JP2013172066A - Welding transformer and welding device - Google Patents

Welding transformer and welding device Download PDF

Info

Publication number
JP2013172066A
JP2013172066A JP2012036101A JP2012036101A JP2013172066A JP 2013172066 A JP2013172066 A JP 2013172066A JP 2012036101 A JP2012036101 A JP 2012036101A JP 2012036101 A JP2012036101 A JP 2012036101A JP 2013172066 A JP2013172066 A JP 2013172066A
Authority
JP
Japan
Prior art keywords
coil
positive
negative
electrode plate
positive side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012036101A
Other languages
Japanese (ja)
Other versions
JP5199493B1 (en
Inventor
Koji Kai
孝治 甲斐
Kazuo Takarayama
和生 寳山
Hiroshi Nagai
熙 永井
Kazuhiro Suzuki
一宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Giken KK
Original Assignee
Koyo Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Giken KK filed Critical Koyo Giken KK
Priority to JP2012036101A priority Critical patent/JP5199493B1/en
Application granted granted Critical
Publication of JP5199493B1 publication Critical patent/JP5199493B1/en
Publication of JP2013172066A publication Critical patent/JP2013172066A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To save power consumption by precisely controlling welding at high speed.SOLUTION: On a secondary side, one end of one rectifier element 18 is connected to one end of a positive side coil 14, and one end of the other rectifier element 20 is connected to one end of a negative side coil 16. The other end of one rectifier element 18 and the other end of the other rectifier element 20 are connected to a positive electrode 22, and the other end of the positive side coil and the other end of the negative side coil are connected to a negative electrode 24. A pulse-like primary current for inverting a polarity at a constant repetition frequency by an inverter is supplied to a primary coil. The primary coil 12 is sandwiched between the positive side coil 14 and the negative side coil 16. One end of the positive side coil 14 is electrically connected to a positive side conductor 30 via a first coupling electrode plate 44, and one end of the negative side coil 16 is electrically connected to a negative side conductor 32 via a second coupling electrode plate 46. The positive side conductor 30 and the negative side conductor 32 are made in close contact with each other via an insulation layer. Therefore, a commutation time can be reduced, so as to control the inverter at a high frequency.

Description

本発明は、高速で高品質な溶接を可能にする抵抗溶接機用の溶接トランスと溶接装置に関する。   The present invention relates to a welding transformer and a welding apparatus for a resistance welder that enable high-speed and high-quality welding.

抵抗溶接機用の溶接トランスに、インバータによる1次電流制御を行って、高精度に溶接電流を制御する技術が知られている(特許文献1参照)。また、その巻線構造を工夫することにより、さらに高速な制御を可能にすることが試みられている(特許文献1参照)。   A technique is known in which a primary current control by an inverter is performed on a welding transformer for a resistance welder to control a welding current with high accuracy (see Patent Document 1). In addition, attempts have been made to enable higher-speed control by devising the winding structure (see Patent Document 1).

特許第4687930号Japanese Patent No. 4687930

大電流で短時間の溶接を可能にするには、高い周波数の1次電流制御が必要である。これに加えて高品質な溶接をするには、従来の数倍から数十倍の周波数で制御することが望まれる。しかしながら、従来の溶接装置では、1次電流制御のための周波数を数倍以上に上げていくと、目的とする溶接電流が得られないか、あるいは動作が不安定になるという問題かあった。また、2次コイルの電流が大きくなると、磁気飽和によって溶接トランスに障害を生じるおそれもあった。
本発明は、高い周波数の1次電流制御や磁気飽和の抑制により、精密で高速な溶接制御ができ、消費電力も大幅に抑制できる溶接トランスとこれを使用した溶接装置を提供することを目的とする。
High frequency primary current control is required to enable welding with a large current for a short time. In addition to this, in order to perform high-quality welding, it is desired to control at a frequency several times to several tens of times the conventional frequency. However, the conventional welding apparatus has a problem that when the frequency for primary current control is increased several times or more, the intended welding current cannot be obtained or the operation becomes unstable. Further, when the current of the secondary coil increases, there is a possibility that the welding transformer may be damaged due to magnetic saturation.
An object of the present invention is to provide a welding transformer capable of performing precise and high-speed welding control by suppressing high frequency primary current control and magnetic saturation and greatly reducing power consumption, and a welding apparatus using the welding transformer. To do.

以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
1次コイル12と、正側コイル14と負側コイル16とを直列接続した2次コイルとを、磁心に巻回したトランス部と、前記正側コイル14の一端に一方の整流素子18の一端を接続し、前記負側コイル16の一端に他方の整流素子20の一端を接続し、前記一方の整流素子18の他端と前記他方の整流素子20の他端をプラス電極22に接続し、前記正側コイルの他端と前記負側コイルの他端をマイナス電極24に接続し、前記プラス電極22と前記マイナス電極24を溶接機28に接続する2次回路とを備え、前記1次コイルには、インバータにより一定の繰り返し周波数で極性を反転させるパルス状の1次電流が供給されており、前記正側コイル14と前記負側コイル16とは、両者の間に前記1次コイル12を挟むように配置され、前記正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続され、前記負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続され、前記正側導体30と前記負側導体32とは、絶縁層31を介して密着するように配置され、前記正側導体30と前記負側導体32の両側に前記整流素子18、20を配置して、第1極板34と第2極板36で挟み、前記第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が接続され、前記正側コイルの他端と前記負側コイルの他端にはマイナス電極24が接続されていることを特徴とする溶接トランス。
The following configurations are means for solving the above-described problems.
<Configuration 1>
A transformer unit in which a primary coil 12, a secondary coil in which a positive coil 14 and a negative coil 16 are connected in series are wound around a magnetic core, and one end of one rectifying element 18 at one end of the positive coil 14 Connecting one end of the other rectifying element 20 to one end of the negative side coil 16, connecting the other end of the one rectifying element 18 and the other end of the other rectifying element 20 to the plus electrode 22, A secondary circuit for connecting the other end of the positive side coil and the other end of the negative side coil to the negative electrode 24, and connecting the positive electrode 22 and the negative electrode 24 to a welding machine 28; Is supplied with a pulsed primary current whose polarity is inverted by an inverter at a constant repetition frequency, and the positive side coil 14 and the negative side coil 16 connect the primary coil 12 between them. It is arranged to sandwich, One end of the positive side coil 14 is electrically connected to the positive side conductor 30 via the first connecting pole plate 44, and one end of the negative side coil 16 is electrically connected to the negative side conductor 32 via the second connecting pole plate 46. The positive-side conductor 30 and the negative-side conductor 32 are disposed so as to be in close contact with each other via an insulating layer 31. The rectifying elements 18 and 20 are disposed on both sides of the positive-side conductor 30 and the negative-side conductor 32. The first electrode plate 34 and the second electrode plate 36 are arranged and sandwiched between the first electrode plate 34 and the second electrode plate 36, and the first electrode plate 34 and the second electrode plate 36 are electrically connected by the third electrode plate 38. And a negative electrode 24 is connected to the other end of the positive side coil and the other end of the negative side coil.

〈構成2〉
構成1に記載の溶接トランスにおいて、前記正側コイル14と前記負側コイル16とを交互に配置し、それぞれの間に分割巻きした前記1次コイル12を配置し、分割した前記1次コイル12は、全て直列接続されるかもしくは全部または一部が並列接続され、前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の正側コイル14と前記複数の負側コイル16とは相互に直列接続され、前記複数の正側コイル14の一端を第1連結極板44に接続し、前記複数の負側コイル16の一端を第2連結極板46に接続し、複数の正側コイル14の他端と複数の負側コイル16の他端を第3連結極板48に接続したことを特徴とする溶接トランス。
<Configuration 2>
In the welding transformer according to Configuration 1, the positive side coil 14 and the negative side coil 16 are alternately arranged, the primary coil 12 divided and wound between each is arranged, and the divided primary coil 12 is divided. Are all connected in series or all or part are connected in parallel, and the plurality of positive side coils 14 are all connected in parallel or all or part are connected in series, and the plurality of negative side coils 16 are all connected. The plurality of positive side coils 14 and the plurality of negative side coils 16 are connected in series to each other, and one end of each of the plurality of positive side coils 14 is connected to the first side. Connected to the connecting electrode plate 44, one end of the plurality of negative side coils 16 is connected to the second connecting electrode plate 46, and the other end of the plurality of positive side coils 14 and the other end of the plurality of negative side coils 16 are third. Connected to connecting plate 48 Welding transformer, characterized in that the.

〈構成3〉
構成2に記載の溶接トランスにおいて、磁心上の全ての場所で、正側コイル14と負側コイル16が分割された1次コイルを挟むように配置されていることを特徴とする溶接トランス。
<Configuration 3>
The welding transformer according to Configuration 2, wherein the positive side coil 14 and the negative side coil 16 are arranged so as to sandwich the divided primary coil at all locations on the magnetic core.

