WO2011102204A1 - Welding transformer - Google Patents

Welding transformer Download PDF

Info

Publication number
WO2011102204A1
WO2011102204A1 PCT/JP2011/051700 JP2011051700W WO2011102204A1 WO 2011102204 A1 WO2011102204 A1 WO 2011102204A1 JP 2011051700 W JP2011051700 W JP 2011051700W WO 2011102204 A1 WO2011102204 A1 WO 2011102204A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary winding
plate
winding
copper plate
primary
Prior art date
Application number
PCT/JP2011/051700
Other languages
French (fr)
Japanese (ja)
Inventor
和生 宝山
孝治 甲斐
煕 永井
一宏 鈴木
Original Assignee
株式会社 向洋技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010030918A external-priority patent/JP4687930B2/en
Application filed by 株式会社 向洋技研 filed Critical 株式会社 向洋技研
Publication of WO2011102204A1 publication Critical patent/WO2011102204A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • H01F38/085Welding transformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F2027/408Association with diode or rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling

Definitions

  • the present invention relates to a welding transformer particularly used for an inverter type resistance welding machine.
  • This conventional welding transformer includes a transformer part Tr and a rectifying part Rc.
  • FIG. 5 A transformer section Tr of a conventional welding transformer will be described with reference to the drawings.
  • reference numerals 1 and 2 denote secondary windings, respectively.
  • Reference numeral 3 denotes a primary winding.
  • a plurality of primary windings 3 are used.
  • the same reference numeral 3 is assigned to each of the plurality of primary windings.
  • the primary winding 3 is made of a copper wire having a circular or square cross section.
  • a well-known insulating film is provided on the outer peripheral surface of the copper wire.
  • the primary winding 3 is also shown in FIG.
  • the secondary windings 1 and 2 have cooling water passages (not shown) along the length direction.
  • the cooling water passage is a through hole provided in each of the secondary windings 1 and 2. Cooling water for cooling the secondary windings 1 and 2 flows through the cooling water passages.
  • a plurality of primary windings 3 and secondary windings 1 and 2 are stacked and incorporated in the core 4.
  • the primary winding 3 is also cooled by the cooling water flowing through the cooling water passage.
  • the plurality of primary windings 3 are arranged on both sides of one secondary winding 1 and on both sides of the other secondary winding 2, respectively. That is, the primary winding 3, the secondary winding 1, the primary winding 3, the primary winding 3, the secondary winding 2, and the primary winding 3 are stacked in this order.
  • the rectifying unit Rc includes a plurality of secondary electrodes 7 and diodes 6.
  • the plurality of secondary electrodes 7 and the diodes 6 are overlapped. These are sandwiched from above and below by two presser plates 5 and are fixed by fixing screws 34.
  • the plurality of secondary-side electrodes 7 are respectively connected to the secondary windings 1 and 2 of the transformer portion Tr via connection conductors 8.
  • FIG. 15B shows the flow of current in the conventional welding transformer shown in FIG. Current flows from the secondary windings 1 and 2 to the secondary terminal 30 through the diode 6 and the copper plate 30a, respectively.
  • the conventional welding transformer has a plurality of primary windings 3 between two secondary windings 1 and 2 of a transformer section Tr. For this reason, the distance H between the secondary windings 1 and 2 is large.
  • the conventional welding transformer has a configuration in which the transformer portion Tr and the rectifying portion Rc are connected by the connecting conductor 8.
  • the transformer Tr and the rectifier Rc are separated. For this reason, as shown in FIG. 5, the distance F between the transformer part Tr and the rectification part Rc is large.
  • FIG. 7 (a) is a waveform diagram showing a waveform of a primary current having a normal frequency of a conventional welding transformer.
  • FIG. 7B is a waveform diagram showing a waveform of a high-frequency primary current of the conventional welding transformer.
  • the conventional welding transformer has the following problems to be solved. That is, it is impossible to further reduce the size and cope with energy saving. That is, when the control frequency is increased, the maximum current decreases as shown in FIG. Further, no measures are taken to cool the primary winding and the secondary winding more efficiently.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a welding transformer that can maintain a desired maximum current even when the control frequency is increased, and that can be reduced in size and cope with energy saving. .
  • a welding transformer including a transformer unit in which a primary winding and a secondary winding are incorporated in a core and a rectification unit including a diode connected to the secondary winding
  • the primary winding is a copper plate 1
  • a plate-like coil is formed in which a plurality of turns are arranged on the same plane by providing slits on the sheet, and a side edge of the plate-like coil is bent, and a plurality of the plate-like coils are laminated.
  • Each end is formed of a copper plate for primary winding connected in series, and the secondary winding is provided with a slit in one copper plate to form a plate coil, and a cooling water passage is formed in the plate coil.
  • the diode is mounted directly on an extension part of the secondary winding protruding outside the core, and the primary winding and the secondary winding are respectively Several are used, and the primary winding, secondary winding, secondary winding, and primary winding are stacked in this order.
  • the cooling water passages of the two secondary windings which are combined and integrated into the core, are communicated with each other at the center of the secondary winding and configured as one water passage. Welding transformer.
  • a welding transformer including a transformer unit in which a primary winding and a secondary winding are incorporated in a core and a rectification unit including a diode connected to the secondary winding
  • the primary winding is a copper plate 1
  • a plate-like coil in which a plurality of one-turn coils are arranged on the same plane is formed, and two plates of the plate-like coil are stacked and each intermediate terminal is connected in series to form a plurality of rows.
  • a two-turn plate coil is formed, and each side edge of the plurality of rows of two-turn plate coils is formed into a bent shape, and the secondary winding includes:
  • a copper plate is provided with a slit to form a plate-like coil, and a cooling water passage is formed in the copper plate, and the diode has an extended portion in which a part of the secondary winding protrudes outside the core
  • a welding transformer including a transformer unit in which a primary winding and a secondary winding are incorporated in a core and a rectification unit including a diode connected to the secondary winding
  • the primary winding is a copper plate 1
  • a plate-like coil is formed in which a plurality of turns are arranged on the same plane by providing slits on the sheet, and a side edge of the plate-like coil is bent, and a plurality of the plate-like coils are laminated.
  • a copper plate for primary winding with a plurality of turns formed by connecting each end in series and a plate-like coil in which slits are provided in one copper plate and a plurality of rows of coils of one turn are arranged on the same plane are formed.
  • the intermediate terminals are connected in series to form a plurality of rows of two-turn plate coils, and each side edge of the plurality of rows of two-turn plate coils. 1 of 2 turns that is made by bending the shape
  • the secondary winding is configured by providing a slit in the copper plate to form a plate coil, and a cooling water passage is formed in the copper plate, and the diode is A part of the secondary winding is directly placed on the extended portion protruding outside the core, and a plurality of primary windings and secondary windings are used, respectively.
  • a welding transformer characterized in that a secondary winding, a secondary winding, and a primary winding are stacked in this order and incorporated in the core.
  • the distance H between the secondary windings can be reduced by directly superimposing the two secondary windings made of copper plate. For this reason, the inductance L1a becomes small, and the output current does not decrease even at a high frequency.
  • the distance F between the transformer and the rectifier can be reduced. For this reason, the inductances L1a and L1b of the equivalent circuit of the welding transformer are reduced, and the overall size of the welding transformer can be further reduced.
  • the primary winding is formed by laminating a large number of copper plates, and has a shape in which each terminal can be joined in series or in parallel.
  • ⁇ Effect of Configuration 3> The effect similar to the effect of the structure 1 and the structure 2 is show
  • FIG. (A) is an exploded perspective view showing a welding transformer of Example 2, and (b) is a front view showing a primary winding used in Example 2.
  • FIG. It is an equivalent circuit diagram of a welding transformer.
  • (A) is a perspective view which shows the copper plate for primary windings used in Example 1
  • (b) is a perspective view which decomposes
  • (A) is a perspective view which shows the primary winding used with the conventional welding transformer, (b) is a perspective view which shows the primary winding used in Example 1.
  • FIG. 4D is a waveform diagram showing a waveform of a primary current of a normal frequency of the welding transformer of the present invention
  • FIG. 4D is a waveform diagram showing a waveform of a primary current of a high frequency of the welding transformer of the present invention
  • FIG. 1 It is a figure which shows two secondary windings used with the welding transformer of this invention, (a) is a top view which shows one of two secondary windings, (b) is two secondary windings The top view which shows the other side of a coil
  • (A) is a connection diagram showing the connection configuration of the 24-turn primary winding of the conventional welding transformer
  • (b) is a connection diagram showing the connection configuration of the 24-turn primary winding of the welding transformer of the present invention
  • (c) is a connection diagram showing the connection configuration of the 44-turn primary winding of the welding transformer of the present invention
  • (d) is a connection diagram showing the connection configuration of the 64-turn primary winding of the welding transformer of the present invention
  • e) is a connection diagram showing the connection configuration of the 16-turn primary winding of the welding transformer of the present invention.
  • It is a perspective view which shows the welding transformer of Example 2.
  • FIG. It is a perspective view which shows two primary windings used with the welding transformer of Example 2.
  • FIG. 6 is a perspective view showing another example of a copper plate for primary winding that constitutes the primary winding of Example 2.
  • (A) is explanatory drawing which shows the flow of the electric current in the welding transformer of this invention shown in FIG. 1, FIG. 11,
  • (b) is explanatory drawing which shows the flow of the electric current in the conventional welding transformer shown in FIG.
  • FIG. 1 shows an outline of the welding transformer of the first embodiment.
  • the welding transformer of the first embodiment includes a transformer part Tr and a rectifying part Rc of an inverter control part.
  • the transformer section Tr is configured by incorporating a primary winding 10 and two secondary windings 11 and 12 into a core 4.
  • the primary winding and the secondary winding are incorporated in the core 4 in the order of the primary winding 10, the secondary winding 11, the secondary winding 12, and the primary winding 10.
  • the rectifying unit Rc includes a diode 6 connected to the secondary windings 11 and 12 and a secondary electrode 7.
  • the diode 6 is directly mounted on an extending portion in which a part of the secondary windings 11 and 12 protrudes to the outside of the core 4.
  • the diode 6 and the secondary electrode 7 are overlapped together with the extending portions of the secondary windings 11 and 12, are sandwiched from above and below by the two pressing plates 5, and are fixed by fixing screws 34.
  • a plate-like secondary side terminal 30 is arranged on the side surfaces of the diode 6 and the secondary side electrode 7, .
  • FIG. 15A shows the flow of current in the welding transformer of Example 1 shown in FIG. Current flows from the secondary windings 11 and 12 to the secondary terminal 30 through the diode 6.
  • the primary winding 10 is configured by laminating a plurality of primary winding copper plates 13.
  • a specific example of the primary winding copper plate 13 will be described with reference to FIG.
  • FIG. 4A shows the copper plate 13 for primary winding that constitutes a part of the primary winding 10.
  • FIG. 4B shows a state in which the copper plate 13 for primary winding is disassembled up and down.
  • the primary winding copper plate 13 is formed by superposing two primary winding copper plates 13A and 13B.
  • the two primary winding copper plates 13A and 13B constitute the primary winding copper plate 13 having eight turns.
  • the primary winding copper plate 13A is configured as follows. First, as shown in FIG. 4A, the first planar rectangular copper plate is divided by a slit of about 1 mm along its outer edge. By this division, a copper plate 13A for primary winding that forms a plate coil having four turns is formed. Both end portions of the primary winding copper plate 13A are referred to as a winding end portion 41 and an intermediate end portion.
  • the second plane rectangular copper plate is divided along the outer edge with a slit of about 1 mm.
