JP2013172529A - Charger and charging method - Google Patents

Charger and charging method Download PDF

Info

Publication number
JP2013172529A
JP2013172529A JP2012034290A JP2012034290A JP2013172529A JP 2013172529 A JP2013172529 A JP 2013172529A JP 2012034290 A JP2012034290 A JP 2012034290A JP 2012034290 A JP2012034290 A JP 2012034290A JP 2013172529 A JP2013172529 A JP 2013172529A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
charging
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034290A
Other languages
Japanese (ja)
Other versions
JP5536122B2 (en
Inventor
Naoki Tsukuda
直樹 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
NEC AccessTechnica Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC AccessTechnica Ltd filed Critical NEC AccessTechnica Ltd
Priority to JP2012034290A priority Critical patent/JP5536122B2/en
Publication of JP2013172529A publication Critical patent/JP2013172529A/en
Application granted granted Critical
Publication of JP5536122B2 publication Critical patent/JP5536122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent a charging circuit from generating heat due to increased power consumption of the charging circuit when a secondary battery is charged.SOLUTION: A charger 1 which charges a secondary battery 4 charged to a predetermined preliminary charging voltage by preliminary charging for charging with a small current suppressed within a predetermined range, detects the voltage of the secondary battery 4 by a voltage conversion circuit 3 and outputs the voltage corresponding to the detected voltage, and charges the secondary battery 4 by the current corresponding to the voltage outputted by the voltage conversion circuit 3, with a charging circuit 2. Then the charging circuit 2 supplies a current to the secondary battery 4 so as to increase monotonously according to the voltage outputted by the voltage conversion circuit 3 so that the power consumption of the charging circuit 2 indicated by a product of the differential voltage indicating the difference between the external voltage supplied from the outside and the voltage of the secondary battery 4 detected by the voltage conversion circuit 3, and the current with which the charging circuit 2 charges the secondary battery 4 does not exceed a predetermined power.

Description

本発明は、充電装置、及び充電方法に関し、二次電池を充電する充電装置、及び充電方法に関する。   The present invention relates to a charging device and a charging method, and relates to a charging device and a charging method for charging a secondary battery.

近年、電子機器の小型化軽量化の進展に伴い携帯機器の普及がすすんでいる。これら携帯機器の普及に合わせて携帯機器の電源となる充電可能なリチウムイオン電池等の二次電池の需要が伸びている。このリチウムイオン電池等の二次電池は、通常、充電電流を予め定めた範囲内に抑えた小電流により予め定めた電圧(予備充電電圧)まで充電(予備充電)し、その後、充電電流を予備充電のときよりも大きな電流で充電(本充電あるいは急速充電)する。   In recent years, with the progress of downsizing and weight reduction of electronic devices, portable devices have been popularized. With the spread of these portable devices, demand for secondary batteries such as rechargeable lithium-ion batteries that serve as power sources for portable devices is increasing. Secondary batteries such as lithium-ion batteries are normally charged (preliminary charge) to a predetermined voltage (preliminary charge voltage) with a small current with the charging current kept within a predetermined range, and then the charge current is reserved. Charge with a larger current than when charging (main charge or fast charge).

特許文献1にリチウムイオン電池を予備充電し、その後、急速充電する充電制御回路が開示されている。特許文献1に開示の充電制御回路は、予備充電回路により所定範囲内に制限された電流でリチウムイオン電池の初期充電を行い、リチウムイオン電池が所定電圧に充電されると、充電回路により必要充電電圧になるまで大きな定電流で一気に急速充電を行う。そして、リチウムイオン電池が必要充電電圧になった後は、リチウムイオン電池の電圧が必要充電電圧以上に上昇しないように、定電圧充電に切り換る。このように特許文献1に開示の充電制御回路は、予備充電後のリチウムイオン電池を大きな定電流で一気に急速充電し、リチウムイオン電池の電圧を必要充電電圧にしている。   Patent Document 1 discloses a charge control circuit that precharges a lithium ion battery and then rapidly charges the lithium ion battery. The charging control circuit disclosed in Patent Document 1 performs initial charging of a lithium ion battery with a current limited within a predetermined range by a preliminary charging circuit, and when the lithium ion battery is charged to a predetermined voltage, the charging circuit needs to be charged. The battery is quickly charged with a large constant current until the voltage is reached. And after a lithium ion battery becomes a required charge voltage, it switches to a constant voltage charge so that the voltage of a lithium ion battery may not rise more than a required charge voltage. As described above, the charge control circuit disclosed in Patent Document 1 quickly charges a lithium ion battery after preliminary charging with a large constant current at a stretch, and sets the voltage of the lithium ion battery to a necessary charging voltage.

また、予備充電後のリチウムイオン電池を急速充電する技術が特許文献2に記載されている。図10に示すように、特許文献2に記載の二次電池の充電装置は、充電電流供給回路21と、充電電流検出手段22と、電池電圧検出手段23と、充電制御部24とを備える。充電電流供給回路21は二次電池を充電するための充電電流を供給する。充電電流検出手段22は充電電流の値を検出する。電池電圧検出手段23は二次電池の電池電圧を検出する。充電制御部24は、二次電池の電圧値に基づいて、充電電流供給回路21を制御して充電電流の値を調整する。そして、充電制御部24は、予備充電後の二次電池に対して第1の充電電流値によって本充電を開始する。そして、充電制御部24は、二次電池の電圧が満充電電圧(二次電池の充電が満たされたときの二次電池の電圧を示す。)と同じか満充電電圧より低い値の基準電圧に到達すると、充電電流の値を第1の充電電流値よりも小さな値の第2の充電電流値に切り替えて充電を継続する。その後、充電制御部24は、二次電池の電圧が基準電圧よりも低下した場合には、二次電池の電圧が基準電圧を回復するまで第1の充電電流値よりも小さく第2の充電電流値よりも大きい充電電流値で充電する。そして、二次電池の電圧が基準電圧に到達すると充電電流の値を第2の充電電流値に切り替える。すなわち、特許文献2に記載の二次電池の充電装置20は、二次電池に対して第1の充電電流値によって本充電を開始し、二次電池の電圧が満充電電圧と同じか満充電電圧より低い値の基準電圧に到達すると、充電電流の値を第1の充電電流値よりも小さな値の第2の充電電流値に切り替えて充電を行う。このように、特許文献2に記載の二次電池の充電装置20は、予備充電後に、二次電池の電圧が満充電電圧の近くになるまで第2の充電電流値よりも大きい第1の充電電流値によって一気に充電している。   Patent Document 2 describes a technique for rapidly charging a lithium ion battery after preliminary charging. As shown in FIG. 10, the secondary battery charging device described in Patent Document 2 includes a charging current supply circuit 21, a charging current detection unit 22, a battery voltage detection unit 23, and a charge control unit 24. The charging current supply circuit 21 supplies a charging current for charging the secondary battery. The charging current detection means 22 detects the value of the charging current. The battery voltage detection means 23 detects the battery voltage of the secondary battery. Based on the voltage value of the secondary battery, the charging control unit 24 controls the charging current supply circuit 21 to adjust the charging current value. And the charge control part 24 starts this charge with a 1st charging current value with respect to the secondary battery after preliminary charging. Then, the charging control unit 24 uses a reference voltage whose secondary battery voltage is the same as or lower than the full charge voltage (indicating the voltage of the secondary battery when the secondary battery is fully charged). , The charging current value is switched to the second charging current value smaller than the first charging current value, and charging is continued. Thereafter, when the voltage of the secondary battery is lower than the reference voltage, the charging control unit 24 reduces the second charging current to be smaller than the first charging current value until the voltage of the secondary battery recovers the reference voltage. Charging is performed with a charging current value larger than the value. When the voltage of the secondary battery reaches the reference voltage, the charging current value is switched to the second charging current value. That is, the charging device 20 of the secondary battery described in Patent Document 2 starts main charging with the first charging current value with respect to the secondary battery, and the voltage of the secondary battery is the same as the full charge voltage or is fully charged. When a reference voltage lower than the voltage is reached, charging is performed by switching the charging current value to a second charging current value smaller than the first charging current value. As described above, the secondary battery charging device 20 described in Patent Document 2 has the first charging larger than the second charging current value until the voltage of the secondary battery becomes close to the full charge voltage after the preliminary charging. The battery is charged at a stretch depending on the current value.

特許第3427341号公報Japanese Patent No. 3427341 特開2011−211846号公報JP 2011-211846 A

上述した特許文献1に開示の充電制御回路は、予備充電後のリチウムイオン電池を大きな定電流で一気に急速充電することにより、リチウムイオン電池の電圧を必要充電電圧にしている。また、上述した特許文献2に開示の二次電池の充電装置は、予備充電後に、二次電池の電圧が満充電電圧の近くになるまで第2の充電電流値よりも大きい第1の充電電流値によって一気に充電している。しかしながら、必要充電電圧又は満充電電圧まで大きな充電電流を用いて一気に二次電池を充電することは、充電回路の消費電力が増大し充電回路が発熱するおそれがあるという問題がある。また、充電回路が発熱している場合には使用者が充電後に充電装置からこの二次電池を外すとき等に火傷する等になるおそれがあるという問題がある。   The charge control circuit disclosed in Patent Document 1 described above makes the voltage of the lithium ion battery the required charge voltage by rapidly charging the lithium ion battery after the preliminary charging at a stretch with a large constant current. Further, the secondary battery charging device disclosed in Patent Document 2 described above has a first charging current larger than the second charging current value until the voltage of the secondary battery becomes close to the full charge voltage after preliminary charging. Charging at a stretch depending on the value. However, charging a secondary battery at once using a large charging current up to a necessary charging voltage or a full charging voltage has a problem that the power consumption of the charging circuit increases and the charging circuit may generate heat. Further, when the charging circuit generates heat, there is a problem that the user may be burned when removing the secondary battery from the charging device after charging.

本発明の目的は、上記課題を解決し、充電回路の消費電力が増大せず充電回路が発熱するおそれがない充電装置、及び充電方法を提供することである。   An object of the present invention is to solve the above-described problems and provide a charging device and a charging method in which the charging circuit does not increase power consumption and the charging circuit does not generate heat.