〈構成4〉
構成1乃至3のいずれかに記載の溶接トランスにおいて、2次コイルには、銅板をC字状に切削加工したワンターンコイルを2個直列接続して使用することを特徴とする溶接トランス。
<Configuration 4>
4. The welding transformer according to claim 1, wherein two one-turn coils obtained by cutting a copper plate into a C shape are connected in series to the secondary coil.

〈構成5〉
構成1に記載の溶接トランスにおいて、
中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされたコイルユニット、または、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされたコイルユニットを、磁心上に配置したことを特徴とする溶接トランス。
<Configuration 5>
In the welding transformer according to Configuration 1,
A coil unit wound coaxially so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed on the outermost periphery, or the positive coil 14 is disposed at the center. A welding transformer in which a primary coil 12 is disposed thereon and a coil unit wound coaxially so as to dispose a negative coil 16 on the outermost periphery is disposed on a magnetic core.

〈構成6〉
構成1に記載の溶接トランスにおいて、中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、磁心上に磁心の軸方向に交互に隙間なく配列したことを特徴とする溶接トランス。
〈構成7〉
構成1乃至6のいずれかに記載の溶接トランスを備えた溶接装置。
<Configuration 6>
In the welding transformer according to Configuration 1, the first coil is coaxially wound so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed on the outermost periphery. A unit and a second coil unit coaxially wound so that a positive coil 14 is disposed at the center, a primary coil 12 is disposed thereon, and a negative coil 16 is disposed on the outermost periphery are arranged on the magnetic core. The welding transformer is characterized in that the magnetic cores are alternately arranged in the axial direction without gaps.
<Configuration 7>
A welding apparatus comprising the welding transformer according to any one of configurations 1 to 6.

〈構成1の効果〉
正側導体30と負側導体32とを絶縁層を介して密着させ、正側コイル14と負側コイル16との間に1次コイル12を挟むように配置したので、2次回路の転流時のインダクタンスを低減して、転流時間を短くし、高い周波数のインバータ制御が可能になる。
〈構成2の効果〉
1次コイルと2次側の正側コイルと負側コイルとを分割巻きして、1次2次コイル間の結合を良くし、2次側の大電流による磁気飽和を防止できる。
〈構成3の効果〉
1次コイル12と正側コイル14と負側コイル16との関係がどの場所でも均等で互いに密接して配置させることができる。
〈構成4の効果〉
大電流を流す正側コイル14と負側コイル16をいずれも単純なワンターンコイルにして、インダクタンスも極小にし、分割巻きをし易くした。
〈構成5と6の効果〉
負側コイル16と1次コイル12と正側コイル14とを同軸巻きしても、上記の構成と同様の効果を得ることができる。
<Effect of Configuration 1>
Since the positive side conductor 30 and the negative side conductor 32 are brought into close contact with each other through an insulating layer and the primary coil 12 is sandwiched between the positive side coil 14 and the negative side coil 16, the commutation of the secondary circuit The inductance at the time is reduced, the commutation time is shortened, and the inverter control at a high frequency becomes possible.
<Effect of Configuration 2>
The primary coil, the secondary positive coil, and the negative coil are separately wound to improve the coupling between the primary and secondary coils and prevent magnetic saturation due to a large secondary current.
<Effect of Configuration 3>
The primary coil 12, the positive side coil 14, and the negative side coil 16 can be arranged in close contact with each other evenly at any location.
<Effect of Configuration 4>
Both the positive side coil 14 and the negative side coil 16 through which a large current flows are made simple one-turn coils, the inductance is minimized, and split winding is facilitated.
<Effects of configurations 5 and 6>
Even if the negative side coil 16, the primary coil 12, and the positive side coil 14 are coaxially wound, the same effect as the above configuration can be obtained.

本発明で採用する溶接装置の電源回路の結線図である。It is a connection diagram of the power supply circuit of the welding apparatus employ | adopted by this invention. 整流素子18に順方向電流が流れたときの回路動作を示す結線図である。FIG. 6 is a connection diagram showing a circuit operation when a forward current flows through the rectifying element 18. 整流素子20に順方向電流が流れたときの回路動作を示す結線図である。4 is a connection diagram illustrating a circuit operation when a forward current flows through the rectifying element 20. FIG. (a)はトランスの1次側に供給される電流を制御するための制御パルス、(b)は1次電流、(c)は整流後の溶接電流を示す。(A) is a control pulse for controlling the current supplied to the primary side of the transformer, (b) is the primary current, and (c) is the welding current after rectification. 実験例の分解斜視図と側面図である。It is the disassembled perspective view and side view of an experiment example. 転流時間中における2次回路の電流を示す説明図である。It is explanatory drawing which shows the electric current of the secondary circuit in a commutation time. 本発明で使用する1次コイルと2次コイルおよび磁心の一例を示す斜視図である。It is a perspective view which shows an example of the primary coil used by this invention, a secondary coil, and a magnetic core. 本発明の溶接トランスの主要部実施例を示す分解斜視図と側面図である。It is the disassembled perspective view and side view which show the principal part Example of the welding transformer of this invention. 1次コイルと正側コイルと負側コイルの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a primary coil, a positive side coil, and a negative side coil. 2次コイルの結線例を示す斜視図である。It is a perspective view which shows the example of a connection of a secondary coil. 本発明の溶接トランスの実施例を示す分解斜視図である。It is a disassembled perspective view which shows the Example of the welding transformer of this invention. 実施例6の1次コイル12と正側コイル14と負側コイル16の斜視図である。FIG. 10 is a perspective view of a primary coil 12, a positive side coil 14, and a negative side coil 16 of Example 6.

以下、本発明の実施の形態を実施例毎に詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail for each example.

図1は、本発明で採用する溶接装置の電源回路の結線図である。
溶接トランス26の1次コイル12には、後で図4を用いて説明する1次電流が供給される。整流回路は、単相全波整流式を採用する。この回路自体は良く知られている。2次コイル自体に極性を考慮する必要はないが、便宜上、2次コイルを、正側コイル14と負側コイル16とを直列接続したものと呼ぶことにする。正側コイル14の一端に整流素子18の一端を接続し、負側コイル16の一端に整流素子20の一端を接続し、整流素子18の他端と整流素子20の他端をまとめてプラス電極22に接続する。正側コイルの他端と負側コイルの他端は接続点を介して連結しているが、この接続点をマイナス電極24に接続する。プラス電極22とマイナス電極24が溶接機28に接続されている。
FIG. 1 is a connection diagram of a power supply circuit of a welding apparatus employed in the present invention.
A primary current described later with reference to FIG. 4 is supplied to the primary coil 12 of the welding transformer 26. The rectifier circuit employs a single-phase full-wave rectification type. This circuit itself is well known. Although it is not necessary to consider the polarity of the secondary coil itself, for convenience, the secondary coil is referred to as a positive coil 14 and a negative coil 16 connected in series. One end of the rectifying element 18 is connected to one end of the positive side coil 14, one end of the rectifying element 20 is connected to one end of the negative side coil 16, and the other end of the rectifying element 18 and the other end of the rectifying element 20 are combined together as a positive electrode. 22 is connected. The other end of the positive side coil and the other end of the negative side coil are connected via a connection point, and this connection point is connected to the negative electrode 24. A plus electrode 22 and a minus electrode 24 are connected to the welder 28.

図2は、整流素子18に順方向電流が流れたときの回路動作を示す。図3は整流素子20に順方向電流が流れたときの回路動作を示す。
回路動作上問題になる等価的なインダクタンス成分を図2と3に書き加えた。即ち、正側コイル14と整流素子18を接続する正側導体30と、負側コイル16と整流素子20を接続する負側導体32、及び溶接機28内部の導体のインダクタンスが、溶接装置の性能に影響を及ぼすと考えられる。その詳細は後で説明する。
FIG. 2 shows a circuit operation when a forward current flows through the rectifying element 18. FIG. 3 shows a circuit operation when a forward current flows through the rectifying element 20.
Equivalent inductance components that cause problems in circuit operation are added to FIGS. That is, the inductance of the positive side conductor 30 connecting the positive side coil 14 and the rectifying element 18, the negative side conductor 32 connecting the negative side coil 16 and the rectifying element 20, and the conductor inside the welding machine 28 are the performance of the welding apparatus. It is thought that it will affect. Details will be described later.

溶接トランス26や溶接機28に発生する大量の熱の発生を抑制することができれば、溶接装置の省エネルギー化を図ることができる。従来よりも大電流を短時間溶接部に供給するように制御して、溶接時間を短縮すれば、大きな節電効果が期待できる。
一方、溶接される材料や構造等に最適な溶接電流を供給するためには、溶接電流の供給時間をきわめて高精度に制御しなけれはならない。
このために、溶接電流を供給するトランスの1次側にインバータを接続して、PWM制御により溶接電流の大きさと供給時間とを制御することが行われている。
If generation of a large amount of heat generated in the welding transformer 26 and the welding machine 28 can be suppressed, energy saving of the welding apparatus can be achieved. By controlling so as to supply a larger current to the welded portion in a shorter time than before and shortening the welding time, a great power saving effect can be expected.
On the other hand, in order to supply the optimum welding current for the material or structure to be welded, the welding current supply time must be controlled with extremely high accuracy.
For this purpose, an inverter is connected to the primary side of a transformer that supplies a welding current, and the magnitude and supply time of the welding current are controlled by PWM control.

