JP2013173527A - Control device of right and left driving force regulating device for vehicle - Google Patents

Control device of right and left driving force regulating device for vehicle Download PDF

Info

Publication number
JP2013173527A
JP2013173527A JP2013065511A JP2013065511A JP2013173527A JP 2013173527 A JP2013173527 A JP 2013173527A JP 2013065511 A JP2013065511 A JP 2013065511A JP 2013065511 A JP2013065511 A JP 2013065511A JP 2013173527 A JP2013173527 A JP 2013173527A
Authority
JP
Japan
Prior art keywords
motor
vehicle
electric
control
ayc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013065511A
Other languages
Japanese (ja)
Other versions
JP5445706B2 (en
Inventor
Satoshi Kato
智 加藤
Kaoru Sawase
薫 澤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013065511A priority Critical patent/JP5445706B2/en
Publication of JP2013173527A publication Critical patent/JP2013173527A/en
Application granted granted Critical
Publication of JP5445706B2 publication Critical patent/JP5445706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a control device of a right and left driving force regulating device for a vehicle that performs attitude control without a sense of incompatibility by deceleration, while always performing attitude control regardless of a charge rate of a secondary battery.SOLUTION: A torque difference to perform attitude control is operated (steps S1 and S2), a distribution ratio of the torque difference to an electric AYC motor and a brake device is changed according to increase and decrease of the charge rate of the secondary battery (steps S3-S6), and attitude control is performed by controlling the electric AYC motor and the brake device respectively by the distributed torque difference (steps S6-14).

Description

本発明は、車両用左右駆動力調整装置を制御する制御装置に関する。   The present invention relates to a control device that controls a vehicle left-right driving force adjusting device.

従来から、車両の左右輪の駆動力を調整する車両用左右駆動力調整装置が知られている。車両用左右駆動力調整装置は、左右輪の間にデファレンシャル・ギアと駆動力調整機構を有しており、駆動力調整機構を制御することで、左右輪への駆動力の配分を調整するようにしている。駆動力調整機構としては、クラッチ機構やブレーキ装置や電動モータ等を用いるものが知られており、中でも、電動モータを用いるものは、電動アクティブ・ヨー・コントロール(以降、電動AYCと呼ぶ。)と呼ばれており、電動モータを制御することで、左右輪への駆動力の配分を調整している。   2. Description of the Related Art Conventionally, a vehicle left / right driving force adjusting device that adjusts the driving force of left and right wheels of a vehicle is known. The vehicle left / right driving force adjustment device has a differential gear and a driving force adjustment mechanism between the left and right wheels, and controls the driving force adjustment mechanism to adjust the distribution of the driving force to the left and right wheels. I have to. As a driving force adjusting mechanism, a mechanism using a clutch mechanism, a brake device, an electric motor, or the like is known, and among them, one using an electric motor is an electric active yaw control (hereinafter referred to as electric AYC). It is called, and the distribution of the driving force to the left and right wheels is adjusted by controlling the electric motor.

電動モータを用いた車両用左右駆動力調整装置においては、図5に示すように、リチウムイオン電池等の二次電池31からの電力を、例えば、電力変換装置32で3相交流へ変換し、変換した3相交流を電動AYC33の3相モータ34へ供給するようにしている。このとき、電動AYC33で消費される電力Pは以下の式で表すことができる。これは、後述する発電の場合も同様である。   In the left / right driving force adjusting device for a vehicle using an electric motor, as shown in FIG. 5, for example, power from a secondary battery 31 such as a lithium ion battery is converted into a three-phase alternating current by a power converter 32, The converted three-phase alternating current is supplied to the three-phase motor 34 of the electric AYC 33. At this time, the electric power P consumed by the electric AYC 33 can be expressed by the following equation. The same applies to power generation described later.

P=Tm・Nm=ΔT・ΔN/2
(Tm:モータトルク、Nm:モータ回転数、ΔT:トルク差、ΔN:左右輪回転数差)
P = T m · N m = ΔT · ΔN / 2
(T m : motor torque, N m : motor rotation speed, ΔT: torque difference, ΔN: left and right wheel rotation speed difference)

グリップ走行時に電動AYC33で車両の姿勢制御を行う場合、旋回促進制御のため、旋回を促進するモーメントを発生(回転数差を増大)する際には、3相モータ34を力行で制御するため、3相モータ34は電力Pを消費する。一方、旋回抑制制御のため、旋回を抑制するモーメントを発生(回転数差を減少)する際には、3相モータ34を回生で制御するため、3相モータ34は電力Pを発電する。従って、電動AYC33では、電力Pを消費する際には、二次電池31から電力を供給され、電力Pを発電する際には二次電池31へ充電することになる。   When controlling the attitude of the vehicle with the electric AYC 33 during grip traveling, for the purpose of turning acceleration control, when generating a moment for promoting turning (increasing the rotational speed difference), the three-phase motor 34 is controlled by powering. The three-phase motor 34 consumes electric power P. On the other hand, because of the turning suppression control, when generating a moment to suppress turning (decreasing the rotational speed difference), the three-phase motor 34 generates electric power P in order to control the three-phase motor 34 by regeneration. Therefore, in the electric AYC 33, when the electric power P is consumed, electric power is supplied from the secondary battery 31, and when the electric power P is generated, the secondary battery 31 is charged.

特許第3686626号公報Japanese Patent No. 3686626 特開2006−046495号公報JP 2006-046495 A 特開2006−057745号公報JP 2006-057745 A 特開2003−335143号公報JP 2003-335143 A

図5に示すような電動AYC33を用いて、車両の姿勢制御を行う場合、二次電池31の充電率が100%時には、二次電池31へ充電ができないため、電動AYC33は旋回抑制制御ができなくなる。一方、二次電池31の充電率が0%時には、二次電池31から電力が取り出せないため、電動AYC33は旋回促進制御ができなくなる。   When the attitude control of the vehicle is performed using the electric AYC 33 as shown in FIG. 5, when the charging rate of the secondary battery 31 is 100%, the secondary battery 31 cannot be charged. Disappear. On the other hand, when the charging rate of the secondary battery 31 is 0%, the electric power cannot be taken out from the secondary battery 31, and therefore the electric AYC 33 cannot perform the turning promotion control.