本発明の充電装置は、予め定めた範囲内に抑えた小電流で充電する予備充電により予め定めた予備充電電圧まで充電された二次電池を充電する充電装置であって、前記二次電池の電圧を検出し、検出した電圧に応じた電圧を出力する電圧変換回路と、前記電圧変換回路が出力した電圧に応じた電流により前記二次電池を充電する充電回路と、を有し、前記充電回路は、外部より供給される外部電圧と前記電圧変換回路が検出した前記二次電池の電圧との差を示す差電圧と、前記充電回路が前記二次電池を充電する電流との積で示される前記充電回路の消費電力が予め定められた電力を超えないように、前記電圧変換回路が出力する電圧に応じて前記二次電池に電流を単調に増加するように流す、ようにしている。   The charging device of the present invention is a charging device for charging a secondary battery charged to a predetermined preliminary charging voltage by preliminary charging for charging with a small current suppressed within a predetermined range. A voltage conversion circuit that detects a voltage and outputs a voltage corresponding to the detected voltage; and a charging circuit that charges the secondary battery with a current corresponding to the voltage output by the voltage conversion circuit, and the charging The circuit is represented by a product of a difference voltage indicating a difference between an external voltage supplied from the outside and a voltage of the secondary battery detected by the voltage conversion circuit, and a current at which the charging circuit charges the secondary battery. In order to prevent the power consumption of the charging circuit from exceeding a predetermined power, a current is supplied to the secondary battery so as to increase monotonously according to the voltage output from the voltage conversion circuit.

本発明の充電方法は、予め定めた範囲内に抑えた小電流で充電する予備充電により予め定めた予備充電電圧まで充電された二次電池を充電回路により充電する充電方法であって、前記二次電池の電圧を検出しこの検出した電圧に応じた電圧を出力し、前記充電回路により、前記出力された電圧に応じた電流により前記二次電池を充電し、前記充電回路は、外部より供給される外部電圧と前記検出した前記二次電池の電圧との差を示す差電圧と、前記充電回路が前記二次電池を充電する電流との積で示される前記充電回路の消費電力が予め定められた電力を超えないように、前記出力された電圧に応じて前記二次電池に電流を単調に増加するように流す、ようにしている。   The charging method of the present invention is a charging method in which a secondary battery charged to a predetermined preliminary charging voltage by preliminary charging charged with a small current suppressed within a predetermined range is charged by a charging circuit. A voltage of the secondary battery is detected, a voltage corresponding to the detected voltage is output, the secondary battery is charged with a current corresponding to the output voltage by the charging circuit, and the charging circuit is supplied from the outside Power consumption of the charging circuit indicated by a product of a difference voltage indicating a difference between the detected external voltage and the detected voltage of the secondary battery and a current for charging the secondary battery by the charging circuit is predetermined. In order not to exceed the generated power, a current is supplied to the secondary battery so as to increase monotonously according to the output voltage.

このように、本発明によれば、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。   Thus, according to the present invention, the power consumption of the charging circuit does not increase and the charging circuit does not generate heat.

本発明の第1の実施の形態に係る充電装置の一例を示す図である。It is a figure which shows an example of the charging device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る充電装置の一例を示す図である。It is a figure which shows an example of the charging device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る充電装置の電圧変換回路の入出力電圧特性の一例を示す図である。It is a figure which shows an example of the input-output voltage characteristic of the voltage converter circuit of the charging device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る充電装置の定電流回路の入出力特性の一例を示す図である。It is a figure which shows an example of the input-output characteristic of the constant current circuit of the charging device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る充電装置の充電特性の一例を示す図である。It is a figure which shows an example of the charge characteristic of the charging device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る充電装置の一例を示す図である。It is a figure which shows an example of the charging device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る充電装置の逆数計算回路の入出力電圧特性の一例を示す図である。It is a figure which shows an example of the input-output voltage characteristic of the reciprocal calculation circuit of the charging device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る充電装置の定電流回路の入出力特性の一例を示す図である。It is a figure which shows an example of the input-output characteristic of the constant current circuit of the charging device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る充電装置の充電特性の一例を示す図である。It is a figure which shows an example of the charge characteristic of the charging device which concerns on the 3rd Embodiment of this invention. 関連技術における、二次電池の充電装置を示す図である。It is a figure which shows the charging device of a secondary battery in related technology.

次に、本発明の実施の形態について図面を参照して説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る充電装置の一例を示す図である。
Next, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram showing an example of a charging apparatus according to the first embodiment of the present invention.

図1には、充電回路2に電圧を供給する外部電源5(例えば、AC(Alternating current)アダプタ)と、充電回路2が充電する二次電池4(例えば、リチウムイオン電池)も記載してある。外部電源5は充電回路2に予め定めた電圧(外部電圧:例えば、5V(Volt))を供給する。二次電池4は、予め定めた範囲内に抑えた小電流(例えば、100mA(milliampere))で充電する予備充電により予め定めた予備充電電圧(例えば、3V)に充電されている。   FIG. 1 also shows an external power supply 5 (for example, an AC (Alternating Current) adapter) that supplies a voltage to the charging circuit 2 and a secondary battery 4 (for example, a lithium ion battery) that is charged by the charging circuit 2. . The external power supply 5 supplies a predetermined voltage (external voltage: for example, 5 V (Volt)) to the charging circuit 2. The secondary battery 4 is charged to a predetermined preliminary charging voltage (for example, 3 V) by preliminary charging with a small current (for example, 100 mA (milliampere)) suppressed within a predetermined range.

本実施の形態に係る充電装置1は、充電回路2と、電圧変換回路3とにより構成する。   The charging device 1 according to the present embodiment includes a charging circuit 2 and a voltage conversion circuit 3.

電圧変換回路3は、二次電池4の電圧を検出し、この検出した電圧に応じた電圧を出力する。充電回路2は、電圧変換回路3が出力する電圧に応じて電流を単調に増加するように流し二次電池4を充電する。充電回路2の消費電力は、充電回路2に対し供給される外部電圧と二次電池4の電圧との差を示す差電圧と、充電回路2が二次電池4を充電する電流との積で示される。充電回路2は、この消費電力が予め定められた電力を超えないように、電圧変換回路3が出力する電圧に応じて二次電池4に電流を単調に増加するように流す。この予め定められた電力とは、充電回路2が発熱するおそれがない程度(例えば、1W(Watt))の電力である。この電力は1W(Watt)に限定することなく、充電回路2が発熱しない程度の電力であれば良い。   The voltage conversion circuit 3 detects the voltage of the secondary battery 4 and outputs a voltage corresponding to the detected voltage. The charging circuit 2 charges the secondary battery 4 by flowing the current so as to increase monotonously according to the voltage output from the voltage conversion circuit 3. The power consumption of the charging circuit 2 is the product of the difference voltage indicating the difference between the external voltage supplied to the charging circuit 2 and the voltage of the secondary battery 4 and the current at which the charging circuit 2 charges the secondary battery 4. Indicated. The charging circuit 2 allows the current to flow through the secondary battery 4 in a monotonous manner according to the voltage output from the voltage conversion circuit 3 so that the power consumption does not exceed a predetermined power. The predetermined power is power (for example, 1 W (Watt)) that does not cause the charging circuit 2 to generate heat. This power is not limited to 1 W (Watt), and may be any power as long as the charging circuit 2 does not generate heat.

このように、本発明の実施の形態によれば、充電回路が、充電回路の消費電力が予め定められた電力を超えないように、電圧変換回路の出力する電圧に応じて電流を単調に増加するように流し二次電池を充電する。このため、充電回路が二次電池を充電するときに、充電回路の消費電力が予め定められた電力を超えないので、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。
(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る充電装置の一例を示す図である。
As described above, according to the embodiment of the present invention, the charging circuit monotonously increases the current according to the voltage output from the voltage conversion circuit so that the power consumption of the charging circuit does not exceed the predetermined power. And charge the secondary battery. For this reason, when the charging circuit charges the secondary battery, the power consumption of the charging circuit does not exceed a predetermined power, so that the power consumption of the charging circuit does not increase and there is no possibility that the charging circuit generates heat.
(Second Embodiment)
FIG. 2 is a diagram illustrating an example of a charging apparatus according to the second embodiment of the present invention.

図2には、充電回路2に電圧を供給する外部電源5(例えば、ACアダプタ)と、充電回路2が充電する二次電池4(例えば、リチウムイオン電池)も記載してある。外部電源5は充電回路2に予め定めた電圧(外部電圧:例えば、5V(Volt))を供給する。二次電池4は、予め定めた範囲内に抑えた小電流(例えば、100mA(milliampere))で充電する予備充電により予め定めた予備充電電圧(例えば、3V)に充電されている。   FIG. 2 also shows an external power supply 5 (for example, an AC adapter) that supplies a voltage to the charging circuit 2 and a secondary battery 4 (for example, a lithium ion battery) that is charged by the charging circuit 2. The external power supply 5 supplies a predetermined voltage (external voltage: for example, 5 V (Volt)) to the charging circuit 2. The secondary battery 4 is charged to a predetermined preliminary charging voltage (for example, 3 V) by preliminary charging with a small current (for example, 100 mA (milliampere)) suppressed within a predetermined range.

本実施の形態に係る充電装置1は、充電回路2と、電圧変換回路3とにより構成する。充電回路2は、定電流回路6と定電圧回路7とにより構成する。電圧変換回路3は、二次電池4の電圧を検出し、この検出した電圧に応じた電圧を出力する。充電回路2の定電流回路6は、予備充電電圧に充電された二次電池4を電圧変換回路3の出力電圧に比例した電流(例えば、0.5Aから0.75A)により満充電電圧(二次電池4の充電が満たされたときの二次電池4の電圧。例えば、4.2V)まで充電する。この充電を本充電あるいは急速充電という。充電回路2の定電圧回路7は、二次電池4の電圧が満充電電圧を保つように電流を流して二次電池4を充電する。充電回路2の消費電力は、充電回路2に対し供給される外部電圧と二次電池4の電圧との差を示す差電圧と、充電回路2が二次電池4を充電する電流との積で示される。充電回路2は、この消費電力が予め定められた電力を超えないように、電圧変換回路3が出力する電圧に応じて二次電池4に電流を単調に増加するように流す。この予め定められた電力とは、充電回路2が発熱するおそれがない程度(例えば、1W(Watt))の電力である。この電力は1W(Watt)に限定することなく、充電回路2が発熱しない程度の電力であれば良い。   The charging device 1 according to the present embodiment includes a charging circuit 2 and a voltage conversion circuit 3. The charging circuit 2 includes a constant current circuit 6 and a constant voltage circuit 7. The voltage conversion circuit 3 detects the voltage of the secondary battery 4 and outputs a voltage corresponding to the detected voltage. The constant current circuit 6 of the charging circuit 2 is configured so that the secondary battery 4 charged to the precharge voltage is charged at a full charge voltage (2 to 0.5 A to 0.75 A) with a current proportional to the output voltage of the voltage conversion circuit 3 (for example, 0.5 A to 0.75 A). The secondary battery 4 is charged up to a voltage of, for example, 4.2 V when the secondary battery 4 is fully charged. This charging is called main charging or rapid charging. The constant voltage circuit 7 of the charging circuit 2 charges the secondary battery 4 by passing a current so that the voltage of the secondary battery 4 maintains a fully charged voltage. The power consumption of the charging circuit 2 is the product of the difference voltage indicating the difference between the external voltage supplied to the charging circuit 2 and the voltage of the secondary battery 4 and the current at which the charging circuit 2 charges the secondary battery 4. Indicated. The charging circuit 2 allows the current to flow through the secondary battery 4 in a monotonous manner according to the voltage output from the voltage conversion circuit 3 so that the power consumption does not exceed a predetermined power. The predetermined power is power (for example, 1 W (Watt)) that does not cause the charging circuit 2 to generate heat. This power is not limited to 1 W (Watt), and may be any power as long as the charging circuit 2 does not generate heat.

