a very good molded product in which no resin rich portion was seen. Properties and evaluation results are summarized in Table 5.

(実施例15)
実施例13で裁断した成形材料1−1に対して、上金型における開口部の開口位置に位置する領域かつ成形材料1−1の中央に切り込み処理を施したものを、成形材料1−1−1とする。切り込み長さは200mmである。成形材料1−1の代わりに成形材料1−1−1を用いた以外は、実施例14と同様にして予熱、プリフォームおよび成形を行い、成形品を得た。天板、リブ部ともに良好な表面外観であり、得られた成形品にソリは見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られない非常に良好な成形品であった。特性および評価結果は、まとめて表5に記載した。
(Example 15)
For the molding material 1-1 cut in Example 13, what was subjected to the cutting process in the area located at the opening position of the opening in the upper mold and the center of the molding material 1-1 was the molding material 1-1. -1. The cut length is 200 mm. Except that the molding material 1-1-1 was used instead of the molding material 1-1, preheating, preforming and molding were performed in the same manner as in Example 14 to obtain a molded product. Both the top plate and the rib portion had a good surface appearance, and no warpage was found in the obtained molded product. Further, the rib was completely filled with the material, and it was a very good molded product in which no resin rich portion was seen. Properties and evaluation results are summarized in Table 5.

(実施例16)
参考例18で得た成形材料3と参考例17で得た成形材料2とを用いた。ここで、成形材料3、成形材料2の濃度パラメーターpから、成形材料3は成形材料(A)に、成形材料2は成形材料(B)に分類される。
(Example 16)
The molding material 3 obtained in Reference Example 18 and the molding material 2 obtained in Reference Example 17 were used. Here, from the concentration parameter p of the molding material 3 and the molding material 2, the molding material 3 is classified into the molding material (A), and the molding material 2 is classified into the molding material (B).

成形材料1、成形材料10の代わりに、それぞれ成形材料3、成形材料2を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の天板は、ソリはほぼなく、良好な表面外観を有していた。リブには、樹脂リッチ部はあるものの、完全充填であった。天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表6に記載した。   Preformed, preheated and molded in the same manner as in Example 1 except that the molding material 3 and the molding material 2 were used in place of the molding material 1 and the molding material 10, respectively, to obtain a molded product. The top plate of the obtained molded product had almost no warp and had a good surface appearance. The rib was completely filled although there was a resin rich part. The top plate was slightly isotropic. Properties and evaluation results are summarized in Table 6.

(実施例17)
実施例1で裁断した成形材料1、成形材料10の端材と参考例7の無変性ポリプロピレン樹脂とを200℃の二軸押出機に投入し、溶融混練させた。混練物をT字ダイから押出した後、参考例25と同様にして長さ500mm×幅500mに裁断したCF/PPフィルムを用いてプレス成形を行い、強化繊維と熱可塑性樹脂からなる長さ500mm、幅500mm、厚みが2.0mmの成形材料13を得た。材料特性は表6に示す。
(Example 17)
The end materials of the molding material 1 and molding material 10 cut in Example 1 and the unmodified polypropylene resin of Reference Example 7 were put into a twin screw extruder at 200 ° C. and melt-kneaded. After extruding the kneaded material from a T-die, press molding was performed using a CF / PP film cut into a length of 500 mm and a width of 500 m in the same manner as in Reference Example 25, and a length of 500 mm consisting of reinforcing fibers and a thermoplastic resin. A molding material 13 having a width of 500 mm and a thickness of 2.0 mm was obtained. The material properties are shown in Table 6.

参考例16で得た成形材料1と該成形材料13とを用いた以外は、実施例1と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。ここで、成形材料1、成形材料13の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料13は成形材料(B)に分類される。天板およびリブ部ともに良好な表面外観であり、得られた成形品にソリは見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られない良好な成形品であった。特性および評価結果は、まとめて表2に記載した。   Except that the molding material 1 obtained in Reference Example 16 and the molding material 13 were used, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. Here, from the concentration parameter p of the molding material 1 and the molding material 13, the molding material 1 is classified as a molding material (A), and the molding material 13 is classified as a molding material (B). Both the top plate and the rib portion had good surface appearance, and no warpage was found in the obtained molded product. Further, the rib was completely filled with the material, and was a good molded product in which no resin-rich portion was seen. Properties and evaluation results are summarized in Table 2.

(実施例18)
参考例16で得た成形材料1と参考例17で得た成形材料2とを用いた。ここで、成形材料1、成形材料2の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料2は成形材料(B)に分類される。
(Example 18)
The molding material 1 obtained in Reference Example 16 and the molding material 2 obtained in Reference Example 17 were used. Here, from the concentration parameter p of the molding material 1 and the molding material 2, the molding material 1 is classified into the molding material (A), and the molding material 2 is classified into the molding material (B).

成形材料10の代わりに成形材料2を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。面板部にソリはなく、また表面にかすれ等もなく良好な表面外観を有していた。また、リブ部の一部にかすれ状の跡が見られたが、充填は十分であった。特性および評価結果は、まとめて表6に記載した。   Except that the molding material 2 was used instead of the molding material 10, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. The face plate portion had no warpage and had a good surface appearance with no blurring on the surface. In addition, although a faint trace was seen in a part of the rib portion, the filling was sufficient. Properties and evaluation results are summarized in Table 6.

(実施例19)
参考例16で得た成形材料1と参考例27で得た成形材料12とを用いた。ここで、成形材料1、成形材料12の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料12は成形材料(B)に分類される。
(Example 19)
The molding material 1 obtained in Reference Example 16 and the molding material 12 obtained in Reference Example 27 were used. Here, from the concentration parameter p of the molding material 1 and the molding material 12, the molding material 1 is classified into the molding material (A), and the molding material 12 is classified into the molding material (B).

成形材料10の代わりに成形材料11を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。面板部はソリもほぼなく、表面にかすれ等もなく良好な表面外観を有していた。また、リブ部の一部にかすれ状の跡が見られたが、充填は十分であった。特性および評価結果は、まとめて表6に記載した。   Except that the molding material 11 was used instead of the molding material 10, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. The face plate portion had almost no warpage and had a good surface appearance with no blurring on the surface. In addition, although a faint trace was seen in a part of the rib portion, the filling was sufficient. Properties and evaluation results are summarized in Table 6.

(実施例20)
参考例22で得た成形材料7と参考例26で得た成形材料11とを用いた以外は、実施例1と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。なお、遠赤外線ヒーターを調整し、成形材料の温度を250℃にした。ここで、成形材料7、成形材料10の濃度パラメーターpから、成形材料7は成形材料(A)に、成形材料10は成形材料(B)に分類される。得られた成形品は、リブ部の一部にかすれ状の跡が見られたが、その他は良好な表面外観であり、またソリは見られなかった。さらに、リブへは材料が完全に充填しており、樹脂リッチ部は見られない良好な成形品であった。特性および評価結果は、まとめて表6に記載した。
(Example 20)
Except that the molding material 7 obtained in Reference Example 22 and the molding material 11 obtained in Reference Example 26 were used, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. The far-infrared heater was adjusted so that the temperature of the molding material was 250 ° C. Here, from the concentration parameter p of the molding material 7 and the molding material 10, the molding material 7 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B). In the obtained molded product, a faint trace was seen in a part of the rib part, but the other was a good surface appearance, and no warp was seen. Further, the rib was completely filled with the material, and was a good molded product in which no resin-rich portion was seen. Properties and evaluation results are summarized in Table 6.

(実施例21)
参考例23で得た成形材料8と参考例24で得た成形材料9とを用いた以外は、実施例1と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。ここで、成形材料7、成形材料8の濃度パラメーターpから、成形材料7は成形材料(A)に、成形材料8は成形材料(B)に分類される。得られた成形品は、天板の表面外観は良好であったが、リブ部に樹脂リッチが見られた。特性および評価結果は、まとめて表7に記載した。
(Example 21)
Preformed, preheated and molded in the same manner as in Example 1 except that the molding material 8 obtained in Reference Example 23 and the molding material 9 obtained in Reference Example 24 were used, and a molded product was obtained. Here, from the concentration parameter p of the molding material 7 and the molding material 8, the molding material 7 is classified into the molding material (A), and the molding material 8 is classified into the molding material (B). The obtained molded product had a good surface appearance on the top plate, but resin-rich was seen in the ribs. Properties and evaluation results are summarized in Table 7.

(実施例22)
面圧5MPaでプレス成形した以外は、実施例1と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品は、面板部の表面外観、ソリともに良好であった。リブ部は樹脂リッチ部が生じていたものの、完全充填であった。特性および評価結果は、まとめて表7に記載した。
(Example 22)
A preform was obtained by performing preforming, preheating and molding in the same manner as in Example 1 except that press molding was performed at a surface pressure of 5 MPa. The obtained molded product had good surface appearance and warpage of the face plate portion. The rib portion was completely filled although a resin rich portion was generated. Properties and evaluation results are summarized in Table 7.

(実施例23)
面圧35MPaでプレス成形した以外は、実施例1と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品は、曲げ強度でやや劣るものの、面板部の表面外観、ソリともに良好であった。また、リブ部はかすれ状の跡もなく、完全充填であり、良好あった。特性および評価結果は、まとめて表7に記載した。
(Example 23)
Except for press molding at a surface pressure of 35 MPa, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. Although the obtained molded product was slightly inferior in bending strength, both the surface appearance and warpage of the face plate portion were good. Further, the rib portion was satisfactory because it was completely filled with no trace of fading. Properties and evaluation results are summarized in Table 7.

(実施例24)
面圧50MPaでプレス成形した以外は、実施例1と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品は、曲げ強度の面内ばらつき、曲げ強度でやや劣るものの、面板部の表面外観、ソリともに良好であった。また、リブ部はかすれ状の跡もなく、完全充填であり、良好あった。特性および評価結果は、まとめて表7に記載した。
(Example 24)
Except for press molding at a surface pressure of 50 MPa, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. Although the obtained molded product was slightly inferior in the in-plane variation in bending strength and bending strength, both the surface appearance and warpage of the face plate portion were good. Further, the rib portion was satisfactory because it was completely filled with no trace of fading. Properties and evaluation results are summarized in Table 7.

(実施例25)
実施例1のプリフォーム1Cの形態で、遠赤外線ヒーターを具備したオーブン中で予熱した。プリフォーム1Cに設置した熱電対の温度が210℃に達するのに20分間要した。予熱後のプリフォーム1Cを用いて、実施例1と同様にして成形を行った。得られた成形品は、天板にかすれ状の跡もなく、ソリはほぼ生じていなかった。リブ部の一部にかすれ状の跡が見られたが、完全充填であった。特性および評価結果は、まとめて表7に記載した。
(Example 25)
In the form of the preform 1C of Example 1, it was preheated in an oven equipped with a far infrared heater. It took 20 minutes for the temperature of the thermocouple installed in the preform 1C to reach 210 ° C. Using the preheated preform 1C, molding was performed in the same manner as in Example 1. The obtained molded article had no trace of faintness on the top plate and almost no warpage occurred. Although a faint trace was seen in a part of the rib part, it was completely filled. Properties and evaluation results are summarized in Table 7.

(実施例26)
実施例1と同様にして、実施例1のプリフォーム1Aが1体、プリフォーム1Bが3体を、遠赤外線ヒーターを具備したオーブン中に個別に配置し、10分間予熱した。各プリフォームの成形材料に設置した熱電対の温度が210℃に達していることを確認した後、オーブン中でプリフォーム1Bの上にプリフォーム1Aを積層したものをプリフォーム1D、またプリフォーム1Bを2体積層したものをプリフォーム1Eとした。
(Example 26)
In the same manner as in Example 1, one preform 1A and three preforms 1B of Example 1 were individually placed in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in the molding material of each preform has reached 210 ° C, a preform 1D or a preform obtained by laminating the preform 1A on the preform 1B in the oven A laminate of two 1Bs was designated as preform 1E.

ついで、予熱したプリフォーム1Dを下金型の凸部の上に配置し、リブの位置に成形材料10が配置されていることを確認した後、プリフォーム1Dの上に予熱したプリフォーム1Eを配置した後、該上金型を降下させ、面圧20MPaでプレス成形した。この際、該上金型と成形材料1とが接触する時点において、成形材料1の表面温度は170℃であり、実施例1の190℃より低かった。この状態で3分間加圧、冷却した後、上金型を上昇させ、成形体を得た。面板に一部かすれ状の跡が見られた。また、リブには樹脂リッチ部が生じているものの、完全充填であった。特性および評価結果は、まとめて表8に記載した。   Next, the preheated preform 1D is placed on the convex portion of the lower mold, and after confirming that the molding material 10 is placed at the rib position, the preheated preform 1E is placed on the preform 1D. After placement, the upper mold was lowered and press-molded at a surface pressure of 20 MPa. At this time, when the upper mold and the molding material 1 were in contact, the surface temperature of the molding material 1 was 170 ° C., which was lower than 190 ° C. in Example 1. After pressing and cooling for 3 minutes in this state, the upper mold was raised to obtain a molded body. Some faint marks were seen on the face plate. Moreover, although the resin rich part had arisen in the rib, it was complete filling. Properties and evaluation results are summarized in Table 8.

(実施例27)
参考例16で得た成形材料1と参考例25で得た成形材料10とを用いた。ここで、成形材料1、成形材料10の濃度パラメーターpから、成形材料1は成形材料(A)に、成形材料10は成形材料(B)に分類される。成形材料1、成形材料10を以下の寸法に裁断し、成形材料1を16枚、成形材料10を10枚用意した。
成形材料1:長さ210mm、幅220mm
成形材料10:長さ200mm、幅20mm
(Example 27)
The molding material 1 obtained in Reference Example 16 and the molding material 10 obtained in Reference Example 25 were used. Here, from the concentration parameter p of the molding material 1 and the molding material 10, the molding material 1 is classified into the molding material (A), and the molding material 10 is classified into the molding material (B). The molding material 1 and the molding material 10 were cut into the following dimensions to prepare 16 molding materials 1 and 10 molding materials 10.
Molding material 1: length 210mm, width 220mm
Molding material 10: length 200 mm, width 20 mm

次に成形材料のプリフォームとして、4枚の成形材料1を積層した、積層体をプリフォーム27Aとし、4体用意した。また、成形材料10を2枚積層した積層体をプリフォーム27Bとし、5体用意した。成形金型は参考例27を用い、金型温度を80℃に温調した。   Next, four preforms 27A were prepared as laminates of four molding materials 1 as preforms of the molding material, and four bodies were prepared. Moreover, the laminated body which laminated | stacked two molding materials 10 was used as the preform 27B, and five bodies were prepared. As the molding die, Reference Example 27 was used, and the die temperature was adjusted to 80 ° C.

遠赤外線ヒーターを具備したオーブン中に、各プリフォームを個別に配置し、10分間予熱した。各プリフォームの成形材料に設置した熱電対の温度が210℃に達していることを確認した後、オーブン中でプリフォーム27Aを2体積層し、これをプリフォーム27Cとした。さらに、プリフォーム27Bを5体積層し、プリフォーム27Dを作製した。   Each preform was placed individually in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in the molding material of each preform reached 210 ° C., two preforms 27A were laminated in an oven, and this was designated as preform 27C. Further, five preforms 27B were laminated to produce a preform 27D.

ついで、予熱したプリフォーム27Dを下金型の開口部の上に配置した後、その両隣にプリフォーム27Cがプリフォーム27Dと重ならないように配置した。その後、該上金型を降下させ、面圧20MPaでプレス成形した。この状態で3分間加圧、冷却した後、上金型を上昇させ、成形体を得た。リブ部は樹脂リッチ部が見られたものの、完全充填であった。また、得られた成形品の天板部にソリが若干生じていた。特性および評価結果は、まとめて表8に記載した。   Next, the preheated preform 27D was disposed on the opening of the lower mold, and then the preform 27C was disposed on both sides thereof so as not to overlap the preform 27D. Thereafter, the upper mold was lowered and press-molded at a surface pressure of 20 MPa. After pressing and cooling for 3 minutes in this state, the upper mold was raised to obtain a molded body. The rib portion was completely filled although a resin rich portion was observed. In addition, some warping occurred in the top plate portion of the obtained molded product. Properties and evaluation results are summarized in Table 8.

(実施例28)
成形材料10を5枚用いた以外は、実施例1と同じにして、プリフォーム、予熱および成形を行い、成形品を得た。天板部は良好な表面外観であり、得られた成形品にソリは見られなかった。また、リブ部へは樹脂リッチ部が見られたものの、完全充填していた。特性および評価結果は、まとめて表8に記載した。
(Example 28)
Except that five molding materials 10 were used, a preform was obtained in the same manner as in Example 1 to perform preforming, preheating and molding. The top plate portion had a good surface appearance, and no warpage was found in the obtained molded product. Moreover, although the resin rich part was seen to the rib part, it was completely filled. Properties and evaluation results are summarized in Table 8.

(実施例29)
参考例29の十字リブ成形用金型を用いた以外は、実施例15と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。ただし、開口部に配置する成形材料10は、十字形状の開口部に合わせたサイズに裁断したものを用いた。成形材料どうしが重ならないことを確認して、プリフォームを作製した。得られた成形品の天板は、ソリはほぼなく、良好な表面外観を有していた。リブには、樹脂リッチ部はあるものの、完全充填であった。天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表8に記載した。
(Example 29)
Except that the cross rib molding die of Reference Example 29 was used, preforming, preheating and molding were performed in the same manner as in Example 15 to obtain a molded product. However, the molding material 10 disposed in the opening was cut into a size matched to the cross-shaped opening. After confirming that the molding materials did not overlap, a preform was prepared. The top plate of the obtained molded product had almost no warp and had a good surface appearance. The rib was completely filled although there was a resin rich part. The top plate was slightly isotropic. Properties and evaluation results are summarized in Table 8.

(実施例30)
成形材料(B)に成形材料13を用いた以外は、実施例29と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の天板は、ソリはほぼなく、良好な表面外観を有していた。リブは、樹脂リッチ部がなく、完全充填であった。天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表11に記載した。
(Example 30)
Except that the molding material 13 was used as the molding material (B), preforming, preheating and molding were performed in the same manner as in Example 29 to obtain a molded product. The top plate of the obtained molded product had almost no warp and had a good surface appearance. The rib was completely filled with no resin-rich part. The top plate was slightly isotropic. Properties and evaluation results are summarized in Table 11.

(実施例31)
成形材料(A)の上金型における開口部の開口位置に位置する領域に、切り込み長さ200mmの切り込みを入れたこと以外は、実施例17と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の天板は、ソリはほぼなく、良好な表面外観を有していた。リブは、樹脂リッチ部がなく、完全充填であった。天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表11に記載した。
(Example 31)
The preform, preheating and molding were performed in the same manner as in Example 17 except that a cut having a cut length of 200 mm was made in the region located at the opening position of the opening in the upper mold of the molding material (A). A molded product was obtained. The top plate of the obtained molded product had almost no warp and had a good surface appearance. The rib was completely filled with no resin-rich part. The top plate was slightly isotropic. Properties and evaluation results are summarized in Table 11.

(実施例32)
成形材料(A)の上金型における開口部の開口位置に位置する領域に、切り込み長さ200mmの切り込みを入れたこと以外は、実施例19と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の天板は、ソリはほぼなく、良好な表面外観を有していた。リブは、樹脂リッチ部がなく、完全充填であった。天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表11に記載した。
(Example 32)
The preform, preheating and molding were performed in the same manner as in Example 19 except that a cut having a cut length of 200 mm was made in the region located at the opening position of the opening in the upper mold of the molding material (A). A molded product was obtained. The top plate of the obtained molded product had almost no warp and had a good surface appearance. The rib was completely filled with no resin-rich part. The top plate was slightly isotropic. Properties and evaluation results are summarized in Table 11.

(実施例33)
成形材料(A)の上金型における開口部の開口位置に位置する領域に、切り込み長さ200mmの切り込みを入れたこと以外は、実施例20と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の天板は、ソリはほぼなく、良好な表面外観を有していた。リブは、樹脂リッチ部がなく、完全充填であった。天板は等方性がやや低くなっていた。特性および評価結果は、まとめて表11に記載した。
(Example 33)
The preform, preheating and molding were performed in the same manner as in Example 20 except that a cut having a cut length of 200 mm was made in the region located at the opening position of the opening in the upper mold of the molding material (A). A molded product was obtained. The top plate of the obtained molded product had almost no warp and had a good surface appearance. The rib was completely filled with no resin-rich part. The top plate was slightly isotropic. Properties and evaluation results are summarized in Table 11.

(比較例1)
参考例16で得られた成形材料1のみを用いた。成形材料1を長さ440mm、幅220mmの寸法に裁断し、8枚用意した。
(Comparative Example 1)
Only the molding material 1 obtained in Reference Example 16 was used. The molding material 1 was cut into dimensions of 440 mm in length and 220 mm in width to prepare 8 sheets.

次に成形材料のプリフォームとして、成形材料1を2枚積層した積層体を4体用意した。成形金型は参考例27を用い、金型温度を80℃に温調した。   Next, four laminates in which two molding materials 1 were laminated were prepared as preforms for the molding material. As the molding die, Reference Example 27 was used, and the die temperature was adjusted to 80 ° C.

実施例1と同様にして、遠赤外線ヒーターを具備したオーブン中に、各プリフォームを個別に配置し、10分間予熱した。各積層体に設置した熱電対の温度が210℃に達していることを確認した後、4体の積層体を順番に積層した。   In the same manner as in Example 1, each preform was individually placed in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in each laminate reached 210 ° C., four laminates were laminated in order.

ついで、該積層体を下金型の凸部の上に配置し、該上金型を降下させ、面圧20MPaでプレス成形した。この状態で3分間加圧、冷却した後、上金型を上昇させ、成形体を得た。得られた成形品の面板の表面外観は良好であり、またソリほぼ見られなかったが、面板部の等方性はやや劣っていた。さらに、リブ部の充填および繊維充填率は不十分であり、繊維充填率も十分ではなかった。特性および評価結果は、まとめて表9に記載した。   Next, the laminate was placed on the convex portion of the lower mold, the upper mold was lowered, and press-molded at a surface pressure of 20 MPa. After pressing and cooling for 3 minutes in this state, the upper mold was raised to obtain a molded body. The surface appearance of the face plate of the obtained molded product was good and almost no warp was seen, but the isotropic property of the face plate portion was somewhat inferior. Furthermore, the filling of the rib portion and the fiber filling rate were insufficient, and the fiber filling rate was not sufficient. Properties and evaluation results are summarized in Table 9.

(比較例2)
参考例25で得られた成形材料10のみを用いた。成形材料10を長さ440mm、幅220mmの寸法に裁断し、2枚用意した以外は、比較例1と同様にして、予熱および成形を行い、成形品を得た。得られた成形品の面板の表面外観は良好であり、またソリもほぼ見られなかった。しかし、面板の曲げ強度が乏しかった。リブへの充填および表面外観は良好であった。特性および評価結果は、まとめて表9に記載した。
(Comparative Example 2)
Only the molding material 10 obtained in Reference Example 25 was used. Except that the molding material 10 was cut into dimensions of 440 mm in length and 220 mm in width and two sheets were prepared, preheating and molding were performed in the same manner as in Comparative Example 1 to obtain a molded product. The surface appearance of the face plate of the obtained molded product was good, and almost no warpage was seen. However, the bending strength of the face plate was poor. The filling of the ribs and the surface appearance were good. Properties and evaluation results are summarized in Table 9.

(比較例3)
参考例16で得られた成形材料1のみを用いた。成形材料10の代わりに成形材料1を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の面板の表面外観は良好であり、またソリも見られなかった。また、天板の等方性は比較例1より優れた。しかし、リブには、樹脂リッチ部はあるものの、完全充填であった。また、繊維充填率が劣っていた。特性および評価結果は、まとめて表9に記載した。
(Comparative Example 3)
Only the molding material 1 obtained in Reference Example 16 was used. Except that the molding material 1 was used instead of the molding material 10, preforming, preheating and molding were performed in the same manner as in Example 1 to obtain a molded product. The surface appearance of the face plate of the obtained molded product was good, and no warp was seen. Further, the isotropy of the top plate was superior to that of Comparative Example 1. However, the rib was completely filled although there was a resin-rich part. Moreover, the fiber filling rate was inferior. Properties and evaluation results are summarized in Table 9.

(比較例4)
参考例18で得られた成形材料3と参考例19で得られた成形材料4とを用いた。ここで、成形材料3、成形材料4の濃度パラメーターpから、成形材料3および成形材料4ともに成形材料(A)に分類される。
(Comparative Example 4)
The molding material 3 obtained in Reference Example 18 and the molding material 4 obtained in Reference Example 19 were used. Here, the molding material 3 and the molding material 4 are classified into the molding material (A) from the concentration parameter p of the molding material 3 and the molding material 4.

成形材料1、成形材料10の代わりに、それぞれ成形材料3、成形材料4を用いた以外は、実施例1と同様にしてプリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の面板の表面外観は良好であり、またソリもほぼ見られなかった。また、面板は等方性に優れていた。しかし、リブ部は充填が不十分であり、かつ樹脂リッチが目立った。特性および評価結果は、まとめて表9に記載した。   Preformed, preheated and molded in the same manner as in Example 1 except that the molding material 3 and the molding material 4 were used in place of the molding material 1 and the molding material 10, respectively, to obtain a molded product. The surface appearance of the face plate of the obtained molded product was good, and almost no warpage was seen. Moreover, the face plate was excellent in isotropy. However, the rib portion was insufficiently filled and the resin richness was conspicuous. Properties and evaluation results are summarized in Table 9.

(比較例5)
実施例1と同様にして、参考例16で得た成形材料1と参考例25で得た成形材料10とを裁断した。ただし、成形材料1は長さ200mm、幅200mmのサイズに裁断し、16枚用意した。
(Comparative Example 5)
In the same manner as in Example 1, the molding material 1 obtained in Reference Example 16 and the molding material 10 obtained in Reference Example 25 were cut. However, the molding material 1 was cut into a size of 200 mm in length and 200 mm in width, and 16 sheets were prepared.

次に成形材料のプリフォームとして、2枚の成形材料1の上にリブの真上の位置に成形材料10を10枚配置した。この積層体をプリフォーム4Aとする。また、成形材料1を2枚積層した積層体をプリフォーム4Bとし、7体用意した。成形金型は参考例23を用い、金型温度を80℃に温調した。   Next, 10 molding materials 10 were placed on the two molding materials 1 at positions directly above the ribs as preforms of the molding material. This laminate is designated as preform 4A. Moreover, the laminated body which laminated | stacked two molding materials 1 was used as the preform 4B, and seven bodies were prepared. As a molding die, Reference Example 23 was used, and the die temperature was adjusted to 80 ° C.

遠赤外線ヒーターを具備したオーブン中に、各プリフォームを個別に配置し、10分間予熱した。各プリフォームに設置した熱電対の温度が210℃に達していることを確認した後、オーブン中でプリフォーム4Bを3体積層した上にプリフォーム4Aを積層し、さらにその上にプリフォーム4Bを4体積層したものをプリフォーム4Cとした。   Each preform was placed individually in an oven equipped with a far infrared heater and preheated for 10 minutes. After confirming that the temperature of the thermocouple installed in each preform has reached 210 ° C., three preforms 4B are laminated in an oven, and then preform 4A is laminated, and further, preform 4B is laminated thereon. A four-layer laminate was designated as Preform 4C.

ついで、予熱したプリフォーム4Cを下金型の凸部の上に配置し、リブの位置に成形材料10が配置されていることを確認した後、実施例1と同様にして成形を行い、成形品を得た。得られた成形品の面板表面にかすれ状の跡が見られた。また、リブへの充填はほとんどしていなかった。さらに、天板は等方性に劣っていた。特性および評価結果は、まとめて表9に記載した。   Next, the preheated preform 4C is placed on the convex part of the lower mold, and after confirming that the molding material 10 is placed at the position of the rib, molding is performed in the same manner as in Example 1, and molding is performed. I got a product. A faint trace was observed on the face plate surface of the obtained molded product. Also, the ribs were hardly filled. Furthermore, the top plate was inferior in isotropy. Properties and evaluation results are summarized in Table 9.

(比較例6)
予熱時の成形材料の温度を140℃とする以外は、実施例1と同様にして、プリフォーム、予熱を行った。予熱後のプリフォームを確認したところ、成形材料に含まれるポリプロピレン樹脂が溶融しておらず、成形できなかった。特性および評価結果は、まとめて表10に記載した。
(Comparative Example 6)
Preform and preheating were performed in the same manner as in Example 1 except that the temperature of the molding material during preheating was 140 ° C. When the preform after preheating was confirmed, the polypropylene resin contained in the molding material was not melted and could not be molded. Properties and evaluation results are summarized in Table 10.

(比較例7)
金型温度を30℃とする以外は、実施例20と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の面板部は、全体的にかすれが見られ、外観に劣る。リブ部は、一部にかすれ状の跡が見られたが、完全充填であった。特性および評価結果は、まとめて表10に記載した。
(Comparative Example 7)
Except that the mold temperature was 30 ° C., preforming, preheating and molding were performed in the same manner as in Example 20 to obtain a molded product. The face plate portion of the obtained molded product is generally faint and inferior in appearance. The rib portion was completely filled although a trace of faintness was seen in part. Properties and evaluation results are summarized in Table 10.

(比較例8)
金型温度を210℃とする以外は、実施例20と同様にして、プリフォーム、予熱および成形を行い、成形品を得た。得られた成形品の面板部は、全体的にかすれが見られ、外観に劣った。また、曲げ強度の面内ばらつきが劣っていた。リブ部は、一部にかすれ状の跡が見られたが、完全充填であった。特性および評価結果は、まとめて表10に記載した。
(Comparative Example 8)
Except that the mold temperature was 210 ° C., preforming, preheating and molding were performed in the same manner as in Example 20 to obtain a molded product. The face plate portion of the obtained molded product was generally faint and inferior in appearance. Moreover, the in-plane variation of bending strength was inferior. The rib portion was completely filled although a trace of faintness was seen in part. Properties and evaluation results are summarized in Table 10.

従来法とは異なり、不連続な強化繊維と熱可塑性樹脂を含むシート状の成形材料を積層し、プレス成形するにあたり、構成の異なる2種類以上の成形材料を用いることで、表面外観、寸法精度、信頼性に優れた面板部の形成と、リブ構造の形成を両立した、リブ構造を有する成形品を得ることができる。そのため本発明で得られた成形品は、自動車、電気・電子機器、家電製品、または、航空機の用途に用いられる部品・部材に好適に用いることができる。   Unlike conventional methods, when laminating discontinuous reinforcing fibers and sheet-shaped molding materials containing thermoplastic resin, and press molding, the surface appearance and dimensional accuracy are achieved by using two or more types of molding materials with different configurations. Thus, a molded product having a rib structure can be obtained in which the formation of a highly reliable face plate portion and the formation of a rib structure are compatible. Therefore, the molded article obtained by the present invention can be suitably used for parts / members used for automobiles, electrical / electronic devices, household electrical appliances, or aircraft.

1 一文字リブ成形用金型の凹部の型
2 一文字リブ成形用金型の凸部の型
3 開口部(斜線領域)
4−1,4−2,4−3,4−4,4−5,4−6,4−7,4−8,7,8 単繊維
5−1,5−2,5−3,5−4,5−5,5−6,5−7,5−8 繊維束
6−1,6−2,9 流動単位
10 成形品の投影面(斜線部)
11 開口部の投影面(斜線部)
12 二次元配向角
1 Concave mold of single-character rib molding mold 2 Convex mold of single-character rib molding mold 3 Opening (shaded area)
4-1, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 7, 8 Monofilaments 5-1, 5-2, 5-3, 5 -4, 5-5, 5-6, 5-7, 5-8 Fiber bundles 6-1, 6-2, 9 Flow unit 10 Projection surface (shaded part) of molded product
11 Projection surface of the opening (shaded area)
12 Two-dimensional orientation angle

Claims (23)

不連続な強化繊維と熱可塑性樹脂を含み、次の一般式(1)で表される濃度パラメーターpが1×10以上であって1×10以下であるシート状の成形材料(A)と、不連続な強化繊維と熱可塑性樹脂を含み、次の一般式(1)で表される濃度パラメーターpが1×10以上であって前記成形材料(A)の濃度パラメーターの0.1倍以下であるシート状の成形材料(B)を含むプリフォームを、リブ構造を形成するための開口部を有する開口金型とそれに対向する対向金型とを用いてプレス成形してリブ構造を有する成形品を製造するにあたり、前記成形材料(A)の面積を成形品の投影面積の70%以上とし、前記成形材料(B)を前記開口部の投影位置に配置する、リブ構造を有する成形品の製造方法。
n:成形材料の単位面積(1mm)当たりに含まれる強化繊維からなる流動単位の数
h:成形材料の厚み(mm)
Ln:強化繊維の数平均繊維長(mm)
A sheet-shaped molding material (A) containing discontinuous reinforcing fibers and a thermoplastic resin and having a concentration parameter p represented by the following general formula (1) of 1 × 10 4 or more and 1 × 10 8 or less A discontinuous reinforcing fiber and a thermoplastic resin, the concentration parameter p represented by the following general formula (1) is 1 × 10 1 or more, and the concentration parameter of the molding material (A) is 0.1. A preform containing a sheet-like molding material (B) that is not more than double is press-molded using an opening mold having an opening for forming a rib structure and an opposing mold facing the preform, thereby forming a rib structure. In manufacturing a molded product having, a molding having a rib structure in which the area of the molding material (A) is 70% or more of the projected area of the molded product, and the molding material (B) is disposed at the projected position of the opening. Product manufacturing method.
n: Number of flow units made of reinforcing fibers per unit area (1 mm 2 ) of molding material h: Thickness of molding material (mm)
Ln: number average fiber length of reinforcing fibers (mm)
前記プレス成形が、以下の工程(I)〜(IV)を含む、請求項1に記載のリブ構造を有する成形品の製造方法。
工程(I):プリフォームを、該プリフォームに含まれる熱可塑性樹脂の軟化温度あるいは融点以上に加熱する工程。
工程(II):工程(I)で加熱したプリフォームを搬送し、金型に配置する工程。
工程(III):熱可塑性樹脂の軟化温度あるいは融点より20℃〜150℃低い温度を有する金型を型締めすることにより、プリフォームを加圧冷却する工程。
工程(IV):冷却後、金型を開放し、金型から成形品を取り出す工程。
The method for producing a molded article having a rib structure according to claim 1, wherein the press molding includes the following steps (I) to (IV).
Step (I): A step of heating the preform above the softening temperature or melting point of the thermoplastic resin contained in the preform.
Step (II): A step of transporting the preform heated in Step (I) and placing it in a mold.
Step (III): A step of pressurizing and cooling the preform by clamping a mold having a temperature lower by 20 ° C. to 150 ° C. than the softening temperature or melting point of the thermoplastic resin.
Step (IV): A step of opening the mold after cooling and taking out the molded product from the mold.
前記プリフォームは、前記成形材料(A)と前記成形材料(B)とが積層されてなる、請求項1または2に記載のリブ構造を有する成形品の製造方法。 The method for producing a molded product having a rib structure according to claim 1 or 2, wherein the preform is formed by laminating the molding material (A) and the molding material (B). 前記プリフォームを、前記成形材料(A)が対向金型側になるように、配置する、請求項3に記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has the rib structure of Claim 3 which arrange | positions the said preform so that the said molding material (A) may become an opposing metal mold | die side. 前記成形材料(B)がプリフォームの中間層に積層され、前記成形材料(A)が、前記開口金型側にも配置される、請求項4に記載のリブ構造を有する成形品の製造方法。 The method for producing a molded article having a rib structure according to claim 4, wherein the molding material (B) is laminated on an intermediate layer of a preform, and the molding material (A) is also disposed on the opening mold side. . 前記成形材料(B)に含まれる強化繊維の数平均繊維長Lbが、前記リブ構造のリブ厚みTrの2倍以下である、請求項1〜5のいずれかに記載のリブ構造を有する成形品の製造方法。 The molded article having a rib structure according to any one of claims 1 to 5, wherein the number average fiber length Lb of the reinforcing fibers contained in the molding material (B) is not more than twice the rib thickness Tr of the rib structure. Manufacturing method. 前記成形材料(B)の面積が、前記開口部の開口面積の1〜50倍である、請求項1〜6のいずれかに記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has a rib structure in any one of Claims 1-6 whose area of the said molding material (B) is 1-50 times the opening area of the said opening part. 前記成形材料(A)が、前記成形材料(B)と前記開口金型との間に配置され、前記成形材料(A)には前記開口部の投影面の領域に貫通部を有する、請求項1〜7のいずれかに記載のリブ構造を有する成形品の製造方法。 The said molding material (A) is arrange | positioned between the said molding material (B) and the said opening metal mold | die, The said molding material (A) has a penetration part in the area | region of the projection surface of the said opening part. The manufacturing method of the molded article which has a rib structure in any one of 1-7. 前記成形材料(A)の面積が、前記成形品の投影面積よりも大きい、請求項1〜8のいずれかに記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has a rib structure in any one of Claims 1-8 whose area of the said molding material (A) is larger than the projected area of the said molded article. 前記プリフォームに含まれる成形材料(B)の総体積Vbが、前記開口部のキャビティ体積Vrより大きい、請求項1〜9のいずれかに記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has the rib structure in any one of Claims 1-9 whose total volume Vb of the molding material (B) contained in the said preform is larger than the cavity volume Vr of the said opening part. 前記熱可塑性樹脂の軟化温度あるいは融点より35℃高い温度において、成形材料(A)の伸長率R(%)が100%以上350%未満であり、成形材料(B)の伸長率R(%)が350%以上1000%未満である、請求項1〜10のいずれかに記載のリブ構造を有する成形品の製造方法。 At a temperature 35 ° C. higher than the softening temperature or melting point of the thermoplastic resin, the elongation rate R (%) of the molding material (A) is 100% or more and less than 350%, and the elongation rate R (%) of the molding material (B). The manufacturing method of the molded article which has a rib structure in any one of Claims 1-10 which are 350% or more and less than 1000%. 前記成形材料(A)に含まれる強化繊維は、強化繊維単糸(a)と該強化繊維単糸(a)と交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10〜80度である、請求項1〜11のいずれかに記載のプリフォームを用いたリブ構造を有する成形品を製造する方法。 The reinforcing fiber contained in the molding material (A) is an average of two-dimensional orientation angles formed by the reinforcing fiber single yarn (a) and the reinforcing fiber single yarn (b) intersecting the reinforcing fiber single yarn (a). The method to manufacture the molded article which has a rib structure using the preform in any one of Claims 1-11 whose value is 10-80 degree | times. 前記成形材料(A)は、測定方向による最大引張強度σMaxが最小引張強度σMinの2倍以下である、請求項1〜12のいずれかに記載のリブ構造を有する成形品の製造方法。 The said molding material (A) is a manufacturing method of the molded article which has the rib structure in any one of Claims 1-12 whose maximum tensile strength (sigma) Max by a measurement direction is 2 times or less of minimum tensile strength (sigma) Min. 前記成形材料(A)に含まれる強化繊維は、数平均繊維長が2〜20mmである、請求項1〜13のいずれかに記載のリブ構造を有する成形品の製造方法。 The reinforcing fiber contained in the molding material (A) is a method for producing a molded article having a rib structure according to any one of claims 1 to 13, wherein the number average fiber length is 2 to 20 mm. 前記成形材料(B)に含まれる強化繊維は、数平均繊維長が0.1〜2mmである、請求項1〜14のいずれかに記載のリブ構造を有する成形品の製造方法。 The method for producing a molded article having a rib structure according to any one of claims 1 to 14, wherein the reinforcing fibers contained in the molding material (B) have a number average fiber length of 0.1 to 2 mm. 前記成形材料(B)が、前記成形材料(A)を製造または加工する過程で得られる端材を含む、請求項1〜15のいずれかに記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has the rib structure in any one of Claims 1-15 in which the said molding material (B) contains the end material obtained in the process of manufacturing or processing the said molding material (A). 前記成形材料(A)が、厚み0.1〜1mmの成形素材料を積層単位として含む、請求項1〜16のいずれかに記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has a rib structure in any one of Claims 1-16 in which the said molding material (A) contains the molding raw material of thickness 0.1-1 mm as a lamination | stacking unit. 前記強化繊維がポリアクリロニトリル系炭素繊維である、請求項1〜17のいずれかに記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has a rib structure in any one of Claims 1-17 whose said reinforced fiber is a polyacrylonitrile-type carbon fiber. 前記工程(III)の型締めに際し、プリフォームと該プリフォームに接近する金型とが接触する時点において、当該接近する金型側のプリフォームの表面温度が前記熱可塑性樹脂の軟化温度あるいは融点より20℃以上高い、請求項2に記載のリブ構造を有する成形品の製造方法。 At the time of the mold clamping in the step (III), when the preform and the mold approaching the preform come into contact, the surface temperature of the preform on the approaching mold side is the softening temperature or melting point of the thermoplastic resin. The manufacturing method of the molded article which has a rib structure of Claim 2 higher than 20 degreeC. 前記工程(III)において、成形品の投影面にかかる加圧力が10〜40MPaの範囲である、請求項2に記載のリブ構造を有する成形品の製造方法。 The method for producing a molded article having a rib structure according to claim 2, wherein the pressure applied to the projection surface of the molded article in the step (III) is in the range of 10 to 40 MPa. 前記工程(I)において、前記プリフォームを構成する成形材料(A)および/または成形材料(B)を0.1〜10mmの厚みの範囲で分割し、別々に加熱し、熱可塑性樹脂を軟化温度あるいは融点以上にする、請求項2に記載のリブ構造を有する成形品の製造方法。 In the step (I), the molding material (A) and / or the molding material (B) constituting the preform is divided in a thickness range of 0.1 to 10 mm and heated separately to soften the thermoplastic resin. The method for producing a molded article having a rib structure according to claim 2, wherein the temperature or melting point is set. 前記工程(I)と前記工程(II)の間に、最終形態のプリフォームを形成する工程を含む、請求項2に記載のリブ構造を有する成形品の製造方法。 The manufacturing method of the molded article which has the rib structure of Claim 2 including the process of forming the preform of the last form between the said process (I) and the said process (II). 得られる成形品は、リブ構造の高さHr(mm)が、リブ構造が付随している面板部厚みH0(mm)の3倍以上である、請求項1〜22のいずれかに記載のリブ構造を有する成形品の製造方法。 The rib according to any one of claims 1 to 22, wherein the obtained molded product has a rib structure height Hr (mm) that is at least three times the face plate thickness H0 (mm) accompanied by the rib structure. A method for producing a molded article having a structure.
JP2013020094A 2012-02-07 2013-02-05 Method for producing molded product having rib structure Active JP6075094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020094A JP6075094B2 (en) 2012-02-07 2013-02-05 Method for producing molded product having rib structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012023986 2012-02-07
JP2012023986 2012-02-07
JP2013020094A JP6075094B2 (en) 2012-02-07 2013-02-05 Method for producing molded product having rib structure

Publications (2)

Publication Number Publication Date
JP2013176984A true JP2013176984A (en) 2013-09-09
JP6075094B2 JP6075094B2 (en) 2017-02-08

Family

ID=49269137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020094A Active JP6075094B2 (en) 2012-02-07 2013-02-05 Method for producing molded product having rib structure

Country Status (1)

Country Link
JP (1) JP6075094B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103711A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Molded product having hollow structure and process for producing same
WO2015115225A1 (en) * 2014-01-31 2015-08-06 帝人株式会社 Molding material for multi-layered structure, and molded article of multi-layered structure
WO2015194533A1 (en) * 2014-06-20 2015-12-23 帝人株式会社 Method for manufacturing molded article having opening, and molded article
WO2016159118A1 (en) * 2015-03-30 2016-10-06 三菱レイヨン株式会社 Molding and manufacturing method therefor
WO2017115640A1 (en) * 2015-12-28 2017-07-06 東レ株式会社 Sandwich structure, molded object, and production processes therefor
WO2017126159A1 (en) * 2016-01-20 2017-07-27 株式会社Ihi Fiber-reinforced composite member molding device and fiber-reinforced composite member molding method
GB2551843A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551842A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551845A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551844A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
KR20180056913A (en) * 2016-11-21 2018-05-30 (주)라컴텍 Manufacturing method of product using carbon fiber reinforced plastic prepreg
JP2018086857A (en) * 2018-02-27 2018-06-07 株式会社名機製作所 Press-molding apparatus and press-molding method for molding including reinforcing fiber and thermoplastic resin
WO2018143068A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Fiber-reinforced resin molding material
WO2019131045A1 (en) 2017-12-26 2019-07-04 帝人株式会社 Method for producing press molded body
RU2697334C1 (en) * 2018-06-21 2019-08-13 Рустам Маратович Субханкулов Method of making multilayer articles from polymer composite materials and machine for realizing the method
CN110382195A (en) * 2017-03-01 2019-10-25 日产自动车株式会社 The manufacturing method of carbon-fiber reinforced resins formed body and the carbon-fiber reinforced resins formed body
JP2020504688A (en) * 2016-12-26 2020-02-13 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド Combined primary and carbon fiber components in the production of reinforced polymeric articles
JP2020110934A (en) * 2019-01-08 2020-07-27 株式会社イノアックコーポレーション Composite member
JPWO2020203971A1 (en) * 2019-03-29 2020-10-08
JPWO2021153366A1 (en) * 2020-01-27 2021-08-05
US11155301B2 (en) 2017-10-19 2021-10-26 Magna Exteriors, Inc Method of reducing knit line during compression molding of carbon fiber SMC for complex 3D structural application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284309A (en) * 1988-05-31 1990-03-26 Phillips Petroleum Co Composite body with integrated and molded rib and manufacture thereof
JPH059301A (en) * 1990-12-17 1993-01-19 Nippon Steel Corp Stamping-molding material and stamped-molding
JPH0768580A (en) * 1993-09-03 1995-03-14 Sumitomo Metal Ind Ltd Manufacture of fiber-reinforced thermoplastic resin nolded product
JP2011189747A (en) * 2011-05-10 2011-09-29 Toray Ind Inc Method of manufacturing press molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284309A (en) * 1988-05-31 1990-03-26 Phillips Petroleum Co Composite body with integrated and molded rib and manufacture thereof
JPH059301A (en) * 1990-12-17 1993-01-19 Nippon Steel Corp Stamping-molding material and stamped-molding
JPH0768580A (en) * 1993-09-03 1995-03-14 Sumitomo Metal Ind Ltd Manufacture of fiber-reinforced thermoplastic resin nolded product
JP2011189747A (en) * 2011-05-10 2011-09-29 Toray Ind Inc Method of manufacturing press molded article

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578290B1 (en) * 2012-12-26 2014-08-27 東レ株式会社 Molded body having hollow structure and method for producing the same
WO2014103711A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Molded product having hollow structure and process for producing same
JPWO2015115225A1 (en) * 2014-01-31 2017-03-23 帝人株式会社 Multilayer structure molding material and multilayer structure molding
WO2015115225A1 (en) * 2014-01-31 2015-08-06 帝人株式会社 Molding material for multi-layered structure, and molded article of multi-layered structure
US10987906B2 (en) 2014-01-31 2021-04-27 Teijin Limited Molding material for multi-layered structure and molded article of multi-layered structure
JP5985085B2 (en) * 2014-01-31 2016-09-06 帝人株式会社 Multilayer structure molding material and multilayer structure molding
JPWO2015194533A1 (en) * 2014-06-20 2017-04-20 帝人株式会社 Method for producing molded body having opening
JP5952510B2 (en) * 2014-06-20 2016-07-13 帝人株式会社 Method for producing molded body having opening
WO2015194533A1 (en) * 2014-06-20 2015-12-23 帝人株式会社 Method for manufacturing molded article having opening, and molded article
WO2016159118A1 (en) * 2015-03-30 2016-10-06 三菱レイヨン株式会社 Molding and manufacturing method therefor
JPWO2016159118A1 (en) * 2015-03-30 2017-04-27 三菱レイヨン株式会社 Molded body and manufacturing method thereof
US11911933B2 (en) 2015-03-30 2024-02-27 Mitsubishi Chemical Corporation Molded body and manufacturing method therefor
US20180104869A1 (en) * 2015-03-30 2018-04-19 Mitsubishi Chemical Corporation Molded body and manufacturing method therefor
KR20180098226A (en) 2015-12-28 2018-09-03 도레이 카부시키가이샤 Sandwich structures and shaped bodies, and methods of making them
WO2017115640A1 (en) * 2015-12-28 2017-07-06 東レ株式会社 Sandwich structure, molded object, and production processes therefor
US10532537B2 (en) 2015-12-28 2020-01-14 Toray Industries, Inc. Sandwich structure, shaped product, and production processes therefor
WO2017126159A1 (en) * 2016-01-20 2017-07-27 株式会社Ihi Fiber-reinforced composite member molding device and fiber-reinforced composite member molding method
JP2017128036A (en) * 2016-01-20 2017-07-27 株式会社Ihi Molding apparatus and molding method of fiber-reinforced composite member
RU2691340C1 (en) * 2016-01-20 2019-06-11 АйЭйчАй КОРПОРЕЙШН Device for molding fiber-reinforced composite element and method of molding fiber-reinforced composite element
GB2551844B (en) * 2016-07-01 2019-09-04 Gurit Uk Ltd Moulding composite panels
GB2551845B (en) * 2016-07-01 2019-09-04 Gurit Uk Ltd Moulding composite panels
GB2551843A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551845A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551842A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551843B (en) * 2016-07-01 2019-09-04 Gurit Uk Ltd Moulding composite panels
GB2551844A (en) * 2016-07-01 2018-01-03 Gurit (Uk) Ltd Moulding composite panels
GB2551842B (en) * 2016-07-01 2019-09-04 Gurit Uk Ltd Moulding composite panels
KR20180056913A (en) * 2016-11-21 2018-05-30 (주)라컴텍 Manufacturing method of product using carbon fiber reinforced plastic prepreg
KR101901333B1 (en) * 2016-11-21 2018-11-05 주식회사 라컴텍 Manufacturing method of product using carbon fiber reinforced plastic prepreg
JP7023963B2 (en) 2016-12-26 2022-02-22 テイジン オートモーティブ テクノロジーズ, インコーポレイテッド Combined primary and carbon fiber components in the production of reinforced polymer articles
US11161311B2 (en) 2016-12-26 2021-11-02 Continental Structural Plastics, Inc. Combined primary fiber and carbon fiber component for production of reinforced polymeric articles
JP2020504688A (en) * 2016-12-26 2020-02-13 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド Combined primary and carbon fiber components in the production of reinforced polymeric articles
WO2018143068A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Fiber-reinforced resin molding material
JPWO2018143068A1 (en) * 2017-02-02 2019-11-21 東レ株式会社 Fiber reinforced resin molding material
US11230067B2 (en) 2017-03-01 2022-01-25 Nissan Motor Co., Ltd. Carbon fiber-reinforced resin molded body and manufacturing method thereof
JPWO2018158882A1 (en) * 2017-03-01 2020-03-05 日産自動車株式会社 Carbon fiber reinforced resin molded article and method for producing the carbon fiber reinforced resin molded article
CN110382195A (en) * 2017-03-01 2019-10-25 日产自动车株式会社 The manufacturing method of carbon-fiber reinforced resins formed body and the carbon-fiber reinforced resins formed body
US11155301B2 (en) 2017-10-19 2021-10-26 Magna Exteriors, Inc Method of reducing knit line during compression molding of carbon fiber SMC for complex 3D structural application
WO2019131045A1 (en) 2017-12-26 2019-07-04 帝人株式会社 Method for producing press molded body
US11883989B2 (en) 2017-12-26 2024-01-30 Teijin Limited Method for producing press molded body
EP3885097A1 (en) 2017-12-26 2021-09-29 Teijin Limited Method for producing press molded body
JP2018086857A (en) * 2018-02-27 2018-06-07 株式会社名機製作所 Press-molding apparatus and press-molding method for molding including reinforcing fiber and thermoplastic resin
RU2697334C1 (en) * 2018-06-21 2019-08-13 Рустам Маратович Субханкулов Method of making multilayer articles from polymer composite materials and machine for realizing the method
JP7290944B2 (en) 2019-01-08 2023-06-14 株式会社イノアックコーポレーション composite material
JP2020110934A (en) * 2019-01-08 2020-07-27 株式会社イノアックコーポレーション Composite member
JP7249404B2 (en) 2019-03-29 2023-03-30 川崎重工業株式会社 Composite material panel structure and manufacturing method thereof
WO2020203971A1 (en) * 2019-03-29 2020-10-08 川崎重工業株式会社 Panel structure made of composite material and method for manufacturing same
JPWO2020203971A1 (en) * 2019-03-29 2020-10-08
CN115023329A (en) * 2020-01-27 2022-09-06 帝人株式会社 Cold-pressed shaped body comprising carbon fibers and glass fibers and method for producing same
WO2021153366A1 (en) * 2020-01-27 2021-08-05 帝人株式会社 Cold press molded body containing carbon fiber and glass fiber, and manufacturing method thereof
JP7267466B2 (en) 2020-01-27 2023-05-01 帝人株式会社 COLD-PRESS MOLDED PRODUCT CONTAINING CARBON FIBER AND GLASS FIBER, AND METHOD FOR MANUFACTURING THE SAME
JPWO2021153366A1 (en) * 2020-01-27 2021-08-05
CN115023329B (en) * 2020-01-27 2024-04-12 帝人株式会社 Cold press molded article comprising carbon fiber and glass fiber, and method for producing same

Also Published As

Publication number Publication date
JP6075094B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6075094B2 (en) Method for producing molded product having rib structure
KR101146612B1 (en) Prepreg, preform, molded product, and method for manufacturing prepreg
JP5691699B2 (en) Press molding method and molded body thereof
CN110072693B (en) Composite structure and method for manufacturing same
JP6245362B2 (en) Fiber-reinforced composite material molded article and method for producing the same
JP5459005B2 (en) Press molding method and molded body thereof
JP5985085B2 (en) Multilayer structure molding material and multilayer structure molding
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
JP5900663B2 (en) Fiber reinforced resin laminate
JPWO2014103711A1 (en) Molded body having hollow structure and method for producing the same
JP5749343B2 (en) Method for producing composite molded body having undercut portion
JP2012192645A (en) Method for manufacturing molded article
CN107002365B (en) Carbon fiber felt, blank, sheet material, and molded article
TW201627359A (en) Fiber-reinforced plastic molded body sheet and method for producing the same, and fiber-reinforced plastic molded body
JP2014069403A (en) Method for producing press-molded article by using stampable sheet-like product
US11491759B2 (en) Composite laminate and method for producing same
CN115023329B (en) Cold press molded article comprising carbon fiber and glass fiber, and method for producing same
US20220203662A1 (en) Composite laminate and method for producing same
EP4067065A1 (en) Sandwich structure and method for manufacturing same
TWI701273B (en) Reinforced fiber composite
JP2013202891A (en) Carbon fiber composite material and method for manufacturing the same
JP2021062495A (en) Composite laminate and method of producing the same
WO2022050213A1 (en) Thermoplastic prepreg, fiber-reinforced plastic, and manufacturing method therefor
US20220203663A1 (en) Composite laminate and method for producing same
US20220404106A1 (en) Sandwich structure and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R151 Written notification of patent or utility model registration

Ref document number: 6075094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151