なお、上述したように、駆動力調整機構として、ブレーキ装置を用いて、車両の姿勢制御を行う車両用左右駆動力調整装置もあるが、この場合、ブレーキの発熱によって、車両の持つ運動エネルギーを消費するため、燃費が低下すると共に、ブレーキの減速によって、ドライバーは違和感を覚えるという問題がある。   As described above, there is also a left / right driving force adjusting device for a vehicle that controls the posture of the vehicle using a brake device as a driving force adjusting mechanism. In this case, the kinetic energy of the vehicle is increased by the heat generated by the brake. As a result, the fuel consumption is reduced, and the driver feels uncomfortable due to the deceleration of the brake.

本発明は上記課題に鑑みなされたもので、二次電池の充電率にかかわらず、常に姿勢制御を行うと共に、減速による違和感のない姿勢制御を行う車両用左右駆動力調整装置の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a control device for a vehicle left-right driving force adjustment device that always performs posture control regardless of the charging rate of the secondary battery and performs posture control without a sense of incongruity due to deceleration. The purpose is to do.

上記課題を解決する第1の発明に係る車両用左右駆動力調整装置の制御装置は、
車両の左右輪に各々制動力を付与するブレーキ装置と、前記左右輪にトルク差を発生させるモータと、前記モータに電力を供給すると共に、前記モータで発電された電力を充電する二次電池とを有し、前記ブレーキ装置、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータ、前記ブレーキ装置及び前記二次電池を制御する制御装置とを備え、
前記制御装置は、
車両状態や操作状態に基づいて演算された目標車両姿勢に実車両姿勢を追従させる制御量を演算し、
前記二次電池の充電率の増減に応じて、前記モータと前記ブレーキ装置への前記制御量の配分率を変動させて、配分された制御量により前記モータ及び前記ブレーキ装置を各々制御し、
演算された前記制御量による前記モータの動作が、前記モータによる回生であるか、又は、前記モータによる力行であるかを判定し、
力行である場合には、前記二次電池の充電率の減少に応じて、前記モータへの前記制御量の配分率を減少させると共に、前記ブレーキ装置への前記制御量の配分率を増加させて、配分された制御量により前記モータ及び前記ブレーキ装置を各々制御して、車両の姿勢制御を行うことを特徴とする。
A control device for a left / right driving force adjusting device for a vehicle according to a first aspect of the present invention for solving the above-described problem is provided.
A brake device that applies braking force to the left and right wheels of the vehicle; a motor that generates a torque difference between the left and right wheels; a secondary battery that supplies power to the motor and charges the power generated by the motor; Vehicle left and right driving force adjusting device for controlling the attitude of the vehicle using the brake device and the motor, and
A controller for controlling the motor, the brake device and the secondary battery;
The controller is
Calculate the control amount that causes the actual vehicle posture to follow the target vehicle posture calculated based on the vehicle state and operation state,
According to the increase / decrease in the charging rate of the secondary battery, the distribution ratio of the control amount to the motor and the brake device is changed, and the motor and the brake device are respectively controlled by the distributed control amount,
Determining whether the operation of the motor by the calculated control amount is regeneration by the motor or powering by the motor;
In the case of power running, in accordance with a decrease in the charging rate of the secondary battery, the distribution amount of the control amount to the motor is decreased and the distribution rate of the control amount to the brake device is increased. The vehicle and the brake device are controlled by the allocated control amount to control the attitude of the vehicle.

加えて、以下のことを特徴とする。   In addition, it is characterized by the following.

上記課題を解決する第2の発明に係る車両用左右駆動力調整装置の制御装置は、
上記第1の発明に記載の車両用左右駆動力調整装置の制御装置において、
前記制御装置は、
力行である場合、前記充電率が充電率0%と0%より大きい所定値の間においては、前記モータへの前記配分率を0%とすると共に、前記ブレーキ装置への前記配分率を100%として、前記ブレーキ装置のみを制御して、車両の姿勢制御を行うことを特徴とする。
A control device for a vehicle left-right driving force adjusting device according to a second invention for solving the above-described problems
In the control device for a vehicle left-right driving force adjusting device according to the first invention,
The controller is
In the case of power running, when the charging rate is between 0% and a predetermined value greater than 0%, the allocation rate to the motor is set to 0% and the allocation rate to the brake device is set to 100%. As described above, the vehicle posture is controlled by controlling only the brake device.

本発明によれば、二次電池の充電率に応じて、車両の姿勢制御を行う制御量(トルク差)を電動AYC用モータとブレーキ装置に配分するので、二次電池の充電率にかかわらず、常に、車両の姿勢制御を行うことができる。   According to the present invention, since the control amount (torque difference) for controlling the attitude of the vehicle is distributed to the electric AYC motor and the brake device according to the charging rate of the secondary battery, regardless of the charging rate of the secondary battery. The vehicle attitude can always be controlled.

又、本発明によれば、極力、電動AYC用モータを用いて、車両の姿勢制御を行うので、車両の持つ運動エネルギーを消費したり、燃費を低下させたりすることなく、効率を向上させることができ、減速による違和感のない制御を行うことができる。   Further, according to the present invention, since the attitude control of the vehicle is performed using the electric AYC motor as much as possible, the efficiency can be improved without consuming the kinetic energy of the vehicle or reducing the fuel consumption. Therefore, it is possible to perform control without feeling uncomfortable due to deceleration.