このように、本発明の実施の形態によれば、充電回路が、充電回路の消費電力が予め定められた電力を超えないように、電圧変換回路の出力する電圧に応じて電流を単調に増加するように流し二次電池を充電する。このため、充電回路が二次電池を充電するときに、充電回路の消費電力が予め定められた電力を超えないので、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。   As described above, according to the embodiment of the present invention, the charging circuit monotonously increases the current according to the voltage output from the voltage conversion circuit so that the power consumption of the charging circuit does not exceed the predetermined power. And charge the secondary battery. For this reason, when the charging circuit charges the secondary battery, the power consumption of the charging circuit does not exceed a predetermined power, so that the power consumption of the charging circuit does not increase and there is no possibility that the charging circuit generates heat.

次に、図3から図5を使用して、本発明の第2の実施の形態の動作を詳しく説明する。   Next, the operation of the second exemplary embodiment of the present invention will be described in detail with reference to FIGS.

図3は、本発明の第2の実施の形態に係る充電装置の電圧変換回路の入出力電圧特性の一例を示す図である。横軸は電圧変換回路3の入力電圧(二次電池4の電圧)、縦軸は電圧変換回路3の出力電圧を示す。電圧変換回路3は、二次電池4の電圧を検出し、この電圧が満充電電圧と予備充電電圧との中程の電圧である閾値電圧(例えば3.7V)以下の場合、第1の電圧(例えば、2V)を出力する。検出した電圧が閾値電圧を越える場合、第1の電圧より高い第2の電圧(例えば、3V)を出力する。   FIG. 3 is a diagram illustrating an example of input / output voltage characteristics of the voltage conversion circuit of the charging device according to the second embodiment of the present invention. The horizontal axis represents the input voltage of the voltage conversion circuit 3 (voltage of the secondary battery 4), and the vertical axis represents the output voltage of the voltage conversion circuit 3. The voltage conversion circuit 3 detects the voltage of the secondary battery 4, and if this voltage is equal to or lower than a threshold voltage (eg, 3.7 V) that is a middle voltage between the full charge voltage and the precharge voltage, the first voltage (For example, 2V) is output. When the detected voltage exceeds the threshold voltage, a second voltage higher than the first voltage (for example, 3 V) is output.

図4は、本発明の第2の実施の形態に係る充電装置の定電流回路の入出力特性の一例を示す図である。横軸は定電流回路6の入力電圧(電圧変換回路3の出力電圧)、縦軸は定電流回路6の出力電流(二次電池4の充電電流)を示し、入力電圧が2V及び3Vのとき出力電流は0.5A及び0.75Aであることを示している。   FIG. 4 is a diagram illustrating an example of input / output characteristics of the constant current circuit of the charging device according to the second embodiment of the present invention. The horizontal axis indicates the input voltage of the constant current circuit 6 (output voltage of the voltage conversion circuit 3), the vertical axis indicates the output current of the constant current circuit 6 (charging current of the secondary battery 4), and the input voltage is 2V and 3V. It shows that the output current is 0.5A and 0.75A.

図5は、本発明の第2の実施の形態に係る充電装置の充電特性の一例を示す図である。
(a)は、二次電池4の充電時における充電回路2の充電電流の時間変化の一例を示す。(b)は、二次電池4の充電時における充電回路2の消費電力の時間変化の一例を示す。(c)は、充電時における二次電池4の電圧(電池電圧)の時間変化の一例を示す。
FIG. 5 is a diagram illustrating an example of the charging characteristics of the charging device according to the second embodiment of the present invention.
(A) shows an example of the time change of the charging current of the charging circuit 2 when the secondary battery 4 is charged. (B) shows an example of the time change of the power consumption of the charging circuit 2 at the time of charge of the secondary battery 4. FIG. (C) shows an example of the time change of the voltage (battery voltage) of the secondary battery 4 at the time of charge.

ここで、外部電源5が接続された充電装置1に予め予備充電電圧(3V)に充電された二次電池4を接続すると、電圧変換回路3は二次電池4の電圧を検出する。電圧変換回路3は、図3に示すように、検出した二次電池4の電圧が満充電電圧(例えば、4.2V)と予備充電電圧(例えば、3V)との中程の電圧の閾値電圧(例えば3.7V)以下であるか否かを調べる。そして、この調べた結果が閾値電圧以下である場合、第1の電圧(例えば、2V)を出力する。この調べた結果が閾値電圧を越える場合、第1の電圧より高い第2の電圧(例えば、3V)を出力する。そして、充電回路2の定電流回路6は、電圧変換回路3が出力した第1の電圧と第2の電圧とにそれぞれ比例し、予備充電のときよりも大きな電流である第1の電流(例えば、0.5A)と第2の電流(例えば、0.75A)とを出力し、満充電電圧まで二次電池4を急速充電する。   Here, when the secondary battery 4 charged in advance to the preliminary charging voltage (3 V) is connected to the charging device 1 to which the external power supply 5 is connected, the voltage conversion circuit 3 detects the voltage of the secondary battery 4. As shown in FIG. 3, the voltage conversion circuit 3 is configured such that the detected voltage of the secondary battery 4 is a middle threshold voltage between a full charge voltage (for example, 4.2 V) and a precharge voltage (for example, 3 V). It is checked whether or not (for example, 3.7 V) or less. When the result of the examination is equal to or lower than the threshold voltage, a first voltage (for example, 2V) is output. When the result of the examination exceeds the threshold voltage, a second voltage (for example, 3 V) higher than the first voltage is output. Then, the constant current circuit 6 of the charging circuit 2 is proportional to the first voltage and the second voltage output from the voltage conversion circuit 3, respectively, and is a first current (for example, a larger current than that during the preliminary charging) (for example, , 0.5 A) and a second current (for example, 0.75 A) are output, and the secondary battery 4 is rapidly charged to the full charge voltage.

上記の動作を図5を参照して説明する。   The above operation will be described with reference to FIG.

電圧変換回路3が検出した二次電池4の電池電圧が予備充電電圧から閾値電圧の間のときには、図3に示すように電圧変換回路3は第1の電圧(2V)を出力する。そして、この電圧に基づき定電流回路6は、図4及び図5の(a)で示すように、予備充電のときよりも大きな電流である第1の電流(0.5A)により、二次電池4を充電する。すると二次電池4の電池電圧は図5の(c)のように3Vから3.7Vに上昇する。次に、電圧変換回路3が検出した二次電池4の電池電圧が閾値電圧(3.7V)を超えると、図3に示すように電圧変換回路3は第1の電圧より高い第2の電圧(3V)を出力する。そして、この電圧に基づき定電流回路6は、図4及び図5の(a)で示すように、第1の電流よりも大きな電流である第2の電流(0.75A)により、二次電池4を充電する。すると二次電池4の電池電圧は図5の(c)のように3.7Vから4.2Vに上昇する。そして、電圧変換回路3が検出した二次電池4の電池電圧が満充電電圧(4.2V)になると、電圧変換回路3は満充電信号を出力する。充電回路2は、電圧変換回路3から満充電信号を受けると、二次電池4を充電する回路を定電流回路6から定電圧回路7に切り替える。そして、この定電圧回路7は、二次電池4の電圧が満充電電圧を保つように、図5の(a)で示す電流により二次電池4を充電する。   When the battery voltage of the secondary battery 4 detected by the voltage conversion circuit 3 is between the precharge voltage and the threshold voltage, the voltage conversion circuit 3 outputs the first voltage (2V) as shown in FIG. Then, based on this voltage, the constant current circuit 6 uses the first current (0.5 A), which is a larger current than that during the preliminary charging, as shown in FIG. 4 and FIG. 4 is charged. Then, the battery voltage of the secondary battery 4 rises from 3V to 3.7V as shown in FIG. Next, when the battery voltage of the secondary battery 4 detected by the voltage conversion circuit 3 exceeds the threshold voltage (3.7 V), the voltage conversion circuit 3 has a second voltage higher than the first voltage as shown in FIG. (3V) is output. Based on this voltage, the constant current circuit 6 generates a secondary battery with a second current (0.75 A) that is larger than the first current, as shown in FIG. 4 and FIG. 4 is charged. Then, the battery voltage of the secondary battery 4 increases from 3.7V to 4.2V as shown in FIG. When the battery voltage of the secondary battery 4 detected by the voltage conversion circuit 3 reaches the full charge voltage (4.2 V), the voltage conversion circuit 3 outputs a full charge signal. When receiving the full charge signal from the voltage conversion circuit 3, the charging circuit 2 switches the circuit for charging the secondary battery 4 from the constant current circuit 6 to the constant voltage circuit 7. And this constant voltage circuit 7 charges the secondary battery 4 with the electric current shown to (a) of FIG. 5 so that the voltage of the secondary battery 4 may maintain a full charge voltage.

ここで、二次電池4を予備充電電圧から満充電電圧まで充電するときの充電回路2の消費電力について説明する。充電回路2の消費電力は、充電回路2に掛かる電圧と充電回路2に流れる電流との積である。充電回路2に掛かる電圧は、外部電源5が充電回路2に供給する電圧(5V)から図5の(c)で示す二次電池4の電池電圧を減じた値である。また、充電回路2に流れる電流は、図5の(a)に示す二次電池4を充電する充電電流である。したがって、充電回路2の消費電力は図5の(b)に示すように、二次電池4の電池電圧が予備充電電圧から閾値電圧の間のときには、充電回路2の消費電力は、(5−3)V×0.5A=1W(Watt)から(5−3.7)V×0.5A=0.65Wに徐々に減少し、二次電池4の電池電圧が閾値電圧になったときに、充電回路2の消費電力は、(5−3.7)V×0.75A=0.975Wになる。そして、二次電池4の電池電圧が閾値電圧から満充電電圧の間のときには、充電回路2の消費電力は、0.975Wから(5−4.2)V×0.75A=0.6Wに徐々に減少する。このように、充電回路2の消費電力は1Wを超えずに予備充電電圧から満充電電圧まで充電することができる。ちなみに、予備充電電圧から閾値電圧まで、大電流(0.75A)のみにより充電する場合には、充電回路2の消費電力は、(5−3)V×0.75A=1.5W(Watt)から(5−3.7)V×0.75A=0.97Wに徐々に減少することになり、1Wを優に超える。このため、この場合には、充電回路が発熱するおそれがある。   Here, the power consumption of the charging circuit 2 when charging the secondary battery 4 from the preliminary charging voltage to the full charging voltage will be described. The power consumption of the charging circuit 2 is the product of the voltage applied to the charging circuit 2 and the current flowing through the charging circuit 2. The voltage applied to the charging circuit 2 is a value obtained by subtracting the battery voltage of the secondary battery 4 shown in FIG. 5C from the voltage (5 V) supplied from the external power supply 5 to the charging circuit 2. The current flowing through the charging circuit 2 is a charging current for charging the secondary battery 4 shown in FIG. Therefore, as shown in FIG. 5B, when the battery voltage of the secondary battery 4 is between the preliminary charging voltage and the threshold voltage, the power consumption of the charging circuit 2 is (5- 3) When V × 0.5A = 1W (Watt) gradually decreases to (5-3.7) V × 0.5A = 0.65W, and the battery voltage of the secondary battery 4 becomes the threshold voltage. The power consumption of the charging circuit 2 is (5-3.7) V × 0.75A = 0.975W. When the battery voltage of the secondary battery 4 is between the threshold voltage and the full charge voltage, the power consumption of the charging circuit 2 is changed from 0.975 W to (5-4.2) V × 0.75 A = 0.6 W. Decrease gradually. Thus, the power consumption of the charging circuit 2 can be charged from the precharge voltage to the full charge voltage without exceeding 1 W. By the way, when charging only from a precharge voltage to a threshold voltage with a large current (0.75 A), the power consumption of the charging circuit 2 is (5-3) V × 0.75 A = 1.5 W (Watt) From (5-3.7) V × 0.75A = 0.97W, it will gradually decrease, and well over 1W. For this reason, in this case, the charging circuit may generate heat.

このように、本発明の実施の形態によれば、予備充電後の二次電池の急速充電時において、閾値電圧以下の場合に比較的小さな電流(0.5A)により充電し、閾値電圧を越える場合に大きな電流(0.75A)により充電するようにしている。したがって、充電回路は、消費電力が予め定められた電力を超えないように、電圧変換回路が出力する電圧に応じて二次電池に電流を単調に増加するように流し二次電池4を充電するようにしている。このため、充電回路が二次電池を充電するときに、充電回路の消費電力が予め定められた電力を超えないので、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。
(第3の実施の形態)
図6は、本発明の第3の実施の形態に係る充電装置の一例を示す図である。
As described above, according to the embodiment of the present invention, when the secondary battery is rapidly charged after the preliminary charging, the secondary battery is charged with a relatively small current (0.5 A) when the voltage is lower than the threshold voltage, and exceeds the threshold voltage. In this case, charging is performed with a large current (0.75 A). Therefore, the charging circuit charges the secondary battery 4 by flowing the current to the secondary battery in a monotonous manner according to the voltage output from the voltage conversion circuit so that the power consumption does not exceed the predetermined power. I am doing so. For this reason, when the charging circuit charges the secondary battery, the power consumption of the charging circuit does not exceed a predetermined power, so that the power consumption of the charging circuit does not increase and there is no possibility that the charging circuit generates heat.
(Third embodiment)
FIG. 6 is a diagram illustrating an example of a charging apparatus according to the third embodiment of the present invention.

図6には、充電回路11に電圧を供給する外部電源5(例えば、AC(Alternating current)アダプタ)と、充電回路11が充電する二次電池4(例えば、リチウムイオン電池)も記載してある。外部電源5は充電回路11に予め定めた電圧(例えば、5V(Volt))を供給する。二次電池4は、予め定めた範囲内に抑えた小電流(例えば、100mA(milliampere))で充電する予備充電により予め定めた予備充電電圧(例えば、3V)に充電されている。   FIG. 6 also shows an external power supply 5 (for example, an AC (Alternating Current) adapter) that supplies a voltage to the charging circuit 11 and a secondary battery 4 (for example, a lithium ion battery) that is charged by the charging circuit 11. . The external power supply 5 supplies a predetermined voltage (for example, 5 V (Volt)) to the charging circuit 11. The secondary battery 4 is charged to a predetermined preliminary charging voltage (for example, 3 V) by preliminary charging with a small current (for example, 100 mA (milliampere)) suppressed within a predetermined range.

本実施の形態に係る充電装置10は、充電回路11と、電圧変換回路16とにより構成する。充電回路11は、定電流回路6と定電圧回路7とにより構成する。電圧変換回路16は、減算回路12と、逆数計算回路13とにより構成する。減算回路12は、充電回路11に供給される外部電源5の電圧と充電回路11が充電する二次電池4の電圧(電池電圧)との差電圧Vdを出力する。逆数計算回路13は、減算回路12が出力する差電圧Vdの逆数の電圧を示す逆数電圧(1/Vd)を出力する。充電回路11の定電流回路6は、逆数計算回路13の出力する逆数電圧を受けこの電圧に比例した、予備充電のときの電流(例えば、100mA)よりも大きな電流(例えば、0.5Aから1.25A)により二次電池4を満充電電圧(例えば、4.2V)まで充電する。この充電を本充電あるいは急速充電という。充電回路11の定電圧回路7は、二次電池4の電圧が満充電電圧を保つように電流を流して二次電池4を充電する。   The charging device 10 according to the present embodiment includes a charging circuit 11 and a voltage conversion circuit 16. The charging circuit 11 includes a constant current circuit 6 and a constant voltage circuit 7. The voltage conversion circuit 16 includes a subtraction circuit 12 and an inverse calculation circuit 13. The subtraction circuit 12 outputs a difference voltage Vd between the voltage of the external power supply 5 supplied to the charging circuit 11 and the voltage (battery voltage) of the secondary battery 4 charged by the charging circuit 11. The reciprocal calculation circuit 13 outputs a reciprocal voltage (1 / Vd) indicating a reciprocal voltage of the difference voltage Vd output from the subtraction circuit 12. The constant current circuit 6 of the charging circuit 11 receives a reciprocal voltage output from the reciprocal calculation circuit 13 and is in proportion to this voltage, for example, a current larger than a current (for example, 100 mA) at the time of preliminary charging (for example, 0.5 A to 1 The secondary battery 4 is charged to a full charge voltage (for example, 4.2 V) by .25A). This charging is called main charging or rapid charging. The constant voltage circuit 7 of the charging circuit 11 charges the secondary battery 4 by passing a current so that the voltage of the secondary battery 4 is kept at the full charge voltage.

充電回路11の消費電力は、充電回路11に対し供給される外部電圧と二次電池4の電圧との差を示す差電圧と、充電回路11が二次電池4を充電する電流との積で示される。充電回路11は、この消費電力が予め定められた電力を超えないように、電圧変換回路16が出力する電圧に応じて二次電池4に電流を単調に増加するように流す。この予め定められた電力とは、充電回路11が発熱するおそれがない程度(例えば、1W(Watt))の電力である。この電力は1W(Watt)に限定することなく、充電回路11が発熱しない程度の電力であれば良い。   The power consumption of the charging circuit 11 is the product of the difference voltage indicating the difference between the external voltage supplied to the charging circuit 11 and the voltage of the secondary battery 4 and the current at which the charging circuit 11 charges the secondary battery 4. Indicated. The charging circuit 11 allows the current to flow through the secondary battery 4 so as to increase monotonously in accordance with the voltage output from the voltage conversion circuit 16 so that the power consumption does not exceed a predetermined power. The predetermined power is power (eg, 1 W (Watt)) that does not cause the charging circuit 11 to generate heat. This power is not limited to 1 W (Watt), and may be any power that does not cause the charging circuit 11 to generate heat.

ここで、本実施の形態に係る充電装置10の動作を説明する。   Here, operation | movement of the charging device 10 which concerns on this Embodiment is demonstrated.

外部電源5が接続された充電装置10に予め予備充電電圧(3V)に充電された二次電池4を接続する。減算回路12は、充電回路11に供給される外部電源5の電圧(5V)と充電回路11が充電する二次電池4の電圧(電池電圧)との差電圧Vdを出力する。最初は5V−3V=2Vである。逆数計算回路13は、減算回路12が出力する差電圧の逆数電圧(1/Vd)を出力する。最初は1/2V(0.5V)である。充電回路11は、逆数計算回路13の出力する逆数電圧を受けこの電圧に比例した、予備充電のときの電流よりも大きな電流により二次電池4を充電する。比例定数を1とすると、最初は逆数電圧が0.5Vであるので、充電回路11は0.5Aで二次電池4を急速充電する。充電回路11は、逆数計算回路13の出力する逆数電圧を受けつつ、この電圧に比例した電流で充電を続ける。そして、充電回路11の充電により二次電池4の電池電圧が徐々に高くなり、満充電電圧(4.2V)まで二次電池4を充電すると、このときの二次電池4の電池電圧は4.2Vであるので、減算回路12は、5V−4.2V=0.8Vを出力する。また、逆数計算回路13は、1/0.8V=1.25Vを出力する。したがって、このとき充電回路11は1.25Aで二次電池4を急速充電する。   The secondary battery 4 charged in advance to the preliminary charging voltage (3 V) is connected to the charging device 10 to which the external power source 5 is connected. The subtraction circuit 12 outputs a difference voltage Vd between the voltage (5 V) of the external power supply 5 supplied to the charging circuit 11 and the voltage (battery voltage) of the secondary battery 4 charged by the charging circuit 11. Initially, 5V-3V = 2V. The reciprocal calculation circuit 13 outputs a reciprocal voltage (1 / Vd) of the difference voltage output from the subtraction circuit 12. The initial voltage is 1 / 2V (0.5V). The charging circuit 11 receives the reciprocal voltage output from the reciprocal calculation circuit 13 and charges the secondary battery 4 with a current that is proportional to the voltage and is larger than the current at the time of preliminary charging. Assuming that the proportionality constant is 1, the reciprocal voltage is 0.5V at the beginning, so the charging circuit 11 rapidly charges the secondary battery 4 at 0.5A. The charging circuit 11 continues charging with a current proportional to the voltage while receiving the reciprocal voltage output from the reciprocal calculation circuit 13. Then, when the charging circuit 11 is charged, the battery voltage of the secondary battery 4 gradually increases, and when the secondary battery 4 is charged up to the full charge voltage (4.2 V), the battery voltage of the secondary battery 4 at this time is 4 Since it is 0.2 V, the subtraction circuit 12 outputs 5V-4.2V = 0.8V. Further, the reciprocal calculation circuit 13 outputs 1 / 0.8V = 1.25V. Therefore, at this time, the charging circuit 11 rapidly charges the secondary battery 4 at 1.25 A.

ここで、二次電池4を予備充電電圧から満充電電圧まで充電するときの充電回路11の消費電力について説明する。充電回路11の消費電力は、充電回路11に掛かる電圧と充電回路11に流れる電流との積である。充電回路11の掛かる電圧は、外部電源5が充電回路11に供給する電圧(5V)から二次電池4の電池電圧を減じた値であり、これは減算回路12の出力する差電圧Vdである。また、充電回路11に流れる電流は、逆数計算回路13の出力(1/Vd)に比例した電流はAc=K×(1/Vd)(ここでKは比例乗数)であり、Kを1にすると充電回路11に流れる電流はAc=1/Vdである。したがって、二次電池4を予備充電電圧から満充電電圧まで充電するときの充電回路11の消費電力はAc×Vd=1Wとなり、一定の低消費電力になる。ちなみに、予備充電電圧(3V)から満充電電圧(4.2V)まで、大電流(0.75A)のみにより充電する場合には、充電回路11の消費電力は、(5−3)V×0.75A=1.5W(Watt)から(5−4.2)V×0.75A=0.6Wに徐々に減少することになり、1Wを優に超える期間がある。このため、この場合には、充電回路が発熱するおそれがある。   Here, the power consumption of the charging circuit 11 when charging the secondary battery 4 from the preliminary charging voltage to the full charging voltage will be described. The power consumption of the charging circuit 11 is the product of the voltage applied to the charging circuit 11 and the current flowing through the charging circuit 11. The voltage applied by the charging circuit 11 is a value obtained by subtracting the battery voltage of the secondary battery 4 from the voltage (5 V) supplied from the external power supply 5 to the charging circuit 11, and this is the difference voltage Vd output from the subtraction circuit 12. . Further, the current flowing through the charging circuit 11 is Ac = K × (1 / Vd) (where K is a proportional multiplier), and the current proportional to the output (1 / Vd) of the reciprocal calculation circuit 13 is 1. Then, the current flowing through the charging circuit 11 is Ac = 1 / Vd. Therefore, the power consumption of the charging circuit 11 when charging the secondary battery 4 from the precharge voltage to the full charge voltage is Ac × Vd = 1 W, which is a constant low power consumption. Incidentally, in the case of charging only with a large current (0.75 A) from the precharge voltage (3 V) to the full charge voltage (4.2 V), the power consumption of the charging circuit 11 is (5-3) V × 0. .75A = 1.5W (Watt) is gradually reduced from (5-4.2) V × 0.75A = 0.6W, and there is a period well exceeding 1W. For this reason, in this case, the charging circuit may generate heat.

このように、本発明の実施の形態によれば、減算回路により、充電回路に供給される外部電源の電圧(5V)と充電回路が充電する二次電池の電圧(電池電圧)との差電圧Vdを出力し、逆数計算回路により、差電圧の逆数電圧(1/Vd)を出力する。そして、充電回路により、逆数電圧に比例した電流Ac=1/Vd(比例定数を1)により二次電池を充電する。このため、二次電池4を予備充電電圧から満充電電圧まで充電するときの充電回路の消費電力はAc×Vd=1Wとなり、一定の低消費電力になるので、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。   As described above, according to the embodiment of the present invention, the difference voltage between the voltage (5V) of the external power source supplied to the charging circuit and the voltage of the secondary battery (battery voltage) charged by the charging circuit by the subtracting circuit. Vd is output, and the reciprocal voltage (1 / Vd) of the difference voltage is output by the reciprocal calculation circuit. The charging circuit charges the secondary battery with a current Ac = 1 / Vd (proportional constant is 1) proportional to the reciprocal voltage. For this reason, the power consumption of the charging circuit when charging the secondary battery 4 from the preliminary charging voltage to the full charging voltage is Ac × Vd = 1 W, which is a constant low power consumption. There is no risk that the charging circuit will generate heat.

次に、図7から図9を使用して本発明の第3の実施の形態の動作を詳しく説明する。   Next, the operation of the third embodiment of the present invention will be described in detail with reference to FIGS.

図7は、本発明の第3の実施の形態に係る充電装置の逆数計算回路の入出力電圧特性の一例を示す図である。入力電圧は減算回路12の出力する差電圧Vdである。差電圧Vdとは、充電回路11に供給される外部電源5の電圧と充電回路11が充電する二次電池4の電池電圧との差である。出力電圧は差電圧Vdの逆数1/Vdである。   FIG. 7 is a diagram illustrating an example of input / output voltage characteristics of the reciprocal calculation circuit of the charging device according to the third embodiment of the present invention. The input voltage is the difference voltage Vd output from the subtraction circuit 12. The difference voltage Vd is a difference between the voltage of the external power supply 5 supplied to the charging circuit 11 and the battery voltage of the secondary battery 4 charged by the charging circuit 11. The output voltage is a reciprocal 1 / Vd of the differential voltage Vd.

図8は、本発明の第3の実施の形態に係る充電装置の定電流回路の入出力特性の一例を示す図である。横軸は定電流回路14の入力電圧(逆数計算回路13の出力電圧(1/Vd))、縦軸は定電流回路14の出力電流(二次電池4の充電電流)を示す。   FIG. 8 is a diagram illustrating an example of input / output characteristics of the constant current circuit of the charging device according to the third embodiment of the present invention. The horizontal axis represents the input voltage of the constant current circuit 14 (output voltage (1 / Vd) of the reciprocal calculation circuit 13), and the vertical axis represents the output current of the constant current circuit 14 (charging current of the secondary battery 4).

図9は、本発明の第3の実施の形態に係る充電装置の充電特性の一例を示す図である。(a)は、二次電池4の充電時における充電回路11の充電電流の時間変化の一例を示す。(b)は、二次電池4の充電時における充電回路11の消費電力の時間変化の一例を示す。(c)は、充電時における二次電池4の電圧(電池電圧)の時間変化の一例を示す。   FIG. 9 is a diagram illustrating an example of the charging characteristics of the charging device according to the third embodiment of the present invention. (A) shows an example of the time change of the charging current of the charging circuit 11 when the secondary battery 4 is charged. (B) shows an example of the time change of the power consumption of the charging circuit 11 at the time of charge of the secondary battery 4. FIG. (C) shows an example of the time change of the voltage (battery voltage) of the secondary battery 4 at the time of charge.

ここで、外部電源5が接続された充電装置10に予め予備充電電圧(3V)に充電された二次電池4を接続すると、減算回路12は、充電回路11に供給される外部電源5の電圧(5V)と充電回路11が充電する二次電池4の電圧(電池電圧)との差電圧Vdを出力する。そして、逆数計算回路13は、図7に示すように、減算回路12が出力する差電圧の逆数電圧(1/Vd)を出力する。次に、充電回路11の定電流回路14は、図8に示すように、逆数計算回路13の出力する逆数電圧を受けこの電圧に比例した、予備充電のときの電流よりも大きな電流Ac=K×(1/Vd)(ここでKは比例乗数)により二次電池4を充電する。比例定数を1とすると、充電電流はAc=1/Vdとなる。定電流回路14は、この充電電流により二次電池4を予備充電電圧(3V)から満充電電圧(4.2V)まで充電する。   Here, when the secondary battery 4 charged in advance to the preliminary charging voltage (3 V) is connected to the charging device 10 to which the external power supply 5 is connected, the subtraction circuit 12 is supplied with the voltage of the external power supply 5 supplied to the charging circuit 11. A difference voltage Vd between (5 V) and the voltage (battery voltage) of the secondary battery 4 charged by the charging circuit 11 is output. Then, as shown in FIG. 7, the reciprocal calculation circuit 13 outputs a reciprocal voltage (1 / Vd) of the difference voltage output from the subtraction circuit 12. Next, as shown in FIG. 8, the constant current circuit 14 of the charging circuit 11 receives the reciprocal voltage output from the reciprocal calculation circuit 13 and is proportional to this voltage. The current Ac = K is larger than the current at the time of precharging. The secondary battery 4 is charged by × (1 / Vd) (where K is a proportional multiplier). When the proportionality constant is 1, the charging current is Ac = 1 / Vd. The constant current circuit 14 charges the secondary battery 4 from the precharge voltage (3V) to the full charge voltage (4.2V) by this charging current.

上記の動作を図9を参照して説明する。   The above operation will be described with reference to FIG.

図9の(c)に示すように、二次電池4の電池電圧は定電流回路14により、予備充電電圧(3V)から満充電電圧(4.2V)になるまで徐々に増加して充電される。このとき、減算回路12の出力である差電圧Vdは、外部電源5の電圧が5Vであるので、(5−3)=2Vから(5−4.2)=0.8Vまで変動する。そして、逆数計算回路13の出力である逆数電圧(1/Vd)は、1/2=0.5Vから1/0.8=1.25Vまで変動する。このため、充電回路11の定電流回路14の出力はAc=1/Vdであるので、図9の(a)に示すように、0.5Aから1.25Aまで変動する。この電流により、二次電池4は満充電電圧(4.2V)になるまで充電される。そして、減算回路12は、二次電池4の電池電圧が満充電電圧になると満充電信号を出力する。充電回路11は、減算回路12から満充電信号を受けると、二次電池4を充電する回路を定電流回路14から定電圧回路15に切り替える。そして、この定電圧回路15は、二次電池4の電圧が満充電電圧を保つように、図9の(a)で示す電流により二次電池4を充電する。   As shown in FIG. 9 (c), the battery voltage of the secondary battery 4 is gradually increased and charged by the constant current circuit 14 from the precharge voltage (3V) to the full charge voltage (4.2V). The At this time, since the voltage of the external power supply 5 is 5V, the difference voltage Vd that is the output of the subtraction circuit 12 varies from (5-3) = 2V to (5-4.2) = 0.8V. The reciprocal voltage (1 / Vd) that is the output of the reciprocal calculation circuit 13 varies from 1/2 = 0.5V to 1 / 0.8 = 1.25V. For this reason, since the output of the constant current circuit 14 of the charging circuit 11 is Ac = 1 / Vd, it varies from 0.5 A to 1.25 A as shown in FIG. With this current, the secondary battery 4 is charged until it reaches a full charge voltage (4.2 V). Then, the subtraction circuit 12 outputs a full charge signal when the battery voltage of the secondary battery 4 reaches the full charge voltage. When receiving the full charge signal from the subtraction circuit 12, the charging circuit 11 switches the circuit for charging the secondary battery 4 from the constant current circuit 14 to the constant voltage circuit 15. And this constant voltage circuit 15 charges the secondary battery 4 with the electric current shown to (a) of FIG. 9 so that the voltage of the secondary battery 4 may maintain a full charge voltage.

ここで、二次電池4を予備充電電圧から満充電電圧まで充電するときの充電回路11の消費電力について説明する。充電回路11の消費電力は、充電回路11に掛かる電圧と充電回路11に流れる電流との積である。充電回路11に掛かる電圧は、外部電源5が充電回路11に供給する電圧(5V)から図9の(c)で示す二次電池4の電池電圧を減じた値であり、これは減算回路12の出力電圧Vdである。また、充電回路11に流れる電流は、逆数計算回路13の出力(1/Vd)に比例した電流Ac=K×(1/Vd)(ここでKは比例乗数)であり、Kを1にすると充電回路11に流れる電流はAc=1/Vdである。したがって、図9の(b)に示すように、二次電池4を予備充電電圧から満充電電圧まで充電するときの充電回路11の消費電力は、Ac×Vd=1Wとなり一定の低消費電力になる。ちなみに、予備充電電圧(3V)から満充電電圧(4.2V)まで、大電流(0.75A)のみにより充電する場合には、充電回路11の消費電力は、(5−3)V×0.75A=1.5Wから(5−4.2)V×0.75A=0.6Wに徐々に減少することになり、1Wを優に超える期間がある。このため、この場合には、充電回路が発熱するおそれがある。ここで、上記の説明では、比例乗数Kを1としたが、この値にこだわることなく、充電回路の消費電力が低消費電力になる範囲で適宜決めて良い。   Here, the power consumption of the charging circuit 11 when charging the secondary battery 4 from the preliminary charging voltage to the full charging voltage will be described. The power consumption of the charging circuit 11 is the product of the voltage applied to the charging circuit 11 and the current flowing through the charging circuit 11. The voltage applied to the charging circuit 11 is a value obtained by subtracting the battery voltage of the secondary battery 4 shown in FIG. 9C from the voltage (5 V) supplied from the external power source 5 to the charging circuit 11. Output voltage Vd. Further, the current flowing through the charging circuit 11 is a current Ac = K × (1 / Vd) (where K is a proportional multiplier) proportional to the output (1 / Vd) of the reciprocal calculation circuit 13, where K is 1. The current flowing through the charging circuit 11 is Ac = 1 / Vd. Therefore, as shown in FIG. 9B, the power consumption of the charging circuit 11 when charging the secondary battery 4 from the precharge voltage to the full charge voltage is Ac × Vd = 1 W, which is a constant low power consumption. Become. Incidentally, in the case of charging only with a large current (0.75 A) from the precharge voltage (3 V) to the full charge voltage (4.2 V), the power consumption of the charging circuit 11 is (5-3) V × 0. It gradually decreases from .75A = 1.5W to (5-4.2) V × 0.75A = 0.6W, and there is a period well exceeding 1W. For this reason, in this case, the charging circuit may generate heat. Here, in the above description, the proportional multiplier K is set to 1. However, the value may be appropriately determined within a range in which the power consumption of the charging circuit is low without being particular about this value.

このように、本発明の実施の形態によれば、減算回路により、充電回路に供給される外部電源の電圧と充電回路が充電する二次電池の電圧(電池電圧)との差電圧Vdを出力し、逆数計算回路により、差電圧の逆数電圧(1/Vd)を出力する。そして、充電回路により、逆数電圧に比例した電流Ac=1/Vd(比例定数を1)により二次電池を充電する。このため、二次電池を予備充電電圧から満充電電圧まで充電するときの充電回路の消費電力はAc×Vd=1Wとなり、一定の低消費電力になるので、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。   As described above, according to the embodiment of the present invention, the subtraction circuit outputs the difference voltage Vd between the voltage of the external power source supplied to the charging circuit and the voltage of the secondary battery (battery voltage) charged by the charging circuit. Then, the reciprocal calculation circuit outputs the reciprocal voltage (1 / Vd) of the differential voltage. The charging circuit charges the secondary battery with a current Ac = 1 / Vd (proportional constant is 1) proportional to the reciprocal voltage. For this reason, the power consumption of the charging circuit when charging the secondary battery from the precharge voltage to the full charge voltage is Ac × Vd = 1 W, which is a constant low power consumption, so the power consumption of the charging circuit does not increase. There is no risk that the charging circuit will generate heat.

このように、本発明によれば、充電回路が、充電回路の消費電力が予め定められた電力を超えないように、電圧変換回路の出力する電圧に応じて電流を単調に増加するように流し二次電池を充電する。このため、充電回路が二次電池を充電するときに、充電回路の消費電力が予め定められた電力を超えないので、充電回路の消費電力が増大せず充電回路が発熱するおそれがない。   Thus, according to the present invention, the charging circuit allows the current to flow monotonously according to the voltage output from the voltage conversion circuit so that the power consumption of the charging circuit does not exceed the predetermined power. Charge the secondary battery. For this reason, when the charging circuit charges the secondary battery, the power consumption of the charging circuit does not exceed a predetermined power, so that the power consumption of the charging circuit does not increase and there is no possibility that the charging circuit generates heat.

上記の実施形態の一部または全部は、以下の付記のように記載され得るが、以下には限られない。
(付記1)
予め定めた範囲内に抑えた小電流で充電する予備充電により予め定めた予備充電電圧まで充電された二次電池を充電する充電装置であって、
前記二次電池の電圧を検出し、検出した電圧に応じた電圧を出力する電圧変換回路と、
前記電圧変換回路が出力した電圧に応じた電流により前記二次電池を充電する充電回路と、を有し、
前記充電回路は、外部より供給される外部電圧と前記電圧変換回路が検出した前記二次電池の電圧との差を示す差電圧と、前記充電回路が前記二次電池を充電する電流との積で示される前記充電回路の消費電力が予め定められた電力を超えないように、前記電圧変換回路が出力する電圧に応じて前記二次電池に電流を単調に増加するように流す、ことを特徴とする充電装置。
(付記2)
前記電圧変換回路は、
前記二次電池の電圧が、前記二次電池の充電が満たされたときの前記二次電池の電圧を示す満充電電圧と前記予備充電電圧との中程の電圧である予め定めた閾値電圧以下の場合には、予め定めた第1の電圧を出力し、前記二次電池の電圧が前記閾値電圧を越える場合には、前記第1の電圧より高い予め定めた第2の電圧を出力し、
前記充電回路は、前記電圧変換回路が出力した前記第1の電圧と前記第2の電圧とにそれぞれ比例し、前記予備充電のときよりも大きな電流である第1の電流と第2の電流とにより前記二次電池を充電する、
ようにしたことを特徴とする請求項1記載の充電装置。
(付記3)
前記電圧変換回路は、前記二次電池の電圧が前記満充電電圧になった場合、満充電信号を出力し、
前記充電回路は、前記電圧変換回路から前記満充電信号を受け、受けた後に前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する、
ことを特徴とする請求項1又は2記載の充電装置。
(付記4)
前記充電回路は、前記電圧変換回路が出力した前記第1の電圧と前記第2の電圧とにそれぞれ比例した前記第1の電流と前記第2の電流とにより前記二次電池を充電する定電流回路と、
前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する定電圧回路と、
を備えたことを特徴とする請求項3記載の充電装置。
(付記5)
前記電圧変換回路は、
前記充電回路に対し外部より供給される外部電圧と、前記検出した前記二次電池の電圧との差を示す前記差電圧を出力する減算回路と、
前記減算回路が出力する前記差電圧の逆数の電圧を示す逆数電圧を出力する逆数計算回路と、備え、
前記充電回路は、前記逆数計算回路の出力する前記逆数電圧を受けこの電圧に比例した前記予備充電のときよりも大きな電流により前記二次電池を充電する、
ことを特徴とする請求項1記載の充電装置。
(付記6)
前記減算回路は、前記二次電池の電圧がこの二次電池の充電が満たされたときの電圧を示す満充電電圧になった場合、満充電信号を出力し、
前記充電回路は、前記減算回路から前記満充電信号を受け、受けた後に前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する、
ことを特徴とする請求項5記載の充電装置。
(付記7)
前記充電回路は、
前記逆数計算回路の出力する前記逆数電圧を受けこの電圧に比例した電流により前記二次電池を充電する定電流回路と、
前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する定電圧回路と、を備えたことを特徴とする請求項6記載の充電装置。
(付記8)
予め定めた範囲内に抑えた小電流で充電する予備充電により予め定めた予備充電電圧まで充電された二次電池を充電回路により充電する充電方法であって、
前記二次電池の電圧を検出しこの検出した電圧に応じた電圧を出力し、
前記充電回路により、前記出力された電圧に応じた電流により前記二次電池を充電し、
前記充電回路は、外部より供給される外部電圧と前記検出した前記二次電池の電圧との差を示す差電圧と、前記充電回路が前記二次電池を充電する電流との積で示される前記充電回路の消費電力が予め定められた電力を超えないように、前記出力された電圧に応じて前記二次電池に電流を単調に増加するように流す、ことを特徴とする充電方法。
(付記9)
前記二次電池の電圧が、この二次電池の充電が満たされたときの前記二次電池の電圧を示す満充電電圧と前記予備充電電圧との中程の電圧である予め定めた閾値電圧以下か否かを調べ、
調べた結果が閾値電圧以下を示す場合、前記予備充電のときよりも大きな電流である第1の電流により前記二次電池を充電し、
調べた結果が閾値電圧以下を示さない場合、前記予備充電のときよりも大きな電流であり、かつ前記第1の電流より大きな第2の電流により前記二次電池を充電する、
ことを特徴とする請求項8記載の充電方法。
(付記10)
前記充電回路に対し外部より供給される外部電圧と前記二次電池の電圧との差電圧を作成し、
この作成した差電圧の逆数の電圧を示す逆数電圧を作成し、
この作成した逆数電圧に比例した前記予備充電のときよりも大きな電流により前記二次電池を充電する、
ことを特徴とする請求項8記載の充電方法。
(付記11)
前記二次電池の電圧が前記満充電電圧になった場合、前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する、ことを特徴とする付記9記載の充電方法。
(付記12)
前記二次電池の電圧がこの二次電池の充電が満たされたときの電圧を示す満充電電圧になった場合、前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する、ことを特徴とする付記10記載の充電方法。
Part or all of the above-described embodiments can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A charging device for charging a secondary battery charged to a pre-charge voltage set in advance by pre-charging with a small current suppressed within a predetermined range,
A voltage conversion circuit that detects a voltage of the secondary battery and outputs a voltage corresponding to the detected voltage;
A charging circuit that charges the secondary battery with a current corresponding to the voltage output by the voltage conversion circuit;
The charging circuit is a product of a difference voltage indicating a difference between an external voltage supplied from the outside and a voltage of the secondary battery detected by the voltage conversion circuit, and a current at which the charging circuit charges the secondary battery. In order to prevent the power consumption of the charging circuit shown in FIG. 2 from exceeding a predetermined power, a current is supplied to the secondary battery in a monotonically increasing manner according to the voltage output from the voltage conversion circuit. Charging device.
(Appendix 2)
The voltage conversion circuit includes:
The voltage of the secondary battery is equal to or lower than a predetermined threshold voltage which is a middle voltage between a full charge voltage indicating the voltage of the secondary battery when the charge of the secondary battery is satisfied and the precharge voltage. In this case, a predetermined first voltage is output, and when the voltage of the secondary battery exceeds the threshold voltage, a predetermined second voltage higher than the first voltage is output,
The charging circuit is proportional to the first voltage and the second voltage output from the voltage conversion circuit, respectively, and has a first current and a second current that are larger than those during the preliminary charging. To charge the secondary battery,
The charging device according to claim 1, which is configured as described above.
(Appendix 3)
When the voltage of the secondary battery reaches the full charge voltage, the voltage conversion circuit outputs a full charge signal,
The charging circuit receives the full charge signal from the voltage conversion circuit, and charges the secondary battery so that the voltage of the secondary battery maintains the full charge voltage after receiving the full charge signal.
The charging device according to claim 1 or 2, wherein
(Appendix 4)
The charging circuit is a constant current that charges the secondary battery with the first current and the second current that are proportional to the first voltage and the second voltage output from the voltage conversion circuit, respectively. Circuit,
A constant voltage circuit for charging the secondary battery so that the voltage of the secondary battery maintains the full charge voltage;
The charging device according to claim 3, further comprising:
(Appendix 5)
The voltage conversion circuit includes:
A subtracting circuit for outputting the difference voltage indicating a difference between an external voltage supplied from the outside to the charging circuit and the detected voltage of the secondary battery;
A reciprocal calculation circuit that outputs a reciprocal voltage indicating a reciprocal voltage of the difference voltage output by the subtraction circuit, and
The charging circuit receives the reciprocal voltage output from the reciprocal calculation circuit and charges the secondary battery with a larger current than in the preliminary charging in proportion to the voltage.
The charging device according to claim 1.
(Appendix 6)
The subtracting circuit outputs a full charge signal when the voltage of the secondary battery becomes a full charge voltage indicating a voltage when the charge of the secondary battery is satisfied,
The charging circuit receives the full charge signal from the subtraction circuit, and charges the secondary battery so that the voltage of the secondary battery maintains the full charge voltage after receiving the full charge signal.
The charging device according to claim 5.
(Appendix 7)
The charging circuit is
A constant current circuit for receiving the inverse voltage output from the inverse calculation circuit and charging the secondary battery with a current proportional to the voltage;
The charging device according to claim 6, further comprising: a constant voltage circuit that charges the secondary battery so that a voltage of the secondary battery maintains the full charge voltage.
(Appendix 8)
A charging method for charging a secondary battery charged to a predetermined precharge voltage by a precharge with a small current suppressed within a predetermined range by a charging circuit,
Detecting the voltage of the secondary battery and outputting a voltage according to the detected voltage;
The charging circuit charges the secondary battery with a current corresponding to the output voltage,
The charging circuit is represented by a product of a difference voltage indicating a difference between an external voltage supplied from the outside and the detected voltage of the secondary battery, and a current at which the charging circuit charges the secondary battery. A charging method, wherein a current is supplied to the secondary battery so as to increase monotonously according to the output voltage so that power consumption of the charging circuit does not exceed a predetermined power.
(Appendix 9)
The voltage of the secondary battery is equal to or lower than a predetermined threshold voltage which is a middle voltage between the full charge voltage indicating the voltage of the secondary battery when the charge of the secondary battery is satisfied and the precharge voltage. Whether or not
When the examined result indicates a threshold voltage or less, the secondary battery is charged with a first current that is larger than that during the preliminary charging,
If the result of the examination does not indicate a threshold voltage or less, the secondary battery is charged with a second current that is greater than that during the preliminary charge and that is greater than the first current;
The charging method according to claim 8.
(Appendix 10)
Create a differential voltage between the external voltage supplied from the outside to the charging circuit and the voltage of the secondary battery,
Create a reciprocal voltage indicating the reciprocal voltage of the created differential voltage,
Charging the secondary battery with a larger current than that during the preliminary charging in proportion to the created reciprocal voltage;
The charging method according to claim 8.
(Appendix 11)
The charging method according to appendix 9, wherein when the voltage of the secondary battery reaches the full charge voltage, the secondary battery is charged so that the voltage of the secondary battery maintains the full charge voltage. .
(Appendix 12)
When the voltage of the secondary battery becomes a full charge voltage indicating a voltage when the charge of the secondary battery is satisfied, the secondary battery is set so that the voltage of the secondary battery maintains the full charge voltage. The charging method according to appendix 10, wherein charging is performed.

1 充電装置
2 充電回路
3 電圧変換回路
4 二次電池
5 外部電源
6 定電流回路
7 定電圧回路
10 充電装置
11 充電回路
12 減算回路
13 逆数計算回路
14 定電流回路
15 定電圧回路
16 電圧変換回路
20 充電装置
21 充電電流供給回路
22 充電電流検出手段
23 電池電圧検出手段
24 充電制御部
DESCRIPTION OF SYMBOLS 1 Charging device 2 Charging circuit 3 Voltage conversion circuit 4 Secondary battery 5 External power supply 6 Constant current circuit 7 Constant voltage circuit 10 Charging device 11 Charging circuit 12 Subtraction circuit 13 Reciprocal calculation circuit 14 Constant current circuit 15 Constant voltage circuit 16 Voltage conversion circuit DESCRIPTION OF SYMBOLS 20 Charging apparatus 21 Charging current supply circuit 22 Charging current detection means 23 Battery voltage detection means 24 Charge control part

Claims (10)

予め定めた範囲内に抑えた小電流で充電する予備充電により予め定めた予備充電電圧まで充電された二次電池を充電する充電装置であって、
前記二次電池の電圧を検出し、検出した電圧に応じた電圧を出力する電圧変換回路と、
前記電圧変換回路が出力した電圧に応じた電流により前記二次電池を充電する充電回路と、を有し、
前記充電回路は、外部より供給される外部電圧と前記電圧変換回路が検出した前記二次電池の電圧との差を示す差電圧と、前記充電回路が前記二次電池を充電する電流との積で示される前記充電回路の消費電力が予め定められた電力を超えないように、前記電圧変換回路が出力する電圧に応じて前記二次電池に電流を単調に増加するように流す、ことを特徴とする充電装置。
A charging device for charging a secondary battery charged to a pre-charge voltage set in advance by pre-charging with a small current suppressed within a predetermined range,
A voltage conversion circuit that detects a voltage of the secondary battery and outputs a voltage corresponding to the detected voltage;
A charging circuit that charges the secondary battery with a current corresponding to the voltage output by the voltage conversion circuit;
The charging circuit is a product of a difference voltage indicating a difference between an external voltage supplied from the outside and a voltage of the secondary battery detected by the voltage conversion circuit, and a current at which the charging circuit charges the secondary battery. In order to prevent the power consumption of the charging circuit shown in FIG. 2 from exceeding a predetermined power, a current is supplied to the secondary battery in a monotonically increasing manner according to the voltage output from the voltage conversion circuit. Charging device.
前記電圧変換回路は、
前記二次電池の電圧が、前記二次電池の充電が満たされたときの前記二次電池の電圧を示す満充電電圧と前記予備充電電圧との中程の電圧である予め定めた閾値電圧以下の場合には、予め定めた第1の電圧を出力し、前記二次電池の電圧が前記閾値電圧を越える場合には、前記第1の電圧より高い予め定めた第2の電圧を出力し、
前記充電回路は、前記電圧変換回路が出力した前記第1の電圧と前記第2の電圧とにそれぞれ比例し、前記予備充電のときよりも大きな電流である第1の電流と第2の電流とにより前記二次電池を充電する、
ようにしたことを特徴とする請求項1記載の充電装置。
The voltage conversion circuit includes:
The voltage of the secondary battery is equal to or lower than a predetermined threshold voltage which is a middle voltage between a full charge voltage indicating the voltage of the secondary battery when the charge of the secondary battery is satisfied and the precharge voltage. In this case, a predetermined first voltage is output, and when the voltage of the secondary battery exceeds the threshold voltage, a predetermined second voltage higher than the first voltage is output,
The charging circuit is proportional to the first voltage and the second voltage output from the voltage conversion circuit, respectively, and has a first current and a second current that are larger than those during the preliminary charging. To charge the secondary battery,
The charging device according to claim 1, which is configured as described above.
前記電圧変換回路は、前記二次電池の電圧が前記満充電電圧になった場合、満充電信号を出力し、
前記充電回路は、前記電圧変換回路から前記満充電信号を受け、受けた後に前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する、
ことを特徴とする請求項1又は2記載の充電装置。
When the voltage of the secondary battery reaches the full charge voltage, the voltage conversion circuit outputs a full charge signal,
The charging circuit receives the full charge signal from the voltage conversion circuit, and charges the secondary battery so that the voltage of the secondary battery maintains the full charge voltage after receiving the full charge signal.
The charging device according to claim 1 or 2, wherein
前記充電回路は、前記電圧変換回路が出力した前記第1の電圧と前記第2の電圧とにそれぞれ比例した前記第1の電流と前記第2の電流とにより前記二次電池を充電する定電流回路と、
前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する定電圧回路と、
を備えたことを特徴とする請求項3記載の充電装置。
The charging circuit is a constant current that charges the secondary battery with the first current and the second current that are proportional to the first voltage and the second voltage output from the voltage conversion circuit, respectively. Circuit,
A constant voltage circuit for charging the secondary battery so that the voltage of the secondary battery maintains the full charge voltage;
The charging device according to claim 3, further comprising:
前記電圧変換回路は、
前記充電回路に対し外部より供給される外部電圧と、前記検出した前記二次電池の電圧との差を示す前記差電圧を出力する減算回路と、
前記減算回路が出力する前記差電圧の逆数の電圧を示す逆数電圧を出力する逆数計算回路と、備え、
前記充電回路は、前記逆数計算回路の出力する前記逆数電圧を受けこの電圧に比例した前記予備充電のときよりも大きな電流により前記二次電池を充電する、
ことを特徴とする請求項1記載の充電装置。
The voltage conversion circuit includes:
A subtracting circuit for outputting the difference voltage indicating a difference between an external voltage supplied from the outside to the charging circuit and the detected voltage of the secondary battery;
A reciprocal calculation circuit that outputs a reciprocal voltage indicating a reciprocal voltage of the difference voltage output by the subtraction circuit, and
The charging circuit receives the reciprocal voltage output from the reciprocal calculation circuit and charges the secondary battery with a larger current than in the preliminary charging in proportion to the voltage.
The charging device according to claim 1.
前記減算回路は、前記二次電池の電圧がこの二次電池の充電が満たされたときの電圧を示す満充電電圧になった場合、満充電信号を出力し、
前記充電回路は、前記減算回路から前記満充電信号を受け、受けた後に前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する、
ことを特徴とする請求項5記載の充電装置。
The subtracting circuit outputs a full charge signal when the voltage of the secondary battery becomes a full charge voltage indicating a voltage when the charge of the secondary battery is satisfied,
The charging circuit receives the full charge signal from the subtraction circuit, and charges the secondary battery so that the voltage of the secondary battery maintains the full charge voltage after receiving the full charge signal.
The charging device according to claim 5.
前記充電回路は、
前記逆数計算回路の出力する前記逆数電圧を受けこの電圧に比例した電流により前記二次電池を充電する定電流回路と、
前記二次電池の電圧が前記満充電電圧を保つように前記二次電池を充電する定電圧回路と、を備えたことを特徴とする請求項6記載の充電装置。
The charging circuit is
A constant current circuit for receiving the inverse voltage output from the inverse calculation circuit and charging the secondary battery with a current proportional to the voltage;
The charging device according to claim 6, further comprising: a constant voltage circuit that charges the secondary battery so that a voltage of the secondary battery maintains the full charge voltage.
予め定めた範囲内に抑えた小電流で充電する予備充電により予め定めた予備充電電圧まで充電された二次電池を充電回路により充電する充電方法であって、
前記二次電池の電圧を検出しこの検出した電圧に応じた電圧を出力し、
前記充電回路により、前記出力された電圧に応じた電流により前記二次電池を充電し、
前記充電回路は、外部より供給される外部電圧と前記検出した前記二次電池の電圧との差を示す差電圧と、前記充電回路が前記二次電池を充電する電流との積で示される前記充電回路の消費電力が予め定められた電力を超えないように、前記出力された電圧に応じて前記二次電池に電流を単調に増加するように流す、ことを特徴とする充電方法。
A charging method for charging a secondary battery charged to a predetermined precharge voltage by a precharge with a small current suppressed within a predetermined range by a charging circuit,
Detecting the voltage of the secondary battery and outputting a voltage according to the detected voltage;
The charging circuit charges the secondary battery with a current corresponding to the output voltage,
The charging circuit is represented by a product of a difference voltage indicating a difference between an external voltage supplied from the outside and the detected voltage of the secondary battery, and a current at which the charging circuit charges the secondary battery. A charging method, wherein a current is supplied to the secondary battery so as to increase monotonously according to the output voltage so that power consumption of the charging circuit does not exceed a predetermined power.