  • the primary winding copper plate 13B is formed as a plate-like coil having four turns. Both end portions of the primary winding copper plate 13 ⁇ / b> B are referred to as a winding end portion 43 and an intermediate end portion 44.
  • the primary winding copper plate 13A and the primary winding copper plate 13B are overlapped. At this time, the intermediate end portion 42 and the intermediate end portion 44 coincide and are joined by welding or the like. Further, the winding end portion 41 and the winding end portion 43 are arranged in parallel at a predetermined interval on the same plane. Thus, the primary winding copper plate 13 having a total number of turns of 8 turns is formed.
  • the primary winding copper plate 13 of 8 turns is obtained with the thickness of the two copper plates.
  • the thickness may be 1/4.
  • an insulating plate is arranged between a plurality of laminated copper plates.
  • the thickness of the entire structure can be reduced by applying an insulating coating to each of a plurality of laminated copper plates instead of providing the insulating plate.
  • each terminal is provided on the primary winding copper plate 13 as shown in FIG. 1, FIG. 4 (a), FIG. 6 (b) and the like.
  • the number of windings can be changed by changing the connection of these terminals. As a result, a desired output voltage can be obtained.
  • the number of turns of the primary winding is not limited to the number of turns of 4 turns with one copper plate.
  • the number of windings can be set freely as required.
  • the primary winding constituted by the primary winding copper plate 45 shown in FIG. 9 is used. There is a means to do.
  • FIG. 9 shows a primary winding copper plate 45 constituting a part of the primary winding 10.
  • the primary winding copper plate 45 is composed of two types of primary winding copper plate 45A and primary winding copper plate 45B in four rows with two turns.
  • the primary winding copper plate 45A is configured as shown in FIG. In other words, a slit is provided in one copper plate, and four turns are arranged in parallel on the same plane. Four intermediate terminals 46 and four output terminals 48 are provided on the primary winding copper plate 45A.
  • the primary winding copper plate 45B is configured as shown in FIG. 9B. That is, a slit is formed in the other copper plate, and four turns are arranged in parallel on the same plane.
  • the primary winding copper plate 45B is provided with four intermediate terminals 47 and four output terminals 49.
  • the two primary winding copper plates 45A and 45B are overlapped. At this time, the four intermediate terminals 46 and 47 are formed in advance so as to face each other.
  • the four output terminals 48 of the primary winding copper plate 45A and the output terminal 49 of the primary winding copper plate 45B are formed so as to be arranged on the same plane.
  • the primary winding copper plate 45A and the primary winding copper plate 45B are overlapped, and the four intermediate terminals 46 and the intermediate terminals 47 are joined by welding or the like.
  • the primary winding copper plate 45A and the primary winding copper plate 45B constitute a primary winding copper plate 45 that is connected in series to form four rows of two turns.
  • the primary winding 10 of the present invention can be made thin by applying an insulating coating to each of the copper plates instead of providing an insulating plate between the laminated copper plates.
  • the 2-turn primary winding copper plate 45 configured in this way is used in part or in whole as an alternative to the 8-turn primary winding copper plate 13 described above. Since the primary winding copper plate 45 is provided with the output terminals 48 and 49, the number of windings can be arbitrarily increased. As a result, a desired output voltage can be obtained.
  • welding transformers have been manufactured exclusively for several types of input voltages.
  • the welding transformer of the present invention can cope with various input voltages with a single welding transformer.
  • FIG. 8 shows two secondary windings 11 and 12 used in the welding transformer of the present invention.
  • FIG. 8A shows one secondary winding 11.
  • FIG. 8B shows the other secondary winding 12.
  • FIG. 8C shows a state in which the two secondary windings 11 and 12 are overlapped along the line AA along the insulating plate 33.
  • the two secondary windings 11 and 12 are each made of a copper plate having a rectangular plane.
  • the secondary windings 11 and 12 are formed in a plate-like coil having a turn and a turn by providing a slit and an opening for each copper plate.
  • Each of the secondary windings 11 and 12 is formed in one turn.
  • the secondary windings 11 and 12 are each provided with a cooling water passage 14 along the outer edge.
  • the superposed cooling water passages 14 of the two secondary windings 11 and 12 are communicated with each other at the center of each secondary winding to form one water passage.
  • One of the secondary terminals 31 and 32 shown in FIGS. 8A and 8B is used as a center tap.
  • the cooling water passages of the two secondary windings 11 and 12 are connected to each other in the central portion of the secondary winding and configured as one water passage, whereby the cooling medium is circulated through the cooling water passage 14.
  • the cooling medium may be a medium other than water as long as it has a high cooling effect.
  • the primary winding 10 and the secondary windings 11 and 12 are plate coils, so that the contact area is wide when they are stacked. Therefore, the cooling effect by the cooling medium of the cooling water passage 14 is increased.
  • the order in which the primary winding 10 and the secondary windings 11 and 12 are stacked can be the order of the primary winding 10, the secondary winding 11, the secondary winding 12, and the primary winding 10. It is said. Therefore, the distance H between the copper plates of the secondary windings 11 and 12 is reduced, and L1a and L1b of the equivalent circuit can be extremely reduced.
  • the secondary side electrode is configured by an extending part in which a part of the secondary winding protrudes outside the core, and the diode is directly mounted on the outer surface of the extending part. Yes. For this reason, it is not necessary to use the connecting conductor 8 shown in FIG. 5, and the distance F between the transformer part Tr and the rectifying part Rc is reduced. For this reason, L1a and L1b of the equivalent circuit can be reduced.
  • FIG. 2A shows an outline of the welding transformer of the second embodiment.
  • FIG. 2B shows the primary winding 10 used in the second embodiment.
  • FIG. 11 shows a welding transformer of the second embodiment.
  • FIG. 12 shows the two primary windings 10 shown in FIG. 11 and is shown in a state of being disposed above and below the secondary windings 11 and 12.
  • FIG. 13 shows a copper plate 13 for primary winding that constitutes a part of the primary winding 10 of the second embodiment.
  • FIG. 14 shows a primary winding copper plate 45 constituting a part of the primary winding 10 of the second embodiment.
  • the welding transformer of Example 2 includes a transformer part Tr and a rectifying part Rc of the inverter control part.
  • Aluminum frames 16 and 17 are fitted and attached from the side surfaces of the transformer portion Tr and the rectifying portion Rc.
  • the welding transformer of Example 2 is different from the welding transformer of Example 1 in that the side edge of the plate coil constituting the primary winding 10 is bent.
  • the primary winding 10 of the welding transformer of Example 2 is configured by combining a primary winding having 8 turns and a primary winding having 2 turns. Moreover, the codes
  • the primary winding copper plate 13 having 8 turns is formed by superposing two primary winding copper plates 13C and 13D.
  • the primary winding copper plate 45 having two turns is configured by overlapping two primary winding copper plates 45C and 45D.
  • a desired primary winding 10 can be configured by appropriately combining the primary winding copper plate 13 and the primary winding copper plate 45 having different numbers of turns.
  • the primary winding copper plate 13 shown in FIG. 13 is configured in such a manner that two types of primary winding copper plates 13C and 13D are stacked.
  • the primary winding copper plate 13C is formed by bending each side edge of a copper plate having the same shape as the primary winding copper plate 13A shown in FIG.
  • the primary winding copper plate 13D is formed by bending each side edge of the copper plate having the same shape as the primary winding copper plate 13B shown in FIG.
  • Both end portions of the primary winding copper plate 13C are a winding end portion 41 and an intermediate end portion (not shown), respectively. Both ends of the primary winding copper plate 13D are a winding end 43 and an intermediate end (not shown), respectively.
  • the intermediate ends of the primary winding copper plates 13C and 13D are joined by welding or the like.
  • the winding end end 41 of the primary winding copper plate 13C and the winding end end 43 of the primary winding copper plate 13D are arranged in parallel at a predetermined interval on the same plane.
  • the primary winding copper plate 45 shown in FIG. 14 is configured by overlapping two primary winding copper plates 45C and 45D.
  • the primary winding copper plate 45 is formed by bending each side edge of a copper plate having the same shape as the primary winding copper plate 45A shown in FIG.
  • the primary winding copper plate 45D is formed by bending each side edge of a copper plate having the same shape as the primary winding copper plate 45B shown in FIG. 9B.
  • the output terminals 48 and 49 of the primary winding copper plates 45C and 45D are arranged in parallel at a predetermined interval on the same plane.
  • the two types of primary winding copper plates 13 and 45 of Example 2 have a laminated shape as shown in FIG. At this time, the folding width dimension is gradually reduced and the bottom surface is in close contact.
  • the distance F between the transformer Tr and the commutator Rc is further reduced as compared with the first embodiment. .
  • L1a and 1L1b of the equivalent circuit are reduced, and at the same time, the overall size of the welding transformer is further reduced.
  • the primary winding 10 of the welding transformer according to the second embodiment can be configured to reduce the thickness of the entire structure by applying an insulating coating to each copper plate instead of providing an insulating plate between the laminated copper plates. .
  • FIG. 7 (a) shows the waveform of the primary current of the normal frequency of the conventional welding transformer.
  • FIG. 7 (b) shows a waveform of a high-frequency primary current of the conventional welding transformer.
  • FIG. 7 (c) shows the waveform of the primary current of the normal frequency of the welding transformer of the present invention.
  • FIG. 7 (d) shows a waveform of a high frequency primary current of the welding transformer of the present invention.
  • the conventional welding transformer described above has a problem that when the frequency is increased, the rising waveform shown in FIG. 7B is different from the rising waveform shown in FIG. As described above, this causes a problem that the current rise is incomplete and the maximum current cannot be obtained.
  • the rising waveform shown in FIG. 7D becomes a waveform having the same height as the waveform of FIG. Therefore, the above problem that the maximum current cannot be obtained is solved.
  • the conventional frequency is approximately less than 1000 Hz, and the high frequency is approximately 5000 Hz or more.
  • FIG. 10 (a) shows an example in which the primary winding of a conventional welding transformer has 24 turns.
  • FIGS. 10B to 10E show examples in which the primary winding of the welding transformer of the present invention has 16 to 64 turns, respectively. The number of turns of the primary winding of the welding transformer of the present invention can be easily changed.
  • the number of turns in a wide range can be changed by combining the primary winding 10 with three 8-turn primary windings and four 2-turn primary windings. Depending on the configuration. This is because these primary windings 10 are arranged above and below the secondary windings 11 and 12, respectively.
  • the inverter resistance welding machine can easily prevent the temperature of the winding from rising even when a large current is used. Moreover, it can be supplied as a welding transformer that is compact, high quality, and compatible with various voltages. Moreover, the winding structure with different capacities is facilitated. Further, according to the embodiment of the present invention, the weight can be reduced by about 40% compared with the conventional welding transformer described above. The advantage of mounting on a welding robot due to its light weight is also great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Disclosed is a welding transformer for an inverter-type resistance welder, wherein an issue in that the maximum current decreased when the control frequency was increased is solved. Proposed is a welding transformer for an inverter-type resistance welder that enables the welder to be made more compact and energy saving. Since primary windings are made to have a thin structure by having copper winding plates laminated, a significant cooling effect can be achieved by cooling water paths of secondary windings. Therefore, the primary windings can be superimposed above and below the secondary windings. The two secondary winding copper plates are made to be in proximity with each other, constructing a structure wherein the inductance becomes very low. Furthermore, a structure wherein the transformer section and the control section are united together is adopted. In addition, since primary windings with a bent structure are used, inductance is minimized, and the overall structure of the welding transformer is made compact.

Description

溶接トランスWelding transformer
 本発明は、特にインバータ式抵抗溶接機に使用される溶接トランスに関する。 The present invention relates to a welding transformer particularly used for an inverter type resistance welding machine.
 従来のインバータ式抵抗溶接機に使用される溶接トランスは、図5に示されている。この従来の溶接トランスは、トランス部Trと整流部Rcとから構成されている。 The welding transformer used in the conventional inverter type resistance welding machine is shown in FIG. This conventional welding transformer includes a transformer part Tr and a rectifying part Rc.
 従来の溶接トランスのトランス部Trを、図を使って説明する。
 図5において、符号1と2は、それぞれ2次巻線を示している。符号3は、1次巻線を示している。1次巻線3は複数個が使用されている。複数個の1次巻線に、それぞれ同じ符号3が付されている。1次巻線3は、その横断面が円形または四角形の銅線からなる。この銅線の外周面には、よく知られた絶縁被膜が設けられている。1次巻線3は、図6(a)にも示されている。
A transformer section Tr of a conventional welding transformer will be described with reference to the drawings.
In FIG. 5, reference numerals 1 and 2 denote secondary windings, respectively. Reference numeral 3 denotes a primary winding. A plurality of primary windings 3 are used. The same reference numeral 3 is assigned to each of the plurality of primary windings. The primary winding 3 is made of a copper wire having a circular or square cross section. A well-known insulating film is provided on the outer peripheral surface of the copper wire. The primary winding 3 is also shown in FIG.
 2次巻線1、2は、長さ方向に沿う冷却水通路(図示せず)を有している。この冷却水通路は、2次巻線1、2の各々に設けられた貫通孔である。上記各冷却水通路に、2次巻線1、2を冷却するための冷却水が流される。図示を省略したが、2次巻線1、2の各冷却水通路にそれぞれ配管が接続されているので、配管用の継手やチューブが多くなり、構成が煩雑になる。 The secondary windings 1 and 2 have cooling water passages (not shown) along the length direction. The cooling water passage is a through hole provided in each of the secondary windings 1 and 2. Cooling water for cooling the secondary windings 1 and 2 flows through the cooling water passages. Although illustration is omitted, since the pipes are connected to the respective cooling water passages of the secondary windings 1 and 2, the number of joints and tubes for piping increases, and the configuration becomes complicated.
 複数個の1次巻線3と2次巻線1、2とは重ねられてコア4に組み込まれている。上記冷却水通路を流れる冷却水によって1次巻線3も冷却される。1次巻線3の冷却効率を高めるために次のようにしている。すなわち、複数個の1次巻線3は、一方の2次巻線1の両側と他方の2次巻線2の両側とにそれぞれ配置されている。すなわち、1次巻線3、2次巻線1、1次巻線3、1次巻線3、2次巻線2、1次巻線3の順番で重ねられている。 A plurality of primary windings 3 and secondary windings 1 and 2 are stacked and incorporated in the core 4. The primary winding 3 is also cooled by the cooling water flowing through the cooling water passage. In order to increase the cooling efficiency of the primary winding 3, the following is performed. That is, the plurality of primary windings 3 are arranged on both sides of one secondary winding 1 and on both sides of the other secondary winding 2, respectively. That is, the primary winding 3, the secondary winding 1, the primary winding 3, the primary winding 3, the secondary winding 2, and the primary winding 3 are stacked in this order.
 整流部Rcは、複数個の2次側電極7とダイオード6とを有している。複数個の2次側電極7とダイオード6とは、重ねられている。これらは、2枚の押え板5により上下から挟み付けられ、固定ねじ34により固定されている。複数個の2次側電極7は、それぞれ連結導体8を介してトランス部Trの2次巻線1、2に連結されている。ダイオード6と2次側電極7の側面に、板状の2次側端子30が配置されている。 The rectifying unit Rc includes a plurality of secondary electrodes 7 and diodes 6. The plurality of secondary electrodes 7 and the diodes 6 are overlapped. These are sandwiched from above and below by two presser plates 5 and are fixed by fixing screws 34. The plurality of secondary-side electrodes 7 are respectively connected to the secondary windings 1 and 2 of the transformer portion Tr via connection conductors 8. On the side surfaces of the diode 6 and the secondary side electrode 7, a plate-like secondary side terminal 30 is arranged.
 図15(b)に、図5に示す従来の溶接トランスにおける電流の流れを矢印9で示している。電流は、各2次巻線1、2からそれぞれダイオード6及び銅板30aを経て2次側端子30に流れる。 FIG. 15B shows the flow of current in the conventional welding transformer shown in FIG. Current flows from the secondary windings 1 and 2 to the secondary terminal 30 through the diode 6 and the copper plate 30a, respectively.
 従来の溶接トランスは、図5に示すように、トランス部Trの、2つの2次巻線1と2との間に複数個の1次巻線3が存在している。このため、2次巻線1と2との間の距離Hが大きくなっている。 As shown in FIG. 5, the conventional welding transformer has a plurality of primary windings 3 between two secondary windings 1 and 2 of a transformer section Tr. For this reason, the distance H between the secondary windings 1 and 2 is large.
 また、従来の溶接トランスは、トランス部Trと整流部Rcとを連結導体8により連結した構成である。トランス部Trと整流部Rcとが分離した構成である。このため、図5に示すように、トランス部Trと整流部Rcとの間の距離Fが大きくなっている。 Further, the conventional welding transformer has a configuration in which the transformer portion Tr and the rectifying portion Rc are connected by the connecting conductor 8. The transformer Tr and the rectifier Rc are separated. For this reason, as shown in FIG. 5, the distance F between the transformer part Tr and the rectification part Rc is large.
 上記距離HとFが大きいことにより、図3に示すように、溶接機に接続して使用したとき、次の欠点が生じている。すなわち、図3に示す、溶接トランスの等価回路のインダクタンスL1a、L1bの数値が大きくなる。 Since the distances H and F are large, as shown in FIG. 3, the following disadvantages occur when used by connecting to a welding machine. That is, the numerical values of the inductances L1a and L1b of the equivalent circuit of the welding transformer shown in FIG. 3 are increased.
 図7(a)は従来の溶接トランスの通常の周波数の1次電流の波形を示す波形図である。図7(b)はその従来の溶接トランスの高い周波数の1次電流の波形を示す波形図である。 FIG. 7 (a) is a waveform diagram showing a waveform of a primary current having a normal frequency of a conventional welding transformer. FIG. 7B is a waveform diagram showing a waveform of a high-frequency primary current of the conventional welding transformer.
 溶接トランスの等価回路のインダクタンスL1a、L1bの数値が大きくなると次の問題が生じる。すなわち、溶接トランスの使用時に制御周波数をあげたとき、1次電流波形が図7(b)に示すようになり、電流の立ち上がりが不十分である。このため、所望の最大電流が得られないという問題がある。 The following problems arise when the numerical values of the inductances L1a and L1b of the equivalent circuit of the welding transformer increase. That is, when the control frequency is increased when the welding transformer is used, the primary current waveform is as shown in FIG. 7B, and the current rise is insufficient. For this reason, there is a problem that a desired maximum current cannot be obtained.
 溶接トランスにおける各構成や技術については、従来から次のようなことが知られている。すなわち、
(1)1次巻線や2次巻線として銅板を用いた構成(例えば、特許文献1、特許文献2参照)。しかし、ここでは溶接トランスで重要な発熱防止のための冷却に関する構成が明記されていない。
(2)1次巻線、2次巻線、2次巻線、1次巻線の順に配列し、2枚の2次巻線の上部と下部に1次巻線を配置する構成(例えば、特許文献3、特許文献4参照)。しかし、この構成は、1次巻線の積層の詳細は不明瞭である。この構成から、薄い厚さで多くの巻数の形成を可能にする技術(本発明の特徴)を導くことは、容易ではない。
(3)2次巻線を整流部側に延長し、その延長部にダイオードを配置する構成(例えば、特許文献3、特許文献7参照)。
(4)金属板によりコイルを形成する技術(例えば、特許文献5、特許文献6参照)。
(5)銅板からなるコイルに冷却液通路を形成する構成(例えば、特許文献6参照)。しかし、この冷却液通路を形成する構成は、流通路が複雑であり、冷却液の流通管理が面倒である。
(6)同一平面上に、巻数1ターンの板状コイルを複数列形成する技術(例えば、特許文献8参照)。
(7)複数の板状コイルを直列又は並列に組み合わせて接続する技術(例えば、特許文献8参照)。
As for each configuration and technique in the welding transformer, the following has been conventionally known. That is,
(1) A configuration using a copper plate as a primary winding or a secondary winding (see, for example, Patent Document 1 and Patent Document 2). However, the structure regarding cooling for preventing heat generation which is important in the welding transformer is not specified here.
(2) A configuration in which the primary winding is arranged in the order of the primary winding, the secondary winding, the secondary winding, and the primary winding, and the primary winding is disposed above and below the two secondary windings (for example, (See Patent Document 3 and Patent Document 4). However, in this configuration, the details of the primary winding stack are unclear. From this configuration, it is not easy to derive a technique (a feature of the present invention) that enables the formation of a large number of turns with a small thickness.
(3) A configuration in which the secondary winding is extended to the rectifying unit side, and a diode is disposed in the extended portion (see, for example, Patent Document 3 and Patent Document 7).
(4) Technology for forming a coil from a metal plate (see, for example, Patent Document 5 and Patent Document 6).
(5) A configuration in which a coolant passage is formed in a coil made of a copper plate (see, for example, Patent Document 6). However, the configuration for forming the coolant passage has a complicated flow passage, and the distribution management of the coolant is troublesome.
(6) A technique of forming a plurality of rows of 1-turn plate-like coils on the same plane (for example, see Patent Document 8).
(7) A technique of connecting a plurality of plate coils in combination in series or in parallel (for example, see Patent Document 8).
特開2000-223320号公報JP 2000-223320 A 特開2002―175922号公報JP 2002-175922 A 実開昭63-182687号公報Japanese Utility Model Publication No. 63-182687 実開昭56-126828号公報Japanese Utility Model Publication No. 56-126828 特開2003-264110号公報JP 2003-264110 A 実開平06-17214号公報Japanese Utility Model Publication No. 06-17214 特開昭52-53745号公報JP 52-53745 A 特開平03-66108号公報Japanese Unexamined Patent Publication No. 03-66108
 従来の溶接トランスには、次のような解決すべき課題がある。すなわち、さらなる要望の小型化および、省エネルギ対応ができない。つまり、制御周波数をあげると、図7(b)に示すように最大電流が低下する。また、1次巻線や2次巻線を、より効率的に冷却するための対策がなされていない。 The conventional welding transformer has the following problems to be solved. That is, it is impossible to further reduce the size and cope with energy saving. That is, when the control frequency is increased, the maximum current decreases as shown in FIG. Further, no measures are taken to cool the primary winding and the secondary winding more efficiently.
 本発明は、上記の課題を解決するためになされたもので、制御周波数を上げても所望の最大電流が保持でき、小型化および、省エネルギ対応ができる溶接トランスを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a welding transformer that can maintain a desired maximum current even when the control frequency is increased, and that can be reduced in size and cope with energy saving. .
 以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
 1次巻線と2次巻線とをコアに組み込んだトランス部と、前記2次巻線に接続されるダイオードを含む整流部とを備えた溶接トランスにおいて、前記1次巻線は、銅板1枚にスリットを設けて同一平面上に巻数が複数ターン配列された板状コイルが形成され、前記板状コイルの側縁部が折り曲げられた形状とされ、前記板状コイルの複数枚が積層されて各一端が直列に接続された1次巻線用銅板で構成され、前記2次巻線は、銅板1枚にスリットを設けて板状コイルが形成され、前記板状コイル内に冷却水通路が形成されて構成され、前記ダイオードは、前記2次巻線の一部が前記コアの外側に突出した延出部に直接載置され、前記1次巻線と前記2次巻線は、それぞれ複数個が用いられ、1次巻線、2次巻線、2次巻線、1次巻線の順に重ね合わせて前記コアに組み込まれ、重ね合わされた前記2個の2次巻線の各前記冷却水通路は、前記2次巻線の中央部において互いに連通されて一つの水路として構成されたことを特徴とする溶接トランス。
The following configurations are means for solving the above-described problems.
<Configuration 1>
In a welding transformer including a transformer unit in which a primary winding and a secondary winding are incorporated in a core and a rectification unit including a diode connected to the secondary winding, the primary winding is a copper plate 1 A plate-like coil is formed in which a plurality of turns are arranged on the same plane by providing slits on the sheet, and a side edge of the plate-like coil is bent, and a plurality of the plate-like coils are laminated. Each end is formed of a copper plate for primary winding connected in series, and the secondary winding is provided with a slit in one copper plate to form a plate coil, and a cooling water passage is formed in the plate coil. The diode is mounted directly on an extension part of the secondary winding protruding outside the core, and the primary winding and the secondary winding are respectively Several are used, and the primary winding, secondary winding, secondary winding, and primary winding are stacked in this order. The cooling water passages of the two secondary windings, which are combined and integrated into the core, are communicated with each other at the center of the secondary winding and configured as one water passage. Welding transformer.
〈構成2〉
 1次巻線と2次巻線とをコアに組み込んだトランス部と、前記2次巻線に接続されるダイオードを含む整流部とを備えた溶接トランスにおいて、前記1次巻線は、銅板1枚にスリットを設けて同一平面上に1ターンのコイルが複数列配置された板状コイルが形成され、前記板状コイルの2枚が積層されて各中間端子が直列に接続されて複数列の2ターンの板状コイルが形成され、前記複数列の2ターンの板状コイルの各側縁部が折り曲げられた形状とされた1次巻線用銅板で構成され、前記2次巻線は、銅板にスリットを設けて板状コイルとされ、かつ前記銅板内に冷却水通路が形成されて構成され、前記ダイオードは、前記2次巻線の一部が前記コアの外側に突出した延出部に直接載置され、前記1次巻線と前記2次巻線は、それぞれ複数個が用いられ、1次巻線、2次巻線、2次巻線、1次巻線の順に重ね合わせて前記コアに組み込まれたことを特徴とする溶接トランス。
<Configuration 2>
In a welding transformer including a transformer unit in which a primary winding and a secondary winding are incorporated in a core and a rectification unit including a diode connected to the secondary winding, the primary winding is a copper plate 1 A plate-like coil in which a plurality of one-turn coils are arranged on the same plane is formed, and two plates of the plate-like coil are stacked and each intermediate terminal is connected in series to form a plurality of rows. A two-turn plate coil is formed, and each side edge of the plurality of rows of two-turn plate coils is formed into a bent shape, and the secondary winding includes: A copper plate is provided with a slit to form a plate-like coil, and a cooling water passage is formed in the copper plate, and the diode has an extended portion in which a part of the secondary winding protrudes outside the core A plurality of primary windings and secondary windings, respectively. Is used, the primary winding, secondary winding, the secondary winding, the welding transformer superposed in the order of primary winding, characterized in that incorporated in the core.
〈構成3〉
 1次巻線と2次巻線とをコアに組み込んだトランス部と、前記2次巻線に接続されるダイオードを含む整流部とを備えた溶接トランスにおいて、前記1次巻線は、銅板1枚にスリットを設けて同一平面上に巻数が複数ターン配列された板状コイルが形成され、前記板状コイルの側縁部が折り曲げられた形状とされ、前記板状コイルの複数枚が積層されて各一端が直列に接続されて構成された複数ターンの1次巻線用銅板と、銅板1枚にスリットを設けて同一平面上に1ターンのコイルが複数列配置された板状コイルが形成され、前記板状コイルの2枚が積層されて各中間端子が直列に接続されて複数列の2ターンの板状コイルが形成され、前記複数列の2ターンの板状コイルの各側縁部が折り曲げられた形状とされて構成された2ターンの1次巻線用銅板とを組み合わせて構成され、前記2次巻線は、銅板にスリットを設けて板状コイルとされ、かつ前記銅板内に冷却水通路が形成されて構成され、前記ダイオードは、前記2次巻線の一部が前記コアの外側に突出した延出部に直接載置され、前記1次巻線と前記2次巻線は、それぞれ複数個が用いられ、1次巻線、2次巻線、2次巻線、1次巻線の順に重ね合わせて前記コアに組み込まれたことを特徴とする溶接トランス。
<Configuration 3>
In a welding transformer including a transformer unit in which a primary winding and a secondary winding are incorporated in a core and a rectification unit including a diode connected to the secondary winding, the primary winding is a copper plate 1 A plate-like coil is formed in which a plurality of turns are arranged on the same plane by providing slits on the sheet, and a side edge of the plate-like coil is bent, and a plurality of the plate-like coils are laminated. A copper plate for primary winding with a plurality of turns formed by connecting each end in series and a plate-like coil in which slits are provided in one copper plate and a plurality of rows of coils of one turn are arranged on the same plane are formed. And the intermediate terminals are connected in series to form a plurality of rows of two-turn plate coils, and each side edge of the plurality of rows of two-turn plate coils. 1 of 2 turns that is made by bending the shape The secondary winding is configured by providing a slit in the copper plate to form a plate coil, and a cooling water passage is formed in the copper plate, and the diode is A part of the secondary winding is directly placed on the extended portion protruding outside the core, and a plurality of primary windings and secondary windings are used, respectively. A welding transformer characterized in that a secondary winding, a secondary winding, and a primary winding are stacked in this order and incorporated in the core.
 〈構成1の効果〉
 銅板製の2枚の2次巻線を直接重ね合わせて2次巻線間距離Hを小さくできる。このため、インダクタンスL1aが小さくなり、高い周波数でも出力電流が低下しない。
 1次巻線の側縁部を折り曲げた形状とすることにより、トランス部と整流部との間の距離Fを小さくできる。このため、溶接トランスの等価回路のインダクタンスL1a、 L1bが小さくなり、溶接トランス全体の大きさを、より小型化できる。
 1次巻線は、多数の銅板を積層して構成され、各端子を、直列あるいは並列に接合できる形状とされている。これらの端子を任意に接続することにより、必要に応じて、巻数の異なる1次巻線を、厚さを厚くすることなく構成できる。
 2個の2次巻線の各冷却水通路が2次巻線の中央部において互いに連通されて一つの水路として構成されている。このため、冷却水通路に冷却媒体を流通させる機構を簡素化できる。
 〈構成2の効果〉
 構成1の効果と同様の効果を奏する。さらに、多くの巻数を必要とする中で各端子を適宜、直列あるいは並列に接続することで、巻数の種類を種々変化させることが可能である。このため、一つのトランスで各種の入力電圧に対応することができ、出力電流の大きさのコントロールが可能である。
 〈構成3の効果〉
 構成1および構成2の効果と同様の効果を奏する。さらに、1次巻線を、巻数の異なる異種の1次巻線を組み合わせて構成したことにより、巻線数の種類を種々増やすことができる。この結果、種々の出力電圧を得ることができる。また広い範囲の入力電圧にも対応できる。一つの溶接トランスで各種の入力電圧に対応可能である。
<Effect of Configuration 1>
The distance H between the secondary windings can be reduced by directly superimposing the two secondary windings made of copper plate. For this reason, the inductance L1a becomes small, and the output current does not decrease even at a high frequency.
By making the side edge of the primary winding into a bent shape, the distance F between the transformer and the rectifier can be reduced. For this reason, the inductances L1a and L1b of the equivalent circuit of the welding transformer are reduced, and the overall size of the welding transformer can be further reduced.
The primary winding is formed by laminating a large number of copper plates, and has a shape in which each terminal can be joined in series or in parallel. By arbitrarily connecting these terminals, a primary winding having a different number of turns can be configured without increasing the thickness as required.
The cooling water passages of the two secondary windings are communicated with each other at the center of the secondary winding to form one water passage. For this reason, the mechanism which distribute | circulates a cooling medium to a cooling water channel | path can be simplified.
<Effect of Configuration 2>
The effect similar to the effect of the structure 1 is show | played. Furthermore, the number of turns can be variously changed by appropriately connecting the terminals in series or in parallel while requiring a large number of turns. For this reason, it is possible to deal with various input voltages with a single transformer, and to control the magnitude of the output current.
<Effect of Configuration 3>
The effect similar to the effect of the structure 1 and the structure 2 is show | played. Furthermore, by configuring the primary winding by combining different types of primary windings having different numbers of turns, the number of types of windings can be increased. As a result, various output voltages can be obtained. It can also handle a wide range of input voltages. One welding transformer can handle various input voltages.
実施例1の溶接トランスの概要を示す斜視図である。It is a perspective view which shows the outline | summary of the welding transformer of Example 1. FIG. (a)は実施例2の溶接トランスを分解して示す斜視図、(b)は実施例2で使用される1次巻線を示す正面図である。(A) is an exploded perspective view showing a welding transformer of Example 2, and (b) is a front view showing a primary winding used in Example 2. FIG. 溶接トランスの等価回路図である。It is an equivalent circuit diagram of a welding transformer. (a)は実施例1で使用される1次巻線用銅板を示す斜視図、(b)は同1次巻線用銅板を分解して示す斜視図である。(A) is a perspective view which shows the copper plate for primary windings used in Example 1, (b) is a perspective view which decomposes | disassembles and shows the copper plate for primary windings. 従来の溶接トランスを示す斜視図である。It is a perspective view which shows the conventional welding transformer. (a)は従来の溶接トランスで使用される1次巻線を示す斜視図、(b)は実施例1で使用される1次巻線を示す斜視図である。(A) is a perspective view which shows the primary winding used with the conventional welding transformer, (b) is a perspective view which shows the primary winding used in Example 1. FIG. (a)は従来の溶接トランスの通常の周波数の1次電流の波形を示す波形図、(b)はその従来の溶接トランスの高い周波数の1次電流の波形を示す波形図、(c)は本発明の溶接トランスの通常の周波数の1次電流の波形を示す波形図、(d)はその本発明の溶接トランスの高い周波数の1次電流の波形を示す波形図である。(A) is a waveform diagram showing a waveform of a primary current of a normal frequency of a conventional welding transformer, (b) is a waveform diagram showing a waveform of a primary current of a high frequency of the conventional welding transformer, (c) is a waveform diagram showing FIG. 4D is a waveform diagram showing a waveform of a primary current of a normal frequency of the welding transformer of the present invention, and FIG. 4D is a waveform diagram showing a waveform of a primary current of a high frequency of the welding transformer of the present invention. 本発明の溶接トランスで使用される、2個の2次巻線を示す図であり、(a)は2個の2次巻線の一方を示す平面図、(b)は2個の2次巻線の他方を示す平面図、(c)は2個の2次巻線を、A-A線に絶縁板を沿わせて重ね合わせた状態を示す断面図である。It is a figure which shows two secondary windings used with the welding transformer of this invention, (a) is a top view which shows one of two secondary windings, (b) is two secondary windings The top view which shows the other side of a coil | winding, (c) is sectional drawing which shows the state which piled up two secondary windings along the AA line along the insulating board. 実施例1で使用される、2枚の1次巻線用銅板を示す図であり、(a)は2枚の1次巻線用銅板の一方を示す平面図、(b)は2枚の1次巻線用銅板の他方を示す平面図、(c)はその2枚の1次巻線用銅板を重ねた状態を示す平面図である。It is a figure which shows the copper plate for two primary windings used in Example 1, (a) is a top view which shows one of the copper plate for two primary windings, (b) is two pieces of copper plates The top view which shows the other of the copper plate for primary windings, (c) is a top view which shows the state which piled up the two copper plates for primary windings. (a)は従来の溶接トランスの24ターンの1次巻線の結線構成を示す結線図、(b)は本発明の溶接トランスの24ターンの1次巻線の結線構成を示す結線図、(c)は本発明の溶接トランスの44ターンの1次巻線の結線構成を示す結線図、(d)は本発明の溶接トランスの64ターンの1次巻線の結線構成を示す結線図、(e)は本発明の溶接トランスの16ターンの1次巻線の結線構成を示す結線図である。(A) is a connection diagram showing the connection configuration of the 24-turn primary winding of the conventional welding transformer, (b) is a connection diagram showing the connection configuration of the 24-turn primary winding of the welding transformer of the present invention, ( (c) is a connection diagram showing the connection configuration of the 44-turn primary winding of the welding transformer of the present invention, (d) is a connection diagram showing the connection configuration of the 64-turn primary winding of the welding transformer of the present invention, e) is a connection diagram showing the connection configuration of the 16-turn primary winding of the welding transformer of the present invention. 実施例2の溶接トランスを示す斜視図である。It is a perspective view which shows the welding transformer of Example 2. FIG. 実施例2の溶接トランスで使用される2個の1次巻線を示す斜視図である。It is a perspective view which shows two primary windings used with the welding transformer of Example 2. FIG. 実施例2の1次巻線を構成する1次巻線用銅板の一例を示す斜視図である。It is a perspective view which shows an example of the copper plate for primary windings which comprises the primary winding of Example 2. FIG. 実施例2の1次巻線を構成する1次巻線用銅板の他の例を示す斜視図である。FIG. 6 is a perspective view showing another example of a copper plate for primary winding that constitutes the primary winding of Example 2. (a)は図1、図11に示す本発明の溶接トランスにおける電流の流れを示す説明図、(b)は図5に示す従来の溶接トランスにおける電流の流れを示す説明図である。(A) is explanatory drawing which shows the flow of the electric current in the welding transformer of this invention shown in FIG. 1, FIG. 11, (b) is explanatory drawing which shows the flow of the electric current in the conventional welding transformer shown in FIG.
 以下、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1は実施例1の溶接トランスの概要を示している。
 実施例1の溶接トランスは、図1に示すように、トランス部Trとインバータ制御部の整流部Rcとから構成されている。
FIG. 1 shows an outline of the welding transformer of the first embodiment.
As shown in FIG. 1, the welding transformer of the first embodiment includes a transformer part Tr and a rectifying part Rc of an inverter control part.
 トランス部Trは、1次巻線10と2個の2次巻線11、12とがコア4に組み込まれて構成されている。1次巻線と2次巻線は、1次巻線10、2次巻線11、2次巻線12、1次巻線10の順に重ね合わせてコア4に組み込まれている。 The transformer section Tr is configured by incorporating a primary winding 10 and two secondary windings 11 and 12 into a core 4. The primary winding and the secondary winding are incorporated in the core 4 in the order of the primary winding 10, the secondary winding 11, the secondary winding 12, and the primary winding 10.
 整流部Rcは、2次巻線11、12に接続されるダイオード6と2次側電極7とを有している。ダイオード6は、2次巻線11、12の一部がコア4の外側に突出した延出部に直接載置されている。 The rectifying unit Rc includes a diode 6 connected to the secondary windings 11 and 12 and a secondary electrode 7. The diode 6 is directly mounted on an extending portion in which a part of the secondary windings 11 and 12 protrudes to the outside of the core 4.
 ダイオード6と2次側電極7は、2次巻線11、12の前記延出部と共に、重ねられて2枚の押え板5により上下から挟み付けられ、固定ねじ34により固定されている。ダイオード6と2次側電極7の側面に、板状の2次側端子30が配置されている。 The diode 6 and the secondary electrode 7 are overlapped together with the extending portions of the secondary windings 11 and 12, are sandwiched from above and below by the two pressing plates 5, and are fixed by fixing screws 34. On the side surfaces of the diode 6 and the secondary side electrode 7, a plate-like secondary side terminal 30 is arranged.
 図15(a)に、図1に示す実施例1の溶接トランスにおける電流の流れを矢印9で示している。電流は、各2次巻線11、12からそれぞれダイオード6を経て2次側端子30に流れる。 FIG. 15A shows the flow of current in the welding transformer of Example 1 shown in FIG. Current flows from the secondary windings 11 and 12 to the secondary terminal 30 through the diode 6.
 1次巻線10は、図6(b)に示されるように、複数の1次巻線用銅板13を積層して構成されている。1次巻線用銅板13の具体例を、図4を使って説明する。 As shown in FIG. 6B, the primary winding 10 is configured by laminating a plurality of primary winding copper plates 13. A specific example of the primary winding copper plate 13 will be described with reference to FIG.
 図4(a)は、1次巻線10の一部を構成する1次巻線用銅板13を示している。図4(b)は1次巻線用銅板13を上下に分解した状態を示している。1次巻線用銅板13は、2枚の1次巻線用銅板13A、13Bを重ね合わせて構成されている。2枚の1次巻線用銅板13A、13Bは、巻数が8ターンの1次巻線用銅板13を構成する。 FIG. 4A shows the copper plate 13 for primary winding that constitutes a part of the primary winding 10. FIG. 4B shows a state in which the copper plate 13 for primary winding is disassembled up and down. The primary winding copper plate 13 is formed by superposing two primary winding copper plates 13A and 13B. The two primary winding copper plates 13A and 13B constitute the primary winding copper plate 13 having eight turns.
 1次巻線用銅板13Aは、次のように構成される。先ず、図4(a)に示されるように、1枚目の平面四角形の銅板を、その外縁部に沿って1mm程度のスリットで分割する。この分割により、巻数が4ターンの板状コイルとなる1次巻線用銅板13Aを形成する。この1次巻線用銅板13Aの両端部を、巻き終わり端部41と中間端部42とする。 The primary winding copper plate 13A is configured as follows. First, as shown in FIG. 4A, the first planar rectangular copper plate is divided by a slit of about 1 mm along its outer edge. By this division, a copper plate 13A for primary winding that forms a plate coil having four turns is formed. Both end portions of the primary winding copper plate 13A are referred to as a winding end portion 41 and an intermediate end portion.
 次に、2枚目の平面四角形の銅板を、その外縁部に沿って1mm程度のスリットで分割する。この分割により、巻数が4ターンの板状コイルとなる1次巻線用銅板13Bを形成する。この1次巻線用銅板13Bの両端部を、巻き終わり端部43と中間端部44とする。 Next, the second plane rectangular copper plate is divided along the outer edge with a slit of about 1 mm. By this division, the primary winding copper plate 13B is formed as a plate-like coil having four turns. Both end portions of the primary winding copper plate 13 </ b> B are referred to as a winding end portion 43 and an intermediate end portion 44.
 1次巻線用銅板13Aと1次巻線用銅板13Bとは重ね合わされる。このとき、中間端部42と中間端部44は合致し、溶接などで結合される。また、巻き終わり端部41と巻き終わり端部43は、同一平面上で所定の間隔を置いて並列に配置される。これで、巻数の合計が8ターンの1次巻線用銅板13が構成される。 The primary winding copper plate 13A and the primary winding copper plate 13B are overlapped. At this time, the intermediate end portion 42 and the intermediate end portion 44 coincide and are joined by welding or the like. Further, the winding end portion 41 and the winding end portion 43 are arranged in parallel at a predetermined interval on the same plane. Thus, the primary winding copper plate 13 having a total number of turns of 8 turns is formed.
 つまり、2枚の銅板の厚さで8ターンの1次巻線用銅板13が得られることになる。これは、従来構造の、銅板1枚で1ターンの巻数とするのに比較すると1/4の厚さでよいこととなる。 That is, the primary winding copper plate 13 of 8 turns is obtained with the thickness of the two copper plates. Compared with the conventional structure in which one copper plate has one turn, the thickness may be 1/4.
 なお、従来、1次巻線として銅板を用いる場合は複数枚積層された銅板と銅板との間に絶縁板を配置している。本発明の1次巻線10は、前記絶縁板を設ける代わりに、積層される複数の銅板のそれぞれに絶縁性の塗装を施すことにより、全体構造の厚さを薄く構成できる。 Conventionally, when a copper plate is used as the primary winding, an insulating plate is arranged between a plurality of laminated copper plates. In the primary winding 10 of the present invention, the thickness of the entire structure can be reduced by applying an insulating coating to each of a plurality of laminated copper plates instead of providing the insulating plate.
 本発明では図1、図4(a)、図6(b)等に示すように、1次巻線銅板13に各端子が設けられている。これらの各端子の接続を変えることにより、巻線数を変えることができる。その結果、所望の出力電圧が得られる。 In the present invention, each terminal is provided on the primary winding copper plate 13 as shown in FIG. 1, FIG. 4 (a), FIG. 6 (b) and the like. The number of windings can be changed by changing the connection of these terminals. As a result, a desired output voltage can be obtained.
 1次巻線の巻線数は、1枚の銅板で4ターンの巻数とすることに限定されない。必要に応じて、巻線数を自由に設定可能である。巻線数の種類を増やす手段として、前述の1次巻線銅板13により構成された1次巻線の他に、図9に示す1次巻線銅板45により構成された1次巻線を使用するという手段がある。 The number of turns of the primary winding is not limited to the number of turns of 4 turns with one copper plate. The number of windings can be set freely as required. As means for increasing the number of windings, in addition to the primary winding constituted by the primary winding copper plate 13 described above, the primary winding constituted by the primary winding copper plate 45 shown in FIG. 9 is used. There is a means to do.
 図9は、1次巻線10の一部を構成する1次巻線用銅板45を示している。1次巻線用銅板45は、2種の1次巻線用銅板45Aと1次巻線用銅板45Bとから巻数が2ターンで4列に構成されている。 FIG. 9 shows a primary winding copper plate 45 constituting a part of the primary winding 10. The primary winding copper plate 45 is composed of two types of primary winding copper plate 45A and primary winding copper plate 45B in four rows with two turns.
 1次巻線用銅板45Aは、図9(a)に示されるように構成されている。すなわち、1枚の銅板にスリットを設けて同一平面上に1ターンの巻数を並列で4個配列している形状とされる。1次巻線用銅板45Aには、4つの中間端子46と4つの出力端子48とが設けられている。 The primary winding copper plate 45A is configured as shown in FIG. In other words, a slit is provided in one copper plate, and four turns are arranged in parallel on the same plane. Four intermediate terminals 46 and four output terminals 48 are provided on the primary winding copper plate 45A.
 また、1次巻線用銅板45Bは、図9(b)に示されるように構成されている。すなわち、他方の1枚の銅板にスリットを設けて同一平面上に1ターンの巻数が並列で4個配列している形状とされる。1次巻線用銅板45Bには、4つの中間端子47と4つの出力端子49とが設けられている。 The primary winding copper plate 45B is configured as shown in FIG. 9B. That is, a slit is formed in the other copper plate, and four turns are arranged in parallel on the same plane. The primary winding copper plate 45B is provided with four intermediate terminals 47 and four output terminals 49.
 2つの1次巻線用銅板45Aと45Bは重ね合わされる。このとき、4つの各中間端子46と47がそれぞれ向かい合うように、予め形成されている。1次巻線用銅板45Aの4つの出力端子48と1次巻線用銅板45Bの出力端子49とは、それぞれ同一平面上に配列するように形成されている。 The two primary winding copper plates 45A and 45B are overlapped. At this time, the four intermediate terminals 46 and 47 are formed in advance so as to face each other. The four output terminals 48 of the primary winding copper plate 45A and the output terminal 49 of the primary winding copper plate 45B are formed so as to be arranged on the same plane.
 図9(c)に示されるように、1次巻線用銅板45Aと1次巻線用銅板45Bとは、重ね合わされて4つの各中間端子46と中間端子47が溶接などにより結合される。こうして、1次巻線用銅板45Aと1次巻線用銅板45Bは、直列に接続されて2ターンの巻数を4列形成した1次巻線用銅板45を構成している。本発明の1次巻線10は、積層される各銅板間に絶縁板を設ける代わりに、銅板のそれぞれに絶縁性の塗装を施すことにより、厚さを薄く構成できる。 As shown in FIG. 9 (c), the primary winding copper plate 45A and the primary winding copper plate 45B are overlapped, and the four intermediate terminals 46 and the intermediate terminals 47 are joined by welding or the like. Thus, the primary winding copper plate 45A and the primary winding copper plate 45B constitute a primary winding copper plate 45 that is connected in series to form four rows of two turns. The primary winding 10 of the present invention can be made thin by applying an insulating coating to each of the copper plates instead of providing an insulating plate between the laminated copper plates.
 このように構成された2ターンの1次巻線用銅板45は、前述した8ターンの1次巻線用銅板13の代替として一部または全部に用いられる。この1次巻線用銅板45は出力端子48、49が設けられているので、巻線数の種類を任意に増やすことができる。この結果、所望の出力電圧を得ることができる。 The 2-turn primary winding copper plate 45 configured in this way is used in part or in whole as an alternative to the 8-turn primary winding copper plate 13 described above. Since the primary winding copper plate 45 is provided with the output terminals 48 and 49, the number of windings can be arbitrarily increased. As a result, a desired output voltage can be obtained.
 また広い範囲の入力電圧にも対応できる。従来は、数種類の入力電圧に対し、それぞれ専用で溶接トランスを製作していた。しかし、本発明の溶接トランスは、一つの溶接トランスで各種の入力電圧に対応可能である。 It can also handle a wide range of input voltages. Conventionally, welding transformers have been manufactured exclusively for several types of input voltages. However, the welding transformer of the present invention can cope with various input voltages with a single welding transformer.
 図8は、本発明の溶接トランスで使用される、2個の2次巻線11、12を示している。図8(a)は一方の2次巻線11を示している。図8(b)は他方の2次巻線12を示している。図8(c)は2個の2次巻線11、12を、A-A線に絶縁板33を沿わせて重ね合わせた状態を示している。 FIG. 8 shows two secondary windings 11 and 12 used in the welding transformer of the present invention. FIG. 8A shows one secondary winding 11. FIG. 8B shows the other secondary winding 12. FIG. 8C shows a state in which the two secondary windings 11 and 12 are overlapped along the line AA along the insulating plate 33.
 2個の2次巻線11、12は、それぞれ平面が四角形の銅板により構成されている。2次巻線11、12は、それぞれの銅板毎にスリット及び開口部を設けて巻数が1ターンの板状コイルに形成されている。2次巻線11と12は、それぞれ巻数が1ターンに形成されている。 The two secondary windings 11 and 12 are each made of a copper plate having a rectangular plane. The secondary windings 11 and 12 are formed in a plate-like coil having a turn and a turn by providing a slit and an opening for each copper plate. Each of the secondary windings 11 and 12 is formed in one turn.
 2次巻線11と12には、図8(a)、図8(b)に示されるように、それぞれ外縁に沿う冷却水通路14が設けられている。重ね合わされた2個の2次巻線11、12の各冷却水通路14は、各2次巻線の中央部において互いに連通されて一つの水路として構成されている。 As shown in FIGS. 8A and 8B, the secondary windings 11 and 12 are each provided with a cooling water passage 14 along the outer edge. The superposed cooling water passages 14 of the two secondary windings 11 and 12 are communicated with each other at the center of each secondary winding to form one water passage.
 図8(a)、図8(b)に示される2次側端子31、32は、センタータップとしていずれか1つが使用される。 One of the secondary terminals 31 and 32 shown in FIGS. 8A and 8B is used as a center tap.
 2個の2次巻線11、12の各冷却水通路が2次巻線の中央部において互いに連通されて一つの水路として構成されていることにより、冷却水通路14に冷却媒体を流通させる機構を簡略化できる。なお、冷却水通路14に流通させる冷却媒体は、一般的には水を用いる。冷却媒体は冷却効果の高い流体であれば、水以外の媒体でもよい。 The cooling water passages of the two secondary windings 11 and 12 are connected to each other in the central portion of the secondary winding and configured as one water passage, whereby the cooling medium is circulated through the cooling water passage 14. Can be simplified. In general, water is used as the cooling medium to be circulated in the cooling water passage 14. The cooling medium may be a medium other than water as long as it has a high cooling effect.
 実施例1の溶接トランスは、1次巻線10と2次巻線11と12を板状コイルとしたことにより、重ねられたとき接触面積が広い。従って、冷却水通路14の冷却媒体による冷却効果が増大する。 In the welding transformer of Example 1, the primary winding 10 and the secondary windings 11 and 12 are plate coils, so that the contact area is wide when they are stacked. Therefore, the cooling effect by the cooling medium of the cooling water passage 14 is increased.
 さらに、1次巻線10と2次巻線11、12を重ねる順序を、1次巻線10、2次巻線11、2次巻線12、1次巻線10の順となることを可能としている。そのため、2次巻線11、12の銅板間の距離Hが小さくなり、等価回路のL1a、 L1bを極めて小さくできる。 Further, the order in which the primary winding 10 and the secondary windings 11 and 12 are stacked can be the order of the primary winding 10, the secondary winding 11, the secondary winding 12, and the primary winding 10. It is said. Therefore, the distance H between the copper plates of the secondary windings 11 and 12 is reduced, and L1a and L1b of the equivalent circuit can be extremely reduced.
 また、実施例1の溶接トランスは、2次側電極を、2次巻線の一部がコアの外側に突出した延出部により構成し、ダイオードを延出部の外面に直接載置している。このため、図5に示される連結導体8を使用する必要がなくなり、トランス部Trと整流部Rc間の距離Fが小さくなっている。このため、等価回路のL1a、 L1bを小さくできる。 Further, in the welding transformer of Example 1, the secondary side electrode is configured by an extending part in which a part of the secondary winding protrudes outside the core, and the diode is directly mounted on the outer surface of the extending part. Yes. For this reason, it is not necessary to use the connecting conductor 8 shown in FIG. 5, and the distance F between the transformer part Tr and the rectifying part Rc is reduced. For this reason, L1a and L1b of the equivalent circuit can be reduced.
 図2(a)は実施例2の溶接トランスの概要を示している。図2(b)は実施例2で使用される1次巻線10を示している。図11は実施例2の溶接トランスを示している。図11には、1次巻線10の取付状態を明示するために、2つのコア4のうち、同図の手前側のコアを外した状態で示している。図12は図11に示された2個の1次巻線10を示しており、2次巻線11、12の上下に配置される状態で示されている。図13は実施例2の1次巻線10の一部を構成する1次巻線用銅板13を示している。図14は実施例2の1次巻線10の一部を構成する1次巻線用銅板45を示している。これらの図には図1と同一部分に同一符号を付して重複説明を省略する。 FIG. 2A shows an outline of the welding transformer of the second embodiment. FIG. 2B shows the primary winding 10 used in the second embodiment. FIG. 11 shows a welding transformer of the second embodiment. In FIG. 11, in order to clearly show the mounting state of the primary winding 10, the two cores 4 are shown with the front core in the figure removed. FIG. 12 shows the two primary windings 10 shown in FIG. 11 and is shown in a state of being disposed above and below the secondary windings 11 and 12. FIG. 13 shows a copper plate 13 for primary winding that constitutes a part of the primary winding 10 of the second embodiment. FIG. 14 shows a primary winding copper plate 45 constituting a part of the primary winding 10 of the second embodiment. In these drawings, the same parts as those in FIG.
 実施例2の溶接トランスは、図2、図11に示すように、トランス部Trとインバータ制御部の整流部Rcとから構成されている。トランス部Trと整流部Rcの側面からアルミニウム製の枠体16、17が嵌め込まれて取り付けられる。 As shown in FIGS. 2 and 11, the welding transformer of Example 2 includes a transformer part Tr and a rectifying part Rc of the inverter control part. Aluminum frames 16 and 17 are fitted and attached from the side surfaces of the transformer portion Tr and the rectifying portion Rc.
 実施例2の溶接トランスは、1次巻線10を構成する板状コイルの側縁部が折り曲げられた形状とされている点が実施例1の溶接トランスと相違している。 The welding transformer of Example 2 is different from the welding transformer of Example 1 in that the side edge of the plate coil constituting the primary winding 10 is bent.
 実施例2の溶接トランスの1次巻線10は、巻数が8ターンの1次巻線と巻数が2ターンの1次巻線とを組み合わせて構成されている。また、図2(a)の符号30、31は、それぞれ2次側端子を示している。 The primary winding 10 of the welding transformer of Example 2 is configured by combining a primary winding having 8 turns and a primary winding having 2 turns. Moreover, the codes | symbols 30 and 31 of Fig.2 (a) have each shown the secondary side terminal.
 巻数が8ターンの1次巻線用銅板13は、2枚の1次巻線用銅板13C、13Dを重ね合わせて構成されている。巻数が2ターンの1次巻線用銅板45は、2枚の1次巻線用銅板45C、45Dを重ね合わせて構成されている。巻数の異なる1次巻線用銅板13と1次巻線用銅板45とを適当に組み合わせることにより、所望の1次巻線10を構成できる。 The primary winding copper plate 13 having 8 turns is formed by superposing two primary winding copper plates 13C and 13D. The primary winding copper plate 45 having two turns is configured by overlapping two primary winding copper plates 45C and 45D. A desired primary winding 10 can be configured by appropriately combining the primary winding copper plate 13 and the primary winding copper plate 45 having different numbers of turns.
 図13に示された1次巻線用銅板13は、2種の1次巻線用銅板13C、13Dを重ねた形に構成されている。1次巻線用銅板13Cは、図4(b)に示した1次巻線用銅板13Aと同様形状の銅板の各側縁部を折り曲げた形状とされている。また、1次巻線用銅板13Dは、図4(b)に示した1次巻線用銅板13Bと同様形状の銅板の各側縁部を折り曲げた形状とされている。 The primary winding copper plate 13 shown in FIG. 13 is configured in such a manner that two types of primary winding copper plates 13C and 13D are stacked. The primary winding copper plate 13C is formed by bending each side edge of a copper plate having the same shape as the primary winding copper plate 13A shown in FIG. Further, the primary winding copper plate 13D is formed by bending each side edge of the copper plate having the same shape as the primary winding copper plate 13B shown in FIG.
 1次巻線用銅板13Cの両端部は、それぞれ巻き終わり端部41と中間端部(図示せず)とされている。1次巻線用銅板13Dの両端部は、それぞれ巻き終わり端部43と中間端部(図示せず)とされている。1次巻線用銅板13C、13Dの各中間端部はそれぞれ溶接などで結合されている。1次巻線用銅板13Cの巻き終わり端部41と1次巻線用銅板13Dの巻き終わり端部43とは、同一平面上で所定の間隔を置いて並列配置されている。 Both end portions of the primary winding copper plate 13C are a winding end portion 41 and an intermediate end portion (not shown), respectively. Both ends of the primary winding copper plate 13D are a winding end 43 and an intermediate end (not shown), respectively. The intermediate ends of the primary winding copper plates 13C and 13D are joined by welding or the like. The winding end end 41 of the primary winding copper plate 13C and the winding end end 43 of the primary winding copper plate 13D are arranged in parallel at a predetermined interval on the same plane.
 また、図14に示す1次巻線用銅板45は、2枚の1次巻線用銅板45C、45Dを重ねた形に構成されている。1次巻線用銅板45は、図9(a)に示した1次巻線用銅板45Aと同様形状の銅板の各側縁部を折り曲げた形状とされている。また、1次巻線用銅板45Dは、図9(b)に示した1次巻線用銅板45Bと同様形状の銅板の各側縁部を折り曲げた形状とされている。1次巻線用銅板45C、45Dの各出力端子48、49は、同一平面上で所定の間隔を置いて並列されている。 Further, the primary winding copper plate 45 shown in FIG. 14 is configured by overlapping two primary winding copper plates 45C and 45D. The primary winding copper plate 45 is formed by bending each side edge of a copper plate having the same shape as the primary winding copper plate 45A shown in FIG. Further, the primary winding copper plate 45D is formed by bending each side edge of a copper plate having the same shape as the primary winding copper plate 45B shown in FIG. 9B. The output terminals 48 and 49 of the primary winding copper plates 45C and 45D are arranged in parallel at a predetermined interval on the same plane.
 実施例2の、2種の1次巻線用銅板13、45は、図2(b)に示されるように積層された形状となっている。このとき、折り曲げ幅寸法が順次小さくなり底面で密着する構成とされている。このような曲げ形状の1次巻線用銅板13、45により1次巻線10を構成することにより、実施例1のものと比べて更にトランス部Trと整流子Rc間の距離Fが小さくなる。このため、等価回路のL1a、 L1bを小さくすると同時に、溶接トランス全体の大きさも一層小型化するものである。 The two types of primary winding copper plates 13 and 45 of Example 2 have a laminated shape as shown in FIG. At this time, the folding width dimension is gradually reduced and the bottom surface is in close contact. By configuring the primary winding 10 with such bent primary copper plates 13 and 45, the distance F between the transformer Tr and the commutator Rc is further reduced as compared with the first embodiment. . For this reason, L1a and 1L1b of the equivalent circuit are reduced, and at the same time, the overall size of the welding transformer is further reduced.
 実施例2の溶接トランスの1次巻線10は、積層される各銅板間に絶縁板を設ける代わりに、銅板のそれぞれに絶縁性の塗装を施すことにより、全体構造の厚さを薄く構成できる。 The primary winding 10 of the welding transformer according to the second embodiment can be configured to reduce the thickness of the entire structure by applying an insulating coating to each copper plate instead of providing an insulating plate between the laminated copper plates. .
 図7(a)は従来の溶接トランスの通常の周波数の1次電流の波形を示している。図7(b)はその従来の溶接トランスの高い周波数の1次電流の波形を示している。図7(c)は本発明の溶接トランスの通常の周波数の1次電流の波形を示している。図7(d)はその本発明の溶接トランスの高い周波数の1次電流の波形を示している。 Fig. 7 (a) shows the waveform of the primary current of the normal frequency of the conventional welding transformer. FIG. 7 (b) shows a waveform of a high-frequency primary current of the conventional welding transformer. FIG. 7 (c) shows the waveform of the primary current of the normal frequency of the welding transformer of the present invention. FIG. 7 (d) shows a waveform of a high frequency primary current of the welding transformer of the present invention.
 前述した従来の溶接トランスでは、周波数が高くなると、図7(b)に示す立ち上がり波形が図7(a)の立ち上がり波形とは異なってくるという不具合がある。それは、先に説明したとおり、電流の立ち上がりが不完全となって、最大電流が得られないという課題をもたらす。 The conventional welding transformer described above has a problem that when the frequency is increased, the rising waveform shown in FIG. 7B is different from the rising waveform shown in FIG. As described above, this causes a problem that the current rise is incomplete and the maximum current cannot be obtained.
 本発明の溶接トランスによれば、制御周波数を高めても図7(d)に示す立ち上がり波形が図7(c)の波形と同様な高さの波形となるので、最大電流を確保できる。したがって、最大電流が得られないという上記課題を解決する。
 これは、図3に示す等価回路のL1a、 L1bが小さくなると、立ち上がりの勾配が直角に近づき、立ち上がりを良くするためである。ここで、従来の周波数とはおおよそ1000Hz未満であり、高い周波数とは、おおよそ5000Hz以上である。
According to the welding transformer of the present invention, even when the control frequency is increased, the rising waveform shown in FIG. 7D becomes a waveform having the same height as the waveform of FIG. Therefore, the above problem that the maximum current cannot be obtained is solved.
This is because when the L1a and L1b of the equivalent circuit shown in FIG. 3 are small, the rising gradient approaches a right angle and the rising is improved. Here, the conventional frequency is approximately less than 1000 Hz, and the high frequency is approximately 5000 Hz or more.
 図10(a)は、従来の溶接トランスの1次巻線が24ターンの事例を示す。図10(b)~(e)は、本発明の溶接トランスの1次巻線がそれぞれ16~64ターンの各事例を示す。本発明の溶接トランスの1次巻線は、巻数変換が簡単にできる。 Fig. 10 (a) shows an example in which the primary winding of a conventional welding transformer has 24 turns. FIGS. 10B to 10E show examples in which the primary winding of the welding transformer of the present invention has 16 to 64 turns, respectively. The number of turns of the primary winding of the welding transformer of the present invention can be easily changed.
 このように、広い範囲での巻数変換を可能にしているのは、1次巻線10を、8ターンの1次巻線を3個と2ターンの1次巻線を4個とを組み合わせた構成としたことによる。そして、これらの1次巻線10を、2次巻線11、12の上下にそれぞれ配置しているからである。 Thus, the number of turns in a wide range can be changed by combining the primary winding 10 with three 8-turn primary windings and four 2-turn primary windings. Depending on the configuration. This is because these primary windings 10 are arranged above and below the secondary windings 11 and 12, respectively.
 また、図10(b)、(c)、(e)に示しているように、2ターンの1次巻線と8ターンの1次巻線とを並列に結線したものを採用すれば、発熱や電流損失を最小限に押さえた構造とすることができる。 Also, as shown in Fig. 10 (b), (c), (e), heat is generated if a 2-turn primary winding and 8-turn primary winding are connected in parallel. And a structure with minimal current loss.
 本発明の溶接トランスを使用することにより、インバータ式抵抗溶接機では、大電流の使用でも、巻線の温度上昇を容易に防止できる。また、コンパクトで、高品質で、かつ、各種電圧に対応可能な溶接トランスとして供給できる。また、容量違いの巻線構成を容易にしている。また、本発明の実施例によれば、前述した従来の溶接トランスと比較して重量を約40%低減できる。軽量化による、溶接ロボットへの搭載の利点も大きい。 By using the welding transformer of the present invention, the inverter resistance welding machine can easily prevent the temperature of the winding from rising even when a large current is used. Moreover, it can be supplied as a welding transformer that is compact, high quality, and compatible with various voltages. Moreover, the winding structure with different capacities is facilitated. Further, according to the embodiment of the present invention, the weight can be reduced by about 40% compared with the conventional welding transformer described above. The advantage of mounting on a welding robot due to its light weight is also great.
1  従来の2次巻線
2  従来の2次巻線
3  従来の1次巻線
4  コア
5  押さえ板
6  ダイオード
7  2次側電極
8  連結導体
10 1次巻線
11 2次巻線
12 2次巻線
13 1次巻線用銅板
14 冷却水通路
15 押さえバネ
16 枠体
17 枠体
30 2次側端子
31 2次側端子(センタータップ)
32 2次側端子(センタータップ)
33 絶縁板
34 固定ねじ
41 巻き終わり端部
42 中間端部
43 巻き始め端部
44 中間端部
45 1次巻線用銅板
46 中間端部
47 中間端部
48 出力端子
49 出力端子
T1 周期
T2 周期
Tr トランス部
Rc 整流部
W  溶接機
DESCRIPTION OF SYMBOLS 1 Conventional secondary winding 2 Conventional secondary winding 3 Conventional primary winding 4 Core 5 Holding plate 6 Diode 7 Secondary side electrode 8 Connecting conductor 10 Primary winding 11 Secondary winding 12 Secondary winding Wire 13 Primary winding copper plate 14 Cooling water passage 15 Holding spring 16 Frame 17 Frame 30 Secondary side terminal 31 Secondary side terminal (center tap)
32 Secondary terminal (center tap)
33 Insulating plate 34 Fixing screw 41 End winding end 42 Intermediate end 43 Winding start end 44 Intermediate end 45 Primary winding copper plate 46 Intermediate end 47 Intermediate end 48 Output terminal 49 Output terminal T1 Period T2 Period Tr Transformer Rc Rectifier W Welder

Claims (3)

  1.  1次巻線と2次巻線とをコアに組み込んだトランス部と、
    前記2次巻線に接続されるダイオードを含む整流部とを備えた溶接トランスにおいて、
     前記1次巻線は、銅板1枚にスリットを設けて同一平面上に巻数が複数ターン配列された板状コイルが形成され、前記板状コイルの側縁部が折り曲げられた形状とされ、前記板状コイルの複数枚が積層されて各一端が直列に接続された1次巻線用銅板で構成され、
     前記2次巻線は、銅板1枚にスリットを設けて板状コイルが形成され、前記板状コイル内に冷却水通路が形成されて構成され、
     前記ダイオードは、前記2次巻線の一部が前記コアの外側に突出した延出部に直接載置され、
     前記1次巻線と前記2次巻線は、それぞれ複数個が用いられ、1次巻線、2次巻線、2次巻線、1次巻線の順に重ね合わせて前記コアに組み込まれ、
    重ね合わされた前記2個の2次巻線の各前記冷却水通路は、前記2次巻線の中央部において互いに連通されて一つの水路として構成された
    ことを特徴とする溶接トランス。
    A transformer unit in which a primary winding and a secondary winding are incorporated in a core;
    In a welding transformer comprising a rectifier including a diode connected to the secondary winding,
    The primary winding is formed by forming a plate-like coil in which a plurality of turns are arranged on the same plane by providing a slit in one copper plate, and the side edge of the plate-like coil is bent, A plurality of plate coils are laminated and each end is composed of a primary winding copper plate connected in series,
    The secondary winding is formed by providing a slit in one copper plate to form a plate coil, and forming a cooling water passage in the plate coil.
    The diode is directly placed on an extension part in which a part of the secondary winding protrudes to the outside of the core,
    A plurality of primary windings and secondary windings are used, and the primary winding, the secondary winding, the secondary winding, and the primary winding are overlapped in this order and incorporated into the core.
    The welding transformer, wherein each of the cooling water passages of the two secondary windings overlapped with each other is communicated with each other at a central portion of the secondary winding as one water passage.
  2.  1次巻線と2次巻線とをコアに組み込んだトランス部と、
    前記2次巻線に接続されるダイオードを含む整流部とを備えた溶接トランスにおいて、
     前記1次巻線は、銅板1枚にスリットを設けて同一平面上に1ターンのコイルが複数列配置された板状コイルが形成され、前記板状コイルの2枚が積層されて各中間端子が直列に接続されて複数列の2ターンの板状コイルが形成され、前記複数列の2ターンの板状コイルの各側縁部が折り曲げられた形状とされた1次巻線用銅板で構成され、
     前記2次巻線は、銅板にスリットを設けて板状コイルとされ、かつ前記銅板内に冷却水通路が形成されて構成され、 
     前記ダイオードは、前記2次巻線の一部が前記コアの外側に突出した延出部に直接載置され、
     前記1次巻線と前記2次巻線は、それぞれ複数個が用いられ、1次巻線、2次巻線、2次巻線、1次巻線の順に重ね合わせて前記コアに組み込まれたことを特徴とする溶接トランス。
    A transformer unit in which a primary winding and a secondary winding are incorporated in a core;
    In a welding transformer comprising a rectifier including a diode connected to the secondary winding,
    The primary winding is formed by forming a plate-like coil in which a single copper plate is provided with a slit and a plurality of one-turn coils are arranged on the same plane, and two of the plate-like coils are laminated to each intermediate terminal. Are connected in series to form a plurality of rows of two-turn plate-like coils, and each side row of the plurality of rows of two-turn plate-like coils is bent to constitute a primary winding copper plate. And
    The secondary winding is formed by providing a slit in a copper plate to form a plate coil, and a cooling water passage is formed in the copper plate,
    The diode is directly placed on an extension part in which a part of the secondary winding protrudes to the outside of the core,
    A plurality of the primary windings and the secondary windings are used, and the primary winding, the secondary winding, the secondary winding, and the primary winding are overlapped in this order and incorporated into the core. A welding transformer characterized by that.
  3.  1次巻線と2次巻線とをコアに組み込んだトランス部と、
    前記2次巻線に接続されるダイオードを含む整流部とを備えた溶接トランスにおいて、
     前記1次巻線は、
    銅板1枚にスリットを設けて同一平面上に巻数が複数ターン配列された板状コイルが形成され、前記板状コイルの側縁部が折り曲げられた形状とされ、前記板状コイルの複数枚が積層されて各一端が直列に接続されて構成された複数ターンの1次巻線用銅板と、銅板1枚にスリットを設けて同一平面上に1ターンのコイルが複数列配置された板状コイルが形成され、前記板状コイルの2枚が積層されて各中間端子が直列に接続されて複数列の2ターンの板状コイルが形成され、前記複数列の2ターンの板状コイルの各側縁部が折り曲げられた形状とされて構成された2ターンの1次巻線用銅板とを組み合わせて構成され、
     前記2次巻線は、銅板にスリットを設けて板状コイルとされ、かつ前記銅板内に冷却水通路が形成されて構成され、 
     前記ダイオードは、前記2次巻線の一部が前記コアの外側に突出した延出部に直接載置され、
     前記1次巻線と前記2次巻線は、それぞれ複数個が用いられ、1次巻線、2次巻線、2次巻線、1次巻線の順に重ね合わせて前記コアに組み込まれたことを特徴とする溶接トランス。
    A transformer unit in which a primary winding and a secondary winding are incorporated in a core;
    In a welding transformer comprising a rectifier including a diode connected to the secondary winding,
    The primary winding is
    A plate-like coil in which a plurality of turns are arranged on the same plane by forming a slit in one copper plate is formed, and a side edge portion of the plate-like coil is bent, and a plurality of the plate-like coils are formed. A multi-turn primary winding copper plate composed of one end connected in series, and a plate coil in which a single copper plate is provided with slits and a plurality of one-turn coils are arranged on the same plane. Are formed, two sheets of the plate coils are laminated, and each intermediate terminal is connected in series to form a plurality of rows of two-turn plate coils, each side of the plurality of rows of two-turn plate coils It is configured by combining a copper plate for primary winding of 2 turns, which is configured with a bent edge.
    The secondary winding is formed by providing a slit in a copper plate to form a plate coil, and a cooling water passage is formed in the copper plate,
    The diode is directly placed on an extension part in which a part of the secondary winding protrudes to the outside of the core,
    A plurality of the primary windings and the secondary windings are used, and the primary winding, the secondary winding, the secondary winding, and the primary winding are overlapped in this order and incorporated into the core. A welding transformer characterized by that.
PCT/JP2011/051700 2010-02-16 2011-01-28 Welding transformer WO2011102204A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-030918 2010-02-16
JP2010030918A JP4687930B2 (en) 2009-09-10 2010-02-16 Welding transformer

Publications (1)

Publication Number Publication Date
WO2011102204A1 true WO2011102204A1 (en) 2011-08-25

Family

ID=44486843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051700 WO2011102204A1 (en) 2010-02-16 2011-01-28 Welding transformer

Country Status (1)

Country Link
WO (1) WO2011102204A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3796345A1 (en) * 2019-09-19 2021-03-24 Robert Bosch GmbH Welding transformer, method for producing a module for a welding transformer and method for producing a welding transformer
TWI745183B (en) * 2019-12-03 2021-11-01 日商向洋技研股份有限公司 Welding transformer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126828U (en) * 1980-02-27 1981-09-26
JPS63182687U (en) * 1987-02-12 1988-11-24
JPH045629U (en) * 1990-05-02 1992-01-20
JPH0582358A (en) * 1991-09-20 1993-04-02 Nikki Denso Kk Water-cooled transformer for robot mounting type spot welding use
JPH0623564A (en) * 1992-07-10 1994-02-01 Honda Motor Co Ltd Transformer for dc resistance welding machine
JP3008433U (en) * 1994-08-31 1995-03-14 小原株式会社 Cooling device for inverter transformer for welding machine
JP2571683Y2 (en) * 1992-06-16 1998-05-18 株式会社電元社製作所 Transformer for resistance welding
JP2000223320A (en) * 1999-01-28 2000-08-11 Hitachi Ferrite Electronics Ltd Transformer for large current
JP2007243071A (en) * 2006-03-10 2007-09-20 Honda Motor Co Ltd Transformer and manufacturing method thereof
JP2008130657A (en) * 2006-11-17 2008-06-05 Obara Corp Housing cooling structure of inverter transformer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126828U (en) * 1980-02-27 1981-09-26
JPS63182687U (en) * 1987-02-12 1988-11-24
JPH045629U (en) * 1990-05-02 1992-01-20
JPH0582358A (en) * 1991-09-20 1993-04-02 Nikki Denso Kk Water-cooled transformer for robot mounting type spot welding use
JP2571683Y2 (en) * 1992-06-16 1998-05-18 株式会社電元社製作所 Transformer for resistance welding
JPH0623564A (en) * 1992-07-10 1994-02-01 Honda Motor Co Ltd Transformer for dc resistance welding machine
JP3008433U (en) * 1994-08-31 1995-03-14 小原株式会社 Cooling device for inverter transformer for welding machine
JP2000223320A (en) * 1999-01-28 2000-08-11 Hitachi Ferrite Electronics Ltd Transformer for large current
JP2007243071A (en) * 2006-03-10 2007-09-20 Honda Motor Co Ltd Transformer and manufacturing method thereof
JP2008130657A (en) * 2006-11-17 2008-06-05 Obara Corp Housing cooling structure of inverter transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3796345A1 (en) * 2019-09-19 2021-03-24 Robert Bosch GmbH Welding transformer, method for producing a module for a welding transformer and method for producing a welding transformer
TWI745183B (en) * 2019-12-03 2021-11-01 日商向洋技研股份有限公司 Welding transformer

Similar Documents

Publication Publication Date Title
JP4687930B2 (en) Welding transformer
US9224530B2 (en) Power supply apparatus
JP5220931B1 (en) Welding transformer, welding transformer assembly and welding equipment
EP2230675B1 (en) Coil component, transformer and switching power supply unit
US20090237195A1 (en) Center-tapped transformer
JP2012174699A (en) Welding transformer
JP4845199B2 (en) Trance
TW201118898A (en) Transformer
US20150302968A1 (en) Magnetic element with multiple air gaps
CN113012894B (en) Integrated transformer and power converter
US20180350514A1 (en) Insulation type step-down coverter
JP2012216761A (en) Transformer
US9941044B2 (en) Insulation type step-down converter
JP2006286880A (en) Transformer
WO2011102204A1 (en) Welding transformer
TWI747508B (en) Planar winding transformer
JP4284656B2 (en) Transformer structure
JP2004515906A (en) High frequency transformer with integrated rectifier
JP4838842B2 (en) Transformer having laminated winding structure
US20220093315A1 (en) Transformer
JP6542499B1 (en) Welding transformer
TWI437584B (en) Assembly structure of transformer and inductor and forming method thereof
US11177066B2 (en) Egg-shaped continuous coils for inductive components
CN101409141B (en) Rectifier transformer and use method thereof
CN201233799Y (en) Rectifying transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744493

Country of ref document: EP

Kind code of ref document: A1