本発明に係る車両用左右駆動力調整装置の制御装置の実施形態の一例を説明する概略構成図である。It is a schematic structure figure explaining an example of an embodiment of a control device of a right-and-left driving force adjustment device for vehicles concerning the present invention. 図1に示した車両用左右駆動力調整装置の制御装置を説明するブロック図である。It is a block diagram explaining the control apparatus of the left-right driving force adjusting device for vehicles shown in FIG. 図1に示した車両用左右駆動力調整装置の制御装置におけるフローチャートである。It is a flowchart in the control apparatus of the left-right driving force adjusting device for vehicles shown in FIG. 図1に示した車両用左右駆動力調整装置の制御装置で用いるマップであり、(a)は回生時、(b)は力行時のものである。It is a map used with the control apparatus of the vehicle left-right driving force adjusting device shown in FIG. 二次電池と電動AYC間の構成を説明するブロック図である。It is a block diagram explaining the structure between a secondary battery and electric AYC.

以下、図1〜図4を参照して、本発明に係る車両用左右駆動力調整装置の制御装置の実施形態の一例を説明する。   Hereinafter, with reference to FIGS. 1-4, an example of embodiment of the control apparatus of the left-right driving force adjusting device for vehicles which concerns on this invention is demonstrated.

(実施例1)
図1は、本実施例の車両用左右駆動力調整装置の制御装置を説明する概略構成図であり、図2は、図1に示した車両用左右駆動力調整装置の制御装置を説明するブロック図である。又、図3は、図1に示した車両用左右駆動力調整装の制御装置におけるフローチャートであり、図4(a)は、図1に示した車両用左右駆動力調整装の制御装置で用いる回生時のマップ、図4(b)は力行時のマップである。
Example 1
FIG. 1 is a schematic configuration diagram illustrating a control device for a left / right driving force adjusting device for a vehicle according to the present embodiment. FIG. 2 is a block diagram illustrating a control device for the left / right driving force adjusting device for a vehicle illustrated in FIG. FIG. FIG. 3 is a flowchart in the control device for the vehicle left and right driving force adjusting device shown in FIG. 1, and FIG. 4A is used in the control device for the vehicle left and right driving force adjusting device shown in FIG. A map at the time of regeneration, FIG. 4B is a map at the time of power running.

本実施例において、車両用左右駆動力調整装置は、デファレンシャル・ギア11と歯車機構12を介して連結されて、出力トルクにより左輪13と右輪14との間にトルク差を発生させる電動AYCモータ15と、左輪13及び右輪14に各々制動力を付与するブレーキ装置16、17と、電力変換装置18を介して、電動AYCモータ15に電力を供給すると共に、電動AYCモータ15で発電された電力を充電する二次電池19とを有している。そして、ECU(制御装置)20は、電動AYCモータ15、ブレーキ装置16、17及び二次電池19を制御するものである。詳細は後述するが、ECU20には、センサ群21からの種々のセンサ値が入力されて、その入力に応じた制御が行われることになる。   In this embodiment, the left / right driving force adjusting device for a vehicle is an electric AYC motor that is connected via a differential gear 11 and a gear mechanism 12 to generate a torque difference between the left wheel 13 and the right wheel 14 by output torque. 15, electric power is supplied to the electric AYC motor 15 through the brake devices 16 and 17 that respectively apply braking force to the left wheel 13 and the right wheel 14, and the power conversion device 18, and electric power is generated by the electric AYC motor 15. And a secondary battery 19 for charging electric power. The ECU (control device) 20 controls the electric AYC motor 15, the brake devices 16 and 17, and the secondary battery 19. Although details will be described later, various sensor values from the sensor group 21 are input to the ECU 20 and control according to the input is performed.

このように、本実施例において、車両用左右駆動力調整装置は、車両の姿勢制御のために、ヨーモーメントを発生させるアクチュエータとなる電動AYC(歯車機構12、電動AYCモータ15)とブレーキ装置16、17とを有する構成である。   As described above, in this embodiment, the left / right driving force adjusting device for a vehicle has an electric AYC (gear mechanism 12 and electric AYC motor 15) and a brake device 16 serving as an actuator for generating a yaw moment for controlling the posture of the vehicle. , 17.

なお、歯車機構12は、電動AYCモータ15と共に、左輪13と右輪14とに伝達される駆動力の配分量を調整するものであるが、歯車機構12の構成自体は、本発明と直接関係する部分ではないので、その詳細な説明は省略する。   The gear mechanism 12 adjusts the distribution amount of the driving force transmitted to the left wheel 13 and the right wheel 14 together with the electric AYC motor 15, but the configuration of the gear mechanism 12 is directly related to the present invention. Since it is not a part to do, the detailed description is abbreviate | omitted.

又、デファレンシャル・ギア11は、左輪13と右輪14との回転数差を調整するものであり、エンジンやモータ等の原動機22からの出力を、左輪13及び右輪14に駆動力として伝達するものである。デファレンシャル・ギア11としては、例えば、ベベルギア式のものを用いているが、デファレンシャル・ギア11の構成自体も、本発明と直接関係する部分ではないので、その詳細な説明は省略する。   The differential gear 11 adjusts the rotational speed difference between the left wheel 13 and the right wheel 14, and transmits the output from the prime mover 22 such as an engine or a motor to the left wheel 13 and the right wheel 14 as a driving force. Is. As the differential gear 11, for example, a bevel gear type is used, but the configuration of the differential gear 11 itself is not directly related to the present invention, and a detailed description thereof will be omitted.

又、制御対象となる左輪13、右輪14は、本実施例では前輪とするが、後輪でも、四輪全部でも構わない。又、ブレーキ装置16、17は、左輪13、右輪14を各々制動できるものであれば、どのようなものを用いてもよいが、本実施例では、一例として、油圧式ブレーキ装置を用いて説明を行う。   The left wheel 13 and the right wheel 14 to be controlled are front wheels in this embodiment, but they may be rear wheels or all four wheels. The brake devices 16 and 17 may be any devices that can brake the left wheel 13 and the right wheel 14, respectively. In this embodiment, a hydraulic brake device is used as an example. Give an explanation.

次に、図1と共に、図2、図4も参照して、ECU20の機能を説明する。   Next, the function of the ECU 20 will be described with reference to FIGS. 2 and 4 together with FIG.

ECU20は、車両姿勢制御量演算手段B1と、回生・力行判定手段B2と、制御量配分手段B3と、トルク差→電動AYCモータトルク変換手段B4と、トルク差→ブレーキ油圧変換手段B5と、ブレーキ作動輪判定手段B6と、電動AYCモータ制御手段B7と、ブレーキ制御手段B8とを有する。   The ECU 20 includes vehicle attitude control amount calculation means B1, regenerative / power running determination means B2, control amount distribution means B3, torque difference → electric AYC motor torque conversion means B4, torque difference → brake hydraulic pressure conversion means B5, brake It has working wheel determination means B6, electric AYC motor control means B7, and brake control means B8.

車両姿勢制御量演算手段B1は、入力されたセンサ値A1に応じて、車両の姿勢制御を行うための制御量、つまり、トルク差を演算する。ここでは、実ヨーレートを目標ヨーレート追従させるためのヨーモーメントを発生させるトルク差を演算する。演算されたトルク差によって、旋回を抑制又は促進することになる。センサ値A1としては、センサ群23から、車速、操舵角、実ヨーレートが入力される。そして、目標ヨーレートは、入力された車速及び操舵角に基づき、その関数F1(車速・操舵角)から求めることができ、トルク差は、入力された実ヨーレートと求められた目標ヨーレートに基づき、PID制御により求めることができる。なお、トルク差は、PID制御に限らず、他の制御方法、例えば、H∞制御、ファジィ制御等により求めるようにしても良い。   The vehicle attitude control amount calculating means B1 calculates a control amount for controlling the attitude of the vehicle, that is, a torque difference, according to the input sensor value A1. Here, a torque difference for generating a yaw moment for causing the actual yaw rate to follow the target yaw rate is calculated. The turning is suppressed or promoted by the calculated torque difference. As the sensor value A1, the vehicle speed, the steering angle, and the actual yaw rate are input from the sensor group 23. The target yaw rate can be obtained from the function F1 (vehicle speed / steering angle) based on the input vehicle speed and steering angle, and the torque difference can be calculated based on the input actual yaw rate and the obtained target yaw rate. It can be obtained by control. The torque difference is not limited to PID control, but may be obtained by other control methods such as H∞ control, fuzzy control, and the like.

回生・力行判定手段B2は、トルク差によって発生させるヨーモーメントの方向と、入力されたセンサ値A2の電動AYCモータ回転数(回転方向の情報も含む)に応じて、電動AYCモータ15が回生となるか力行となるかを判定する。例えば、反時計回り方向のヨーレート、ヨーモーメント及びこのヨーモーメントを発生させるトルク差の符号を正とし、グリップ走行時に旋回した際の電動AYCモータ15の回転方向の符号を正とすると、[トルク差×電動AYCモータ回転数>=0]の場合を力行と判定し、それ以外の場合を回生と判定する。   The regeneration / power running determination means B2 determines whether the electric AYC motor 15 is regenerated according to the direction of the yaw moment generated by the torque difference and the electric AYC motor rotation speed (including information on the rotation direction) of the input sensor value A2. Judgment whether it becomes or powering. For example, when the sign of the counterclockwise yaw rate, the yaw moment, and the torque difference that generates this yaw moment is positive, and the sign of the rotation direction of the electric AYC motor 15 when turning during grip traveling is positive, [torque difference × Electric AYC motor rotation speed> = 0] is determined as power running, and other cases are determined as regeneration.

制御量配分手段B3は、力行・回生に応じて、配分率演算マップを選択し、入力されたセンサ値A3の二次電池充電率に応じて、電動AYCモータ15とブレーキ装置16、17に配分するトルク差の配分率を演算し、電動AYC配分量、ブレーキ装置配分量を求める。   The control amount distribution means B3 selects a distribution rate calculation map according to power running / regeneration, and distributes it to the electric AYC motor 15 and the brake devices 16, 17 according to the secondary battery charging rate of the input sensor value A3. The distribution ratio of the torque difference to be calculated is calculated to obtain the electric AYC distribution amount and the brake device distribution amount.

トルク差の配分率を演算するマップは、図4(a)、(b)に示すように、回生時と力行時で切り換えている。   As shown in FIGS. 4A and 4B, the map for calculating the distribution ratio of the torque difference is switched between regeneration and power running.

具体的には、回生時には、図4(a)に示すように、二次電池19において、充電率0%〜C1%の範囲では、電動AYC側への配分率を100%とし、ブレーキ側への配分率を0%としている。そして、充電率C1%以上となると、充電率C1%〜C2%(C1<C2)の範囲では、充電率の増加に比例して、電動AYC側への配分率を減少させ、ブレーキ側への配分率を増加させさせている。更に、充電率C2%以上となると、電動AYC側への配分率を0%とし、ブレーキ側への配分率を100%としている。   Specifically, at the time of regeneration, as shown in FIG. 4 (a), in the secondary battery 19, when the charging rate is in the range of 0% to C1%, the distribution rate to the electric AYC side is set to 100%, and to the brake side. The distribution ratio is 0%. When the charging rate is C1% or more, in the range of the charging rate C1% to C2% (C1 <C2), the distribution rate to the electric AYC side is decreased in proportion to the increase in the charging rate, and The allocation rate is increased. Furthermore, when the charging rate is C2% or more, the distribution rate to the electric AYC side is set to 0%, and the distribution rate to the brake side is set to 100%.

このように、回生時には、二次電池19の充電率が高くない領域(充電率C1%以下)においては、電動AYC側のみにトルク差を配分して、電動AYCモータ15のみを使用するようにしている。そして、充電率が比較的高い領域(充電率C1%〜C2%)においては、充電率に応じて、電動AYC側及びブレーキ側へトルク差を配分して、電動AYCモータ15とブレーキ装置16、17を共用するようにしており、充電率が更に高い領域(充電率C2%以上)においては、ブレーキ側のみにトルク差を配分して、ブレーキ装置16、17のみを使用するようにしている。   Thus, during regeneration, in the region where the charging rate of the secondary battery 19 is not high (charging rate C1% or less), the torque difference is distributed only to the electric AYC side, and only the electric AYC motor 15 is used. ing. In a region where the charging rate is relatively high (charging rates C1% to C2%), a torque difference is distributed to the electric AYC side and the brake side in accordance with the charging rate, and the electric AYC motor 15 and the brake device 16, In the region where the charging rate is higher (charging rate C2% or more), the torque difference is distributed only to the brake side and only the brake devices 16 and 17 are used.

このようなマップを回生時に用いることにより、二次電池19の充電率が十分に高い領域(充電率C2%以上;C2%は電動AYCモータ15の発電により過充電となってしまう充電率)においては、ブレーキ装置16、17のみを使用することで、車両の姿勢制御を可能としている。又、充電率0%〜C2%の範囲では、電動AYCモータ15のみ、又は、電動AYCモータ15とブレーキ装置16、17を共に使用することにより、極力、電動AYCモータ15を用いて、車両の姿勢制御を行うので、車両の持つ運動エネルギーを消費したり、燃費を低下させたりすることなく、効率を向上させることができ、減速による違和感のない姿勢制御を行うことができる。   By using such a map at the time of regeneration, in a region where the charging rate of the secondary battery 19 is sufficiently high (charging rate C2% or higher; C2% is a charging rate that is overcharged by the power generation of the electric AYC motor 15). Can control the attitude of the vehicle by using only the brake devices 16 and 17. In the range of the charging rate of 0% to C2%, by using the electric AYC motor 15 alone or the electric AYC motor 15 and the brake devices 16 and 17 together, the electric AYC motor 15 is used as much as possible. Since the posture control is performed, the efficiency can be improved without consuming the kinetic energy of the vehicle or reducing the fuel consumption, and the posture control without a sense of incongruity due to deceleration can be performed.

一方、力行時には、図4(b)に示すように、二次電池19において、充電率100%〜C3%の範囲では、電動AYC側への配分率を100%とし、ブレーキ側への配分率を0%としている。そして、充電率C3%以下(C3<C1)となると、充電率C3%〜C4%(C4<C3)の範囲では、充電率の減少に比例して、電動AYC側への配分率を減少させ、ブレーキ側への配分率を増加させさせている。更に、充電率C4%以下となると、電動AYC側への配分率を0%とし、ブレーキ側への配分率を100%としている。   On the other hand, at the time of power running, as shown in FIG. 4B, in the secondary battery 19, in the range of the charging rate of 100% to C3%, the distribution rate to the electric AYC side is set to 100%, and the distribution rate to the brake side Is set to 0%. When the charging rate is C3% or less (C3 <C1), the distribution rate to the electric AYC side is decreased in proportion to the reduction of the charging rate in the range of charging rate C3% to C4% (C4 <C3). The distribution ratio to the brake side is increased. Furthermore, when the charging rate C4% or less, the distribution rate to the electric AYC side is set to 0%, and the distribution rate to the brake side is set to 100%.

このように、力行時には、二次電池19の充電率が低くない領域(充電率C3%以上)においては、電動AYC側のみにトルク差を配分して、電動AYCモータ15のみを使用するようにしている。そして、充電率が比較的低い領域(充電率C3%〜C4%)においては、充電率に応じて、電動AYC側及びブレーキ側へトルク差を配分して、電動AYCモータ15とブレーキ装置16、17を共用するようにしており、充電率が更に低い領域(充電率C4%以下)においては、ブレーキ側のみにトルク差を配分して、ブレーキ装置16、17のみを使用するようにしている。   Thus, during power running, in a region where the charging rate of the secondary battery 19 is not low (charging rate C3% or more), the torque difference is distributed only to the electric AYC side and only the electric AYC motor 15 is used. ing. In the region where the charging rate is relatively low (charging rates C3% to C4%), the torque difference is distributed to the electric AYC side and the brake side according to the charging rate, and the electric AYC motor 15 and the brake device 16, 17 is shared, and in a region where the charging rate is further lower (charging rate C4% or less), the torque difference is distributed only to the brake side and only the brake devices 16 and 17 are used.

このようなマップを力行時に用いることにより、二次電池19の充電率が十分に低い領域(充電率C4%以下;C4%は、電動AYCモータ15の電力消費により充電率が0%となってしまう充電率)においては、ブレーキ装置16、17のみを使用することで、車両の姿勢制御を可能としている。又、充電率100%〜C4%の範囲では、電動AYCモータ15のみ、又は、電動AYCモータ15とブレーキ装置16、17を共に使用することにより、極力、電動AYCモータ15を用いて、車両の姿勢制御を行うので、車両の持つ運動エネルギーを消費したり、燃費を低下させたりすることなく、効率を向上させることができ、減速による違和感のない姿勢制御を行うことができる。   By using such a map during power running, the charging rate of the secondary battery 19 is sufficiently low (charging rate C4% or less; C4% is 0% due to the power consumption of the electric AYC motor 15). Therefore, the vehicle attitude can be controlled by using only the brake devices 16 and 17. Further, in the range of the charging rate of 100% to C4%, the electric AYC motor 15 alone or the electric AYC motor 15 and the brake devices 16 and 17 are used together, and the electric AYC motor 15 is used as much as possible. Since the posture control is performed, the efficiency can be improved without consuming the kinetic energy of the vehicle or reducing the fuel consumption, and the posture control without a sense of incongruity due to deceleration can be performed.

そして、電動AYC配分量、ブレーキ装置配分量は以下の式から求める。
電動AYC配分量 =トルク差×電動AYCへの配分率
ブレーキ装置配分量=トルク差−電動AYC配分量
The electric AYC distribution amount and the brake device distribution amount are obtained from the following equations.
Electric AYC distribution amount = torque difference × distribution ratio to electric AYC Brake device distribution amount = torque difference−electric AYC distribution amount

トルク差→電動AYCモータトルク変換手段B4は、配分されたトルク差、即ち、求めた電動AYC配分量を、電動AYCモータトルクに変換する。電動AYCモータトルクは、以下の式を用いて変換する。
モータトルク=電動AYC配分量×変換係数(1/(2G))
ここで、Gは、モータ回転数Nm及び左右輪の回転数差ΔNを用いて、G=Nm/ΔNで表される。
Torque difference → electrical AYC motor torque conversion means B4 converts the distributed torque difference, that is, the obtained electric AYC distribution amount into electric AYC motor torque. The electric AYC motor torque is converted using the following equation.
Motor torque = Electric AYC distribution amount × Conversion coefficient (1 / (2G))
Here, G is expressed as G = N m / ΔN using the motor rotation speed N m and the rotation speed difference ΔN between the left and right wheels.

トルク差→ブレーキ油圧変換手段B5は、配分されたトルク差、即ち、求めたブレーキ装置配分量を、ブレーキ装置16、17を作動させるブレーキ油圧に変換する。ブレーキ油圧は、以下の式を用いて変換する。
ブレーキ油圧=ブレーキ装置配分量×変換係数
The torque difference → brake oil pressure conversion means B5 converts the distributed torque difference, that is, the determined brake device distribution amount into the brake oil pressure for operating the brake devices 16 and 17. The brake hydraulic pressure is converted using the following formula.
Brake hydraulic pressure = Brake device allocation x Conversion factor

ブレーキ作動輪判定手段B6は、配分されたトルク差、即ち、求めたブレーキ装置配分量から、どの車輪のブレーキ、即ち、ブレーキ装置16、17のいずれを作動させるかを判定する。   The brake operating wheel determining means B6 determines which wheel brake, that is, which of the brake devices 16, 17 is to be operated, from the distributed torque difference, that is, the determined brake device distribution amount.

電動AYCモータ制御手段B7は、入力されたモータトルク値を出力するように、電動AYCモータ15を制御する。   The electric AYC motor control means B7 controls the electric AYC motor 15 so as to output the input motor torque value.

ブレーキ制御手段B8は、制御を適用する車輪と入力されたブレーキ油圧に応じて、ブレーキ装置16、17を制御する。   The brake control means B8 controls the brake devices 16 and 17 according to the wheel to which the control is applied and the input brake hydraulic pressure.

次に、図3のフローチャートに沿って、図1、図2及び図4も参照しながら、ECU20における制御手順を説明する。   Next, a control procedure in the ECU 20 will be described along the flowchart of FIG. 3 while also referring to FIGS. 1, 2, and 4.

まず、検出した車速(車両状態)や操舵角(操作状態)に基づき、車速や操舵角に応じた目標ヨーレート(目標車両姿勢)を算出する(ステップS1;図3の車両姿勢制御量演算手段B1参照)。   First, based on the detected vehicle speed (vehicle state) and steering angle (operation state), a target yaw rate (target vehicle attitude) corresponding to the vehicle speed and steering angle is calculated (step S1; vehicle attitude control amount calculation means B1 in FIG. 3). reference).

次に、検出した実ヨーレート(実車両姿勢)に基づき、目標ヨーレートを実ヨーレートに追従させるためのヨーモーメントを発生させるトルク差(制御量)を算出する(ステップS2;図3の車両姿勢制御量演算手段B1参照)。トルク差は、例えば、PID制御等を用いたヨーレートのフィードバック制御により求める。   Next, based on the detected actual yaw rate (actual vehicle attitude), a torque difference (control amount) for generating a yaw moment for causing the target yaw rate to follow the actual yaw rate is calculated (step S2; vehicle attitude control amount in FIG. 3). Calculation means B1). The torque difference is obtained, for example, by feedback control of the yaw rate using PID control or the like.

次に、算出したトルク差によって発生させるヨーモーメントの方向と、検出した電動AYCモータ回転数(回転方向の情報も含む)から、電動AYCモータ15の作動状態が回生となるか力行となるかを判定する(ステップS3;図3の回生・力行判定手段B2参照)。具体的には、前述したように、[トルク差×AYCモータ回転数>=0]が成り立つときは力行と判定し、ステップS4へ進み、それ以外は回生と判定し、ステップS5へ進む。   Next, from the direction of the yaw moment generated by the calculated torque difference and the detected electric AYC motor rotation speed (including information on the rotation direction), it is determined whether the operating state of the electric AYC motor 15 is regenerative or powering. Determination (step S3; see regeneration / power running determination means B2 in FIG. 3). Specifically, as described above, when [torque difference × AYC motor rotation speed> = 0] is satisfied, it is determined as power running, and the process proceeds to step S4. Otherwise, it is determined as regeneration, and the process proceeds to step S5.

力行と判定と判定された場合には、トルク差の配分率を演算するマップとして、力行時の配分率演算マップを選択し(図4(b)参照)、当該マップを用い、二次電池19の充電率に応じた、電動AYC側への配分率を演算する(ステップS4;図3の制御量配分手段B3参照)。   When it is determined to be power running, the power distribution allocation rate calculation map is selected as a map for calculating the torque difference distribution rate (see FIG. 4B), and the secondary battery 19 is used using the map. The distribution rate to the electric AYC side according to the charging rate is calculated (step S4; see control amount distribution means B3 in FIG. 3).

一方、回生と判定と判定された場合には、トルク差の配分率を演算するマップとして、回生時の配分率演算マップを選択し(図4(a)参照)、当該マップを用い、二次電池19の充電率に応じた、電動AYC側への配分率を演算する(ステップS5;図3の制御量配分手段B3参照)。   On the other hand, if it is determined that the regeneration is determined, a distribution rate calculation map at the time of regeneration is selected as a map for calculating the distribution rate of the torque difference (see FIG. 4A), and the map is used as a secondary. The distribution ratio to the electric AYC side according to the charging rate of the battery 19 is calculated (step S5; see control amount distribution means B3 in FIG. 3).

次に、電動AYC側への配分率に基づいて、電動AYC配分量を演算する(ステップS6;図3の制御量配分手段B3参照)。電動AYC配分量は、[トルク差×配分率]を演算することにより求める。   Next, the electric AYC distribution amount is calculated based on the distribution ratio to the electric AYC side (step S6; refer to control amount distribution means B3 in FIG. 3). The electric AYC distribution amount is obtained by calculating [torque difference × distribution rate].

次に、ブレーキ装置配分量を演算する(ステップS7;図3の制御量配分手段B3参照)。ブレーキ装置配分量は、[トルク差−電動AYC配分量]を演算することにより求める。   Next, the brake device distribution amount is calculated (step S7; see control amount distribution means B3 in FIG. 3). The brake device distribution amount is obtained by calculating [torque difference-electric AYC distribution amount].

つまり、ステップS3〜S7においては、回生であるか力行であるかの判定結果に応じて、トルク差の配分率を演算するマップを切り換え、切り換えたマップを用いて、二次電池の充電率に応じた配分率を演算し、演算した配分率を用いて、トルク差を電動AYC側とブレーキ側とに配分している。   In other words, in steps S3 to S7, the map for calculating the distribution ratio of the torque difference is switched according to the determination result of whether it is regenerative or powering, and the charging rate of the secondary battery is set using the switched map. A corresponding distribution rate is calculated, and the torque difference is distributed between the electric AYC side and the brake side using the calculated distribution rate.

次に、配分されたトルク差、即ち、電動AYC配分量から、電動AYCモータ15で出力するモータトルクに変換する(ステップS8;図3のトルク差→電動AYCモータトルク変換手段B4参照)。電動AYCモータ51へのモータトルクは、[電動AYC配分量×変換係数]を演算することにより求める。   Next, the distributed torque difference, that is, the electric AYC distribution amount is converted into the motor torque output by the electric AYC motor 15 (step S8; see torque difference → electric AYC motor torque conversion means B4 in FIG. 3). The motor torque to the electric AYC motor 51 is obtained by calculating [electric AYC distribution amount × conversion coefficient].

同様に、配分されたトルク差、即ち、ブレーキ装置配分量から、ブレーキ装置16、17を作動させるブレーキ油圧に変換する(ステップS9;図3のトルク差→ブレーキ油圧変換手段B5参照)。ブレーキ油圧は、[ブレーキ装置配分量×変換係数]を演算することにより求める。   Similarly, the distributed torque difference, that is, the brake device distribution amount is converted into brake hydraulic pressure for operating the brake devices 16 and 17 (step S9; see torque difference → brake hydraulic pressure conversion means B5 in FIG. 3). The brake hydraulic pressure is obtained by calculating [brake device distribution amount × conversion coefficient].

このとき、ブレーキ装置配分量から、ブレーキを作動させる車輪を判定する。トルク差>=0である場合には、ブレーキ適用輪を前左輪と判定し、それ以外、つまり、トルク差<0である場合には、ブレーキ適用輪を前右輪と判定する(ステップS10〜S12;図3のブレーキ差動輪判定手段B6参照)。   At this time, the wheel for operating the brake is determined from the brake device distribution amount. If the torque difference> = 0, the brake applied wheel is determined as the front left wheel, and otherwise, that is, if the torque difference <0, the brake applied wheel is determined as the front right wheel (steps S10 to S10). S12; see brake differential wheel determination means B6 in FIG.

そして、上述したモータトルクを出力するように、電動AYCモータ15を制御する(ステップS13;図3の電動AYCモータ制御手段B7参照)。   Then, the electric AYC motor 15 is controlled so as to output the motor torque described above (step S13; see the electric AYC motor control means B7 in FIG. 3).

又、適用輪と判定された車輪に対して、上述したブレーキ油圧を制御するように、ブレーキ装置16、17を制御する(ステップS14;図3のブレーキ制御手段B8参照)。   Further, the brake devices 16 and 17 are controlled so as to control the above-described brake hydraulic pressure with respect to the wheels determined to be applicable wheels (step S14; see brake control means B8 in FIG. 3).

上述した制御手順により、車両の姿勢制御を行う際、二次電池19の充電率に応じて、トルク差を電動AYCモータ15とブレーキ装置16、17に配分している。これにより、二次電池19の充電率にかかわらず、常に、車両の姿勢制御を行うことを可能としている。又、極力、電動AYCモータ15を用いて、車両の姿勢制御を行うので、車両の持つ運動エネルギーを消費したり、燃費を低下させたりすることなく、効率を向上させることができ、減速による違和感のない制御を行うことが可能となる。   When performing vehicle attitude control according to the control procedure described above, a torque difference is distributed to the electric AYC motor 15 and the brake devices 16 and 17 in accordance with the charging rate of the secondary battery 19. This makes it possible to always control the attitude of the vehicle regardless of the charging rate of the secondary battery 19. In addition, since the attitude control of the vehicle is performed using the electric AYC motor 15 as much as possible, the efficiency can be improved without consuming the kinetic energy of the vehicle or reducing the fuel consumption, and the uncomfortable feeling due to deceleration. It is possible to perform control without any problems.

本発明は、電動モータを用いて、車両の左右輪の駆動力を調整する車両用左右駆動力調整装置の制御装置に好適なものである。   The present invention is suitable for a control device for a left / right driving force adjusting device for a vehicle that uses an electric motor to adjust the driving force of the left / right wheels of the vehicle.

11 デファレンシャル・ギア
12 歯車機構
13 左輪
14 右輪
15 電動モータ
16、17 ブレーキ装置
19 二次電池
20 ECU
DESCRIPTION OF SYMBOLS 11 Differential gear 12 Gear mechanism 13 Left wheel 14 Right wheel 15 Electric motor 16, 17 Brake device 19 Secondary battery 20 ECU

Claims (2)

車両の左右輪に各々制動力を付与するブレーキ装置と、前記左右輪にトルク差を発生させるモータと、前記モータに電力を供給すると共に、前記モータで発電された電力を充電する二次電池とを有し、前記ブレーキ装置、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータ、前記ブレーキ装置及び前記二次電池を制御する制御装置とを備え、
前記制御装置は、
車両状態や操作状態に基づいて演算された目標車両姿勢に実車両姿勢を追従させる制御量を演算し、
前記二次電池の充電率の増減に応じて、前記モータと前記ブレーキ装置への前記制御量の配分率を変動させて、配分された制御量により前記モータ及び前記ブレーキ装置を各々制御し、
演算された前記制御量による前記モータの動作が、前記モータによる回生であるか、又は、前記モータによる力行であるかを判定し、
力行である場合には、前記二次電池の充電率の減少に応じて、前記モータへの前記制御量の配分率を減少させると共に、前記ブレーキ装置への前記制御量の配分率を増加させて、配分された制御量により前記モータ及び前記ブレーキ装置を各々制御して、車両の姿勢制御を行うことを特徴とする車両用左右駆動力調整装置の制御装置。
A brake device that applies braking force to the left and right wheels of the vehicle; a motor that generates a torque difference between the left and right wheels; a secondary battery that supplies power to the motor and charges the power generated by the motor; Vehicle left and right driving force adjusting device for controlling the attitude of the vehicle using the brake device and the motor, and
A controller for controlling the motor, the brake device and the secondary battery;
The controller is
Calculate the control amount that causes the actual vehicle posture to follow the target vehicle posture calculated based on the vehicle state and operation state,
According to the increase / decrease in the charging rate of the secondary battery, the distribution ratio of the control amount to the motor and the brake device is changed, and the motor and the brake device are respectively controlled by the distributed control amount,
Determining whether the operation of the motor by the calculated control amount is regeneration by the motor or powering by the motor;
In the case of power running, in accordance with a decrease in the charging rate of the secondary battery, the distribution amount of the control amount to the motor is decreased and the distribution rate of the control amount to the brake device is increased. A control device for a vehicle left-right driving force adjusting device, wherein the motor and the brake device are respectively controlled by a distributed control amount to control the posture of the vehicle.
請求項1に記載の車両用左右駆動力調整装置の制御装置において、
前記制御装置は、
力行である場合、前記充電率が充電率0%と0%より大きい所定値の間においては、前記モータへの前記配分率を0%とすると共に、前記ブレーキ装置への前記配分率を100%として、前記ブレーキ装置のみを制御して、車両の姿勢制御を行うことを特徴とする車両用左右駆動力調整装置の制御装置。
In the control device for a vehicle left-right driving force adjustment device according to claim 1,
The controller is
In the case of power running, when the charging rate is between 0% and a predetermined value greater than 0%, the allocation rate to the motor is set to 0% and the allocation rate to the brake device is set to 100%. As a control device for a vehicle left-right driving force adjusting device, the vehicle posture control is performed by controlling only the brake device.
JP2013065511A 2013-03-27 2013-03-27 Control device for right / left driving force adjusting device for vehicle Active JP5445706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065511A JP5445706B2 (en) 2013-03-27 2013-03-27 Control device for right / left driving force adjusting device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065511A JP5445706B2 (en) 2013-03-27 2013-03-27 Control device for right / left driving force adjusting device for vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009288989A Division JP5273031B2 (en) 2009-12-21 2009-12-21 Control device for right / left driving force adjusting device for vehicle

Publications (2)

Publication Number Publication Date
JP2013173527A true JP2013173527A (en) 2013-09-05
JP5445706B2 JP5445706B2 (en) 2014-03-19

Family

ID=49266861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065511A Active JP5445706B2 (en) 2013-03-27 2013-03-27 Control device for right / left driving force adjusting device for vehicle

Country Status (1)

Country Link
JP (1) JP5445706B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10181389A (en) * 1996-12-26 1998-07-07 Toyota Motor Corp Brake control device for vehicle
JP2006034053A (en) * 2004-07-20 2006-02-02 Toyota Motor Corp Brake controller
JP2008167613A (en) * 2006-12-29 2008-07-17 Toyota Motor Corp Electric vehicle
JP2009143432A (en) * 2007-12-14 2009-07-02 Toyota Motor Corp Behavior control device for vehicle
JP2009220617A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10181389A (en) * 1996-12-26 1998-07-07 Toyota Motor Corp Brake control device for vehicle
JP2006034053A (en) * 2004-07-20 2006-02-02 Toyota Motor Corp Brake controller
JP2008167613A (en) * 2006-12-29 2008-07-17 Toyota Motor Corp Electric vehicle
JP2009143432A (en) * 2007-12-14 2009-07-02 Toyota Motor Corp Behavior control device for vehicle
JP2009220617A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Steering device

Also Published As

Publication number Publication date
JP5445706B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
US11021068B2 (en) Vehicle control device and control method
JP6471859B2 (en) Control device for hybrid vehicle
EP1555184B1 (en) Vehicle braking control apparatus
JP5514661B2 (en) Drive control device for electric vehicle
US11021153B2 (en) Control apparatus of electric vehicle
JP6618073B2 (en) Braking control device
JP4291823B2 (en) Vehicle control device
WO2018138780A1 (en) Electric vehicle control method and control device
JP2018207654A (en) Control device of electric vehicle, control system of electric vehicle, and control method of electric vehicle
WO2013085000A1 (en) Electric vehicle control device
JP2017118735A (en) Vehicle drive force control device
JP5131175B2 (en) Electric vehicle and control method thereof
JP2017178056A (en) Vehicular travel drive apparatus
JP2016013052A (en) Drive force control device for electric vehicle
WO2013089225A1 (en) Braking torque controller
JP7449109B2 (en) Vehicle control device
JP2008222070A (en) Driving force distribution control device of vehicle
JP6740813B2 (en) Electric car
JP2019064367A (en) Hybrid-vehicular control apparatus
JP2013132166A (en) Control device of electric vehicle
JP2017005958A (en) Electric-vehicular drive force control apparatus
JP4729871B2 (en) Vehicle turning control device
JP5353365B2 (en) Vehicle system
JP5273031B2 (en) Control device for right / left driving force adjusting device for vehicle
JP5445706B2 (en) Control device for right / left driving force adjusting device for vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5445706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350