図4の(a)はトランスの1次側に供給される電流を制御するための制御パルス、(b)は1次電流、(c)は整流後の溶接電流を示す。
図示しないインバータにより制御された幅Wのパルスが、一定時間H内に一定回数、ここでは正方向のパルスと負方向のパルスとで合計10回、1次コイルに供給される。その結果、トランスの1次コイル12(図1)には、(b)に示すような電流が流れる。トランスの2次側で全波整流をして、(c)に示すような溶接電流を発生させる。
4A shows a control pulse for controlling the current supplied to the primary side of the transformer, FIG. 4B shows the primary current, and FIG. 4C shows the welding current after rectification.
A pulse with a width W controlled by an inverter (not shown) is supplied to the primary coil a fixed number of times within a fixed time H, here a total of 10 times including a positive pulse and a negative pulse. As a result, a current as shown in (b) flows through the primary coil 12 (FIG. 1) of the transformer. Full-wave rectification is performed on the secondary side of the transformer to generate a welding current as shown in (c).

(a)に示したパルスの幅Wを増減すると溶接電流を調整できる。バルスの供給回数を増減すれば溶接時間を調整できる。このパルスの繰り返し周波数を高くすると、溶接時間をより細かく微調整できる。1次コイルに供給する電力を増やせば、2次コイルからより大きな溶接電流を取り出せる。   The welding current can be adjusted by increasing or decreasing the pulse width W shown in FIG. Welding time can be adjusted by increasing / decreasing the number of pulse supply. If the repetition frequency of this pulse is increased, the welding time can be finely adjusted. If the electric power supplied to the primary coil is increased, a larger welding current can be extracted from the secondary coil.

従来の溶接装置は、例えば、1万アンペアで200m秒〜700m秒の溶接電流を供給するようにしていたが、溶接電流をその2倍の2万アンペアにしてみる。溶接装置は、溶接部以外の場所で熱エネルギになって消費される電力損失がきわめて大きい。従って、溶接電流を2倍にして、溶接時間を10分の1に短縮すると、消費電力を5分の1にすることができる。これで、従来の1万アンペアでの溶接と同等の溶接品質が可能になる。   For example, the conventional welding apparatus supplies a welding current of 200 milliseconds to 700 milliseconds at 10,000 amperes, but the welding current is set to 20,000 amperes, which is twice that of the welding current. In the welding apparatus, the power loss consumed as thermal energy in a place other than the welded portion is extremely large. Therefore, if the welding current is doubled and the welding time is reduced to 1/10, the power consumption can be reduced to 1/5. This enables welding quality equivalent to conventional welding at 10,000 amperes.

一方、溶接電流を供給するためのインバータの制御パルスは、従来、繰り返し周波数が1kHz程度のものを使用していた。しかしながら、大電流を短時間供給するには、もっと分解能の高い制御パルスが必要になる。望ましくは、繰り返し周波数が5kHz〜50kHz程度のパルスを使用することが望ましい。   On the other hand, an inverter control pulse for supplying a welding current has conventionally used a repetition frequency of about 1 kHz. However, in order to supply a large current for a short time, a control pulse with higher resolution is required. Desirably, it is desirable to use a pulse having a repetition frequency of about 5 kHz to 50 kHz.

このように、従来の数倍から数十倍の高い繰り返し周波数のパルスを1次コイルに供給した場合に、従来構造の溶接トランスでは、予定した溶接電流が得られないことがわかった。即ち、このような制御で2次コイルから大電流を出力するためには、トランスの構造に様々な改善が要求される。   Thus, it has been found that when a pulse having a repetition frequency several times to several tens of times higher than that of the conventional one is supplied to the primary coil, a welding current having a conventional structure cannot obtain a predetermined welding current. That is, in order to output a large current from the secondary coil by such control, various improvements are required for the structure of the transformer.

図1に示すような2個の整流素子18、20を使用した全波整流型の2次回路は、ブリッジを使用した回路に比べて整流素子数が少なく、小型化できて電力損失も少ないため、溶接装置に適することが知られている。   A full-wave rectification type secondary circuit using two rectifying elements 18 and 20 as shown in FIG. 1 has a smaller number of rectifying elements than a circuit using a bridge, can be downsized, and has less power loss. It is known to be suitable for welding equipment.

しかしながら、この回路では、1次コイル12に流れる電流の極性反転によって、2次コイルに誘起される電圧が極性反転したとき、一方の整流素子を通じて供給されていた負荷電流が他方の整流素子側に流れを変える転流が生じる。   However, in this circuit, when the polarity of the voltage induced in the secondary coil is reversed due to the polarity reversal of the current flowing through the primary coil 12, the load current supplied through one rectifying element is transferred to the other rectifying element side. A commutation that changes the flow occurs.

溶接電流が大電流になると、回路各部のインダクタンスに蓄積された電流エネルギは非常に大きくなる。この電流エネルギが一方の整流素子から他方の整流素子の側に移る転流時間は、図2や図3に示した2次コイルの各部のインダクタンスが大きいほど長くなる。   When the welding current becomes large, the current energy accumulated in the inductance of each part of the circuit becomes very large. The commutation time during which this current energy moves from one rectifying element to the other rectifying element becomes longer as the inductance of each part of the secondary coil shown in FIGS.

図4に示した1次コイルの電流の立ち下がり開始から反対極性の電流の立ち上がり終了までの時間Mの間に2次回路の転流が完了しないと、2次電流の立ち上がりが遅れて、図4の波線に示すように、予定した溶接電流が得られなくなる。   If the commutation of the secondary circuit is not completed during the time M from the start of the fall of the current of the primary coil shown in FIG. 4 to the end of the rise of the current of the opposite polarity, the rise of the secondary current is delayed. As indicated by the dashed line 4, the planned welding current cannot be obtained.

図5は実験例の分解斜視図と側面図である。
図5の(a)も(b)も、左側に分解斜視図を示し、右側に組み立て後の側面図を示した。図5(a)の例では、1次コイル12と正側コイル14と負側コイル16とが図示しない磁心に巻回されている。大電流を取り出し、内部に冷却水を供給する中空構造にするため、正側導体30や負側導体32は、厚い銅板で構成している。両者の間は薄い絶縁層31で隔離されている。正側導体30と負側導体32の両側に整流素子18、20を配置して、第1極板34と第2極板36で挟むようにしている。第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が固定される。正側コイル14と負側コイル16の接続点には図示しない銅板を接続してマイナス電極24を取り付ける。
FIG. 5 is an exploded perspective view and a side view of the experimental example.
5 (a) and 5 (b) show an exploded perspective view on the left side and a side view after assembly on the right side. In the example of FIG. 5A, the primary coil 12, the positive coil 14, and the negative coil 16 are wound around a magnetic core (not shown). In order to obtain a hollow structure that takes out a large current and supplies cooling water to the inside, the positive conductor 30 and the negative conductor 32 are made of thick copper plates. The two are separated by a thin insulating layer 31. The rectifying elements 18 and 20 are arranged on both sides of the positive side conductor 30 and the negative side conductor 32 so as to be sandwiched between the first electrode plate 34 and the second electrode plate 36. The first electrode plate 34 and the second electrode plate 36 are electrically connected by a third electrode plate 38, and the plus electrode 22 is fixed to the third electrode plate 38. A copper plate (not shown) is connected to a connection point between the positive side coil 14 and the negative side coil 16 and a minus electrode 24 is attached.

図5(b)の例では、正側コイル14と負側コイル16の間に1次コイルを挟むように配置した。この構造では、正側導体30と負側導体32の間に第3極板38を配置し、第3極板38と正側導体30の間に整流素子18を挟んだ。また、負側導体32と第3極板38の間に整流素子20を挟んだ。第3極板38にプラス電極22が固定される。正側コイル14と負側コイル16の接続点には図示しない銅板を接続してマイナス電極24を取り付ける。   In the example of FIG. 5B, the primary coil is disposed between the positive side coil 14 and the negative side coil 16. In this structure, the third electrode plate 38 is disposed between the positive conductor 30 and the negative conductor 32, and the rectifying element 18 is sandwiched between the third electrode plate 38 and the positive conductor 30. Further, the rectifying element 20 is sandwiched between the negative conductor 32 and the third electrode plate 38. The positive electrode 22 is fixed to the third electrode plate 38. A copper plate (not shown) is connected to a connection point between the positive side coil 14 and the negative side coil 16 and a minus electrode 24 is attached.

図6は、転流時間中における2次回路の電流を示す説明図である。
この図を用いて、上記の実験例の検証をする。図6は、2次コイルを構成する正側コイル14と負側コイル16の結線を立体的に表示したもので、両者の位置関係も意識して説明する。正側コイル14と負側コイル16とは連続した磁心(図示しない)上に巻回されており、正側導体30と負側導体32とは側方に引き出されて整流素子18や整流素子20に接続される。
FIG. 6 is an explanatory diagram showing the current of the secondary circuit during the commutation time.
The above experimental example is verified using this figure. FIG. 6 is a three-dimensional representation of the connection between the positive side coil 14 and the negative side coil 16 constituting the secondary coil, and will be described in view of the positional relationship between them. The positive side coil 14 and the negative side coil 16 are wound on a continuous magnetic core (not shown), and the positive side conductor 30 and the negative side conductor 32 are pulled out sideways, and the rectifying element 18 and the rectifying element 20 are drawn. Connected to.