前記二次電池の電圧が、この二次電池の充電が満たされたときの前記二次電池の電圧を示す満充電電圧と前記予備充電電圧との中程の電圧である予め定めた閾値電圧以下か否かを調べ、
調べた結果が閾値電圧以下を示す場合、前記予備充電のときよりも大きな電流である第1の電流により前記二次電池を充電し、
調べた結果が閾値電圧以下を示さない場合、前記予備充電のときよりも大きな電流であり、かつ前記第1の電流より大きな第2の電流により前記二次電池を充電する、
ことを特徴とする請求項8記載の充電方法。
The voltage of the secondary battery is equal to or lower than a predetermined threshold voltage which is a middle voltage between the full charge voltage indicating the voltage of the secondary battery when the charge of the secondary battery is satisfied and the precharge voltage. Whether or not
When the examined result indicates a threshold voltage or less, the secondary battery is charged with a first current that is larger than that during the preliminary charging,
If the result of the examination does not indicate a threshold voltage or less, the secondary battery is charged with a second current that is greater than that during the preliminary charge and that is greater than the first current;
The charging method according to claim 8.
前記充電回路に対し外部より供給される外部電圧と前記二次電池の電圧との差電圧を作成し、
この作成した差電圧の逆数の電圧を示す逆数電圧を作成し、
この作成した逆数電圧に比例した前記予備充電のときよりも大きな電流により前記二次電池を充電する、
ことを特徴とする請求項8記載の充電方法。
Create a differential voltage between the external voltage supplied from the outside to the charging circuit and the voltage of the secondary battery,
Create a reciprocal voltage indicating the reciprocal voltage of the created differential voltage,
Charging the secondary battery with a larger current than that during the preliminary charging in proportion to the created reciprocal voltage;
The charging method according to claim 8.
JP2012034290A 2012-02-20 2012-02-20 Charging apparatus and charging method Expired - Fee Related JP5536122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034290A JP5536122B2 (en) 2012-02-20 2012-02-20 Charging apparatus and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034290A JP5536122B2 (en) 2012-02-20 2012-02-20 Charging apparatus and charging method

Publications (2)

Publication Number Publication Date
JP2013172529A true JP2013172529A (en) 2013-09-02
JP5536122B2 JP5536122B2 (en) 2014-07-02

Family

ID=49266148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034290A Expired - Fee Related JP5536122B2 (en) 2012-02-20 2012-02-20 Charging apparatus and charging method

Country Status (1)

Country Link
JP (1) JP5536122B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700902A (en) * 2014-01-14 2014-04-02 深圳市思达仪表有限公司 Method and device for judging and activating voltage lag of lithium thionyl chloride battery
CN114094204A (en) * 2020-04-27 2022-02-25 朴力美电动车辆活力株式会社 Method for manufacturing secondary battery

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180907A (en) * 1994-12-26 1996-07-12 Sony Corp Charger
JPH10321262A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Method for charging non-aqueous secondary battery
JP3427341B2 (en) * 1997-03-14 2003-07-14 株式会社ケンウッド Charge control circuit
JP2004064915A (en) * 2002-07-30 2004-02-26 Ricoh Co Ltd Charging device for secondary battery and charging method thereof
JP2004159477A (en) * 2002-11-08 2004-06-03 Rohm Co Ltd Method and circuit for charging battery and portable electronic equipment having battery
JP2006223030A (en) * 2005-02-09 2006-08-24 Nec Electronics Corp Charge control circuit and charging apparatus
JP2007014163A (en) * 2005-07-01 2007-01-18 Fujitsu Ltd Charging ic, charger and electronic apparatus
JP2007049828A (en) * 2005-08-10 2007-02-22 Daiken Kagaku Kogyo Kk Battery quick charge process, battery quick charger, and battery quick recharging system
JP2008141873A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Charger
JP2009254215A (en) * 2008-04-10 2009-10-29 Ricoh Co Ltd Battery charger
JP2011155799A (en) * 2010-01-28 2011-08-11 Ntt Docomo Inc Charging circuit, mobile unit, and charging method
JP2011211846A (en) * 2010-03-30 2011-10-20 Panasonic Corp Apparatus and method of charging secondary battery
JP2012120267A (en) * 2010-11-29 2012-06-21 Toshiba Corp Charge controller

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180907A (en) * 1994-12-26 1996-07-12 Sony Corp Charger
JP3427341B2 (en) * 1997-03-14 2003-07-14 株式会社ケンウッド Charge control circuit
JPH10321262A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Method for charging non-aqueous secondary battery
JP2004064915A (en) * 2002-07-30 2004-02-26 Ricoh Co Ltd Charging device for secondary battery and charging method thereof
JP2004159477A (en) * 2002-11-08 2004-06-03 Rohm Co Ltd Method and circuit for charging battery and portable electronic equipment having battery
JP2006223030A (en) * 2005-02-09 2006-08-24 Nec Electronics Corp Charge control circuit and charging apparatus
JP2007014163A (en) * 2005-07-01 2007-01-18 Fujitsu Ltd Charging ic, charger and electronic apparatus
JP2007049828A (en) * 2005-08-10 2007-02-22 Daiken Kagaku Kogyo Kk Battery quick charge process, battery quick charger, and battery quick recharging system
JP2008141873A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Charger
JP2009254215A (en) * 2008-04-10 2009-10-29 Ricoh Co Ltd Battery charger
JP2011155799A (en) * 2010-01-28 2011-08-11 Ntt Docomo Inc Charging circuit, mobile unit, and charging method
JP2011211846A (en) * 2010-03-30 2011-10-20 Panasonic Corp Apparatus and method of charging secondary battery
JP2012120267A (en) * 2010-11-29 2012-06-21 Toshiba Corp Charge controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700902A (en) * 2014-01-14 2014-04-02 深圳市思达仪表有限公司 Method and device for judging and activating voltage lag of lithium thionyl chloride battery
CN114094204A (en) * 2020-04-27 2022-02-25 朴力美电动车辆活力株式会社 Method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP5536122B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US20160226266A1 (en) Fast charging power bank
US8378634B2 (en) Power management circuit
WO2017159486A1 (en) Power factor improvement device, and power storage device provided therewith
JP2010088150A (en) Charger
JP6731063B2 (en) Electrical equipment
JP6439866B2 (en) Power storage device and connection control method
JP5118534B2 (en) Charger
JP5268458B2 (en) Supply and demand control equipment for small power systems
JP2011061986A (en) Charge controller
US9172253B2 (en) Apparatus and method for charging a battery pack
JP5536122B2 (en) Charging apparatus and charging method
US10312701B2 (en) Charging method and portable electronic device using the same
US9448570B2 (en) Voltage fluctuation suppressing apparatus
TWI636638B (en) Charging system and control method thereof
JP2005245183A (en) Power storage device, hybrid power supply and hybrid power supply system
JP2018152943A (en) Control device, control method and computer program
JP2007259633A (en) Charging circuit and charging control method
TW201424229A (en) Voltage regulator, and control circuit and control method thereof
TW202234784A (en) Transient response predicting system and method with prediction mechanism of error amplified signal
JP7132901B2 (en) power converter
JP2011045220A (en) Terminal device and method of controlling supply current
JP2015008561A (en) Low-loss power conversion device and method of controlling the same
JP2006174635A (en) Power supply system
JP2011067041A (en) Charger and charging system
JP2018078667A (en) Photovoltaic power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5536122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees