JP2013175296A - Temperature adjustment mechanism for battery - Google Patents

Temperature adjustment mechanism for battery Download PDF

Info

Publication number
JP2013175296A
JP2013175296A JP2012037675A JP2012037675A JP2013175296A JP 2013175296 A JP2013175296 A JP 2013175296A JP 2012037675 A JP2012037675 A JP 2012037675A JP 2012037675 A JP2012037675 A JP 2012037675A JP 2013175296 A JP2013175296 A JP 2013175296A
Authority
JP
Japan
Prior art keywords
battery
heat
temperature
heat medium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012037675A
Other languages
Japanese (ja)
Inventor
Yasunari Akiyama
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012037675A priority Critical patent/JP2013175296A/en
Publication of JP2013175296A publication Critical patent/JP2013175296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature adjustment mechanism for a battery which reduces a temperature difference between batteries.SOLUTION: First to fourth secondary batteries 31 to 34 are disposed in a case 10. A circulation passage 14, in which a heat medium circulates, is formed in the case 10. Further, an air blower 15 enabling forward and reverse rotations is disposed in the case 10. An air blowing direction of the air blower 15 may be changed by changing a rotation direction. Further, a circulation direction of the heat medium may be switched by changing the rotation direction of the air blower 15. Further, a heat exchanger 17 conducting heat exchange with the heat medium may be disposed in the case 10.

Description

本発明は、熱媒体を循環させる循環流路が形成されたケースの内部に、複数の電池を循環流路上に熱媒体の循環方向に沿って並設し、循環流路を循環する熱媒体により電池の温度調節を行う電池用温度調節機構に関する。   According to the present invention, a plurality of batteries are juxtaposed along a circulation direction of the heat medium on the circulation channel inside the case in which a circulation channel for circulating the heat medium is formed. The present invention relates to a battery temperature adjustment mechanism for adjusting the temperature of a battery.

近年、二次電池(電池)の大電流での充電及び放電や二次電池の大容量化が要求されるようになっている。しかし、大電流での充電及び放電は二次電池内部の大きな発熱を伴うことから二次電池の温度が上昇し、二次電池の性能の劣化を促進してしまう。また、二次電池によっては環境温度が低いと放電性能が低下する。このため、二次電池を規定温度に温度調節することが必要である。二次電池の温度調節を行うものとして、例えば、特許文献1に記載の温度調節装置が挙げられる。   In recent years, charging and discharging of a secondary battery (battery) with a large current and an increase in capacity of the secondary battery have been required. However, charging and discharging with a large current accompany large heat generation inside the secondary battery, so that the temperature of the secondary battery rises and promotes deterioration of the performance of the secondary battery. In addition, depending on the secondary battery, the discharge performance deteriorates when the environmental temperature is low. For this reason, it is necessary to adjust the temperature of the secondary battery to a specified temperature. As what controls the temperature of a secondary battery, the temperature control apparatus of patent document 1 is mentioned, for example.

特許文献1では、所定の間隔を空けて並設される複数の二次電池をケースに収容することによって二次電池モジュールが形成されている。ケースには、一対の冷却通路の一端が接続されるとともに、両冷却通路の他端には放熱部が接続されている。そして、放熱部で冷却された冷却液は、一方の冷却通路を介してケース内を流通し、二次電池の冷却が行われる。二次電池冷却後の冷却液は、他方の冷却通路を介して放熱部に供給され、放熱部で冷却される。   In Patent Document 1, a secondary battery module is formed by housing a plurality of secondary batteries arranged in parallel at predetermined intervals in a case. One end of a pair of cooling passages is connected to the case, and a heat radiating portion is connected to the other ends of both cooling passages. And the cooling fluid cooled by the thermal radiation part distribute | circulates the inside of a case via one cooling channel, and a secondary battery is cooled. The coolant after cooling the secondary battery is supplied to the heat radiating part via the other cooling passage and cooled by the heat radiating part.

特開2011−159601号公報JP 2011-159601 A

ところで、特許文献1においてケース内に供給された冷却液は、ケース内での上流側から下流側に向かうにつれ、二次電池との熱交換によって徐々に加熱され、下流側ほど冷却液と、二次電池との温度差が小さくなっていく。したがって、特許文献1の温度調節装置では、下流側に位置する二次電池ほど冷却効率が低下してしまい、上流側に位置する二次電池と、下流側に位置する二次電池との間に温度差が生じてしまう。   By the way, the cooling liquid supplied in the case in Patent Document 1 is gradually heated by heat exchange with the secondary battery as it goes from the upstream side to the downstream side in the case. The temperature difference from the secondary battery becomes smaller. Therefore, in the temperature control apparatus of Patent Document 1, the cooling efficiency of the secondary battery located on the downstream side decreases, and the secondary battery located on the upstream side and the secondary battery located on the downstream side are between. A temperature difference will occur.

本発明は、このような従来技術の問題点に鑑みてなされたものであって、その目的は、電池間の温度差を小さくすることができる電池用温度調節機構を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a battery temperature adjusting mechanism capable of reducing a temperature difference between batteries.

上記課題を解決するため、請求項1に記載の発明は、熱媒体を循環させる循環流路が形成されたケースの内部に、複数の電池を前記循環流路上に前記熱媒体の循環方向に沿って並設し、前記循環流路を循環する熱媒体により前記電池の温度調節を行う電池用温度調節機構であって、前記熱媒体と熱交換を行う熱交換器と、前記循環流路に前記熱媒体を循環させる循環機構と、前記熱媒体の循環方向を切り替える切替手段と、を前記ケースの内部に配設し、前記複数の電池のうち、前記熱交換器によって熱交換された直後の前記熱媒体の循環方向における上流側に配設された前記電池から順に温度調節を行うことを要旨とする。   In order to solve the above-described problem, the invention according to claim 1 is directed to a case in which a circulation channel for circulating a heat medium is formed, and a plurality of batteries are placed on the circulation channel along the circulation direction of the heat medium. A temperature control mechanism for a battery that adjusts the temperature of the battery by a heat medium that circulates through the circulation flow path, and a heat exchanger that exchanges heat with the heat medium; A circulation mechanism that circulates the heat medium and a switching unit that switches a circulation direction of the heat medium are disposed inside the case, and the heat exchanger immediately after the heat exchange is performed among the plurality of batteries. The gist is to adjust the temperature in order from the battery disposed upstream in the circulation direction of the heat medium.

これによれば、ケース内での熱媒体の循環方向を切り替えることで、熱交換器と熱交換された直後の熱媒体と熱交換される電池の順序を逆転させることができる。例えば、最初に熱媒体と熱交換されていた電池は、最後に熱交換されることになる。よって、切替手段によって熱媒体の循環方向を切り替えながら電池の温度調節を行うことで、複数の電池間での温度調節効率の差が小さくなる。したがって、電池間の温度差を小さくすることができる。   According to this, by switching the circulation direction of the heat medium in the case, it is possible to reverse the order of the batteries to be heat exchanged with the heat medium immediately after heat exchange with the heat exchanger. For example, a battery that was initially heat exchanged with a heat medium is finally heat exchanged. Therefore, by adjusting the battery temperature while switching the circulation direction of the heat medium by the switching means, the difference in the temperature adjustment efficiency among the plurality of batteries is reduced. Therefore, the temperature difference between the batteries can be reduced.

また、前記熱交換器を複数配設してもよい。
これによれば、例えば、同じ熱交換効率の熱交換器が一つと複数では、複数の熱交換器の方が熱媒体を効率よく熱交換することができる。また、切替手段によって熱媒体の循環方向を切り替えながら電池の温度調節を行うことで、各熱交換器間の温度差も小さくなる。
A plurality of the heat exchangers may be provided.
According to this, for example, when one and a plurality of heat exchangers have the same heat exchange efficiency, the plurality of heat exchangers can more efficiently exchange heat with the heat medium. Moreover, the temperature difference between each heat exchanger becomes small by adjusting the temperature of the battery while switching the circulation direction of the heat medium by the switching means.

また、前記熱交換器と熱交換された直後の前記熱媒体が最初に熱交換を行う電池及び最後に熱交換を行う電池には、前記電池の温度を測定する電池温度センサが設けられ、前記熱交換器と熱交換された直後の前記熱媒体が最初に熱交換を行う電池の温度と、最後に熱交換を行う電池の温度の温度差が閾値以上になったときに前記切替手段によって前記熱媒体の循環方向を切り替えてもよい。   In addition, a battery in which the heat medium immediately after heat exchange with the heat exchanger performs heat exchange first and a battery in which heat exchange is performed last are provided with a battery temperature sensor for measuring the temperature of the battery, When the temperature difference between the temperature of the battery that exchanges heat first with the heat exchanger and the temperature of the battery that exchanges heat lastly exceeds a threshold, The circulation direction of the heat medium may be switched.

これによれば、温度差が最も大きくなる二つの電池の温度差に基づいて熱媒体の循環方向が切り替えられる。閾値は、電池が好適に放電を行える範囲の温度差よりも若干低い値に設定される。したがって、電池の温度差が、電池が好適に放電を行える範囲の温度差よりも高くなろうとすると、熱交換器と熱交換された直後の熱媒体と熱交換される電池の順序が逆転する。この結果、電池の温度差は、電池が好適に放電を行える範囲内に維持され、電池は好適に放電を行うことができる。   According to this, the circulation direction of the heat medium is switched based on the temperature difference between the two batteries having the largest temperature difference. The threshold value is set to a value slightly lower than the temperature difference within a range where the battery can be suitably discharged. Therefore, when the temperature difference of the battery is higher than the temperature difference within a range where the battery can be suitably discharged, the order of the battery exchanged with the heat medium immediately after the heat exchange with the heat exchanger is reversed. As a result, the temperature difference of the battery is maintained within a range where the battery can be suitably discharged, and the battery can be suitably discharged.

本発明によれば、電池間の温度差を小さくすることができる。   According to the present invention, the temperature difference between batteries can be reduced.

第1実施形態における電池用温度調節機構を示す概要図。The schematic diagram which shows the temperature control mechanism for batteries in 1st Embodiment. 第1実施形態における制御装置が行う処理を示すフローチャート。The flowchart which shows the process which the control apparatus in 1st Embodiment performs. 第2実施形態における電池用温度調節機構を示す概要図。The schematic diagram which shows the temperature control mechanism for batteries in 2nd Embodiment. 第2実施形態における電池用温度調節機構を示す概要図。The schematic diagram which shows the temperature control mechanism for batteries in 2nd Embodiment.

(第1実施形態)
以下、本発明を具体化した第1実施形態について図1及び図2に従って説明を行う。
図1に示すように、ケース10は、平面視矩形状の底板10aと、底板10aの4辺のうち短辺から立設された側壁10b,10c及び長辺から立設された側壁10d,10eと、図示しない天板と、からなる。このケース10の内部には、第1電池パック21、第2電池パック22、第3電池パック23及び第4電池パック24が側壁10dの内面に沿って並設されている。各電池パック21〜24は、電池としての複数の二次電池31〜34を側壁10dから側壁10eに向かう方向に沿って所定の間隔を空けて並設することにより形成されている。本実施形態の電池用温度調節機構1は、ケース10の内部で気体状の熱媒体(例えば、空気)を循環させることで、ケース10の内部に配設された二次電池31〜34の温度調節を行う電池用温度調節機構である。なお、以下の説明において、第1電池パック21を形成する二次電池31を第1二次電池31,第2電池パック22を形成する二次電池32を第2二次電池32、第3電池パック23を形成する二次電池33を第3二次電池33、第4電池パック24を形成する二次電池34を第4二次電池34として説明を行う。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the case 10 includes a bottom plate 10a having a rectangular shape in plan view, side walls 10b and 10c erected from the short side of the four sides of the bottom plate 10a, and side walls 10d and 10e erected from the long side. And a top plate (not shown). Inside the case 10, a first battery pack 21, a second battery pack 22, a third battery pack 23, and a fourth battery pack 24 are arranged side by side along the inner surface of the side wall 10d. Each of the battery packs 21 to 24 is formed by arranging a plurality of secondary batteries 31 to 34 as batteries in parallel along a direction from the side wall 10d toward the side wall 10e with a predetermined interval. The battery temperature adjustment mechanism 1 according to the present embodiment circulates a gaseous heat medium (for example, air) inside the case 10, so that the temperature of the secondary batteries 31 to 34 disposed inside the case 10. This is a temperature control mechanism for a battery that performs adjustment. In the following description, the secondary battery 31 forming the first battery pack 21 is the first secondary battery 31, and the secondary battery 32 forming the second battery pack 22 is the second secondary battery 32, the third battery. The secondary battery 33 forming the pack 23 will be described as the third secondary battery 33, and the secondary battery 34 forming the fourth battery pack 24 will be described as the fourth secondary battery 34.

ケース10の底板10aには、矩形板状の仕切板11が、側壁10eと対向し、かつ、平行に延びるように立設されている。そして、ケース10の内部には、仕切板11と側壁10dの間に熱媒体が流通する第1流路12が区画されるとともに、仕切板11と側壁10eの間に熱媒体が流通する第2流路13が区画されている。第1流路12は、第2流路13に比べて、熱媒体が流通する流路面積が大きくなっている。第1流路12と第2流路13とは、仕切板11の一端11aと、この一端11aに対向する側壁10bとの間の隙間61及び仕切板11の他端11bと、この他端11bに対向する側壁10cとの間の隙間62で連通している。第1流路12、隙間61、第2流路13及び隙間62とで、ケース10内には、熱媒体が循環する循環流路14が形成されている。そして、第1電池パック21〜第4電池パック24は、第1流路12に配設されるとともに、循環流路14上に並設されている。したがって、第1二次電池31〜第4二次電池34も循環流路14上に熱媒体の循環方向に沿って並設されていることになる。   On the bottom plate 10a of the case 10, a rectangular plate-like partition plate 11 is erected so as to face the side wall 10e and extend in parallel. And inside the case 10, the 1st flow path 12 through which a heat medium distribute | circulates between the partition plate 11 and the side wall 10d is divided, and the 2nd heat medium distribute | circulates between the partition plate 11 and the side wall 10e. A flow path 13 is defined. The first flow path 12 has a larger flow path area through which the heat medium flows than the second flow path 13. The first flow path 12 and the second flow path 13 include a gap 61 between the one end 11a of the partition plate 11 and the side wall 10b facing the one end 11a, the other end 11b of the partition plate 11, and the other end 11b. And a side wall 10c facing each other through a gap 62. The first flow path 12, the gap 61, the second flow path 13, and the gap 62 form a circulation flow path 14 in which the heat medium circulates in the case 10. The first battery pack 21 to the fourth battery pack 24 are disposed in the first flow path 12 and are arranged in parallel on the circulation flow path 14. Accordingly, the first secondary battery 31 to the fourth secondary battery 34 are also arranged in parallel along the circulation direction of the heat medium on the circulation flow path 14.

ケース10の内部において、側壁10bの内面と第1電池パック21の間には、循環流路14に熱媒体を循環させる循環機構としての送風機15が配設されている。この送風機15は、第1電池パック21に向けて開口する第1送風口15aと、第1送風口15aと逆方向に延び、かつ、側壁10eに向けて開口する第2送風口15bとを備える。送風機15は、正逆回転可能な送風機15であり、回転方向を変更することによって送風方向を変更することができる。本実施形態の送風機15は、正方向に回転するときは、矢印Y1に示すように、第1送風口15aから第1流路12に向けて送風を行い、逆方向に回転するときは、矢印Y2に示すように、第2送風口15bから第2流路13に向けて送風を行う。すなわち、送風機15が正方向に回転する場合には、第1流路12→隙間62→第2流路13→隙間61の順に熱媒体は循環流路14を循環し、送風機15が逆方向に回転する場合には、隙間61→第2流路13→隙間62→第1流路12の順に熱媒体は循環流路14を循環するようになっている。したがって、本実施形態において、送風機15が循環流路14を循環する熱媒体の循環方向を切り替える切替手段として機能している。   Inside the case 10, a blower 15 is disposed between the inner surface of the side wall 10 b and the first battery pack 21 as a circulation mechanism that circulates the heat medium in the circulation flow path 14. The blower 15 includes a first blower port 15a that opens toward the first battery pack 21, and a second blower port 15b that extends in the opposite direction to the first blower port 15a and opens toward the side wall 10e. . The blower 15 is a blower 15 that can rotate forward and backward, and can change the blowing direction by changing the rotation direction. When the blower 15 of the present embodiment rotates in the forward direction, as shown by the arrow Y1, the blower 15 blows air from the first blower port 15a toward the first flow path 12, and when rotated in the reverse direction, the arrow As indicated by Y2, air is blown from the second air blowing port 15b toward the second flow path 13. That is, when the blower 15 rotates in the forward direction, the heat medium circulates in the circulation flow path 14 in the order of the first flow path 12 → the gap 62 → the second flow path 13 → the gap 61, and the blower 15 is moved in the reverse direction. When rotating, the heat medium circulates in the circulation channel 14 in the order of the gap 61 → the second channel 13 → the gap 62 → the first channel 12. Therefore, in this embodiment, the blower 15 functions as a switching unit that switches the circulation direction of the heat medium that circulates in the circulation flow path 14.

また、側壁10cには熱電変換素子16が複数(本実施形態では2つ)配設されている。具体的にいえば、側壁10cには、熱電変換素子16が嵌合される嵌合孔10fが2箇所に形成されており、各嵌合孔10fに熱電変換素子16が嵌合されることで、熱電変換素子16は側壁10cの一部を構成している。   In addition, a plurality (two in this embodiment) of thermoelectric conversion elements 16 are disposed on the side wall 10c. More specifically, the side wall 10c has two fitting holes 10f into which the thermoelectric conversion elements 16 are fitted, and the thermoelectric conversion elements 16 are fitted into the respective fitting holes 10f. The thermoelectric conversion element 16 constitutes a part of the side wall 10c.

熱電変換素子16は、通電の極性に応じて吸熱と放熱の相反する作用を行う第1面16a及び第2面16bを有しており、第1面16a及び第2面16bには、熱交換器17,18が接合されている。第1面16aに接合される熱交換器17は、ケース10の内部に露出しており、循環流路14を循環する熱媒体と熱交換を行えるようになっている。第1面16aは、吸熱及び放熱を行うことで、熱交換器17を加熱又は冷却することができる。したがって、熱電変換素子16は、熱交換器17を介してケース10の内部の熱媒体を温度調節する温度調節装置として機能している。   The thermoelectric conversion element 16 has a first surface 16a and a second surface 16b that perform opposite actions of heat absorption and heat dissipation according to the polarity of energization, and heat exchange is performed on the first surface 16a and the second surface 16b. Containers 17 and 18 are joined. The heat exchanger 17 joined to the first surface 16 a is exposed inside the case 10 and can exchange heat with the heat medium circulating in the circulation flow path 14. The first surface 16a can heat or cool the heat exchanger 17 by performing heat absorption and heat dissipation. Therefore, the thermoelectric conversion element 16 functions as a temperature adjusting device that adjusts the temperature of the heat medium inside the case 10 via the heat exchanger 17.

第1二次電池31及び第4二次電池34には、第1二次電池31及び第4二次電池34の温度を測定する電池温度センサ41,42が設けられている。熱媒体が第1流路12→隙間62→第2流路13→隙間61の順に循環流路14を循環する場合、第1二次電池31が、熱交換器17と熱交換された直後の熱媒体が最初に熱交換を行う電池となり、第4二次電池34が、最後に熱交換を行う電池となる。すなわち、熱交換器17と熱交換された直後の熱媒体の循環方向における上流側に配設された電池となる第1二次電池31から順に温度調節が行われる。なお、ここでいう「熱交換器17と熱交換された直後の熱媒体」とは、熱交換器17と熱交換を行った後の熱媒体が、いずれの二次電池31〜34とも熱交換を行っていない状態の熱媒体を示す。一方、熱媒体が隙間61→第2流路13→隙間62→第1流路12の順に循環流路14を循環する場合、第1二次電池31が、熱交換器17と熱交換された直後の熱媒体が最後に熱交換を行う電池となり、第4二次電池34が、最初に熱交換を行う電池となる。すなわち、熱交換器17と熱交換された直後の熱媒体の循環方向における上流側に配設された電池となる第4二次電池34から順に温度調節が行われる。したがって、熱媒体の循環方向にかかわらず、熱交換器17と熱交換された直後の熱媒体が最初に熱交換を行う電池及び最後に熱交換を行う電池は、第1二次電池31及び第4二次電池34となる。そして、本実施形態の電池用温度調節機構1は、ケース10の内部に配設されている循環流路14,送風機15,熱交換器17及び電池温度センサ41,42から構成されている。   The first secondary battery 31 and the fourth secondary battery 34 are provided with battery temperature sensors 41 and 42 that measure the temperatures of the first secondary battery 31 and the fourth secondary battery 34. When the heat medium circulates in the circulation flow path 14 in the order of the first flow path 12 → the gap 62 → the second flow path 13 → the gap 61, immediately after the first secondary battery 31 is heat-exchanged with the heat exchanger 17. The heat medium becomes a battery that performs heat exchange first, and the fourth secondary battery 34 becomes a battery that finally performs heat exchange. That is, temperature adjustment is performed in order from the first secondary battery 31 that is a battery disposed on the upstream side in the circulation direction of the heat medium immediately after heat exchange with the heat exchanger 17. The “heat medium immediately after being heat exchanged with the heat exchanger 17” here refers to the heat medium after heat exchange with the heat exchanger 17 is performed with any of the secondary batteries 31 to 34. The heat medium in a state where no heating is performed is shown. On the other hand, when the heat medium circulates in the circulation flow path 14 in the order of the gap 61 → the second flow path 13 → the gap 62 → the first flow path 12, the first secondary battery 31 is heat-exchanged with the heat exchanger 17. The immediately following heat medium becomes the battery that performs heat exchange last, and the fourth secondary battery 34 becomes the battery that performs heat exchange first. That is, the temperature adjustment is performed in order from the fourth secondary battery 34 that is a battery disposed on the upstream side in the circulation direction of the heat medium immediately after heat exchange with the heat exchanger 17. Therefore, regardless of the circulation direction of the heat medium, the battery that performs heat exchange first and the battery that performs heat exchange immediately after heat exchange with the heat exchanger 17 are the first secondary battery 31 and the first battery. 4 secondary battery 34 is obtained. The battery temperature adjustment mechanism 1 according to the present embodiment includes a circulation flow path 14, a blower 15, a heat exchanger 17, and battery temperature sensors 41 and 42 disposed inside the case 10.

各電池温度センサ41,42、熱電変換素子16及び送風機15は、制御装置43に接続されている。そして、制御装置43は、各電池温度センサ41,42によって計測される第1二次電池31及び第4二次電池34の温度に基づいて熱電変換素子16及び送風機15を制御する。   The battery temperature sensors 41 and 42, the thermoelectric conversion element 16, and the blower 15 are connected to the control device 43. And the control apparatus 43 controls the thermoelectric conversion element 16 and the air blower 15 based on the temperature of the 1st secondary battery 31 and the 4th secondary battery 34 measured by each battery temperature sensor 41,42.

次に、本実施形態における電池用温度調節機構1の作用について説明する。
二次電池31〜34が充放電されている状態において、制御装置43には第1二次電池31及び第4二次電池34の温度情報が入力されている。そして、制御装置43は、図2に示すように二次電池31〜34の温度調節を行う。
Next, the operation of the battery temperature adjustment mechanism 1 in this embodiment will be described.
In the state where the secondary batteries 31 to 34 are charged and discharged, temperature information of the first secondary battery 31 and the fourth secondary battery 34 is input to the control device 43. And the control apparatus 43 adjusts the temperature of the secondary batteries 31-34 as shown in FIG.

制御装置43は、電池温度センサ41,42から制御装置43に出力される第1二次電池31及び第4二次電池34の温度情報から、二次電池31〜34の温度調節が必要か否かを判定する(ステップS10)。具体的にいえば、制御装置43は、電池温度センサ41,42により計測された第1二次電池31及び第4二次電池34の温度が予め設定された一定範囲内の温度か否かを判断し、一定範囲内の温度であれば温度調節は不要と判定し、一定範囲内の温度でなければ温度調節が必要と判定する。この一定範囲の温度は、二次電池31〜34を適切に充放電することのできる温度の範囲であり、第1二次電池31及び第4二次電池34のうち少なくともいずれか一方の温度が上限より高ければ二次電池31〜34の冷却が必要であると判定する。また、第1二次電池31及び第4二次電池34のうち少なくともいずれか一方の温度が下限より低ければ二次電池31〜34の加熱が必要と判定する。ステップS10の判定結果が肯定の場合、制御装置43はステップS20に移行する。   Whether the control device 43 needs to adjust the temperature of the secondary batteries 31 to 34 based on the temperature information of the first secondary battery 31 and the fourth secondary battery 34 output from the battery temperature sensors 41 and 42 to the control device 43. Is determined (step S10). Specifically, the control device 43 determines whether or not the temperatures of the first secondary battery 31 and the fourth secondary battery 34 measured by the battery temperature sensors 41 and 42 are within a predetermined range. If it is determined that the temperature is within a certain range, it is determined that temperature adjustment is not necessary. The temperature in the certain range is a temperature range in which the secondary batteries 31 to 34 can be appropriately charged and discharged, and the temperature of at least one of the first secondary battery 31 and the fourth secondary battery 34 is If it is higher than the upper limit, it is determined that the secondary batteries 31 to 34 need to be cooled. If the temperature of at least one of the first secondary battery 31 and the fourth secondary battery 34 is lower than the lower limit, it is determined that the secondary batteries 31 to 34 need to be heated. If the determination result of step S10 is affirmative, the control device 43 proceeds to step S20.

ステップS20において、制御装置43は、熱電変換素子16及び送風機15が駆動しているか否か、すなわち、二次電池31〜34の温度調節を既に行っているか否かを判断する。ステップS20の判定結果が否定の場合、制御装置43はステップS30に移行する。一方、ステップS20の判定結果が肯定の場合、制御装置43はステップS40に移行する。   In step S20, the control device 43 determines whether or not the thermoelectric conversion element 16 and the blower 15 are driven, that is, whether or not the temperature adjustment of the secondary batteries 31 to 34 has already been performed. When the determination result of step S20 is negative, the control device 43 proceeds to step S30. On the other hand, when the determination result of step S20 is affirmative, the control device 43 proceeds to step S40.

ステップS30において、制御装置43は、熱電変換素子16及び送風機15を駆動する。具体的にいえば、ステップS10において二次電池31〜34の加熱が必要と判定された場合には、熱電変換素子16の第1面16aが放熱を行い、第2面16bが吸熱を行うように熱電変換素子16を制御する。一方、ステップS10において二次電池31〜34の冷却が必要と判定された場合には、熱電変換素子16の第1面16aが吸熱を行い、第2面16bが放熱を行うように熱電変換素子16を制御する。   In step S <b> 30, the control device 43 drives the thermoelectric conversion element 16 and the blower 15. Specifically, when it is determined in step S10 that the secondary batteries 31 to 34 need to be heated, the first surface 16a of the thermoelectric conversion element 16 dissipates heat and the second surface 16b absorbs heat. The thermoelectric conversion element 16 is controlled. On the other hand, when it is determined in step S10 that the secondary batteries 31 to 34 need to be cooled, the first surface 16a of the thermoelectric conversion element 16 absorbs heat and the second surface 16b dissipates heat. 16 is controlled.

また、制御装置43は、第1二次電池31の温度と、第4二次電池34の温度を比較して、送風機15の回転方向を決定する。制御装置43は、二次電池31〜34の加熱が必要な場合、第1二次電池31の温度と、第4二次電池34の温度を比較して温度の低い二次電池31,34が、熱交換器17と熱交換された直後の熱媒体によって最初に熱交換が行われる二次電池31,34となるように送風機15を駆動させる。また、制御装置43は、二次電池31〜34の冷却が必要な場合、第1二次電池31の温度と、第4二次電池34の温度を比較して温度の高い二次電池31,34が熱交換器17と熱交換された直後の熱媒体が最初に熱交換を行う二次電池31,34となるように送風機15を駆動させる。   Further, the control device 43 compares the temperature of the first secondary battery 31 with the temperature of the fourth secondary battery 34 to determine the rotation direction of the blower 15. When the secondary battery 31 to 34 needs to be heated, the control device 43 compares the temperature of the first secondary battery 31 and the temperature of the fourth secondary battery 34 to determine whether the secondary batteries 31 and 34 having a lower temperature are present. Then, the blower 15 is driven so as to be the secondary batteries 31 and 34 in which heat exchange is first performed by the heat medium immediately after heat exchange with the heat exchanger 17. Further, when the secondary battery 31 to 34 needs to be cooled, the control device 43 compares the temperature of the first secondary battery 31 with the temperature of the fourth secondary battery 34, and the secondary battery 31 having a high temperature. The blower 15 is driven so that the heat medium immediately after the heat exchange of the heat exchanger 34 with the heat exchanger 17 becomes the secondary batteries 31 and 34 that perform heat exchange first.

そして、送風機15が駆動されることで、循環流路14を熱媒体が循環する。送風機15が正方向に回転するように駆動される場合、熱媒体は、第1流路12を流通した後、熱電変換素子16の第1面16aに接合された熱交換器17と熱交換を行う。熱媒体は、熱電変換素子16の第1面16aが吸熱を行っている場合には、冷却され、放熱を行っている場合には加熱される。したがって、二次電池31〜34と熱交換されて二次電池31〜34に対する温度調節効率が低減した熱媒体は、熱交換器17と熱交換を行うことで、温度調節効率が向上される。そして、熱交換器17によって熱交換された直後の熱媒体は、第2流路13を流通し、再び第1流路12を流通することで、循環流路14を循環する。送風機15が逆方向に回転するように駆動される場合、熱媒体は、第2流路13を流通した後、熱電変換素子16の第1面16aに接合された熱交換器17と熱交換を行う。熱媒体は、熱交換器17と熱交換されることによって、加熱又は冷却される。そして、熱交換器17によって熱交換された直後の熱媒体は、第1流路12を流通し、再び第2流路13を流通することで循環流路14を循環する。そして、制御装置43は、ステップS40に移行する。   And the heat medium circulates through the circulation flow path 14 by driving the blower 15. When the blower 15 is driven to rotate in the forward direction, the heat medium exchanges heat with the heat exchanger 17 joined to the first surface 16 a of the thermoelectric conversion element 16 after flowing through the first flow path 12. Do. The heat medium is cooled when the first surface 16a of the thermoelectric conversion element 16 absorbs heat, and heated when it dissipates heat. Accordingly, the heat medium that has been subjected to heat exchange with the secondary batteries 31 to 34 to reduce the temperature adjustment efficiency for the secondary batteries 31 to 34 performs heat exchange with the heat exchanger 17, thereby improving the temperature adjustment efficiency. Then, the heat medium immediately after being heat-exchanged by the heat exchanger 17 circulates in the circulation channel 14 by flowing through the second channel 13 and again through the first channel 12. When the blower 15 is driven to rotate in the reverse direction, the heat medium exchanges heat with the heat exchanger 17 joined to the first surface 16a of the thermoelectric conversion element 16 after flowing through the second flow path 13. Do. The heat medium is heated or cooled by heat exchange with the heat exchanger 17. The heat medium immediately after being heat-exchanged by the heat exchanger 17 circulates in the circulation flow path 14 by flowing through the first flow path 12 and again through the second flow path 13. And the control apparatus 43 transfers to step S40.

ステップS40において、制御装置43は、第1二次電池31と、第4二次電池34の温度差が閾値以上か否かを判断する。なお、閾値は、二次電池31〜34が好適に充放電を行える範囲の温度差よりも若干低い値に設定される。送風機15による送風によって熱媒体を循環させると、熱交換器17によって熱交換された熱媒体は、循環流路14を循環するにつれ、二次電池31〜34と熱交換されていく。このため、熱交換器17によって熱交換された熱媒体と後に熱交換される二次電池31〜34ほど熱媒体との温度差が小さくなっていき、時間の経過に伴い、熱交換器17によって熱交換された直後の熱媒体が最初に熱交換を行う二次電池31,34と、最後に熱交換を行う二次電池31,34間に温度差が生じてくる。   In step S40, the control device 43 determines whether or not the temperature difference between the first secondary battery 31 and the fourth secondary battery 34 is equal to or greater than a threshold value. In addition, a threshold value is set to a value a little lower than the temperature difference of the range which can charge / discharge suitably the secondary batteries 31-34. When the heat medium is circulated by blowing air from the blower 15, the heat medium exchanged by the heat exchanger 17 is heat-exchanged with the secondary batteries 31 to 34 as it circulates through the circulation channel 14. For this reason, the temperature difference between the heat medium exchanged by the heat exchanger 17 and the secondary battery 31 to 34 to be heat-exchanged later becomes smaller, and with time, the heat exchanger 17 A temperature difference is generated between the secondary batteries 31 and 34 in which the heat medium immediately after the heat exchange performs heat exchange first and the secondary batteries 31 and 34 in which heat exchange is performed last.

具体的にいえば、送風機15を正方向に回転させることで、循環流路14に熱媒体を循環させている場合、第1二次電池31が、熱交換器17によって熱交換された直後の熱媒体が最初に熱交換を行う二次電池31となるため、最も効率よく温度調節される。そして、第1二次電池31→第2二次電池32→第3二次電池33→第4二次電池34の順に温度調節効率が低下していく。このため、第1二次電池31と第4二次電池34の温度差が最も大きくなる。   Specifically, when the heat medium is circulated in the circulation flow path 14 by rotating the blower 15 in the forward direction, the first secondary battery 31 is immediately after the heat exchange by the heat exchanger 17. Since the heat medium becomes the secondary battery 31 that performs heat exchange first, the temperature is adjusted most efficiently. Then, the temperature regulation efficiency decreases in the order of the first secondary battery 31 → the second secondary battery 32 → the third secondary battery 33 → the fourth secondary battery 34. For this reason, the temperature difference between the first secondary battery 31 and the fourth secondary battery 34 is the largest.

送風機15を逆方向に回転させることで、循環流路14に熱媒体を循環させている場合、第4二次電池34が、熱交換器17によって熱交換された直後の熱媒体が最初に熱交換を行う二次電池31となり、第4二次電池34→第3二次電池33→第2二次電池32→第1二次電池31の順に温度調節効率が低下していく。このため、送風機15を正方向に回転させる場合と同様に、第1二次電池31と第4二次電池34の温度差が最も大きくなる。ステップS40の判定結果が肯定の場合、制御装置43はステップS50に移行する。一方、ステップS40の判定結果が否定の場合、制御装置43は、処理を終了する。   When the heat medium is circulated in the circulation flow path 14 by rotating the blower 15 in the reverse direction, the heat medium immediately after the heat exchange of the fourth secondary battery 34 by the heat exchanger 17 is first performed. The secondary battery 31 is replaced, and the temperature regulation efficiency decreases in the order of the fourth secondary battery 34 → the third secondary battery 33 → the second secondary battery 32 → the first secondary battery 31. For this reason, the temperature difference of the 1st secondary battery 31 and the 4th secondary battery 34 becomes the largest similarly to the case where the air blower 15 is rotated in the forward direction. When the determination result of step S40 is affirmative, the control device 43 proceeds to step S50. On the other hand, when the determination result of step S40 is negative, the control device 43 ends the process.

ステップS50において、制御装置43は、送風機15の回転方向を変更することで、送風方向を変更する。送風方向が変更されることで、熱媒体の循環方向が切り替わる。具体的にいえば、熱媒体が第1流路12→第2流路13の順に循環流路14を循環していた場合には、熱媒体が第2流路13→第1流路12の順に循環流路14を循環することになる。また、熱媒体が第2流路13→第1流路12の順に循環流路14を循環していた場合には、熱媒体が第1流路12→第2流路13の順に循環流路14を循環することになる。すなわち、熱交換器17と熱交換された直後の熱媒体と熱交換を行う二次電池31〜34の順序が逆転する。したがって、第1二次電池31にする温度調節効率と、第4二次電池34に対する温度調節効率とが切り替えられることになる。同様に、第2二次電池32と、第3二次電池33に対する温度調節効率とが切り替えられることになる。   In step S50, the control device 43 changes the blowing direction by changing the rotation direction of the blower 15. By changing the air blowing direction, the circulation direction of the heat medium is switched. Specifically, when the heat medium circulates in the circulation flow path 14 in the order of the first flow path 12 → the second flow path 13, the heat medium moves from the second flow path 13 → the first flow path 12. The circulation channel 14 is circulated in order. When the heat medium circulates in the circulation channel 14 in the order of the second channel 13 → the first channel 12, the heat medium circulates in the order of the first channel 12 → the second channel 13. 14 will be circulated. That is, the order of the secondary batteries 31 to 34 performing heat exchange with the heat medium immediately after heat exchange with the heat exchanger 17 is reversed. Therefore, the temperature adjustment efficiency for the first secondary battery 31 and the temperature adjustment efficiency for the fourth secondary battery 34 are switched. Similarly, the temperature control efficiency for the second secondary battery 32 and the third secondary battery 33 is switched.

ステップS10の判定結果が肯定の場合、制御装置43はステップS60に移行する。
ステップS60において、制御装置43は、熱電変換素子16及び送風機15が駆動しているか否かを判断する。ステップS60の判定結果が否定の場合、制御装置43は処理を終了する。一方、ステップS60の判定結果が肯定の場合、制御装置43は、ステップS70に移行する。ステップS70において、制御装置43は、熱電変換素子16及び送風機15を停止し、処理を終了する。
When the determination result of step S10 is affirmative, the control device 43 proceeds to step S60.
In step S60, the control device 43 determines whether or not the thermoelectric conversion element 16 and the blower 15 are driven. If the determination result of step S60 is negative, the control device 43 ends the process. On the other hand, when the determination result of step S60 is positive, the control device 43 proceeds to step S70. In step S70, the control apparatus 43 stops the thermoelectric conversion element 16 and the air blower 15, and complete | finishes a process.

したがって、上記実施形態によれば以下のような効果を得ることができる。
(1)ケース10の内部に、熱媒体を循環させる循環流路14を形成するとともに、循環流路14での熱媒体の循環方向に沿って複数の二次電池31〜34が並設されている。そして、ケース10の内部に配設される送風機15の送風方向は、回転方向を変更することによって変更されるようになっている。送風機15の送風方向を変更することで、ケース10内での熱媒体の循環方向を切り替えることができ、熱交換器17と熱交換された直後の熱媒体によって熱交換される二次電池31〜34の順序を逆転することができる。したがって、熱媒体の循環方向を切り替えながら二次電池31〜34の温度調節を行うことで、各二次電池31〜34に対する温度調節効率の差が小さくなる。このため、二次電池31〜34間の温度差を小さくすることができる。
Therefore, according to the above embodiment, the following effects can be obtained.
(1) A circulation channel 14 for circulating the heat medium is formed inside the case 10, and a plurality of secondary batteries 31 to 34 are arranged in parallel along the circulation direction of the heat medium in the circulation channel 14. Yes. And the ventilation direction of the air blower 15 arrange | positioned inside the case 10 is changed by changing a rotation direction. By changing the blowing direction of the blower 15, the circulation direction of the heat medium in the case 10 can be switched, and the secondary batteries 31 to 31 are heat-exchanged by the heat medium immediately after heat exchange with the heat exchanger 17. The order of 34 can be reversed. Therefore, by adjusting the temperature of the secondary batteries 31 to 34 while switching the circulation direction of the heat medium, the difference in temperature adjustment efficiency with respect to each of the secondary batteries 31 to 34 is reduced. For this reason, the temperature difference between the secondary batteries 31-34 can be made small.

(2)熱交換器17を複数(2つ)配設している。したがって、熱媒体は複数の熱交換器17によって効率よく熱交換される。また、送風機15の送風方向を変更することにより熱媒体の循環方向を切り替えながら二次電池31〜34の温度調節を行うことで、結果として各熱交換器17間の温度差も小さくなる。したがって、熱媒体との熱交換効率が向上される。   (2) A plurality (two) of heat exchangers 17 are arranged. Therefore, the heat medium is efficiently heat-exchanged by the plurality of heat exchangers 17. In addition, by adjusting the temperature of the secondary batteries 31 to 34 while changing the direction of circulation of the heat medium by changing the blowing direction of the blower 15, the temperature difference between the heat exchangers 17 is also reduced as a result. Therefore, the efficiency of heat exchange with the heat medium is improved.

(3)第1二次電池31及び第4二次電池34に電池温度センサ41,42を設けている。そして、制御装置43は、電池温度センサ41,42の検出結果に基づき、第1二次電池31と第4二次電池34の温度差が閾値以上になったと判断すると、送風機15の送風方向を変更することによって、熱媒体の循環方向を変更する。温度差が最も大きくなる第1二次電池31と第4二次電池34の温度差に基づいて熱媒体の循環方向が切り替えられる。閾値は、二次電池31〜34が好適に充放電を行える範囲の温度差よりも若干低い値に設定される。したがって、第1二次電池31と第4二次電池34の温度差が、二次電池31〜34が好適に充放電を行える範囲の温度差よりも高くなろうとすると、熱交換器17と熱交換された直後の熱媒体と熱交換される二次電池31,34の順序が逆転する。この結果、二次電池31〜34の温度差は、二次電池31〜34が好適に充放電を行える範囲内に維持され、二次電池31〜34は好適に充放電を行うことができる。   (3) The battery temperature sensors 41 and 42 are provided in the first secondary battery 31 and the fourth secondary battery 34. And if the control apparatus 43 judges that the temperature difference of the 1st secondary battery 31 and the 4th secondary battery 34 became more than a threshold value based on the detection result of the battery temperature sensors 41 and 42, the ventilation direction of the air blower 15 will be set. By changing, the circulation direction of the heat medium is changed. The circulation direction of the heat medium is switched based on the temperature difference between the first secondary battery 31 and the fourth secondary battery 34 where the temperature difference becomes the largest. The threshold value is set to a value slightly lower than the temperature difference within a range where the secondary batteries 31 to 34 can be charged / discharged suitably. Therefore, if the temperature difference between the first secondary battery 31 and the fourth secondary battery 34 is to be higher than the temperature difference within a range in which the secondary batteries 31 to 34 can be charged / discharged suitably, the heat exchanger 17 and the heat exchanger 17 are heated. The order of the secondary batteries 31 and 34 to be heat exchanged with the heat medium immediately after the exchange is reversed. As a result, the temperature difference between the secondary batteries 31 to 34 is maintained within a range where the secondary batteries 31 to 34 can be charged / discharged suitably, and the secondary batteries 31 to 34 can be charged / discharged appropriately.

(4)送風機15、熱交換器17及び二次電池31〜34は、ケース10の内部に収容されている。したがって、これらをまとめてひとつのユニットとすることができる。
(5)熱交換器17に熱電変換素子16の第1面16aを接合し、第1面16aが吸熱又は放熱を行うことにより、熱交換器17を介して熱媒体の加熱又は冷却をできるようにしている。このため、熱媒体を加熱又は冷却することができ、二次電池31〜34に対する温度調節効率が向上される。
(4) The blower 15, the heat exchanger 17, and the secondary batteries 31 to 34 are accommodated in the case 10. Therefore, these can be combined into one unit.
(5) The first surface 16a of the thermoelectric conversion element 16 is joined to the heat exchanger 17, and the first surface 16a absorbs heat or dissipates heat so that the heat medium can be heated or cooled via the heat exchanger 17. I have to. For this reason, a heat carrier can be heated or cooled, and the temperature control efficiency with respect to the secondary batteries 31-34 is improved.

(6)また、熱電変換素子16を用いることで、加熱又は冷却のどちらか一方ではなく、熱媒体の冷却及び加熱をすることができる。したがって、二次電池31〜34の加熱及び冷却ができる。   (6) Further, by using the thermoelectric conversion element 16, it is possible to cool and heat the heat medium instead of either heating or cooling. Therefore, the secondary batteries 31 to 34 can be heated and cooled.

(第2実施形態)
以下、本発明を具体化した第2実施形態について図3及び図4にしたがって説明する。
以下に説明する実施形態は、既に説明した実施形態と同一構成について同一符号を付すなどしてその重複する説明を省略又は簡略する。
(Second Embodiment)
In the following, a second embodiment embodying the present invention will be described with reference to FIGS.
In the embodiment described below, the same components as those in the embodiment described above are denoted by the same reference numerals, and redundant description thereof is omitted or simplified.

図3に示すように、本実施形態の第1流路12及び第2流路13は、熱媒体が流通する流路面積が同一になっている。そして、第1流路12には第1電池パック21及び第2電池パック22が配設されるとともに、第2流路13には第3電池パック23及び第4電池パック24が配設されている。   As shown in FIG. 3, the first flow path 12 and the second flow path 13 of the present embodiment have the same flow path area through which the heat medium flows. A first battery pack 21 and a second battery pack 22 are disposed in the first flow path 12, and a third battery pack 23 and a fourth battery pack 24 are disposed in the second flow path 13. Yes.

側壁10bの内面と、第1電池パック21の間には、切替手段としての第1ガイド部材51が設けられている。また、側壁10bの内面と、第4電池パック24の間には、切替手段としての及び第2ガイド部材52が設けられている。各ガイド部材51,52は板状をなしており、各ガイド部材51,52の基端には、駆動部51a,52aが設けられている。駆動部51aが駆動することで、第1ガイド部材51は、その先端が、側壁10dに当接する位置と仕切板11に当接する位置との間で回動可能となっている。また、駆動部52aが駆動することで、第2ガイド部材52は、その先端が、側壁10eに当接する位置と仕切板11に当接する位置との間で回動可能となっている。第1ガイド部材51の駆動部51aと、第2ガイド部材52の駆動部52aは、連動して駆動されるようになっている。また、送風機15は、第1ガイド部材51と第2ガイド部材52の間に送風を行えるように配設されている。   Between the inner surface of the side wall 10b and the first battery pack 21, a first guide member 51 is provided as a switching means. Further, a second guide member 52 serving as a switching unit is provided between the inner surface of the side wall 10 b and the fourth battery pack 24. Each guide member 51, 52 has a plate shape, and drive portions 51a, 52a are provided at the base ends of the respective guide members 51, 52. When the drive unit 51a is driven, the first guide member 51 is rotatable between a position where the tip of the first guide member 51 abuts on the side wall 10d and a position where the first guide member 51 abuts on the partition plate 11. Further, when the driving unit 52a is driven, the second guide member 52 is rotatable between a position where the tip of the second guide member 52 is in contact with the side wall 10e and a position in which the second guide member 52 is in contact with the partition plate 11. The drive part 51a of the first guide member 51 and the drive part 52a of the second guide member 52 are driven in conjunction with each other. The blower 15 is disposed between the first guide member 51 and the second guide member 52 so that air can be blown.

第1ガイド部材51の先端が側壁10dに当接し、第2ガイド部材52の先端が仕切板11に当接している状態で送風機15が送風を行うと、第2ガイド部材52によって第2流路13への熱媒体の流通は阻害され、矢印Y3に示すように、第1流路12に熱媒体が流通する。したがって、熱媒体は、第1流路12→隙間62→第2流路13→隙間61の順に循環流路14を循環する。   When the blower 15 blows air with the tip of the first guide member 51 in contact with the side wall 10d and the tip of the second guide member 52 in contact with the partition plate 11, the second guide member 52 causes the second flow path to flow. The flow of the heat medium to 13 is hindered, and the heat medium flows through the first flow path 12 as indicated by an arrow Y3. Accordingly, the heat medium circulates in the circulation flow path 14 in the order of the first flow path 12 → the gap 62 → the second flow path 13 → the gap 61.

図4に示すように、第1ガイド部材51の先端が仕切板11に当接し、第2ガイド部材52の先端が側壁10eに当接している状態で送風機15が送風を行うと、第1ガイド部材51によって第1流路12への熱媒体の流通は阻害され、矢印Y4に示すように、第2流路13に熱媒体が流通する。したがって、熱媒体は、第2流路13→隙間62→第1流路12→隙間61の順に循環流路14を循環する。   As shown in FIG. 4, when the blower 15 blows air with the front end of the first guide member 51 in contact with the partition plate 11 and the front end of the second guide member 52 in contact with the side wall 10 e, the first guide The flow of the heat medium to the first flow path 12 is inhibited by the member 51, and the heat medium flows to the second flow path 13 as indicated by an arrow Y4. Accordingly, the heat medium circulates in the circulation flow path 14 in the order of the second flow path 13 → the gap 62 → the first flow path 12 → the gap 61.

本実施形態では、熱交換器17と熱交換された直後の熱媒体が最初に熱交換を行う電池及び最後に熱交換を行う電池は、第2二次電池32及び第3二次電池33となる。したがって、第2二次電池32及び第3二次電池33には、電池温度センサ41,42が設けられている。本実施形態の電池用温度調節機構2は、ケース10の内部に配設されている循環流路14,送風機15,熱交換器17,電池温度センサ41,42及びガイド部材51,52から構成されている。   In the present embodiment, the battery that first performs heat exchange with the heat medium immediately after heat exchange with the heat exchanger 17 and the battery that performs heat exchange last are the second secondary battery 32 and the third secondary battery 33. Become. Therefore, the second secondary battery 32 and the third secondary battery 33 are provided with battery temperature sensors 41 and 42. The battery temperature adjustment mechanism 2 according to the present embodiment includes a circulation flow path 14, a blower 15, a heat exchanger 17, battery temperature sensors 41 and 42, and guide members 51 and 52 disposed inside the case 10. ing.

そして、本実施形態の制御装置43は、第1実施形態と同様の制御を行う。すなわち、第2二次電池32の温度と、第3二次電池33の温度差が閾値以上になると、ガイド部材51,52を駆動し、熱媒体の循環方向を切り替える。   And the control apparatus 43 of this embodiment performs control similar to 1st Embodiment. That is, when the difference between the temperature of the second secondary battery 32 and the temperature of the third secondary battery 33 exceeds a threshold value, the guide members 51 and 52 are driven to switch the circulation direction of the heat medium.

したがって、上記実施形態によれば、第1実施形態の効果(2)〜(6)に加えて、以下のような効果を得ることができる。
(7)第1ガイド部材51及び第2ガイド部材52を駆動することで、熱媒体の循環方向を切り替えることができ、熱交換器17と熱交換された直後の熱媒体に熱交換される二次電池31〜34の順序を逆転させることができる。したがって、熱媒体の循環方向を切り替えながら二次電池31〜34の温度調節を行うことで、各二次電池31〜34に対する温度調節効率の差が小さくなる。このため、二次電池31〜34間の温度差を小さくすることができる。
Therefore, according to the said embodiment, in addition to the effect (2)-(6) of 1st Embodiment, the following effects can be acquired.
(7) By driving the first guide member 51 and the second guide member 52, the circulation direction of the heat medium can be switched, and heat exchange is performed with the heat medium immediately after heat exchange with the heat exchanger 17. The order of the secondary batteries 31 to 34 can be reversed. Therefore, by adjusting the temperature of the secondary batteries 31 to 34 while switching the circulation direction of the heat medium, the difference in temperature adjustment efficiency with respect to each of the secondary batteries 31 to 34 is reduced. For this reason, the temperature difference between the secondary batteries 31-34 can be made small.

(8)送風機15の回転方向を変更することなく、熱媒体の循環方向を変更することができる。したがって、簡易な構成の送風機15で熱媒体の循環方向を変更することができる。   (8) It is possible to change the circulation direction of the heat medium without changing the rotation direction of the blower 15. Therefore, the circulation direction of the heat medium can be changed with the blower 15 having a simple configuration.

なお、実施形態は、以下のように変更してもよい。
○ 各実施形態において、温度調節装置として熱電変換素子16を用いたが、ヒータや冷却装置など、他の装置を用いてもよい。また、温度調節装置を用いなくても十分に二次電池31〜34の温度調節を行える場合には、温度調節装置を用いなくてもよい。
In addition, you may change embodiment as follows.
In each embodiment, the thermoelectric conversion element 16 is used as the temperature adjusting device, but other devices such as a heater and a cooling device may be used. Further, when the temperature of the secondary batteries 31 to 34 can be sufficiently adjusted without using the temperature adjusting device, the temperature adjusting device may not be used.

○ 各実施形態において、第1二次電池31及び第4二次電池34又は第2二次電池32及び第3二次電池33にのみ電池温度センサ41,42を設けたが、第1二次電池31〜第4二次電池34に電池温度センサを設けてもよい。この場合、第1二次電池31〜第4二次電池34の温度に基づいて送風機15の送風方向を切り替える。   In each embodiment, the battery temperature sensors 41 and 42 are provided only in the first secondary battery 31 and the fourth secondary battery 34 or the second secondary battery 32 and the third secondary battery 33. The battery 31 to the fourth secondary battery 34 may be provided with a battery temperature sensor. In this case, the blowing direction of the blower 15 is switched based on the temperatures of the first secondary battery 31 to the fourth secondary battery 34.

○ 各実施形態において、二次電池31,34に電池温度センサ41,42を設けたが、二つの熱交換器17に電池温度センサ41,42を設けて、熱交換器17の温度差に基づいて熱媒体の循環方向を切り替えてもよい。また、各実施形態において、熱交換器17の数を増やしてもよい。この場合、二次電池31,34と熱交換を行った直後の熱媒体と最初に熱交換を行う熱交換器17及び最後に熱交換を行う熱交換器17に電池温度センサ41,42を設けてもよい。この場合、制御装置43は、二次電池31〜34と熱交換を行った熱媒体と最初に熱交換を行う熱交換器17の温度と、最後に熱交換を行う熱交換器17の温度の温度差が閾値以上になった場合に熱媒体の循環方向を切り替える。これによれば、熱交換器17間の温度差のばらつきが小さくなる。   In each embodiment, the battery temperature sensors 41 and 42 are provided in the secondary batteries 31 and 34, but the battery temperature sensors 41 and 42 are provided in the two heat exchangers 17 and based on the temperature difference of the heat exchanger 17. Thus, the circulation direction of the heat medium may be switched. In each embodiment, the number of heat exchangers 17 may be increased. In this case, battery temperature sensors 41 and 42 are provided in the heat exchanger 17 that first performs heat exchange with the heat medium immediately after heat exchange with the secondary batteries 31 and 34 and finally in the heat exchanger 17 that performs heat exchange. May be. In this case, the control device 43 sets the temperature of the heat exchanger 17 that performs heat exchange with the heat medium that exchanges heat with the secondary batteries 31 to 34 and the temperature of the heat exchanger 17 that performs heat exchange at the end. When the temperature difference is equal to or greater than the threshold, the heat medium circulation direction is switched. According to this, the dispersion | variation in the temperature difference between the heat exchangers 17 becomes small.

○ 各実施形態において、各電池パック21〜24は、4つの二次電池31〜34から形成したが、二次電池31〜34の数を変更してもよい。
○ 各実施形態において、4つの電池パック21〜24をケース10の内部に並設したが、電池パックの数を変更してもよい。
In each embodiment, each battery pack 21-24 is formed from four secondary batteries 31-34, but the number of secondary batteries 31-34 may be changed.
In each embodiment, the four battery packs 21 to 24 are arranged in parallel inside the case 10, but the number of battery packs may be changed.

○ 各実施形態において、2つの熱電変換素子16を配設したが、熱電変換素子16の数を変更してもよい。
○ 各実施形態において、第1流路12と第2流路13の流路面積を変更してもよい。すなわち、第1流路12と第2流路13の流路面積は、同じにしてもよいし、異なるようにしてもよい。
In each embodiment, two thermoelectric conversion elements 16 are provided, but the number of thermoelectric conversion elements 16 may be changed.
In each embodiment, the flow channel areas of the first flow channel 12 and the second flow channel 13 may be changed. That is, the flow path areas of the first flow path 12 and the second flow path 13 may be the same or different.

○ 各実施形態において、電池として二次電池31〜34を用いたが一次電池を用いてもよい。
○ 各実施形態において、気体状の熱媒体を用いて二次電池31〜34の温度調節を行ったが、液状の熱媒体(例えば、冷却水)を用いてもよい。この場合、循環機構としてポンプが用いられる。
In each embodiment, the secondary batteries 31 to 34 are used as the batteries, but a primary battery may be used.
In each embodiment, the temperature of the secondary batteries 31 to 34 is adjusted using a gaseous heat medium, but a liquid heat medium (for example, cooling water) may be used. In this case, a pump is used as the circulation mechanism.

○ 各実施形態において、仕切板11は、側壁10eと平行に延びるように立設したが、ケース10の内部に第1流路と第2流路を区画形成できれば、側壁10eと平行に立設されていなくてもよい。   In each embodiment, the partition plate 11 is erected so as to extend in parallel with the side wall 10e. However, if the first flow path and the second flow path can be partitioned in the case 10, the partition plate 11 is erected in parallel with the side wall 10e. It does not have to be.

○ 第1実施形態において、送風機15の回転方向を変更することで熱冷媒の循環方向を変更したが、第1流路12に送風を行う送風機15と、第2流路13に送風を行う送風機15を別個に設けて、各送風機15の停止と駆動を切り替えることで、熱媒体の循環方向を変更してもよい。   In the first embodiment, the circulation direction of the thermal refrigerant is changed by changing the rotation direction of the blower 15, but the blower 15 that blows air to the first flow path 12 and the blower that blows air to the second flow path 13. 15 may be provided separately, and the circulation direction of the heat medium may be changed by switching between stopping and driving of each blower 15.

○ 第1実施形態において、送風機15の回転方向を変更することで熱媒体の循環方向を変更したが、送風機15の回転方向を変更せず、送風機15の向きを変更することによって熱媒体の循環方向を変更してもよい。   In the first embodiment, the heat medium circulation direction is changed by changing the rotation direction of the blower 15, but the heat medium circulation is changed by changing the direction of the blower 15 without changing the rotation direction of the blower 15. The direction may be changed.

○ 各実施形態において、各電池温度センサ41,42によって測定される第1二次電池31及び第4二次電池34の温度に基づいて送風機15による送風方向を変更したが、電池温度センサ41,42を設けず、一定時間おきに送風機15による送風方向を変更してもよい。この場合であっても、各二次電池31〜34間の温度差を小さくすることができる。   In each embodiment, although the blowing direction by the blower 15 was changed based on the temperature of the first secondary battery 31 and the fourth secondary battery 34 measured by the battery temperature sensors 41 and 42, the battery temperature sensor 41, 42 may not be provided, and the air blowing direction by the air blower 15 may be changed at regular intervals. Even in this case, the temperature difference between the secondary batteries 31 to 34 can be reduced.

○ 第2実施形態において、各ガイド部材51,52に駆動部51a,52aを設けたが、第1ガイド部材51と第2ガイド部材52が連動するように各ガイド部材51,52を機械的に接続すれば、いずれか一方のガイド部材にのみ駆動部を設けてもよい。   In the second embodiment, the drive parts 51a and 52a are provided on the guide members 51 and 52. However, the guide members 51 and 52 are mechanically connected so that the first guide member 51 and the second guide member 52 are interlocked. If connected, the driving unit may be provided only on one of the guide members.

○ 各実施形態において、熱交換器17に駆動部を設けるとともに、駆動部を駆動させることで、熱交換器17がケース10の内部を移動するようにしてもよい。
○ 第1実施形態において、電池温度センサ41,42を第1二次電池31及び第4二次電池34に設け、第1二次電池31と第4二次電池34の温度に基づいて熱媒体の循環方向を切り替えるようにしたが、これに限られない。例えば、温度センサをケース10の内部において第1二次電池31に近い箇所及び第4二次電池34に近い箇所に設け、第1二次電池31の周囲の熱媒体の温度と、第4二次電池34の周囲の熱媒体の温度の温度差が閾値以上になった場合に熱媒体の循環方向を切り替えるようにしてもよい。同様に、第2実施形態において、温度センサをケース10の内部において第2二次電池32に近い箇所及び第3二次電池33に近い箇所に設け、第2二次電池32の周囲の熱媒体の温度と第3二次電池33の周囲の熱媒体の温度の温度差が閾値以上になった場合に熱媒体の循環方向を切り替えるようにしてもよい。すなわち、二次電池31〜34の温度を直接計測するのみではなく、二次電池31〜34の温度を間接的に計測して、熱媒体の循環方向を切り替えてもよい。
In each embodiment, the heat exchanger 17 may be moved inside the case 10 by providing the heat exchanger 17 with a drive unit and driving the drive unit.
In the first embodiment, the battery temperature sensors 41 and 42 are provided in the first secondary battery 31 and the fourth secondary battery 34, and the heat medium is based on the temperatures of the first secondary battery 31 and the fourth secondary battery 34. Although the circulation direction is switched, it is not limited to this. For example, a temperature sensor is provided in the case 10 at a location close to the first secondary battery 31 and a location close to the fourth secondary battery 34, and the temperature of the heat medium around the first secondary battery 31 and the fourth secondary battery 31. The circulation direction of the heat medium may be switched when the temperature difference between the temperatures of the heat medium around the secondary battery 34 is equal to or greater than a threshold value. Similarly, in the second embodiment, the temperature sensor is provided in the case 10 at a location close to the second secondary battery 32 and a location close to the third secondary battery 33, and a heat medium around the second secondary battery 32. The circulation direction of the heat medium may be switched when the temperature difference between this temperature and the temperature of the heat medium around the third secondary battery 33 exceeds a threshold value. That is, not only the temperature of the secondary batteries 31 to 34 is directly measured, but the temperature of the secondary batteries 31 to 34 may be indirectly measured to switch the circulation direction of the heat medium.

次に、上記実施形態及び別例から把握できる技術的思想について、以下に追記する。
(イ)前記熱交換器には、温度調節装置が接合されていることを特徴とする請求項1〜請求項3のうちいずれか1項に記載の電池用温度調節機構。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(B) A temperature adjusting mechanism for a battery according to any one of claims 1 to 3, wherein a temperature adjusting device is joined to the heat exchanger.

(ロ)前記二次電池と熱交換を行った直後の熱媒体と最初に熱交換を行う熱交換器及び最後に熱交換を行う熱交換器には、前記熱交換器の温度を測定する温度センサが設けられ、前記二次電池と熱交換を行った直後の熱媒体と最初に熱交換を行う熱交換器の温度と、最後に熱交換を行う熱交換器の温度の温度差が閾値以上になったときに前記切替手段によって前記熱媒体の循環方向を切り替えることを特徴とする請求項2に記載の電池用温度調節機構。   (B) The temperature at which the temperature of the heat exchanger is measured for the heat medium immediately after heat exchange with the secondary battery and the heat exchanger that performs heat exchange first and the heat exchanger that performs heat exchange last. The temperature difference between the temperature of the heat exchanger that is provided with the sensor and the heat medium immediately after heat exchange with the secondary battery and the heat exchanger that first performs heat exchange and the temperature of the heat exchanger that performs heat exchange is equal to or greater than a threshold value. The temperature adjusting mechanism for a battery according to claim 2, wherein the switching means switches the circulation direction of the heat medium when the temperature reaches the upper limit.

1,2…電池用温度調節機構、10…ケース、14…循環流路、15…循環機構及び切替手段としての送風機、17…熱交換器、41,42…電池温度センサ、51…切替手段としての第1ガイド部材、52…切替手段としての第2ガイド部材。   DESCRIPTION OF SYMBOLS 1, 2 ... Battery temperature control mechanism, 10 ... Case, 14 ... Circulation flow path, 15 ... Blower as circulation mechanism and switching means, 17 ... Heat exchanger, 41, 42 ... Battery temperature sensor, 51 ... As switching means 1st guide member, 52 ... 2nd guide member as a switching means.

Claims (3)

熱媒体を循環させる循環流路が形成されたケースの内部に、複数の電池を前記循環流路上に前記熱媒体の循環方向に沿って並設し、前記循環流路を循環する熱媒体により前記電池の温度調節を行う電池用温度調節機構であって、
前記熱媒体と熱交換を行う熱交換器と、
前記循環流路に前記熱媒体を循環させる循環機構と、
前記熱媒体の循環方向を切り替える切替手段と、を前記ケースの内部に配設し、
前記複数の電池のうち、前記熱交換器によって熱交換された直後の前記熱媒体の循環方向における上流側に配設された前記電池から順に温度調節を行うことを特徴とする電池用温度調節機構。
Inside the case in which a circulation channel for circulating the heat medium is formed, a plurality of batteries are juxtaposed along the circulation direction of the heat medium on the circulation channel, and the heat medium circulating through the circulation channel A battery temperature adjustment mechanism for adjusting the temperature of the battery,
A heat exchanger for exchanging heat with the heat medium;
A circulation mechanism for circulating the heat medium in the circulation channel;
Switching means for switching the circulation direction of the heat medium, and disposed inside the case,
Among the plurality of batteries, the temperature adjustment mechanism for the battery performs temperature adjustment in order from the batteries arranged on the upstream side in the circulation direction of the heat medium immediately after the heat exchange by the heat exchanger. .
前記熱交換器を複数配設したことを特徴とする請求項1に記載の電池用温度調節機構。   The battery temperature control mechanism according to claim 1, wherein a plurality of the heat exchangers are arranged. 前記熱交換器と熱交換された直後の前記熱媒体が最初に熱交換を行う電池及び最後に熱交換を行う電池には、前記電池の温度を測定する電池温度センサが設けられ、
前記熱交換器と熱交換された直後の前記熱媒体が最初に熱交換を行う電池の温度と、最後に熱交換を行う電池の温度の温度差が閾値以上になったときに前記切替手段によって前記熱媒体の循環方向を切り替えることを特徴とする請求項1又は請求項2に記載の電池用温度調節機構。
A battery temperature sensor for measuring the temperature of the battery is provided in a battery in which the heat medium immediately after heat exchange with the heat exchanger performs heat exchange first and a battery in which heat exchange is performed last,
When the temperature difference between the temperature of the battery that first performs heat exchange with the heat exchanger immediately after heat exchange with the heat exchanger and the temperature of the battery that finally performs heat exchange is equal to or greater than a threshold value, the switching means The temperature adjustment mechanism for a battery according to claim 1 or 2, wherein the circulation direction of the heat medium is switched.
JP2012037675A 2012-02-23 2012-02-23 Temperature adjustment mechanism for battery Pending JP2013175296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037675A JP2013175296A (en) 2012-02-23 2012-02-23 Temperature adjustment mechanism for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037675A JP2013175296A (en) 2012-02-23 2012-02-23 Temperature adjustment mechanism for battery

Publications (1)

Publication Number Publication Date
JP2013175296A true JP2013175296A (en) 2013-09-05

Family

ID=49268047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037675A Pending JP2013175296A (en) 2012-02-23 2012-02-23 Temperature adjustment mechanism for battery

Country Status (1)

Country Link
JP (1) JP2013175296A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203609A (en) * 2013-04-03 2014-10-27 矢崎総業株式会社 Cooling device
WO2015141057A1 (en) * 2014-03-20 2015-09-24 カルソニックカンセイ株式会社 Temperature control device and control method therefor
JP2016119286A (en) * 2014-12-22 2016-06-30 株式会社デンソー Battery pack
JP2017091963A (en) * 2015-11-16 2017-05-25 株式会社クボタ Battery pack for electrically operated vehicle and electrically operated vehicle
JP2018045963A (en) * 2016-09-16 2018-03-22 日野自動車株式会社 Cooling structure for electrical equipment
US10493835B2 (en) 2015-11-16 2019-12-03 Kubota Corporation Electric work vehicle, battery pack for electric work vehicle and contactless charging system
US10538166B2 (en) 2016-03-29 2020-01-21 Kubota Corporation Portable charger device, contactless charger system for electric work vehicle and electric grass mower machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148189A (en) * 1994-11-22 1996-06-07 Nissan Motor Co Ltd Battery temperature adjustment device for electric vehicle
JP2002033137A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Battery power supply device
JP2003109655A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Battery pack
JP2004022267A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Capacitor cooling structure
JP2005353557A (en) * 2004-06-14 2005-12-22 Sanyo Electric Co Ltd Power source device
JP2006093155A (en) * 2004-09-23 2006-04-06 Samsung Sdi Co Ltd Temperature control system of secondary battery module
JP2007087731A (en) * 2005-09-21 2007-04-05 Gs Yuasa Corporation:Kk Storage vessel of battery
JP2007095482A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Power supply device and cooling method of battery
JP2007179944A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Cooling structure of electricity storage device
JP2009170370A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Temperature adjusting mechanism
JP2009252659A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Temperature adjusting device
JP2010033882A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Secondary battery device and electric equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148189A (en) * 1994-11-22 1996-06-07 Nissan Motor Co Ltd Battery temperature adjustment device for electric vehicle
JP2002033137A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Battery power supply device
JP2003109655A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Battery pack
JP2004022267A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Capacitor cooling structure
JP2005353557A (en) * 2004-06-14 2005-12-22 Sanyo Electric Co Ltd Power source device
JP2006093155A (en) * 2004-09-23 2006-04-06 Samsung Sdi Co Ltd Temperature control system of secondary battery module
JP2007087731A (en) * 2005-09-21 2007-04-05 Gs Yuasa Corporation:Kk Storage vessel of battery
JP2007095482A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Power supply device and cooling method of battery
JP2007179944A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Cooling structure of electricity storage device
JP2009170370A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Temperature adjusting mechanism
JP2009252659A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Temperature adjusting device
JP2010033882A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Secondary battery device and electric equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203609A (en) * 2013-04-03 2014-10-27 矢崎総業株式会社 Cooling device
WO2015141057A1 (en) * 2014-03-20 2015-09-24 カルソニックカンセイ株式会社 Temperature control device and control method therefor
JP2016119286A (en) * 2014-12-22 2016-06-30 株式会社デンソー Battery pack
JP2017091963A (en) * 2015-11-16 2017-05-25 株式会社クボタ Battery pack for electrically operated vehicle and electrically operated vehicle
US10493835B2 (en) 2015-11-16 2019-12-03 Kubota Corporation Electric work vehicle, battery pack for electric work vehicle and contactless charging system
US11396225B2 (en) 2015-11-16 2022-07-26 Kubota Corporation Electric work vehicle, battery pack for electric work vehicle and contactless charging system
US10538166B2 (en) 2016-03-29 2020-01-21 Kubota Corporation Portable charger device, contactless charger system for electric work vehicle and electric grass mower machine
JP2018045963A (en) * 2016-09-16 2018-03-22 日野自動車株式会社 Cooling structure for electrical equipment

Similar Documents

Publication Publication Date Title
JP2013175296A (en) Temperature adjustment mechanism for battery
US20190280356A1 (en) System and method for thermally managing battery
KR20200134492A (en) Heat exchanger with thermoelectric module and system for managing heat for battery including the same
CN109449334B (en) Battery thermal management device based on three-dimensional temperature equalization plate
JP2014103005A (en) Battery pack and in-vehicle heating system
JP2008130489A (en) Power supply system
JP2013122844A (en) Battery temperature control mechanism
JP2012190760A (en) Battery module
JP2017105290A (en) Temperature control device of battery for driving
WO2013111529A1 (en) Battery temperature adjustment device
JP2017004677A (en) Cooling system for secondary battery
JP2015082353A (en) Secondary battery module and secondary battery pack
JP2014026814A (en) Power supply temperature adjusting device
JP2014032920A (en) Temperature adjusting device
JP2015156347A (en) Battery temperature adjustment device
JP2013149524A (en) Battery temperature control apparatus
KR20110045409A (en) A cooling device with thermoelectric element using latent heat
JP2013098082A (en) Temperature control mechanism for battery
JP2013125646A (en) Temperature adjusting system for battery, and vehicle
JP2012252911A (en) Power storage device
JP2013084475A (en) Temperature control mechanism for battery
JP2013229125A (en) Battery module and vehicle
JP2013098081A (en) Battery temperature control system
EP4113782A1 (en) Secondary battery charge/discharge system comprising peltier device, and temperature control method of secondary battery charge/discharge system using same
JP5910256B2 (en) Battery temperature control mechanism and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623