転流時間中には、正側導体30にC1、正側コイル14にC2、負側コイル16にC3、負側導体32にC4の方向の電流が流れる。この状態は正側コイル14に直前までC1と反対方向に電流が流れており、転流が開始されると、正側コイル14に蓄積された電流エネルギが負側コイル16の方向に放出されるところを示している。正側コイル14には、整流素子18方向から電流が流れ込まないので、蓄積されたエネルギが放出されるとC1方向の電流は消滅する。これで転流が終了する。   During the commutation time, a current flows in the direction of C1 through the positive conductor 30, C2 through the positive coil 14, C3 through the negative coil 16, and C4 through the negative conductor 32. In this state, current flows through the positive coil 14 in the direction opposite to C1 until just before, and when commutation is started, current energy accumulated in the positive coil 14 is released in the direction of the negative coil 16. However, it shows. Since no current flows into the positive coil 14 from the direction of the rectifying element 18, the current in the C1 direction disappears when the accumulated energy is released. This completes the commutation.

図5(a)の実験例では、ほぼ同一形状の正側導体30と負側導体32とを薄い絶縁層31を介して密着させている。このような構造にすると、図6に示したように、正側導体30と負側導体32の電流の向きが反対だから、磁束が相互に打ち消しあって、両者のインダクタンスが相殺される。即ち、正側導体30と負側導体32のインダクタンスが見かけ上極小になる。従って転流時間をより短縮できる。   In the experimental example of FIG. 5A, the positive side conductor 30 and the negative side conductor 32 having substantially the same shape are brought into close contact with each other through a thin insulating layer 31. With such a structure, as shown in FIG. 6, since the current directions of the positive side conductor 30 and the negative side conductor 32 are opposite to each other, the magnetic fluxes cancel each other and the inductances of both are offset. That is, the inductance of the positive side conductor 30 and the negative side conductor 32 is apparently minimized. Therefore, the commutation time can be further shortened.

ところが、図5(a)に示すように正側コイル14と負側コイル16とを密着させて配置すると、図6に示すように、正側コイル14と負側コイル16にC2とC3方向に流れる電流に対して、これらのコイルのインダクタンスが大きく影響することがわかった。即ち、正側コイル14と負側コイル16のインダクタンスが転流時間を遅らせることが分かった。   However, when the positive side coil 14 and the negative side coil 16 are disposed in close contact as shown in FIG. 5A, the positive side coil 14 and the negative side coil 16 are placed in the C2 and C3 directions as shown in FIG. It was found that the inductance of these coils greatly affects the flowing current. That is, it has been found that the inductance of the positive side coil 14 and the negative side coil 16 delays the commutation time.

また、図5(a)の構造の場合に、正側コイル14に負荷電流が流れている状態と、負側コイル16に負荷電流が流れている状態とでは、1次コイル12との磁気的結合の程度が異なる。負側コイル16に負荷電流が流れている状態では漏れ磁束が増大する。このような磁気的結合のアンバランスは異常電流を引き起こし易い。   Further, in the case of the structure of FIG. 5A, the magnetic current between the primary coil 12 and the load current flowing through the positive coil 14 and the load current flowing through the negative coil 16 are magnetic. The degree of coupling is different. In a state where a load current flows through the negative coil 16, the leakage magnetic flux increases. Such imbalance of magnetic coupling is likely to cause an abnormal current.

さらに、高い繰り返し周波数のパルスを1次コイルに供給すると、1次コイルの電流の立ち下がり開始から反対極性の電流の立ち上がり終了までの時間Mが短くなるので、急激な磁束変化により磁心が磁気飽和を生じやすい。正側コイル14と負側コイル16とを近接配置すると、2次コイルに流れる大電流による磁束が2次コイル付近に集中して、磁気飽和を生じやすい。 Furthermore, if a pulse with a high repetition frequency is supplied to the primary coil, the time M from the start of the primary coil current fall to the end of the opposite polarity current is shortened. It is easy to produce. When the positive side coil 14 and the negative side coil 16 are arranged close to each other, magnetic flux due to a large current flowing in the secondary coil concentrates in the vicinity of the secondary coil, and magnetic saturation is likely to occur.

一方、図5(b)に示すように、1次コイル12を正側コイル14と負側コイル16とで挟む構造を採用すると、1次コイル12と正側コイル14の位置関係は、1次コイル12と負側コイル16の位置関係と同じになり、磁気的結合のアンバランスを生じない。また、正側コイル14と負側コイル16の間に1次コイル12を挟むことにより、正側コイル14と負側コイル16との間の距離を離して、転流時間中に流れる電流に対するインダクタンスを小さくできる。また、図5(a)の構造に比べて磁気飽和を生じにくい。しかしながら、図5(b)の例では、正側導体30と負側導体32の間の距離が離れてしまって図5(a)の例よりも特性が悪くなる。   On the other hand, as shown in FIG. 5B, when a structure in which the primary coil 12 is sandwiched between the positive coil 14 and the negative coil 16 is employed, the positional relationship between the primary coil 12 and the positive coil 14 is primary. The positional relationship between the coil 12 and the negative coil 16 is the same, and no magnetic coupling imbalance occurs. Further, by sandwiching the primary coil 12 between the positive side coil 14 and the negative side coil 16, the distance between the positive side coil 14 and the negative side coil 16 is increased, and the inductance with respect to the current flowing during the commutation time. Can be reduced. In addition, magnetic saturation is less likely to occur than the structure of FIG. However, in the example of FIG. 5B, the distance between the positive conductor 30 and the negative conductor 32 is increased, and the characteristics are worse than those of the example of FIG.

図7は本発明で使用する1次コイルと2次コイルおよび磁心の一例を示す斜視図である。
本発明は、上記の実験例等を考慮して、トランスの部分の構造を次のように改良した。まず、1次コイル12は、例えば、図5の(a)に示すように、平角絶縁線を磁心を軸にして多層に巻き付けたものを使用する。2次コイルには、銅板をC字状に切削加工したワンターンコイルを2個直列接続して使用する。(b)が正側コイル14で(c)が負側コイル16である。これらは(d)に示したような磁心25に巻き付けられる。
FIG. 7 is a perspective view showing an example of a primary coil, a secondary coil and a magnetic core used in the present invention.
In the present invention, the structure of the transformer portion is improved as follows in consideration of the above experimental example and the like. First, as the primary coil 12, for example, as shown in FIG. 5A, a coil in which a flat insulated wire is wound in multiple layers around a magnetic core is used. As the secondary coil, two one-turn coils obtained by cutting a copper plate into a C shape are connected in series and used. (B) is the positive coil 14 and (c) is the negative coil 16. These are wound around the magnetic core 25 as shown in FIG.

図8は、本発明の溶接トランスの主要部実施例を示し図5と同一の要領で図示した。
まず、図8(a)の実施例は、正側コイル14と負側コイル16の間に1次コイル12を挟むように配置する。1次コイル12と正側コイル14と負側コイル16とは、8(a)の右側に波線で示した磁心25に巻回される。
FIG. 8 shows an embodiment of a main part of the welding transformer according to the present invention and is illustrated in the same manner as FIG.
First, in the embodiment of FIG. 8A, the primary coil 12 is sandwiched between the positive coil 14 and the negative coil 16. The primary coil 12, the positive coil 14, and the negative coil 16 are wound around a magnetic core 25 indicated by a wavy line on the right side of 8 (a).

正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続される。負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続される。正側コイル14と負側コイル16とは、中間導体40を介して直列接続されている。中間導体40は引出導体42に電気接続される。溶接機に供給するための大電流を取り出し、内部に冷却水を供給する中空構造にするため、コイルも導体も銅板で構成している。第1連結極板44と第2連結極板46を設けたので、正側導体30と負側導体32とを、薄い絶縁層31を介して密着させることができる。   One end of the positive side coil 14 is electrically connected to the positive side conductor 30 via the first connecting electrode plate 44. One end of the negative side coil 16 is electrically connected to the negative side conductor 32 via the second connecting electrode plate 46. The positive coil 14 and the negative coil 16 are connected in series via an intermediate conductor 40. The intermediate conductor 40 is electrically connected to the lead conductor 42. The coil and the conductor are made of a copper plate in order to obtain a hollow structure that takes out a large current to be supplied to the welding machine and supplies cooling water to the inside. Since the first connection electrode plate 44 and the second connection electrode plate 46 are provided, the positive conductor 30 and the negative conductor 32 can be brought into close contact with each other through the thin insulating layer 31.

正側導体30と負側導体32を挟むように、両側に整流素子18、20を配置して、さらにその外側を第1極板34と第2極板36で挟むようにしている。第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が固定される。引出導体42を介してマイナス電極24(図6)を取り付ける。   The rectifying elements 18 and 20 are arranged on both sides so as to sandwich the positive conductor 30 and the negative conductor 32, and the outside is sandwiched between the first electrode plate 34 and the second electrode plate 36. The first electrode plate 34 and the second electrode plate 36 are electrically connected by a third electrode plate 38, and the plus electrode 22 is fixed to the third electrode plate 38. The minus electrode 24 (FIG. 6) is attached via the lead conductor 42.

この図8(a)の構造によれば、正側導体30と負側導体32とを近接配置して転流時間における正側導体30と負側導体32のインダクタンスを極小にできる。また、正側コイル14と負側コイル16との間の距離を離したので、転流時間における正側コイル14と負側コイル16のインダクタンスを低下させることができる。これらにより、転流時間を短くすることができ、本発明の目的である繰り返し周波数が5kHz〜50kHz程度のパルスを使用した制御が可能になる。   According to the structure of FIG. 8A, the positive side conductor 30 and the negative side conductor 32 are arranged close to each other, so that the inductance of the positive side conductor 30 and the negative side conductor 32 during commutation time can be minimized. Moreover, since the distance between the positive side coil 14 and the negative side coil 16 was separated, the inductance of the positive side coil 14 and the negative side coil 16 during the commutation time can be reduced. As a result, the commutation time can be shortened, and control using a pulse having a repetition frequency of about 5 kHz to 50 kHz, which is an object of the present invention, can be performed.

また、正側コイル14と負側コイル16との間に1次コイル12を配置したので、1次コイル12と正側コイル14や負側コイル16との間の磁気的結合のバランスが良く、安定で良好な溶接電流が得られる。さらに、大電流の流れる正側コイル14と負側コイル16とを離すことにより、磁心25の磁気飽和も起こり難くすることができる。   Further, since the primary coil 12 is disposed between the positive side coil 14 and the negative side coil 16, the balance of magnetic coupling between the primary coil 12 and the positive side coil 14 or the negative side coil 16 is good. A stable and good welding current can be obtained. Furthermore, the magnetic saturation of the magnetic core 25 can be made difficult to occur by separating the positive coil 14 and the negative coil 16 through which a large current flows.

図8(b)の実施例では、正側コイル14と負側コイル16のペアを3組使用した。即ち、正側コイル14と負側コイル16とを交互に配置し、それぞれの間に分割巻きした1次コイル12を配置した。分割巻きした1次コイル12は全て直列接続してもよいし全部または一部を並列接続してもよい。複数の正側コイル14は全て並列接続してもよいし全部または一部を直列接続してもよい。複数の負側コイル16は全て並列接続してもよいし全部または一部を直列接続してもよい。また、正側コイル14と負側コイル16の数を自由に増やしてよい。   In the example of FIG. 8B, three pairs of the positive side coil 14 and the negative side coil 16 are used. That is, the positive side coil 14 and the negative side coil 16 are alternately arranged, and the primary coil 12 that is divided and wound is arranged between them. The primary coils 12 that are divided and wound may all be connected in series, or all or some of them may be connected in parallel. The plurality of positive side coils 14 may all be connected in parallel, or all or some of them may be connected in series. The plurality of negative coils 16 may all be connected in parallel, or all or some of them may be connected in series. Moreover, you may increase the number of the positive side coils 14 and the negative side coils 16 freely.

複数の正側コイル14と複数の負側コイル16とは直列接続される。正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続される。負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続される。正側コイル14の他端と負側コイル16の他端は第3連結極板48に電気接続される。   The plurality of positive coils 14 and the plurality of negative coils 16 are connected in series. One end of the positive side coil 14 is electrically connected to the positive side conductor 30 via the first connecting electrode plate 44. One end of the negative side coil 16 is electrically connected to the negative side conductor 32 via the second connecting electrode plate 46. The other end of the positive side coil 14 and the other end of the negative side coil 16 are electrically connected to the third coupling electrode plate 48.

正側導体30と負側導体32を挟むように、両側に整流素子18、20を配置して、さらにその外側を第1極板34と第2極板36で挟む。第1極板34と第2極板36は第3極板38により電気接続される。第3極板38にプラス電極22が固定される。第3連結極板48はマイナス電極24に接続される。   The rectifying elements 18 and 20 are arranged on both sides so that the positive conductor 30 and the negative conductor 32 are sandwiched, and the outside is sandwiched between the first electrode plate 34 and the second electrode plate 36. The first electrode plate 34 and the second electrode plate 36 are electrically connected by a third electrode plate 38. The positive electrode 22 is fixed to the third electrode plate 38. The third connecting electrode plate 48 is connected to the negative electrode 24.

なお、複数の正側コイル14と複数の負側コイル16と、第1連結極板44、第2連結極板46および第3連結極板48の間の電気接続のために、これらの間に基板62が配置されている。基板62の上面に設けられた複数の突起は、正側コイル14や負側コイル16の端子に固定され電気接続される。また、これらの突起が筒状になっており、これらの突起を通じて冷却水が正側コイル14や負側コイル16の中空部に流れ込むようにしてもよい。   In addition, for electrical connection among the plurality of positive side coils 14 and the plurality of negative side coils 16, the first connection electrode plate 44, the second connection electrode plate 46 and the third connection electrode plate 48, A substrate 62 is disposed. The plurality of protrusions provided on the upper surface of the substrate 62 are fixed and electrically connected to the terminals of the positive coil 14 and the negative coil 16. Moreover, these protrusions are cylindrical, and the cooling water may flow into the hollow portions of the positive coil 14 and the negative coil 16 through these protrusions.

この基板62の導体構造は、同等の結線ができるものであれば任意に設計できる。特に、基板62、は複数の正側コイル14と複数の負側コイル16に直結しているから、中空構造にして冷却すれば、正側コイル14や負側コイル16や1次コイルを強力に冷却できる。   The conductor structure of the substrate 62 can be arbitrarily designed as long as equivalent wiring is possible. In particular, since the substrate 62 is directly connected to the plurality of positive side coils 14 and the plurality of negative side coils 16, the positive side coil 14, the negative side coil 16 and the primary coil can be strengthened by cooling with a hollow structure. Can be cooled.

図のように、複数の正側コイル14の一端を第1連結極板44に接続し、複数の負側コイル16の一端を第2連結極板46に接続し、複数の正側コイル14の他端と複数の負側コイル16の他端を第3連結極板48に接続して、第1連結極板44と正側導体30とを接続し第2連結極板46と負側導体32を接続するとともに、第1連結極板44と第2連結極板46とを近接配置し、かつ、正側導体30と負側導体32とを近接配置して、図8(a)と同様の効果を得ることができる。なお、近接配置した導体間には、いずれも、絶縁フィルムもしくは絶縁塗料等による絶縁層を挟むものとする。   As shown in the figure, one end of the plurality of positive side coils 14 is connected to the first connection electrode plate 44, one end of the plurality of negative side coils 16 is connected to the second connection electrode plate 46, and the plurality of positive side coils 14 are connected. The other end and the other ends of the plurality of negative coils 16 are connected to the third connecting plate 48, the first connecting plate 44 and the positive conductor 30 are connected, and the second connecting plate 46 and the negative conductor 32 are connected. And connecting the first connecting electrode plate 44 and the second connecting electrode plate 46 close to each other and arranging the positive side conductor 30 and the negative side conductor 32 close to each other, the same as FIG. An effect can be obtained. Note that an insulating layer made of an insulating film or an insulating paint is sandwiched between the conductors arranged in close proximity.

図9は、1次コイルと正側コイルと負側コイルの位置関係を示す説明図である。
図8の(b)に示した装置は実施例2の装置である。この装置は、1次コイルと正側コイル14と負側コイル16との密着が良く、バランスも最適に構成されている。図9(a)に示すように、上から順に、正側コイル14、1次コイル12、負側コイル16、1次コイル12、正側コイル14、1次コイル12・・というように、各コイルが配列されている。
FIG. 9 is an explanatory diagram showing a positional relationship among the primary coil, the positive coil, and the negative coil.
The apparatus shown in FIG. 8B is the apparatus of the second embodiment. In this device, the primary coil, the positive side coil 14 and the negative side coil 16 are in close contact with each other, and the balance is optimally configured. As shown in FIG. 9A, in order from the top, each of the positive side coil 14, the primary coil 12, the negative side coil 16, the primary coil 12, the positive side coil 14, the primary coil 12,. Coils are arranged.

複数の正側コイル14は全て並列接続されて、一方の端子が正側導体30に接続されているものとする。また、負側コイル16も全て並列接続されて、一方の端子が負側導体32に接続されているものとする。基板62が、これらを電気接続している。図9(b)は、正側コイル14の電流が溶接機側に供給されるときの、電流が有効に流れる部分のみを図示したものである。図9の(c)は、負側コイル16の電流が溶接機側に供給されるときの、電流が有効に流れる部分のみを図示したものである。   It is assumed that the plurality of positive side coils 14 are all connected in parallel and one terminal is connected to the positive side conductor 30. Further, it is assumed that all the negative side coils 16 are connected in parallel and one terminal is connected to the negative side conductor 32. A substrate 62 electrically connects them. FIG. 9B illustrates only a portion where the current flows effectively when the current of the positive side coil 14 is supplied to the welding machine side. FIG. 9C illustrates only a portion where the current flows effectively when the current of the negative side coil 16 is supplied to the welding machine side.

図9(b)を見てわかるように、どの1次コイル12もいずれかの正側コイル14に密着している。また、図9(c)を見てわかるように、どの1次コイル12もいずれかの負側コイル16に密着している。これは、磁心上の全ての場所で、正側コイル14と負側コイル16が分割された1次コイル12を挟むように配置されているからである。   As can be seen from FIG. 9B, any primary coil 12 is in close contact with any positive coil 14. Further, as can be seen from FIG. 9C, any primary coil 12 is in close contact with any negative coil 16. This is because the positive coil 14 and the negative coil 16 are arranged so as to sandwich the divided primary coil 12 at all locations on the magnetic core.

これにより、1次コイル12と正側コイル14との磁気的結合も、1次コイル12と負側コイル16との磁気的結合も良好で、正側コイル14と負側コイル16とが完全に均衡をとれている。なお、図9の図面は、図8(b)の実施例と対応するものとしたときには、コイル群(12,14,16)を正面から見た状態を示し、正側導体30や負側導体32等は側面から見た状態を示している。   Thereby, the magnetic coupling between the primary coil 12 and the positive coil 14 and the magnetic coupling between the primary coil 12 and the negative coil 16 are good, and the positive coil 14 and the negative coil 16 are completely connected. Balanced. 9 corresponds to the embodiment of FIG. 8B, the coil group (12, 14, 16) is seen from the front, and the positive side conductor 30 and the negative side conductor are shown. 32 etc. have shown the state seen from the side.

図10は、2次コイルの結線例を示す斜視図で、(a)は実施例2の装置、(b)は実施例5の装置のものである。
実施例2で説明した図8(b)の装置は、例えば、図のように、正側コイル14と負側コイル16とを結線する。図の手前から、正側コイル14と負側コイル16の3組がそれぞれ直列接続されている。そして正側コイル14の一方の端子が第1連結極板44に接続され、負側コイル16の一方の端子が第2連結極板46に接続されている。また、正側コイル14と負側コイル16の接続点が第3連結極板48に接続されている。分割巻きされた1次コイル12(図8)は全て直列接続される。しかし、その全部または一部を並列接続しても構わない。2次コイルも同様で、正側コイル14や負側コイル16は、全部を並列接続して使用してもよいし、全部または一部を直列接続して使用してもよい。要求される出力電圧に応じて切り替えることもできる。また、正側コイル14と負側コイル16とは、必ずしも同数でなくて構わない。また、個々のコイルの太さや形状も必ずしも同一でなくて構わない。もちろん、正側コイル14と負側コイル16とは相互に直列接続される。
FIG. 10 is a perspective view showing an example of the connection of the secondary coil, where (a) shows the apparatus of the second embodiment and (b) shows the apparatus of the fifth embodiment.
The apparatus of FIG. 8B described in the second embodiment connects, for example, the positive coil 14 and the negative coil 16 as illustrated. From the front of the figure, three sets of a positive coil 14 and a negative coil 16 are connected in series. One terminal of the positive side coil 14 is connected to the first connection electrode plate 44, and one terminal of the negative side coil 16 is connected to the second connection electrode plate 46. A connection point between the positive side coil 14 and the negative side coil 16 is connected to the third connecting electrode plate 48. All the primary coils 12 (FIG. 8) that have been separately wound are connected in series. However, all or part of them may be connected in parallel. The same applies to the secondary coil. The positive side coil 14 and the negative side coil 16 may be used by connecting them all in parallel, or may be used by connecting all or part of them in series. It can also be switched according to the required output voltage. Moreover, the positive side coil 14 and the negative side coil 16 do not necessarily need to be the same number. Moreover, the thickness and shape of each coil may not necessarily be the same. Of course, the positive side coil 14 and the negative side coil 16 are connected in series with each other.

各コイルと第1連結極板44や第2連結極板46との間の接続距離は短い。しかし、第1連結極板44や第2連結極板46とこれに接続される正側導体30や負側導体32はコイルサイズに比べて長い。従って、この部分のインダクタンスが問題になる。そこで、上記ように、正側導体30と負側導体32とを近接配置した。なお、第1連結極板44や第2連結極板46は、このように必然的に近接配置されるが、第3連結極板48を第1連結極板44と第2連結極板46の間に配置しないことも有効である。   The connection distance between each coil and the first connection electrode plate 44 or the second connection electrode plate 46 is short. However, the first connecting electrode plate 44 and the second connecting electrode plate 46, and the positive side conductor 30 and the negative side conductor 32 connected thereto are longer than the coil size. Therefore, the inductance of this part becomes a problem. Therefore, as described above, the positive conductor 30 and the negative conductor 32 are arranged close to each other. Note that the first connection electrode plate 44 and the second connection electrode plate 46 are inevitably disposed in this manner, but the third connection electrode plate 48 is connected to the first connection electrode plate 44 and the second connection electrode plate 46. It is also effective not to place them between them.

図10(b)は、正側コイル14と負側コイル16を左右にその軸が平行になるように配置している。即ち、縦2列に正側コイル14と負側コイル16を4組設けた。縦方向の並びは、正側コイル14と負側コイル16とが交互に配置される。正側コイル14と負側コイル16一方の端子を、第1連結極板44と第2連結極板46に対して、一組毎に入れ替えれば、この結線が実現する。   In FIG. 10B, the positive side coil 14 and the negative side coil 16 are arranged so that their axes are parallel to the left and right. That is, four sets of the positive coil 14 and the negative coil 16 are provided in two vertical rows. In the vertical arrangement, the positive side coils 14 and the negative side coils 16 are alternately arranged. This connection is realized by replacing one terminal of the positive side coil 14 and the negative side coil 16 with respect to the first connection electrode plate 44 and the second connection electrode plate 46 for each set.

図11は、実施例5の実際の溶接トランス10を示す分解斜視図である。
正側コイル14と負側コイル16とを図10で説明した要領で7組配置する。これらの正側コイル14と負側コイル16の間に、1次コイル12を挟み込む。1次コイル12の入力端子58は側方に引き出す。分割巻きされた1次コイル12は全て直列接続されている。
FIG. 11 is an exploded perspective view showing an actual welding transformer 10 of the fifth embodiment.
Seven sets of the positive side coil 14 and the negative side coil 16 are arranged as described in FIG. The primary coil 12 is sandwiched between the positive side coil 14 and the negative side coil 16. The input terminal 58 of the primary coil 12 is pulled out to the side. All the primary coils 12 that have been separately wound are connected in series.

正側コイル14と負側コイル16の間に1次コイル12を挟み込んだ後で、磁心25を装着する。磁心25は2分割されているが、結束バンド60で結束一体化する。ループ状の磁心25のほぼ全体を覆うように1次コイル12と正側コイル14と負側コイル16とを配置するので、漏れ磁束が少なくて良好な特性を得る。図10に示した正側コイル14や負側コイル16の結線は、図の基板62の部分で行う。   After sandwiching the primary coil 12 between the positive coil 14 and the negative coil 16, the magnetic core 25 is mounted. Although the magnetic core 25 is divided into two parts, the magnetic cores 25 are bound and integrated by a binding band 60. Since the primary coil 12, the positive side coil 14, and the negative side coil 16 are arranged so as to cover almost the entire loop-shaped magnetic core 25, the leakage flux is small and good characteristics are obtained. The connection of the positive side coil 14 and the negative side coil 16 shown in FIG.

図12は、実施例5の1次コイル12と正側コイル14と負側コイル16の斜視図である。
上記の実施例では、1次コイル12と正側コイル14と負側コイル16とを磁心25上に可能な限り隙間なく配列して、漏れ磁束を無くし、各コイル間の磁気的結合を最適化した。一方、この実施例では、1次コイル12と正側コイル14と負側コイル16とを重ね巻きすることによって、各コイル間の磁気的結合度を高める。
FIG. 12 is a perspective view of the primary coil 12, the positive coil 14, and the negative coil 16 of the fifth embodiment.
In the above embodiment, the primary coil 12, the positive coil 14, and the negative coil 16 are arranged on the magnetic core 25 with as little gap as possible to eliminate the leakage magnetic flux and optimize the magnetic coupling between the coils. did. On the other hand, in this embodiment, the primary coil 12, the positive side coil 14, and the negative side coil 16 are lap-wound to increase the degree of magnetic coupling between the coils.

図12(a)は、中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされた第1のコイルユニットである。図12(b)は、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされた第2のコイルユニットである。正側コイル14と負側コイル16とは、いずれも、1次コイル12と同じ幅のワンターンコイルである。漏れ磁束を無くして、1次コイルと2次コイルの磁気的結合を高めるためである。図12(c)と(d)にその斜視図を示す。   FIG. 12A is a first coil unit that is coaxially wound so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed on the outermost periphery. is there. FIG. 12B shows a second coil unit that is coaxially wound so that the positive coil 14 is disposed at the center, the primary coil 12 is disposed thereon, and the negative coil 16 is disposed on the outermost periphery. is there. Both the positive side coil 14 and the negative side coil 16 are one-turn coils having the same width as the primary coil 12. This is to eliminate the leakage magnetic flux and increase the magnetic coupling between the primary coil and the secondary coil. FIGS. 12C and 12D are perspective views.

図12(a)に示した第1のコイルユニットと図12(b)に示した第2のコイルユニットとを図12(e)に示すように、磁心上に隙間無く配列する。これにより、磁心の軸方向に配列された隣接するコイル間からの漏れ磁束を最小にできる。また、正側コイル14と負側コイル16との間に1次コイル12を配置したので、正側コイル14と負側コイル16との間の磁気的結合を小さくすることができ、上記の実施例と同様の効果を得る。なお、正側コイル14と負側コイル16の特性のアンバランスを問題としない場合には、第1のコイルユニットまたは第2のコイルユニット単体でも実用になる。   As shown in FIG. 12E, the first coil unit shown in FIG. 12A and the second coil unit shown in FIG. 12B are arranged without gaps on the magnetic core. Thereby, the leakage magnetic flux from between the adjacent coils arranged in the axial direction of the magnetic core can be minimized. Further, since the primary coil 12 is arranged between the positive side coil 14 and the negative side coil 16, the magnetic coupling between the positive side coil 14 and the negative side coil 16 can be reduced, and the above-described implementation is performed. The same effect as the example is obtained. In addition, when the imbalance of the characteristics of the positive side coil 14 and the negative side coil 16 is not a problem, the first coil unit or the second coil unit alone is practical.

図12(a)と図12(b)に示したものを交互に配列すると、巻き径の異なる正側コイル14や負側コイル16を直列接続し、あるいは並列接続して使用したとき、全体として、各コイルのインダクタンスを平準化できる。また、正側コイル14と負側コイル16とが直接隣接しないので、正側コイル14と負側コイル16との間の磁気的結合を小さくすることができる。さらに、図11に示した溶接トランスと比較すると、正側コイル14や負側コイル16の製造コストを下げることもできる。   When the elements shown in FIGS. 12A and 12B are alternately arranged, when the positive side coil 14 and the negative side coil 16 having different winding diameters are connected in series or connected in parallel, as a whole The inductance of each coil can be leveled. Further, since the positive side coil 14 and the negative side coil 16 are not directly adjacent to each other, the magnetic coupling between the positive side coil 14 and the negative side coil 16 can be reduced. Furthermore, the manufacturing cost of the positive side coil 14 and the negative side coil 16 can be reduced as compared with the welding transformer shown in FIG.

以上の構成の本発明の溶接トランスおよび溶接装置は、電気的に見たときと熱的にみたときとで、それぞれ次のような効果を有する。
(電気的効果)
(1)正側コイル14と整流素子18とを電気接続するための第1連結極板44と第2連結極板46とを近接配置し、かつ、正側導体30と負側導体32とを近接配置することにより、転流時間における2次回路のインダクタンスを極小にして、転流時間を短くすることができる。
(2)磁心上で、2次コイルの正側コイルと負側コイルの間に1次コイルを挟むように配置することにより、2次コイルの正側コイルと負側コイルのインダクタンスによる2次電流の転流時間の遅れを抑制することができる。
(3)大電流の流れる2次コイルを磁心上に分散配置したので、磁心全体に磁束を分散させて、磁気飽和を防止することができる。
(4)従来よりも高い周波数の1次電流制御ができれば、大電流を供給できるトランスを小型化し、冷却効率も高めることが可能になる。
The welding transformer and welding apparatus of the present invention having the above-described configuration have the following effects when viewed electrically and when viewed thermally.
(Electrical effect)
(1) The first connecting electrode plate 44 and the second connecting electrode plate 46 for electrically connecting the positive side coil 14 and the rectifying element 18 are disposed close to each other, and the positive side conductor 30 and the negative side conductor 32 are arranged. By arranging them close to each other, the inductance of the secondary circuit in the commutation time can be minimized and the commutation time can be shortened.
(2) By arranging the primary coil between the positive side coil and the negative side coil of the secondary coil on the magnetic core, the secondary current due to the inductance of the positive side coil and the negative side coil of the secondary coil. The delay of commutation time can be suppressed.
(3) Since the secondary coils through which a large current flows are distributed on the magnetic core, the magnetic flux can be distributed throughout the magnetic core to prevent magnetic saturation.
(4) If primary current control at a higher frequency than before can be performed, a transformer capable of supplying a large current can be miniaturized and cooling efficiency can be increased.

(熱的効果)
大電流の流れる2次コイルを磁心上に分散配置し、間に1次コイルを挟むことにより、2次コイルの放熱を良くすることができる。大電流を供給するトランスは、1次コイルも2次コイルも発熱する。異常に発熱すると、絶縁体を劣化させる等の障害を発生する。大電流を流す2次コイルは最も激しく発熱するが、中空構造にして内部に冷却水を供給して冷却すれば、1次コイルよりも温度を下げることができる。従って、2次コイルに挟まれた1次コイルも2次コイルを流れる冷却水により冷却される。上記の構造では、効率よく1次コイルを冷却できる。
(Thermal effect)
By disposing the secondary coils through which a large current flows on the magnetic core and sandwiching the primary coils therebetween, the heat dissipation of the secondary coils can be improved. A transformer that supplies a large current generates heat in both the primary coil and the secondary coil. Abnormal heat generation will cause problems such as deterioration of the insulator. The secondary coil through which a large current flows generates heat most intensely, but the temperature can be lowered as compared with the primary coil if it is cooled by supplying a cooling water into the hollow structure. Accordingly, the primary coil sandwiched between the secondary coils is also cooled by the cooling water flowing through the secondary coil. With the above structure, the primary coil can be efficiently cooled.

本発明の溶接装置は、上記の実施例に限定されない。例えば、2次回路の結線には銅板を例示し、各部をビス止め等で連結する例を示したが、例えば、正側コイル14と第1連結極板44とが連続一体化されていてもよい。また、第1連結極板44と正側導体30とは連続一体化されていてもよい。第1極板34と第2極板36と第3極板38とが連続一体化されていてもよい。負側についても同様である。また、各極板は板状でも棒状でもよい。各2次コイルや極板の内部に冷却水を供給する透孔を設けることが好ましい。   The welding apparatus of the present invention is not limited to the above embodiment. For example, a copper plate is exemplified for the connection of the secondary circuit, and each part is connected by screws or the like. However, for example, even if the positive coil 14 and the first connecting electrode plate 44 are continuously integrated, Good. Further, the first connecting electrode plate 44 and the positive conductor 30 may be continuously integrated. The first electrode plate 34, the second electrode plate 36, and the third electrode plate 38 may be continuously integrated. The same applies to the negative side. Each electrode plate may be plate-shaped or rod-shaped. It is preferable to provide a through hole for supplying cooling water inside each secondary coil or electrode plate.

10 溶接トランス
12 1次コイル
14 正側コイル
16 負側コイル
18 整流素子
20 整流素子
22 プラス電極
24 マイナス電極
25 磁心
26 溶接トランス
28 溶接機
30 正側導体
31 絶縁層
32 負側導体
34 第1極板
36 第2極板
38 第3極板
40 中間電極
42 引出電極
44 第1連結極板
46 第2連結極板
48 第3連結極板
58 入力端子
60 結束バンド
62 基板
DESCRIPTION OF SYMBOLS 10 Welding transformer 12 Primary coil 14 Positive side coil 16 Negative side coil 18 Rectification element 20 Rectification element 22 Positive electrode 24 Negative electrode 25 Magnetic core 26 Welding transformer 28 Welding machine 30 Positive side conductor 31 Insulating layer 32 Negative side conductor 34 First pole Plate 36 Second electrode plate 38 Third electrode plate 40 Intermediate electrode 42 Extraction electrode 44 First connection electrode plate 46 Second connection electrode plate 48 Third connection electrode plate 58 Input terminal 60 Binding band 62 Substrate

Claims (7)

1次コイル12と、正側コイル14と負側コイル16とを直列接続した2次コイルとを、磁心に巻回したトランス部と、
前記正側コイル14の一端に一方の整流素子18の一端を接続し、前記負側コイル16の一端に他方の整流素子20の一端を接続し、前記一方の整流素子18の他端と前記他方の整流素子20の他端をプラス電極22に接続し、前記正側コイルの他端と前記負側コイルの他端をマイナス電極24に接続し、前記プラス電極22と前記マイナス電極24を溶接機28に接続する2次回路とを備え、
前記1次コイルには、インバータにより一定の繰り返し周波数で極性を反転させるパルス状の1次電流が供給されており、
前記正側コイル14と前記負側コイル16とは、両者の間に前記1次コイル12を挟むように配置され、
前記正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続され、前記負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続され、
前記正側導体30と前記負側導体32とは、絶縁層31を介して密着するように配置され、
前記正側導体30と前記負側導体32の両側に前記整流素子18、20を配置して、第1極板34と第2極板36で挟み、前記第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が接続され、
前記正側コイルの他端と前記負側コイルの他端にはマイナス電極24が接続されていることを特徴とする溶接トランス。
A transformer unit in which a primary coil 12 and a secondary coil in which a positive coil 14 and a negative coil 16 are connected in series are wound around a magnetic core;
One end of one rectifier element 18 is connected to one end of the positive side coil 14, one end of the other rectifier element 20 is connected to one end of the negative side coil 16, and the other end of the one rectifier element 18 and the other end The other end of the rectifying element 20 is connected to the plus electrode 22, the other end of the positive side coil and the other end of the negative side coil are connected to the minus electrode 24, and the plus electrode 22 and the minus electrode 24 are connected to a welding machine. A secondary circuit connected to 28,
The primary coil is supplied with a pulsed primary current whose polarity is inverted by an inverter at a constant repetition frequency,
The positive side coil 14 and the negative side coil 16 are disposed so as to sandwich the primary coil 12 therebetween,
One end of the positive side coil 14 is electrically connected to the positive side conductor 30 via the first connecting pole plate 44, and one end of the negative side coil 16 is electrically connected to the negative side conductor 32 via the second connecting pole plate 46. And
The positive side conductor 30 and the negative side conductor 32 are arranged so as to be in close contact with each other through an insulating layer 31.
The rectifying elements 18 and 20 are arranged on both sides of the positive side conductor 30 and the negative side conductor 32, and are sandwiched between a first electrode plate 34 and a second electrode plate 36, and the first electrode plate 34 and the second electrode plate 36. 36 is electrically connected by a third electrode plate 38, and the positive electrode 22 is connected to the third electrode plate 38;
A welding transformer, wherein a negative electrode 24 is connected to the other end of the positive side coil and the other end of the negative side coil.
請求項1に記載の溶接トランスにおいて、
前記正側コイル14と前記負側コイル16とを交互に配置し、それぞれの間に分割巻きした前記1次コイル12を配置し、分割した前記1次コイル12は、全て直列接続されるかもしくは全部または一部が並列接続され、
前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、
前記複数の正側コイル14と前記複数の負側コイル16とは相互に直列接続され、前記複数の正側コイル14の一端を第1連結極板44に接続し、前記複数の負側コイル16の一端を第2連結極板46に接続し、複数の正側コイル14の他端と複数の負側コイル16の他端を第3連結極板48に接続したことを特徴とする溶接トランス。
The welding transformer according to claim 1,
The positive side coil 14 and the negative side coil 16 are alternately arranged, the primary coil 12 divided and wound between them is arranged, and the divided primary coils 12 are all connected in series or All or part of them are connected in parallel,
The plurality of positive side coils 14 are all connected in parallel or all or part of them are connected in series, and the plurality of negative side coils 16 are all connected in parallel or all or part of them are connected in series.
The plurality of positive side coils 14 and the plurality of negative side coils 16 are connected in series with each other, one end of the plurality of positive side coils 14 is connected to a first connecting electrode plate 44, and the plurality of negative side coils 16 are connected. The welding transformer is characterized in that one end thereof is connected to the second connecting electrode plate 46 and the other end of the plurality of positive side coils 14 and the other end of the plurality of negative side coils 16 are connected to the third connecting electrode plate 48.
請求項2に記載の溶接トランスにおいて、
磁心上の全ての場所で、正側コイル14と負側コイル16が分割された1次コイルを挟むように配置されていることを特徴とする溶接トランス。
The welding transformer according to claim 2,
A welding transformer, wherein a positive coil 14 and a negative coil 16 are arranged so as to sandwich a divided primary coil at all locations on a magnetic core.
請求項1乃至3のいずれかに記載の溶接トランスにおいて、
2次コイルには、銅板をC字状に切削加工したワンターンコイルを2個直列接続して使用することを特徴とする溶接トランス。
The welding transformer according to any one of claims 1 to 3,
A welding transformer characterized by using two one-turn coils obtained by cutting a copper plate in a C-shape in series connection as a secondary coil.
請求項1に記載の溶接トランスにおいて、
中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされたコイルユニット、または、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされたコイルユニットを、磁心上に配置したことを特徴とする溶接トランス。
The welding transformer according to claim 1,
A coil unit wound coaxially so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed on the outermost periphery, or the positive coil 14 is disposed at the center. A welding transformer in which a primary coil 12 is disposed thereon and a coil unit wound coaxially so as to dispose a negative coil 16 on the outermost periphery is disposed on a magnetic core.
請求項5に記載の溶接トランスにおいて、
中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、磁心上に磁心の軸方向に交互に隙間なく配列したことを特徴とする溶接トランス。
The welding transformer according to claim 5,
A negative coil 16 is disposed at the center, a primary coil 12 is disposed thereon, a first coil unit coaxially wound so as to dispose the positive coil 14 on the outermost periphery, and the positive coil 14 is disposed at the center. , The primary coil 12 is disposed thereon, and the second coil unit coaxially wound so as to dispose the negative coil 16 on the outermost periphery is alternately spaced in the axial direction of the magnetic core on the magnetic core. Welding transformer characterized by having been arranged without any.
請求項1乃至6のいずれかに記載の溶接トランスを備えた溶接装置。   The welding apparatus provided with the welding transformer in any one of Claims 1 thru | or 6.
JP2012036101A 2012-02-22 2012-02-22 Welding transformer and welding equipment Expired - Fee Related JP5199493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036101A JP5199493B1 (en) 2012-02-22 2012-02-22 Welding transformer and welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036101A JP5199493B1 (en) 2012-02-22 2012-02-22 Welding transformer and welding equipment

Publications (2)

Publication Number Publication Date
JP5199493B1 JP5199493B1 (en) 2013-05-15
JP2013172066A true JP2013172066A (en) 2013-09-02

Family

ID=48534056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036101A Expired - Fee Related JP5199493B1 (en) 2012-02-22 2012-02-22 Welding transformer and welding equipment

Country Status (1)

Country Link
JP (1) JP5199493B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232822A (en) * 2013-05-30 2014-12-11 株式会社向洋技研 Transformer for high frequency induction heating device
WO2021111651A1 (en) * 2019-12-03 2021-06-10 株式会社向洋技研 Welding transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491560B2 (en) * 2011-03-24 2014-05-14 株式会社向洋技研 Resistance welding method and welding equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623564A (en) * 1992-07-10 1994-02-01 Honda Motor Co Ltd Transformer for dc resistance welding machine
JPH06151211A (en) * 1992-11-06 1994-05-31 Honda Motor Co Ltd Transformer for welder
JP2011082478A (en) * 2009-09-10 2011-04-21 Koyo Giken:Kk Welding transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623564A (en) * 1992-07-10 1994-02-01 Honda Motor Co Ltd Transformer for dc resistance welding machine
JPH06151211A (en) * 1992-11-06 1994-05-31 Honda Motor Co Ltd Transformer for welder
JP2011082478A (en) * 2009-09-10 2011-04-21 Koyo Giken:Kk Welding transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232822A (en) * 2013-05-30 2014-12-11 株式会社向洋技研 Transformer for high frequency induction heating device
WO2021111651A1 (en) * 2019-12-03 2021-06-10 株式会社向洋技研 Welding transformer
KR20210071875A (en) * 2019-12-03 2021-06-16 가부시키가이샤 고요 기켄 welding transformer
KR102427565B1 (en) 2019-12-03 2022-07-29 가부시키가이샤 고요 기켄 welding transformer

Also Published As

Publication number Publication date
JP5199493B1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5220931B1 (en) Welding transformer, welding transformer assembly and welding equipment
US10033178B2 (en) Linear electromagnetic device
WO2010001749A1 (en) Plane coil
JP4687930B2 (en) Welding transformer
JP2006007313A5 (en)
JP5069686B2 (en) Foil winding pulse transformer
JP5199493B1 (en) Welding transformer and welding equipment
JP2012174699A (en) Welding transformer
JP5495957B2 (en) Wire electrical discharge machine
JP5892390B2 (en) Stud welding method and resistance welding machine
JP2004515906A (en) High frequency transformer with integrated rectifier
JP6542499B1 (en) Welding transformer
JP5679754B2 (en) Transformer for DC resistance welding machine
US10734151B2 (en) Transformer and associated production method
EP3477840B1 (en) Welding transformer
JP5911441B2 (en) DC-DC converter transformer wiring structure
JP2014136237A (en) Welding method and welding device
WO2011102204A1 (en) Welding transformer
KR102427565B1 (en) welding transformer
JP2010034310A (en) Transformer and power converter
JP3153280U (en) Transformer for wound core type electric welding machine
KR101611560B1 (en) Direct Current Transformer, and conduction heating apparatus using DC transformer
JP5605953B2 (en) Electric welding machine transformer
JP2011212690A (en) Transformer for direct current resistance welding machine
KR20150139192A (en) power transformer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees