JP2013171056A - Optical sheet, surface light source device and liquid crystal display device - Google Patents

Optical sheet, surface light source device and liquid crystal display device Download PDF

Info

Publication number
JP2013171056A
JP2013171056A JP2012032752A JP2012032752A JP2013171056A JP 2013171056 A JP2013171056 A JP 2013171056A JP 2012032752 A JP2012032752 A JP 2012032752A JP 2012032752 A JP2012032752 A JP 2012032752A JP 2013171056 A JP2013171056 A JP 2013171056A
Authority
JP
Japan
Prior art keywords
hardness
optical sheet
coating film
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012032752A
Other languages
Japanese (ja)
Inventor
Hiroshi Kojima
弘 小島
Yoko Kitada
陽子 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012032752A priority Critical patent/JP2013171056A/en
Publication of JP2013171056A publication Critical patent/JP2013171056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical sheet excellent in scratch resistance, in which even when a rugged coating film surface forming a rough surface on an opposite side of an optical element surface such as a prism of the optical sheet comes into contact with another surface, the contact surface is prevented from damages, and to provide a surface light source device and a liquid crystal display device using the optical sheet.SOLUTION: An optical sheet 10 includes unit optical elements 2 arranged on one surface 1p of a body part 1 and a rugged coating film 3 forming a rough surface with minute projections 4 including urethane resin beads as fine particles 5 on the other surface 1q. A hardness scale He of the optical element surface Pe and a hardness scale Hm of the rugged coating surface Pm are controlled to satisfy (hardness scale Hm)≥(hardness scale He), in terms of pencil hardness scales specified by JISK5600-5-4 (1999) (under the conditions of 1000 g load and 1 mm/s speed). In a surface light source device 30, a hardness scale Hp of a smooth light-exiting surface Pp of a light guide plate 32, which is to be in contact with the optical sheet, is controlled to satisfy (hardness scale Hp+2)≥(hardness scale Hm)≥(hardness scale Hp+1), wherein +1 represents a higher hardness scale by single unit in terms of the pencil hardness scale. The surface light source device is used for a liquid crystal display device.

Description

本発明は、光の進行方向を変化させる光学シートと、それを用いた面光源装置、該面光源装置を用いた液晶表示装置に関する。
特に、柱状プリズム等による光学要素面の反対側を凹凸塗膜による粗面とした光学シートが、他の面に接触しても、接触面が傷付き難い耐擦傷性に優れる光学シートに関する。また、それを用いた面光源装置、及び該面光源装置を用いた液晶表示装置に関する。
The present invention relates to an optical sheet that changes the traveling direction of light, a surface light source device using the same, and a liquid crystal display device using the surface light source device.
In particular, the present invention relates to an optical sheet excellent in scratch resistance, in which even if an optical sheet having a rough surface formed by a concavo-convex coating film on the opposite side of the optical element surface such as a columnar prism contacts the other surface, the contact surface is hardly damaged. The present invention also relates to a surface light source device using the same and a liquid crystal display device using the surface light source device.

透過型液晶表示装置に於いて、背面光源の出光面上に配置してその出射光を集光し輝度を向上させる光学シートが知られている。
例えば、特許文献1では、単位光学要素として三角柱単位プリズム等を配列したプリズム面の反対側の裏面を、高さが光源光の波長以上、100μm以下の空隙形成用の微小な突起を多数有する粗面にした光学シートが開示されている。裏面を単なる平滑面とせずに、この様な粗面とすることで、光学シート裏面に導光板を隣接して配置したときに、導光板との光学密着を防止し、該光学密着による輝度の面内不均一化、干渉縞等を効果的に防げる様になる。
In a transmissive liquid crystal display device, there is known an optical sheet that is arranged on a light exit surface of a back light source and collects the emitted light to improve luminance.
For example, in Patent Document 1, the back surface on the opposite side of the prism surface on which triangular prism unit prisms and the like are arranged as unit optical elements has a large number of minute projections for forming gaps whose height is not less than the wavelength of the light source light and not more than 100 μm. A faced optical sheet is disclosed. By making such a rough surface instead of a simple back surface, when the light guide plate is disposed adjacent to the back surface of the optical sheet, optical contact with the light guide plate is prevented, and brightness due to the optical contact is reduced. In-plane non-uniformity and interference fringes can be effectively prevented.

また、この様な微小突起を表面に多数有する粗面は、熱エンボス法、紫外線又は電子線硬化性樹脂液と成形型を用いた成形法(2P法:フォトポリマー法)、微粒子を樹脂液中に含有させた塗料の塗膜表面に微粒子による凹凸を現出させて粗面とする塗膜法などで形成できる。なかでも、塗膜法は、樹脂に熱可塑性樹脂や熱硬化性樹脂も使用でき、微粒子も樹脂ビーズ等を使用でき、他の方法に比べて、簡便且つ安価に形成できる利点がある。   In addition, a rough surface having many such fine protrusions on the surface can be obtained by a hot embossing method, a molding method using an ultraviolet ray or electron beam curable resin solution and a molding die (2P method: photopolymer method), and fine particles in a resin solution. It can be formed by a coating method or the like in which irregularities due to fine particles appear on the surface of the coating film of the paint contained in the coating to make it rough. Among them, the coating film method has an advantage that a thermoplastic resin or a thermosetting resin can be used for the resin, and fine particles can use resin beads or the like, which can be easily and inexpensively formed as compared with other methods.

ただ、粗面によって光学密着は防げるが、該粗面の微小突起や、或いは塗膜内部から脱落した微粒子等によって、光学シートの裏面、及び、光学シートの裏面側に隣接して配置した他の光学部材の表面が、傷付くことがあった。
それは、光学シートが、導光板等の他の光学部材に隣接して重ね合わされる構成の面光源装置、或いは該面光源装置を用いた液晶表示装置などの光学装置に、アセンブリされた後の状態で、半製品或いは製品などとして保管、搬送されるときに振動が加わることがあり、この振動の影響で、接触面に傷付きが発生するのである。
However, although the optical adhesion can be prevented by the rough surface, the other side surface of the optical sheet and the other side of the optical sheet are arranged adjacent to the back surface of the optical sheet by the fine protrusions of the rough surface or fine particles dropped from the inside of the coating film. The surface of the optical member may be damaged.
It is a state after the optical sheet is assembled in an optical device such as a surface light source device configured to be superposed adjacent to another optical member such as a light guide plate, or a liquid crystal display device using the surface light source device. Thus, vibration may be applied when stored and transported as a semi-finished product or a product, and the contact surface is damaged due to the influence of the vibration.

そこで、特許文献2では、この様な隣接配置される他の光学部材の傷付を防止する為に、塗膜中に含有させる微粒子として粒子径分布の半値幅が1μm以下の単分散の球状ビーズを用いる技術を提案している。   Therefore, in Patent Document 2, monodisperse spherical beads having a half-value width of 1 μm or less as a fine particle to be contained in the coating film in order to prevent such other adjacently disposed optical members from being damaged. We are proposing a technology that uses.

ところで、面光源装置は、従来、光源側から導光板、拡散シート、そして光学シートを2枚配置する構成が一般的であった。このため、光学シートが接触する他の光学部材は拡散シートとなり、この拡散シートとの接触が重要視されてきた。また、光学シートは2枚重ねされるのが一般的であったことから、光学シートの入光面側とした粗面は、もう一枚の光学シートの出光面側のプリズムと接触状態となっていた。
しかし、最近は、導光板の性能が向上し、拡散シートが担う面内輝度分布の均一化を、導光板自身で担えるようになり、さらに、コスト削減のために拡散シートを持たない面光源装置に移行する動きがある。このため、光学シートが接触する他の光学部材としては、導光板を重要視する傾向があり、光学シートに起因する傷付きは、光学シートと導光板との接触状態での傷付きが問題視されることが多くなった。
By the way, conventionally, the surface light source device generally has a configuration in which two light guide plates, a diffusion sheet, and an optical sheet are arranged from the light source side. For this reason, the other optical member which an optical sheet contacts becomes a diffusion sheet, and contact with this diffusion sheet has been regarded as important. Further, since two optical sheets are generally stacked, the rough surface on the light incident surface side of the optical sheet is in contact with the prism on the light output surface side of the other optical sheet. It was.
Recently, however, the performance of the light guide plate has been improved, and the in-plane luminance distribution of the diffusion sheet can be made uniform by the light guide plate itself. Further, a surface light source device that does not have a diffusion sheet for cost reduction There is a move to move to. For this reason, as another optical member in contact with the optical sheet, there is a tendency to place importance on the light guide plate, and damage due to the optical sheet is regarded as a problem in the contact state between the optical sheet and the light guide plate. There has been much to be done.

一方、光学シートのプリズム等の単位光学要素の方は、比較的広い面積で外力を受けることが出来、又微粒子等の脱落し易い物を含まない為、特許文献3に記載のような柔軟で復元性を有する樹脂で構成することによって、外力による傷付きを防止する設計も可能である。   On the other hand, the unit optical element such as the prism of the optical sheet can receive an external force in a relatively large area and does not include an object that easily falls off, such as fine particles. It is possible to design to prevent damage due to external force by using a resin having resilience.

特許第3518554号公報Japanese Patent No. 3518554 特許第3913870号公報Japanese Patent No. 3913870 特開2009−37204号公報JP 2009-37204 A

しかしながら、他の光学部材に対する傷付きが、特許文献2で提案された様な単分散の微粒子を用いて改善されたとしても、光学シートの凹凸塗膜面に起因する傷付きは、比較的狭い面積に応力が集中することに加えて、脱落し易い微粒子も含有する為、塗膜に復元性を付与しても傷付き防止は、依然困難であり、その改善が望まれていた。   However, even if the scratches on other optical members are improved by using monodisperse fine particles as proposed in Patent Document 2, the scratches due to the uneven coating surface of the optical sheet are relatively narrow. In addition to the concentration of stress on the area, it also contains fine particles that easily fall off, so that it is still difficult to prevent scratches even if the coating film is provided with restorability, and improvements have been desired.

すなわち、本発明の課題は、プリズム等による光学要素面の反対側を光学密着防止の為に凹凸塗膜で粗面とした構成の光学シートについて、使用前にロール等で保管や運搬時に光学シート同士で表裏が接触しても、或いは、光学シートが面光源装置などに組み込まれる等して、光学シートが凹凸塗膜面で他の面と接触しても、接触面が傷付き難い耐擦傷性に優れる光学シート提供することである。
また、この様な光学シートを用いることで、該光学シート及び導光板が傷付き難い、面光源装置と液晶表示装置を提供することである。
That is, an object of the present invention is to provide an optical sheet having a rough surface with a concavo-convex coating film to prevent optical adhesion on the opposite side of the optical element surface by a prism or the like. Even if the front and back are in contact with each other, or the optical sheet is incorporated into a surface light source device or the like, even if the optical sheet comes into contact with another surface on the uneven coating surface, the contact surface is hardly scratched. It is to provide an optical sheet having excellent properties.
Another object of the present invention is to provide a surface light source device and a liquid crystal display device by using such an optical sheet so that the optical sheet and the light guide plate are hardly damaged.

本発明は、次の構成の光学シート、面光源装置、及び液晶表示装置とした。
(1)シート状の本体部の一方の面に単位光学要素を配列してなり、該本体部の他方の面に、微小突起によって表面が粗面を呈する凹凸塗膜を有する光学シートであって、
前記微小突起は微粒子としてウレタン樹脂ビーズを含み、
前記配列された単位光学要素で形成される光学要素面の硬度Heと、前記凹凸塗膜の粗面を成す凹凸塗膜面の硬度Hmとについて、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)した鉛筆硬度で、硬度Hmが硬度He以上(硬度Hm≧硬度He)である、光学シート。
(2)上記硬度He及び硬度Hmの関係が、更に、鉛筆硬度スケール上で1単位硬い硬度を+1としたときに、硬度He+2≧硬度Hm≧硬度He+1である、上記(1)の光学シート。
The present invention provides an optical sheet, a surface light source device, and a liquid crystal display device having the following configurations.
(1) An optical sheet having a concavo-convex coating film in which unit optical elements are arranged on one surface of a sheet-like main body, and the other surface of the main body has a rough surface due to minute protrusions. ,
The microprojections include urethane resin beads as fine particles,
About the hardness He of the optical element surface formed by the arrayed unit optical elements, and the hardness Hm of the concavo-convex coating film surface forming the rough surface of the concavo-convex coating film,
An optical sheet having a pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s) and having a hardness Hm equal to or higher than hardness He (hardness Hm ≧ hardness He).
(2) The optical sheet according to (1), wherein the relationship between the hardness He and the hardness Hm is such that the hardness He + 2 ≧ hardness Hm ≧ hardness He + 1, where 1 unit hardness on the pencil hardness scale is +1.

(3)光源と、該光源からの光を入光し平滑な出光面から出光する導光板と、該導光板の出光面に対向して配置される光学シートと、を少なくとも備えた、面光源装置であって、
前記光学シートは、シート状の本体部の一方の面に単位光学要素を配列してなり、該本体部の他方の面に、微小突起によって表面が粗面を呈する凹凸塗膜を有し、
前記微小突起は微粒子としてウレタン樹脂ビーズを含み、
前記導光板の出光面の硬度Hpと、前記凹凸塗膜の粗面を成す凹凸塗膜面の硬度Hmとについて、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)した鉛筆硬度で、
硬度Hp及び硬度Hmの関係が、鉛筆硬度スケール上で1単位硬い硬度を+1としたときに、硬度Hp+2≧硬度Hm≧硬度Hp+1であり、
前記凹凸塗膜面を前記導光板の出光面に対向して配置されている、
面光源装置。
(4)上記(3)の面光源装置と、該面光源装置の出光面上に載置した透過型液晶表示パネルとを、少なくとも備えた液晶表示装置。
(3) A surface light source comprising at least a light source, a light guide plate that receives light from the light source and emits light from a smooth light exit surface, and an optical sheet disposed to face the light exit surface of the light guide plate A device,
The optical sheet is formed by arranging unit optical elements on one surface of a sheet-like main body, and has a concavo-convex coating whose surface is roughened by microprotrusions on the other surface of the main body.
The microprojections include urethane resin beads as fine particles,
About the hardness Hp of the light exit surface of the light guide plate and the hardness Hm of the concavo-convex coating film surface forming the rough surface of the concavo-convex coating film,
With pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s),
When the relationship between the hardness Hp and the hardness Hm is +1 when the hardness of one unit on the pencil hardness scale is +1, the hardness Hp + 2 ≧ the hardness Hm ≧ the hardness Hp + 1,
The uneven coating film surface is disposed to face the light exit surface of the light guide plate,
Surface light source device.
(4) A liquid crystal display device comprising at least the surface light source device of the above (3) and a transmissive liquid crystal display panel placed on the light output surface of the surface light source device.

(1)本発明による光学シートによれば、光学密着防止の為に設けた凹凸塗膜が他の面に接触しても、接触面が傷付き難くなる耐擦傷性が得られ、ひいては品質低下を防げる。
(2)また、本発明による面光源装置及び液晶表示装置によれば、それが備える光学シートの耐擦傷性が向上しているので、装置が、保管や運搬等で振動を受けても組み込まれた光学シートの凹凸塗膜面及びこの凹凸塗膜面と接触する導光板面の傷付きを防げ、品質低下を防げる。
(1) According to the optical sheet of the present invention, even if the uneven coating film provided for preventing optical adhesion comes into contact with other surfaces, scratch resistance is obtained that makes the contact surface difficult to be damaged, and consequently the quality deteriorates. Can be prevented.
(2) Further, according to the surface light source device and the liquid crystal display device according to the present invention, the scratch resistance of the optical sheet included in the device is improved, so that the device is incorporated even when subjected to vibration during storage or transportation. In addition, the uneven surface of the optical sheet and the light guide plate surface in contact with the uneven surface of the optical sheet can be prevented from being scratched, and quality deterioration can be prevented.

本発明による光学シート及び面光源装置の一実施形態を説明する斜視図(a)と、微粒子を含む微小突起を説明する部分拡大断面図(b)。The perspective view (a) explaining one Embodiment of the optical sheet and surface light source device by this invention, and the partial expanded sectional view (b) explaining the microprotrusion containing microparticles | fine-particles. 本発明による面光源装置の一実施形態(エッジライト型バックライト)と、本発明による液晶表示装置の一実施形態を説明する断面図。Sectional drawing explaining one Embodiment (edge light type backlight) of the surface light source device by this invention, and one Embodiment of the liquid crystal display device by this invention. 微粒子の柔軟性を測定評価する方法を示す断面図。Sectional drawing which shows the method of measuring and evaluating the softness | flexibility of microparticles | fine-particles. 本発明による面光源装置での光学シートと導光板の接触面の鉛筆硬度と耐擦傷性の関係を示すグラフ。The graph which shows the pencil hardness of the contact surface of the optical sheet and light-guide plate in the surface light source device by this invention, and the relationship of scratch resistance. 従来の面光源装置での光学シートと導光板の接触面の鉛筆硬度と耐擦傷性の関係を示すグラフ。The graph which shows the relationship between the pencil hardness of the contact surface of the optical sheet and light-guide plate in a conventional surface light source device, and scratch resistance. 本発明による光学シートの凹凸塗膜面と光学要素面の鉛筆硬度と耐擦傷性の関係を示すグラフ。The graph which shows the pencil hardness of the uneven | corrugated coating film surface of the optical sheet by this invention, and the optical element surface, and the relationship of scratch resistance.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、図面は概念図であり、構成要素の縮尺関係、縦横比等は誇張されていることがある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are conceptual diagrams, and the scale relationships, aspect ratios, and the like of components may be exaggerated.

〔A〕概要:
先ず、本発明による光学シート及び本発明による面光源装置の一実施形態を、図1(a)の斜視図で示す。同図に示す光学シート10は、シート状の本体部1の一方の面1p(図面では図面上方の面)に、単位光学要素2として断面三角形の単位柱状プリズムをその稜線方向を互い平行に多数配列してなるプリズム群を有し、該本体部1の他方の面1qに、表面が粗面をなす凹凸塗膜3を有する。この凹凸塗膜3は、図1(b)に示す部分拡大断面図のように、表面に多数の微小突起4を有し、この微小突起4は、その内部に微粒子5としてウレタン樹脂ビーズを含んでいる。
[A] Overview:
First, an embodiment of an optical sheet according to the present invention and a surface light source device according to the present invention is shown in the perspective view of FIG. The optical sheet 10 shown in the figure has a large number of unit columnar prisms having a triangular cross section as unit optical elements 2 on one surface 1p of the sheet-like main body 1 (the upper surface in the drawing) parallel to each other in the ridgeline direction. The other surface 1q of the main body portion 1 has a concavo-convex coating film 3 having a rough surface. As shown in the partial enlarged cross-sectional view shown in FIG. 1B, the uneven coating film 3 has a large number of microprojections 4 on the surface, and the microprojections 4 include urethane resin beads as fine particles 5 therein. It is out.

この凹凸塗膜3は、バインダ樹脂中に微粒子5としてウレタン樹脂ビーズを含有する塗料で塗工形成され、ウレタン樹脂ビーズからなる微粒子5の存在によって表面に微小突起4が形成されることで表面を粗面にしたものである。そして、この光学シート10は、単位光学要素2を有する側の表面が光学要素面Peとなり、凹凸塗膜3を有する側の表面が凹凸塗膜面Pmとなっている。   The concavo-convex coating film 3 is formed by coating with a paint containing urethane resin beads as fine particles 5 in a binder resin, and the surface is formed by forming microprojections 4 on the surface due to the presence of the fine particles 5 made of urethane resin beads. It is a rough surface. In the optical sheet 10, the surface having the unit optical element 2 is the optical element surface Pe, and the surface having the uneven coating film 3 is the uneven coating surface Pm.

なお、図1(a)では、直交座標系のXYZの各軸を夫々、X軸は単位光学要素2(本実施形態では単位柱状プリズム)の配列方向に平行にとり、Y軸を単位光学要素2(単位柱状プリズム)の稜線方向に平行にとり、Z軸を本体部1の厚み方向及び凹凸塗膜3の厚み方向に平行にとってある。   In FIG. 1A, the X, Y, and Z axes of the orthogonal coordinate system are parallel to the arrangement direction of the unit optical elements 2 (unit columnar prisms in the present embodiment), and the Y axis is the unit optical element 2. The Z-axis is parallel to the thickness direction of the main body 1 and the thickness direction of the uneven coating film 3 in parallel to the ridge line direction of the (unit columnar prism).

そして、配列された単位光学要素2で形成される光学要素面Peの硬度Heと、凹凸塗膜3によって形成され粗面の凹凸塗膜Pmの硬度Hmとについて、JIS K5600−5−4(1999年)に準拠して荷重1000g、速度1mm/sの条件で測定した鉛筆硬度で、硬度Hm≧硬度He、つまり硬度Hmが硬度He以上としてある。   And about the hardness He of the optical element surface Pe formed of the unit optical element 2 arranged, and the hardness Hm of the rough concavo-convex coating film Pm formed by the concavo-convex coating film 3, JIS K5600-5-4 (1999). The pencil hardness measured under the conditions of a load of 1000 g and a speed of 1 mm / s in accordance with (year), hardness Hm ≧ hardness He, that is, hardness Hm is equal to or higher than hardness He.

更に詳しくは、本実施形態においては、硬度He+2≧硬度Hm≧硬度He+1、を満たす関係となっている。
凹凸塗膜面Pmが硬すぎることによって光学要素面Peが傷付くのを防げ、凹凸塗膜面Pmが軟らかすぎることによって凹凸塗膜面Pmが傷付くのを防げるからである。
More specifically, in the present embodiment, the relationship satisfies the hardness He + 2 ≧ hardness Hm ≧ hardness He + 1.
This is because the optical element surface Pe can be prevented from being damaged when the uneven coating surface Pm is too hard, and the uneven coating surface Pm can be prevented from being damaged when the uneven coating surface Pm is too soft.

上記、硬度の関係を鑑み、光学シート10自身の基本性能として、光学シート10を面光源装置30に組み込む前段階で、光学シート10がロールに巻き取られたり、枚葉シート状態で積み重ねられたりして、光学シート10の表裏面が接触状態で、保管、搬送されるときの振動によって、光学シート10自身が傷付くのを防ぐことができる。   In view of the above-described hardness relationship, as a basic performance of the optical sheet 10 itself, the optical sheet 10 is wound around a roll or stacked in a single sheet state before the optical sheet 10 is incorporated into the surface light source device 30. Thus, the optical sheet 10 itself can be prevented from being damaged by vibration when the front and back surfaces of the optical sheet 10 are in contact with each other and stored and transported.

一方、図1(a)に示す面光源装置30は、光源31と、光源31からの光を入光し平滑な出光面Ppから出光する導光板32と、この導光板32の出光面Ppに対向して配置される上記光学シート10と備えている。光学シート10は、その凹凸塗膜面Pmを導光板32の出光面Ppに対向した配置されている。凹凸塗膜面Pmと出光面Ppとは、具体的には、光学密着は防がれているが、凹凸塗膜3の微小突起4が導光板32の出光面Ppと接触状態になっている。   On the other hand, the surface light source device 30 shown in FIG. 1A includes a light source 31, a light guide plate 32 that receives light from the light source 31 and emits light from a smooth light exit surface Pp, and a light exit surface Pp of the light guide plate 32. The optical sheet 10 is disposed so as to face each other. The optical sheet 10 is disposed such that the uneven coating film surface Pm faces the light output surface Pp of the light guide plate 32. Specifically, the optical contact between the uneven coating surface Pm and the light exit surface Pp is prevented, but the minute protrusions 4 of the uneven coating surface 3 are in contact with the light output surface Pp of the light guide plate 32. .

そして、導光板32の出光面Ppの硬度Hpと、光学シート10の入光面である凹凸塗膜面Pmの硬度Hmとは、硬度Hp+2≧硬度Hm≧硬度Hp+1、を満たす関係となっている。
上記硬度関係とすることで、導光板32の出光面Ppと、光学シート10の凹凸塗膜面Pmとの光学密着が防止される上、これらの両方の面が接触状態で、面光源装置が保管、搬送されるときの振動によって、傷付くのを防ぐことができる。
The hardness Hp of the light exit surface Pp of the light guide plate 32 and the hardness Hm of the uneven coating film surface Pm that is the light incident surface of the optical sheet 10 have a relationship satisfying the relationship of hardness Hp + 2 ≧ hardness Hm ≧ hardness Hp + 1. .
By having the above hardness relationship, optical contact between the light exit surface Pp of the light guide plate 32 and the uneven coating film surface Pm of the optical sheet 10 is prevented, and both of these surfaces are in contact with each other, and the surface light source device is It can be prevented from being damaged by vibration during storage and transportation.

〔B〕用語の定義:
次に、本発明において用いる主要な用語について、その定義をここで説明しておく。
[B] Definition of terms:
Next, definitions of major terms used in the present invention will be explained here.

「一方の面1p」は、本体部1の単位光学要素2が配列される側の面である。また、光学シート10の「一方の面1p」の側を「光学要素側」と呼ぶ。「一方の面1p」は、単位光学要素2が隙間なく埋め尽くして配列し光学要素群を構成するときは、最外面乃至界面となる面としては実在しない仮想的な面となる。また、「一方の面1p」は、単位光学要素2が隙間を空けて配列し光学要素群を構成するときは、該光学要素群は該隙間を有し該隙間は一方の面1pが部分的に露出した実在の面となる。
「光学要素面Pe」は、一方の面1pに単位光学要素2が隙間なく配列され一方の面1pが埋め尽くされるときは、配列された単位光学要素2のみの面となる。また、一方の面1pに単位光学要素2が隙間を空けて配列されるときは、配列された単位光学要素2との面に加えて更に該隙間に於ける一方の面1pを含む面となる。
「光学要素側」を「出光側」とする向きで光学シート10を使用する場合は、「光学要素側」は光学シート10を画像表示パネルに適用した時に画像表示パネルが表示する画像を観察する「観察者側」となる。
「主切断面」とは、単位光学要素2が単位柱状プリズムなど柱状形状である場合において、本体部1の「一方の面1p」に立てた法線nd(図1(a)参照)に平行な断面のうち、単位光学要素2の配列方向にも平行な断面のことを言う。言い換えると、該法線ndに平行で且つ単位光学要素2(単位柱状プリズム)の稜線に直交する断面である。尚、図1(a)に於いては、Z軸が該法線ndと平行方向となっている。
「平滑」とは、光学的な意味合いでの平滑を意味する。すなわち、或る程度の割合の可視光が、光学シート10を構成する面においてスネルの法則を満たしながら屈折するようになる程度を意味している。したがって、例えば、本体部1の他方の面1qの十点平均粗さRz(JISB0601:1994年版)が最短の可視光波長(0.38μm)未満となっていれば、十分、平滑に該当する。
「粗面」とは、上記「平滑」の条件を満たさない凹凸面を意味する。即ち、或る表面の十点平均粗さRz値が0.38μm以上であれば、一応粗面と言える。但し、光学密着防止効果、光拡散効果等の粗面の光学的効果を可視光波長の全帯域に亙って十分に奏する為には、表面の十点平均粗さRz値が、最長の可視光0.78μmを超過することが好ましい。通常は、粗面の表面の十点平均粗さRz値は1〜10μm程度とする。
形状や幾何学的条件を特定する用語、例えば、「三角形」、「円形」、「楕円形」、「平行」、「直交」、「折れ線」等の用語は、厳密な意味に縛られることなく、製造技術における限界や成型時の誤差も含めて、同様の光学的機能を期待し得る程度の誤差、許容範囲、乃至は均等範囲を含めて解釈される用語である。
“One surface 1p” is a surface on the side where the unit optical elements 2 of the main body 1 are arranged. Further, the “one surface 1p” side of the optical sheet 10 is referred to as an “optical element side”. The “one surface 1p” is a virtual surface that does not actually exist as the outermost surface or the interface when the unit optical elements 2 are filled and arranged without gaps to form an optical element group. In addition, “one surface 1p” means that when the unit optical elements 2 are arranged with a gap therebetween to form an optical element group, the optical element group has the gap and the one surface 1p is partially formed by the gap. It becomes a real surface exposed to.
The “optical element surface Pe” is a surface of only the arranged unit optical elements 2 when the unit optical elements 2 are arranged without gaps on one surface 1p and the one surface 1p is completely filled. Further, when the unit optical elements 2 are arranged with a gap on one surface 1p, in addition to the surface with the arranged unit optical elements 2, the surface further includes one surface 1p in the gap. .
When the optical sheet 10 is used with the “optical element side” as the “light emission side”, the “optical element side” observes an image displayed on the image display panel when the optical sheet 10 is applied to the image display panel. “Observer side”.
The “main cut surface” is parallel to the normal nd (see FIG. 1A) standing on the “one surface 1p” of the main body 1 when the unit optical element 2 has a columnar shape such as a unit columnar prism. This means a cross section parallel to the arrangement direction of the unit optical elements 2. In other words, the cross section is parallel to the normal line nd and orthogonal to the ridge line of the unit optical element 2 (unit columnar prism). In FIG. 1A, the Z axis is parallel to the normal nd.
“Smooth” means smooth in an optical sense. That is, it means the degree to which a certain percentage of visible light is refracted while satisfying Snell's law on the surface constituting the optical sheet 10. Therefore, for example, if the ten-point average roughness Rz (JISB0601: 1994 version) of the other surface 1q of the main body 1 is less than the shortest visible light wavelength (0.38 μm), it is sufficiently smooth.
The “rough surface” means an uneven surface that does not satisfy the “smooth” condition. That is, if the 10-point average roughness Rz value of a certain surface is 0.38 μm or more, it can be said to be a rough surface. However, in order to sufficiently achieve the optical effects of the rough surface such as the optical adhesion prevention effect and the light diffusion effect over the entire visible light wavelength band, the surface 10-point average roughness Rz value is the longest visible. It is preferable that the light exceeds 0.78 μm. Usually, the ten-point average roughness Rz value of the surface of the rough surface is about 1 to 10 μm.
Terms that specify shape and geometric conditions, such as “triangle”, “circular”, “elliptical”, “parallel”, “orthogonal”, “polyline”, etc., are not bound to a strict meaning. These terms are interpreted to include errors, tolerances, or equivalent ranges to the extent that similar optical functions can be expected, including limitations in manufacturing technology and errors during molding.

〔C〕光学シート:
以下、光学シートから、各構成要素について更に説明する。
[C] Optical sheet:
Hereinafter, each component is further demonstrated from an optical sheet.

〔本体部〕
本体部1としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂等の透明樹脂材料、或いはガラス、セラミックス等の透明無機材料を用いることができる。
本体部1は「シート状」であるが、ここで「シート」とは、「フィルム」、「板」の概念も含むものであり、これらの用語は、呼称の違いのみに基づいて、互いから区別されるものではない。つまり、厚みや剛性によって区別されるものではない。例えば、本体部1の厚さは、25μm〜5mm等である。
但し、生産性に優れる点では、光学シートはロールに巻き取れる可撓性を有することが好ましく、この点では、剛直な所謂板乃至は基板と呼ばれるものではない方が好ましい。この点を考慮すると、本体部1の厚さは、25μ〜500μm程度が好ましい。
なお、本体部1の他方の面1qは、凹凸塗膜3が形成される面であり、通常は平滑面である。しかし、凹凸塗膜形成面としての他方の面1qは平滑面でなくても良い。
また、本体部1の一方の面1p及び他方の面1qは、共に通常は平面であり、本体部1は板のときは平板状となる。
[Main body]
As the main body 1, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate, a transparent resin material such as an acrylic resin, a polycarbonate resin, or a polyolefin resin, or a transparent inorganic material such as glass or ceramics can be used.
The main body 1 is “sheet-like”, and “sheet” here also includes the concept of “film” and “plate”, and these terms are different from each other based only on the difference in designation. It is not distinguished. That is, they are not distinguished by thickness or rigidity. For example, the thickness of the main body 1 is 25 μm to 5 mm or the like.
However, in terms of excellent productivity, the optical sheet is preferably flexible enough to be wound on a roll. In this respect, it is preferable that the optical sheet is not called a rigid so-called plate or substrate. Considering this point, the thickness of the main body 1 is preferably about 25 μm to 500 μm.
In addition, the other surface 1q of the main body 1 is a surface on which the uneven coating film 3 is formed, and is usually a smooth surface. However, the other surface 1q as the uneven coating film forming surface may not be a smooth surface.
Moreover, both the 1st surface 1p and the other surface 1q of the main-body part 1 are normally planes, and when the main-body part 1 is a plate, it will become flat form.

(本体部と単位光学要素の形成)
なお、本体部1及び単位光学要素2からなる光学シート10の部分は、従来公知の方法及び透明材料より形成することができる。例えば、単位光学要素2が配列されて形成される光学要素群と本体部1とを、溶融押出法、射出成形法、熱プレスによるエンボス法等の成形法で同一材料で一体的に成形して形成することができる。或いは、予め成膜乃至は成形した本体部1に対して、樹脂液を接触させ且つ該樹脂液を成形型と前記本体部1とで挟んだ状態で、硬化反応等の化学反応或いは冷却によって固化させて、表面にプリズム形状など光学要素群を賦形する成形法によって、異なる層として形成することもできる。なお、樹脂液に紫外線や電子線等の電離放射線で硬化する電離放射線硬化性樹脂を使用して電離放射線で硬化させる場合は、所謂2P法(フォトポリマー法)と呼ばれている。このとき、本体部1として樹脂シート等の透明基材を用いると、透明基材上に樹脂層からなる光学要素群が形成される。つまり、隣接する光学要素2同士の間に谷部でも僅かな厚みの樹脂層が形成される。この様なときは、本体部1は、該谷部の樹脂層の厚みに該当する、谷部及び谷部以外の部分での樹脂層と、透明基材とから構成され、透明基材上に形成した樹脂層の厚みの一部を含むことになる。
(Formation of main body and unit optical element)
In addition, the part of the optical sheet 10 which consists of the main-body part 1 and the unit optical element 2 can be formed from a conventionally well-known method and a transparent material. For example, an optical element group formed by arranging unit optical elements 2 and the main body 1 are integrally molded with the same material by a molding method such as a melt extrusion method, an injection molding method, or an embossing method by hot pressing. Can be formed. Alternatively, the resin body is brought into contact with the previously formed or molded main body 1 and the resin liquid is sandwiched between the mold and the main body 1 and solidified by a chemical reaction such as a curing reaction or cooling. Thus, different layers can be formed by a molding method in which an optical element group such as a prism shape is formed on the surface. When the resin liquid is cured with ionizing radiation using an ionizing radiation curable resin that is cured with ionizing radiation such as ultraviolet rays or electron beams, it is called a so-called 2P method (photopolymer method). At this time, when a transparent substrate such as a resin sheet is used as the main body 1, an optical element group including a resin layer is formed on the transparent substrate. That is, a resin layer having a slight thickness is formed between the adjacent optical elements 2 even at the valleys. In such a case, the main body 1 is composed of a resin layer in a portion other than the valley and the valley corresponding to the thickness of the resin layer in the valley, and a transparent substrate, A part of the thickness of the formed resin layer is included.

〔単位光学要素〕
単位光学要素2は、代表的には単位柱状プリズムであるが、この他、マイクロレンズ(マイクロレンズが多数が配列したものが、フライアイレンズ或いは蝿の目レンズなどと呼ばれている)など、従来公知の各種単位光学要素を適宜採用することができる。
以下、ここでは単位柱状プリズムについて、更に説明する。
(Unit optical element)
The unit optical element 2 is typically a unit columnar prism, but besides this, a microlens (a microlens in which a large number of microlenses are arranged is called a fly-eye lens or an eyelet lens). Various conventionally known unit optical elements can be appropriately employed.
Hereinafter, the unit columnar prism will be further described.

(単位柱状プリズム)
単位柱状プリズムは、代表的には主切断面の形状が、本体部1側を底辺とする三角形形状の単位プリズムである。この様な、単位柱状プリズムとしては、従来公知の各種プリズムを適宜採用することができる。また、主切断面形状は、三角形、四角形、五角形、六角形等の様な直線のみからなる形状の他、一部に曲線がある形状、曲線のみからなる形状(例えば、円、楕円、抛物線、双曲線、正弦曲線等の曲線の一部)も含み得る。
なお、主切断面形状が円、楕円等の曲線一部の場合は、単位柱状レンズと呼ぶこともでき、本発明に於ける単位柱状プリズムには単位柱状レンズも含み得る。
(Unit columnar prism)
The unit columnar prism is typically a unit prism having a triangular shape with a main cut surface having a base on the main body 1 side. As such unit columnar prisms, various conventionally known prisms can be appropriately employed. The main cutting plane shape is not only a straight line shape such as a triangle, quadrangle, pentagon, hexagon, etc., but also a shape with a curve in part, a shape only with a curve (for example, a circle, an ellipse, a fence line, A part of a curve such as a hyperbola or a sine curve may also be included.
When the main cut surface is a part of a curve such as a circle or an ellipse, it can also be called a unit columnar lens, and the unit columnar prism in the present invention may include a unit columnar lens.

また、単位柱状プリズムは、配列された各単位柱状プリズムが全て同一形状、同一寸法以外に、形状及び寸法のうち1以上が異なるものでも良く、更に不規則に異なっているものでも良い。また、単位柱状プリズムの配列は、全て同一配列周期での規則的配列以外に、配列周期が異なるものでも良く、更に不規則に異なっているものでも良い。
また、単位柱状プリズムとして、特許第3119471号公報、特表2002−504698号公報等に記載の稜線の高さが折れ線状に変化し一定でない形状は、プリズム面側での光滲潤や干渉縞等の光学密着に起因する諸問題を防げる点で、好ましい形状の一種である。なお、稜線の高さを折れ線状に変化させた単位柱状プリズムを配列したプリズム群を製造するには、例えば、従来からこの種のプリズム群の製造に利用されているシリンダ状(円筒状)成形型を、切削バイトで作製するときに、切削バイトの切削深さを折れ線状に変化させつつ切削していくことで、容易に製造できる。
In addition, the unit columnar prisms may be arranged such that each of the unit columnar prisms arranged is different in shape or size in addition to the same shape and size, or may be irregularly different. Further, the arrangement of the unit columnar prisms may be different from each other in the arrangement period other than the regular arrangement in the same arrangement period, or may be irregularly different.
Further, as the unit columnar prism, the height of the ridge line described in Japanese Patent No. 3119471, Japanese Translation of PCT International Publication No. 2002-504698, etc. is changed into a polygonal line shape, and the shape is not constant. It is a kind of a preferable shape in that various problems caused by optical adhesion such as can be prevented. In order to manufacture a prism group in which unit columnar prisms in which the height of the ridgeline is changed to a polygonal line are manufactured, for example, cylindrical (cylindrical) molding conventionally used for manufacturing this type of prism group is used. When the mold is manufactured with a cutting tool, it can be easily manufactured by cutting while changing the cutting depth of the cutting tool into a polygonal line.

(寸法及び分布の具体例)
ここで、単位柱状プリズム及びそれからなる光学要素群(プリズム群)の寸法の具体例を示せば、単位柱状プリズムの底面の幅(プリズム配列方向での寸法)は10〜500μm、稜線を形成する頂部の高さは5〜250μm、主切断面形状は二等辺三角形状のとき稜線を形成する頂角は80〜110°好ましくは90°である。
(Specific examples of dimensions and distribution)
Here, if the specific example of the dimension of a unit columnar prism and the optical element group (prism group) which consists of it is shown, the width | variety of the bottom face (dimension in a prism arrangement direction) of a unit columnar prism will be 10-500 micrometers, and the top part which forms a ridgeline When the main cutting plane shape is an isosceles triangle, the apex angle forming the ridge line is 80 to 110 °, preferably 90 °.

また、マイクロレンズも単位柱状プリズムと同様に、配列された各マイクロレンズが全て同一形状、同一寸法以外に、形状及び寸法のうち1以上が異なるものでも良く、更に不規則に異なっているものでも良い。また、マイクロレンズの配列は、全て同一配列周期での規則的配列以外に、配列周期が異なるものでも良く、更に不規則に異なっているものでも良い。なお、マイクロレンズとしては、球又は楕円体の一部で底面形状が円又は楕円となる形状が代表的であるが、この他の形状(例えば円錐、角錐など)でも良い。   Similarly to the unit columnar prism, each of the arranged microlenses may have one or more different shapes and dimensions other than the same shape and size, and may be irregularly different. good. Further, the arrangement of the microlenses may be other than the regular arrangement with the same arrangement period, the arrangement period may be different, and the arrangement may be irregularly different. A typical microlens is a part of a sphere or ellipsoid whose bottom shape is a circle or an ellipse, but other shapes (for example, a cone or a pyramid) may be used.

以上の様に単位光学要素2としては、代表的には単位柱状プリズムとマイクロレンズとがあるが、本光学シート10が備える単位光学要素2としては、単位柱状プリズム(単位柱状レンズを含み得る)のみでも良いし、マイクロレンズのみでも良いし、単位柱状プリズムとマイクロレンズとの両方を有するものとしても良い。   As described above, the unit optical element 2 typically includes a unit columnar prism and a microlens, but the unit optical element 2 provided in the optical sheet 10 includes a unit columnar prism (can include a unit columnar lens). Only a microlens, or a unit columnar prism and a microlens.

〔凹凸塗膜〕
凹凸塗膜3は、その表面の凹凸塗膜面Pmが微小突起4によって粗面となった透明な層であり、微小突起4はその内部に微粒子5としてウレタン樹脂ビーズを含んでいる。
凹凸塗膜3は、バインダ樹脂と微粒子5としてのウレタン樹脂ビーズとを必須成分とし、更に必要に応じて、各種添加剤、溶剤等を含む樹脂組成物(塗液、塗料)を用いて、塗布形成することができる。樹脂組成物が溶剤を含むことによって、固化時に塗膜体積収縮による膜厚減少によって、ウレタン樹脂ビーズの部分が浮き上がる様に突出した微小突起が形成され、凹凸塗膜3の表面、つまり凹凸塗膜面Pmが粗面として形成される。又、バインダ樹脂を架橋反応、附加重合反応等によって硬化する樹脂を用い、硬化時の体積收縮によって、ウレタン樹脂ビーズが凹凸塗膜表面に突出して、粗面が形成される様にしても良い。
尚、突出した微小突起4において、ウレタン樹脂ビーズの表面は、バインダ樹脂で被覆される形態、或はバインダ樹脂で被覆されない形態の何れも可能である。但し、ウレタン樹脂ビーズの脱落防止、及びウレタン樹脂ビーズによる光学シート10及び導光板32など他の光学部材の傷付き防止の点で、ウレタン樹脂ビーズの表面をバインダ樹脂が被覆する形態の方が好ましい。
[Uneven film]
The concavo-convex coating 3 is a transparent layer having a concavo-convex coating surface Pm on the surface thereof roughened by the fine protrusions 4, and the microprotrusions 4 contain urethane resin beads as fine particles 5 therein.
The concavo-convex coating film 3 includes a binder resin and urethane resin beads as the fine particles 5 as essential components, and further, if necessary, is applied using a resin composition (coating liquid, paint) containing various additives, solvents, and the like. Can be formed. When the resin composition contains a solvent, the surface of the concavo-convex coating film 3, that is, the concavo-convex coating film, is formed due to the decrease in the film thickness due to the contraction of the coating film volume during solidification, so that the protruding portion of the urethane resin beads protrudes. The surface Pm is formed as a rough surface. Alternatively, a resin that hardens the binder resin by a cross-linking reaction, an addition polymerization reaction, or the like may be used so that the urethane resin beads protrude from the surface of the concavo-convex coating film by volume contraction during the curing.
Note that, in the protruding microprotrusions 4, the surface of the urethane resin beads can be either coated with a binder resin or not coated with a binder resin. However, a form in which the surface of the urethane resin beads is coated with a binder resin is preferable in terms of preventing the urethane resin beads from falling off and preventing other optical members such as the optical sheet 10 and the light guide plate 32 from being damaged by the urethane resin beads. .

(バインダ樹脂)
上記バインダ樹脂としては、ウレタン樹脂ビーズをバインダ樹脂マトリック中に強固に固定し、凹凸塗膜3自体の本体部1からの剥離を防ぐ観点から、本体部1とウレタン樹脂ビーズとの密着性が強い透明な樹脂を適宜採用すると良い。
この様なバインダ樹脂としては、熱可塑性樹脂、或いは、熱硬化性樹脂や電離放射線硬化性樹脂等の硬化性樹脂などの透明な樹脂を使用できる。例えば、熱可塑性樹脂は、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、塩化ビニル−酢酸ビニル共重合体等であり、熱硬化性樹脂は熱硬化性アクリル系樹脂、熱硬化性ポリエステル系樹脂、熱硬化性ポリウレタン系樹脂等であり、電離放射線硬化性樹脂は紫外線や電子線で硬化する、アクリル系樹脂、エポキシ系樹脂、ポリエステル系樹脂等である。なお、硬化性樹脂の場合は、硬化剤、重合開示剤などが該樹脂成分の一部として含み得る。
上記各種バインダ樹脂のなかでも、特に電離放射線硬化性樹脂は、硬化が迅速で生産性に優れる上、形成される凹凸塗膜3の塗膜強度を強くでき耐擦傷性を優れたものに出来る点で好ましい。
(Binder resin)
As the binder resin, the urethane resin beads are firmly fixed in the binder resin matrix, and the adhesion between the main body 1 and the urethane resin beads is strong from the viewpoint of preventing the uneven coating 3 itself from being peeled off from the main body 1. A transparent resin may be used as appropriate.
As such a binder resin, a transparent resin such as a thermoplastic resin or a curable resin such as a thermosetting resin or an ionizing radiation curable resin can be used. For example, the thermoplastic resin is an acrylic resin, a polyester resin, a polyurethane resin, a vinyl chloride-vinyl acetate copolymer, and the thermosetting resin is a thermosetting acrylic resin, a thermosetting polyester resin, Examples thereof include thermosetting polyurethane resins, and ionizing radiation curable resins are acrylic resins, epoxy resins, polyester resins, and the like that are cured by ultraviolet rays or electron beams. In the case of a curable resin, a curing agent, a polymerization disclosure agent, and the like can be included as part of the resin component.
Among the various binder resins mentioned above, the ionizing radiation curable resin, in particular, is quick in curing and excellent in productivity, and also can increase the coating strength of the formed uneven coating film 3 and have excellent scratch resistance. Is preferable.

(微粒子:ウレタン樹脂ビーズ)
本発明においては、凹凸塗膜3の凹凸塗膜面Pmに微小突起4を生成するために、微小突起4がその内部に含む微粒子5としてウレタン樹脂ビーズを用いる。ウレタン樹脂ビーズは、光学シートとしての基本性能である光透過性を損なわない様に透明性を有する微粒子である。微小突起4を生成する為の微粒子5としては、形状が球状の球状粒子が好ましい。なお、球状とは粒子形状が球状乃至はそれに近い略球状の粒子である。粒子形状を球状とすることで、微粒子によって凹凸塗膜3の表面に生成される微小突起4の頂上部及びその周辺の形状を、角ばった形状ではなく、丸みを帯びた形状にして生成できる。しかも、更に、微小突起4部分で微粒子が露出せず、球状粒子の微粒子をバインダ樹脂で被覆する形態とした場合は、微粒子が脱落し難くなる上、バインダ樹脂自体が接触する部分となる。その結果、微小突起4を形状的に滑り易い形状にできるので、光学シートに接触する光学部材、或いは該光学シート自体(それも微小突起4の先端など微小突起4自体)を摩擦等によって傷付き難くして、接触部の欠け等の防止に効果的となる。
この様な球状の微粒子5、つまり球状粒子としては、アクリル樹脂ビーズ、ポリカーボネート樹脂ビーズ、ウレタン樹脂ビーズ等の樹脂ビーズの他、ガラスビーズ、シリカビーズ等の無機質ビーズが各種知られているが、これらのなかでも、ウレタン樹脂ビーズが優れた性能を発揮し、本発明では、このウレタン樹脂ビーズを微粒子5として用いる。
(Fine particles: Urethane resin beads)
In the present invention, in order to generate the fine protrusions 4 on the uneven coating surface Pm of the uneven coating film 3, urethane resin beads are used as the fine particles 5 included in the fine protrusions 4. Urethane resin beads are fine particles having transparency so as not to impair the light transmission, which is the basic performance as an optical sheet. As the fine particles 5 for generating the fine protrusions 4, spherical particles having a spherical shape are preferable. Note that the term “spherical” refers to particles having a spherical shape or a nearly spherical shape. By making the particle shape spherical, the shape of the top of the microprotrusions 4 generated on the surface of the uneven coating film 3 by the fine particles and the periphery thereof can be generated in a rounded shape instead of a square shape. In addition, when the fine protrusions 4 do not expose the fine particles and the spherical fine particles are covered with the binder resin, the fine particles are difficult to drop off, and the binder resin itself comes into contact. As a result, the microprojections 4 can be made slippery in shape, so that the optical member that contacts the optical sheet or the optical sheet itself (also the microprojections 4 such as the tips of the microprojections 4) is scratched by friction or the like. This makes it difficult to prevent chipping of the contact portion.
As such spherical fine particles 5, that is, spherical particles, various kinds of inorganic beads such as glass beads and silica beads are known in addition to resin beads such as acrylic resin beads, polycarbonate resin beads and urethane resin beads. Of these, urethane resin beads exhibit excellent performance, and in the present invention, these urethane resin beads are used as the fine particles 5.

ウレタン樹脂ビーズは、架橋されていないものでもよいが、他の有機樹脂ビーズと同様に、架橋されたウレタン樹脂ビーズであることが好ましい。バインダ樹脂以外に溶剤を含む樹脂組成物によって、凹凸塗膜3を形成するときに、溶剤によって溶解し消失しないためである。   The urethane resin beads may be non-crosslinked, but are preferably crosslinked urethane resin beads like other organic resin beads. This is because when the uneven coating film 3 is formed by a resin composition containing a solvent other than the binder resin, it is dissolved by the solvent and does not disappear.

ウレタン樹脂ビーズは、アクリル樹脂ビーズ、ポリカーボネート樹脂ビーズ等の有機樹脂ビーズ、或いはガラスビーズ、シリカビーズ等の無機ビーズに比べて、柔軟な傾向があり、このウレタン樹脂ビーズの柔軟性が、耐擦傷性の向上に寄与しているのではないかと、推測される。
例えば、柔軟性の指標として、圧縮強度で比較してみると、アクリル樹脂ビーズが25.0MPaを示すものがあるのに対して、ウレタン樹脂ビーズは1.72MPaを示すものがあり、ウレタン樹脂ビーズはアクリル樹脂ビーズの約十分の一の値となる。
Urethane resin beads tend to be more flexible than organic resin beads such as acrylic resin beads and polycarbonate resin beads, or inorganic beads such as glass beads and silica beads. It is speculated that it may contribute to the improvement.
For example, when comparing compressive strength as an index of flexibility, acrylic resin beads show 25.0 MPa, whereas urethane resin beads show 1.72 MPa. Urethane resin beads Is about one tenth of that of acrylic resin beads.

前記圧縮強度は、測定対象物の微粒子5が球状である為に、図3に模式的に示す様にして、球状の微粒子5の直径dが、加圧により10%減少して、0.9dになるときの力と、微粒子5の直径dとから算出される値である。測定は、測定台の上に載せた1個の微粒子5の上から力を加えていき、直径dが10%減少したときの、10%圧縮荷重と、直径dとから算出する。10%変形時の圧縮強度であるから、10%圧縮強度とも呼ばれている。10%圧縮強度が小さいほど、軟らかく柔軟性に豊んでいると言える。   The compressive strength is 0.9d because the diameter d of the spherical fine particles 5 is reduced by 10% by pressurization as schematically shown in FIG. 3 because the fine particles 5 to be measured are spherical. It is a value calculated from the force when The measurement is calculated from a 10% compressive load and a diameter d when a force is applied from the top of one particle 5 placed on a measurement table and the diameter d is reduced by 10%. Since it is the compressive strength at the time of 10% deformation, it is also called 10% compressive strength. It can be said that the smaller the 10% compressive strength, the softer and more flexible.

球状粒子であるウレタン樹脂ビーズの粒子径は、例えば、(平均しない個々の粒子の1次)粒子径で1〜10μm程度である。また、粒子径分布は広いと微小突起4の夫々の突出高さ(微小突起4の存在しない部分の凹凸塗膜3の表面からの個々の微小突起4部分の標高)の分布が広くなる。従って、粒子径の大きいウレタン樹脂ビーズは突出高さが高い微小突起4を生成し空隙形成に積極的に作用するが、光学部材との接触頻度が大きく且つ接触による外力も大きくなるので、その分、凹凸塗膜面Pmが傷付き易くなる。この為、粒子径分布は狭い方が好ましい。従って、粒子径分布が狭い、つまり単分散乃至は単分散に近い粒子径分布を有するものが、より好ましい。例えば、先の特許文献2で開示されている様な、粒子径分布が粒子径分布曲線に於ける半値幅を1μm以下としたものが好ましい。この様に半値幅が1μm以下の単分散のウレタン樹脂ビーズを微粒子5として用いることによって、ウレタン樹脂ビーズによって生成される微小突起4の突出高さの均一性が向上し、突出高さの相対的に高い微小突起4への荷重集中の度合いを低下させることができる。なお、半値幅とは粒子径分布に於いては、粒子径分布曲線のピーク高さの1/2の高さに該当する部分での粒子径(値の分布)幅である。この為、ウレタン樹脂ビーズの側からも耐擦傷性を向上させることができる。   The particle diameter of the urethane resin beads which are spherical particles is, for example, about 1 to 10 μm in terms of (primary of individual particles not averaged). Further, if the particle size distribution is wide, the distribution of the respective protrusion heights of the microprotrusions 4 (the altitudes of the individual microprotrusions 4 from the surface of the uneven coating film 3 where the microprotrusions 4 do not exist) becomes wide. Accordingly, the urethane resin beads having a large particle diameter generate microprojections 4 having a high protrusion height and positively act on the formation of voids. However, since the contact frequency with the optical member is large and the external force due to the contact is also large, The uneven coating film surface Pm is easily damaged. For this reason, it is preferable that the particle size distribution is narrow. Accordingly, it is more preferable that the particle size distribution is narrow, that is, monodisperse or has a particle size distribution close to monodispersion. For example, as disclosed in the above-mentioned Patent Document 2, it is preferable that the particle size distribution has a half width of 1 μm or less in the particle size distribution curve. By using monodisperse urethane resin beads having a half width of 1 μm or less as the fine particles 5 in this way, the uniformity of the projection height of the microprojections 4 generated by the urethane resin beads is improved, and the relative height of the projections is increased. It is possible to reduce the degree of load concentration on the minute protrusions 4 that are extremely high. The half-value width is the particle diameter (value distribution) width at a portion corresponding to a height that is ½ of the peak height of the particle diameter distribution curve. For this reason, the scratch resistance can be improved also from the urethane resin bead side.

なお、粒子径分布及び平均粒子径は、個数基準もあるが、一般には体積基準(乃至は重量)が使われており、本発明でもこれと同様に体積基準の体積平均粒子径であり、半値幅も同様である。この様な、体積基準の粒子径分布乃至は平均粒子径は、レーザ光線を利用した動的光散乱法等によって測定できる。また、顕微鏡観察で個々の球状粒子の粒子径を測定しこれから算出しても良い。   The particle size distribution and the average particle size may be based on the number, but generally, the volume basis (or weight) is used. In the present invention, the volume-based volume average particle size is also used in the same manner. The price range is the same. Such a volume-based particle size distribution or average particle size can be measured by a dynamic light scattering method using a laser beam. Moreover, the particle diameter of each spherical particle may be measured by microscopic observation and calculated from this.

また、球状粒子であるウレタン樹脂ビーズの(個々の粒子の)最大径が10μmを超えると光の進路変更作用が増加する。この為、光学シート10を輝度向上シートとして使用するときに、光学シート10の光学要素面Peで機能させる集光作用が低下しその光学機能が損なわれ始める。従って、極力10μm超の粒子は避けるのが好ましい。
もっとも、あえて、粒子径の大きいものを採用して、適度に拡散させる機能を付与する形態を排除するものではない。一方、ウレタン樹脂ビーズの(個々の粒子の)最小径が1μm未満となると、凹凸塗膜3を形成する塗料組成物でのウレタン樹脂ビーズの分散に高度の技術が必要になるとともに、粗面の凹凸の突起高さ(十点平均粗さRzで評価)を必要とされる0.78μm以上確保することが難しくなり、また材料自体が高価となる等の点で好ましくない。
なお、ウレタン樹脂ビーズの含有量は、バインダ樹脂に対して、例えば2〜15質量%とする。ウレタン樹脂ビーズの含有量を調整することで、微小突起4の面密度を調整することができる。
Further, when the maximum diameter (individual particles) of urethane resin beads, which are spherical particles, exceeds 10 μm, the light path changing action increases. For this reason, when the optical sheet 10 is used as a brightness enhancement sheet, the light condensing action that functions on the optical element surface Pe of the optical sheet 10 is reduced, and the optical function thereof starts to be impaired. Therefore, it is preferable to avoid particles exceeding 10 μm as much as possible.
However, it is not intended to exclude a mode of giving a function of appropriately diffusing by adopting a particle having a large particle diameter. On the other hand, when the minimum diameter (individual particles) of the urethane resin beads is less than 1 μm, a high level of technology is required to disperse the urethane resin beads in the coating composition that forms the uneven coating film 3, and the rough surface It is not preferable from the viewpoints that it is difficult to ensure the height of the uneven projections (evaluated by the ten-point average roughness Rz) of 0.78 μm or more, and the material itself is expensive.
In addition, content of a urethane resin bead shall be 2-15 mass% with respect to binder resin, for example. By adjusting the content of the urethane resin beads, the surface density of the fine protrusions 4 can be adjusted.

なお、凹凸塗膜3に、光を拡散させる光拡散機能を積極的に付与してもよい。例えば、凹凸塗膜3が含有するウレタン樹脂ビーズを光拡散剤として機能させることによって、光拡散機能が付与され得る。ウレタン樹脂ビーズを光拡散剤として機能させるには、ウレタン樹脂ビーズとバインダ樹脂との屈折率差の大きい材料を用いると良い。この場合、ウレタン樹脂ビーズとバインダ樹脂との屈折率の差は0.1以上、好ましくは0.15以上とする。   The uneven coating film 3 may be positively imparted with a light diffusion function for diffusing light. For example, the light diffusing function can be imparted by causing the urethane resin beads contained in the uneven coating film 3 to function as a light diffusing agent. In order to make the urethane resin beads function as a light diffusing agent, it is preferable to use a material having a large refractive index difference between the urethane resin beads and the binder resin. In this case, the difference in refractive index between the urethane resin beads and the binder resin is 0.1 or more, preferably 0.15 or more.

(添加剤)
なお、凹凸塗膜3中には、滑剤、分散剤、安定剤、可塑剤、紫外線吸収剤、帯電防止剤など、公知の各種添加剤を含み得る。これらは、前記凹凸塗膜3を形成する為の樹脂組成物中に添加して使用する。
(Additive)
The uneven coating film 3 may contain various known additives such as a lubricant, a dispersant, a stabilizer, a plasticizer, an ultraviolet absorber, and an antistatic agent. These are used by adding to the resin composition for forming the uneven coating film 3.

例えば、滑剤は、凹凸塗膜3の粗面となった表面の滑り性を向上させて、光学シート自身を傷付き難くでき耐擦傷性を向上させることができる。
滑剤としては、流動パラフィン、パラフィンワックス、合成ポリエチレンワックスなどの炭化水素系滑剤、ラウリン酸などの脂肪酸系滑剤、ステアリルアルコールなどの高級アルコール系滑剤、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等の脂肪族アミド系滑剤、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドのアルキレン脂肪酸アミド系滑剤、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウムなどのステアリン酸金属塩からなる金属石鹸系滑剤、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル系滑剤、シリコーンオイル、変性シリコーンオイル等のシリコーン系滑剤、を挙げることができる。
また、変性シリコーンオイルとしては、上記以外にも、ポリエーテル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、オレフィン変性シリコーンオイル、フッ素変性シリコーンオイル、アルコール変性シリコーンオイル、高級脂肪酸変性シリコーンオイル等を挙げることができる。
For example, the lubricant improves the slipperiness of the roughened surface of the concavo-convex coating film 3, makes it difficult to damage the optical sheet itself, and can improve the scratch resistance.
Lubricants include hydrocarbon lubricants such as liquid paraffin, paraffin wax, synthetic polyethylene wax, fatty acid lubricants such as lauric acid, higher alcohol lubricants such as stearyl alcohol, stearic acid amide, oleic acid amide, erucic acid amide, etc. Aliphatic amide lubricants, methylene bis stearamide, alkylene fatty acid amide lubricants of ethylene bis stearamide, metal soap lubricants made of metal stearate such as zinc stearate, calcium stearate, magnesium stearate, stearic acid monoglyceride And fatty acid ester lubricants such as stearyl stearate and hydrogenated oil, and silicone lubricants such as silicone oil and modified silicone oil.
In addition to the above, modified silicone oils include polyether modified silicone oil, amino modified silicone oil, epoxy modified silicone oil, olefin modified silicone oil, fluorine modified silicone oil, alcohol modified silicone oil, higher fatty acid modified silicone oil, etc. Can be mentioned.

また、上記各種滑剤の中でも、変性シリコーンオイルは好ましく、特にポリエーテル変性シリコーンオイルは好ましい滑剤である。ポリエーテル変性シリコーンオイルは、シリコーンオイルのシロキサン骨格をポリエーテル骨格で修飾した化合物であり、シロキサン骨格の片末端、両末端及び側鎖のいずれか1以上の部位に、ポリエーテル骨格が結合したブロック共重合体である。この様なポリエーテル変性シリコーンオイルの好ましい化合物例として、例えば、ポリエーテル変性ジメチルポリシロキサンを挙げることができる。ポリエーテル変性ジメチルポリシロキサンは、シロキサン骨格がジメチルポリシロキサンであり、これにポリエーテル骨格が結合した化合物である。   Of the above-mentioned various lubricants, modified silicone oils are preferable, and polyether-modified silicone oils are particularly preferable lubricants. The polyether-modified silicone oil is a compound in which the siloxane skeleton of the silicone oil is modified with the polyether skeleton, and a block in which the polyether skeleton is bonded to one or more of one end, both ends, and side chains of the siloxane skeleton. It is a copolymer. As a preferred compound example of such a polyether-modified silicone oil, for example, polyether-modified dimethylpolysiloxane can be mentioned. The polyether-modified dimethylpolysiloxane is a compound in which the siloxane skeleton is dimethylpolysiloxane and the polyether skeleton is bonded thereto.

〔硬度〕
本発明では、光学シート10単体においては、光学シート10の単位光学要素2側の表面である光学要素面Peの硬度Heと、凹凸塗膜3側の粗面を成す表面である凹凸塗膜面Pmの硬度Hmとについて、鉛筆硬度で特定の硬度関係とする。
これは、光学シート10の基本性能として、光学シート10が光学装置に組み込まれる前の段階で、光学シート10がロールに巻き取られたり、枚葉シート状態で積み重ねられたりして、光学シート10の表裏面が接触状態で、保管、搬送されるときの振動によって、光学シート10自身が傷付くのを防ぐためである。
なお、後述面光源装置30の欄で説明するように、光学シート10を組み込んだ面光源装置30においては、凹凸塗膜3の凹凸塗膜面Pmの硬度Hmと、この凹凸塗膜面Pmが接する導光板32の出光面Ppの硬度Hpと、について、鉛筆硬度で特定の硬度関係とする。
〔hardness〕
In the present invention, in the optical sheet 10 alone, the hardness He of the optical element surface Pe which is the surface on the unit optical element 2 side of the optical sheet 10 and the uneven coating surface which is the surface forming the rough surface on the uneven coating film 3 side. With respect to the hardness Hm of Pm, a specific hardness relationship is established by pencil hardness.
This is because, as a basic performance of the optical sheet 10, the optical sheet 10 is wound around a roll or stacked in a single sheet state before the optical sheet 10 is incorporated into an optical device. This is to prevent the optical sheet 10 itself from being damaged by vibration when stored and transported with the front and back surfaces in contact.
In addition, as will be described later in the section of the surface light source device 30, in the surface light source device 30 incorporating the optical sheet 10, the hardness Hm of the uneven coating surface Pm of the uneven coating film 3 and the uneven coating surface Pm are About the hardness Hp of the light emission surface Pp of the light-guide plate 32 which touches, it is set as a specific hardness relationship by pencil hardness.

(鉛筆硬度)
ここで、硬度He及び硬度Hmに関する鉛筆硬度とは、JIS K5600−5−4(1999年版)に準拠して荷重1000g、速度1mm/sの条件で測定した鉛筆硬度のことを意味する。そして、反対側の面の光学要素面Peの鉛筆硬度による硬度He以上(Hm≧He)とする。
硬度Hmを硬度He以上とするのは、凹凸塗膜面Pmの硬度Hmを光学要素面Peの方の硬度He以上にしないと、凹凸塗膜面Pmが、傷付き易いからである。また、光学要素面Peは外力が加えられた時は変形し外力から開放された時は元に戻る様に軟らかくすることで傷付きを防ぐ必要が有り、又通常そのように設計される。一方、凹凸塗膜面Pmは逆に、外力が加えられた時でも光学密着を防止する為に相応に変形せずに耐えて形状を維持させる必要があると共に、凹凸の点状突出部には、光学要素面に比べて、応力が集中し、これに耐える必要も有る。その為、硬度Hmは硬度He以上とするのが好ましい。
この様な硬度関係にすることによって、光学シートの表裏面同士の(光学要素面Peと凹凸塗膜面Pmとの間の)接触が生じても、光学シートの光学要素面Peや凹凸塗膜面Pmが削られる様な傷付きを防ぐことができる。
(Pencil hardness)
Here, the pencil hardness related to the hardness He and the hardness Hm means the pencil hardness measured under conditions of a load of 1000 g and a speed of 1 mm / s in accordance with JIS K5600-5-4 (1999 edition). Then, the hardness of the optical element surface Pe on the opposite surface is set to be not less than the hardness He (Hm ≧ He) according to the pencil hardness.
The reason why the hardness Hm is equal to or higher than the hardness He is that the concave / convex coating surface Pm is easily damaged unless the hardness Hm of the concave / convex coating surface Pm is equal to or higher than the hardness He of the optical element surface Pe. Further, the optical element surface Pe needs to be prevented from being damaged by being deformed when an external force is applied and softened so as to return to the original state when released from the external force, and is usually designed as such. On the other hand, the uneven coating surface Pm, on the other hand, needs to withstand and maintain its shape without being deformed appropriately in order to prevent optical adhesion even when an external force is applied. Compared with the optical element surface, the stress is concentrated and it is necessary to withstand this. Therefore, it is preferable that the hardness Hm is not less than the hardness He.
By adopting such a hardness relationship, even if contact occurs between the front and back surfaces of the optical sheet (between the optical element surface Pe and the uneven coating film surface Pm), the optical element surface Pe and the uneven coating film of the optical sheet It is possible to prevent scratches such that the surface Pm is cut.

更に、好ましくは、硬度Heと硬度Hmとの関係は、鉛筆硬度のスケール上で1単位硬い硬度を+1としたときに、硬度He+2≧硬度Hm≧硬度He+1とするのが良い。すなわち、凹凸塗膜面Pmの硬度Hmは、光学要素面Peの硬度Heの硬度よりも、最低限、鉛筆硬度のスケール上で+1単位以上硬くする。但し、最大でも、凹凸塗膜面Pmの硬度Hmは、光学要素面Peの硬度Heの硬度に対して、鉛筆硬度のスケール上で+2単位までは硬くして良いが、2単位を超過して硬くしてはならない。単純に考えれば鉛筆硬度は硬くするほど傷付き難くなると考えられるが、実際には硬過ぎても傷付いており、上記の様な範囲関係とするのが良い事が判明した。   More preferably, the relationship between the hardness He and the hardness Hm is such that hardness He + 2 ≧ hardness Hm ≧ hardness He + 1, where 1 unit hardness on the pencil hardness scale is +1. That is, the hardness Hm of the concavo-convex coating surface Pm is at least +1 unit harder than the hardness He of the optical element surface Pe on the pencil hardness scale. However, at most, the hardness Hm of the uneven coating surface Pm may be hardened up to +2 units on the pencil hardness scale with respect to the hardness He of the optical element surface Pe, but exceeds 2 units. Don't be stiff. From a simple perspective, it can be considered that the harder the pencil hardness, the harder it is to be scratched.

なお、鉛筆硬度のスケールとは、軟らかい方から硬い方に向かって順に、3B、2B、B、HB、F、H、2H、3H、4H、5H等のことである。また、この鉛筆硬度のスケールで、例えば、「HB」に対して「+1単位」とは1つ上の硬度単位である「F」を意味し、「+2単位」とは2つ上の硬度単位である「H」を意味する。従って、例えば、HeがFならば、硬度He+2≧硬度Hm≧硬度He+1とは、2H≧硬度Hm≧Hを意味する。   In addition, the scale of pencil hardness is 3B, 2B, B, HB, F, H, 2H, 3H, 4H, 5H, etc. in order from the softer to the harder. In this pencil hardness scale, for example, “+1 unit” with respect to “HB” means “F”, which is one higher hardness unit, and “+2 unit” means two higher hardness units. Means “H”. Therefore, for example, if He is F, hardness He + 2 ≧ hardness Hm ≧ hardness He + 1 means 2H ≧ hardness Hm ≧ H.

この様な硬度関係にすることによって、光学シート同士の接触が生じても、光学シートの光学要素面Peや凹凸塗膜面Pmが削られる様なことをより確実に防ぐことができる。   By adopting such a hardness relationship, it is possible to more reliably prevent the optical element surface Pe and the concavo-convex coating film surface Pm of the optical sheet from being scraped even if contact between the optical sheets occurs.

さらに、硬度HmはHB以上であることが好ましい。これは、硬度Hmと硬度Heを上記のように規定しても、光学密着を防止する凹凸塗膜面Pmにおいては、凹凸塗膜面Pmは、外力が加えられた時でも光学密着を防止する為に相応に変形せずに耐えて形状を維持させる必要があると共に、微小突起4は、光学要素面Peに比べて、応力が集中し、これに耐える必要もあるからである。このため、ある程度の硬度は必要となるからである。
また、硬度Hmは5H以下であることが好ましい。これは、凹凸塗膜面Pmの硬度Hmがあまりに硬いと、凹凸塗膜面Pmが接触する相手の接触面を、傷付けることがあるからである。
Furthermore, the hardness Hm is preferably equal to or higher than HB. Even if the hardness Hm and the hardness He are defined as described above, the uneven coating surface Pm that prevents optical adhesion prevents the optical adhesion even when an external force is applied. For this reason, it is necessary to endure without corresponding deformation and maintain the shape, and the microprotrusions 4 are concentrated in stress as compared with the optical element surface Pe and need to withstand this. For this reason, a certain degree of hardness is required.
The hardness Hm is preferably 5H or less. This is because if the hardness Hm of the concavo-convex coating surface Pm is too hard, the mating contact surface with which the concavo-convex coating surface Pm comes into contact may be damaged.

〔その他〕
なお、本発明の光学シート10は、本発明の主旨を逸脱しない範囲内で、上記した層以外のその他の層を含んでいても良い。
例えば、帯電防止層を更に設けても良い。帯電防止層によって、埃等の異物付着を低減し、付着した異物による傷付きを防止できる。なお、帯電防止層を別途設けず、本体部1、単位光学要素2、凹凸塗膜3のいずれか1以上に、帯電防止剤を添加して帯電防止機能を付与しても良い。
また、光学シート10の入光面とする面に、該面直下の層よりも相対的に低屈折率の低屈折率層からなる反射防止層を設けても良い。光学シート10への入射光の反射損失を低減出来る。例えば、凹凸塗膜面Pmを入光面とする場合に、凹凸塗膜3上に反射防止層を設ける等である。
[Others]
The optical sheet 10 of the present invention may include other layers other than the above-described layers within a range not departing from the gist of the present invention.
For example, an antistatic layer may be further provided. The antistatic layer can reduce the adhesion of foreign matters such as dust, and can prevent the attached foreign matter from being damaged. In addition, an antistatic layer may be added to any one or more of the main body 1, the unit optical element 2, and the concavo-convex coating film 3 without providing an antistatic layer separately to impart an antistatic function.
Further, an antireflection layer composed of a low refractive index layer having a relatively lower refractive index than that of the layer immediately below the surface may be provided on the surface of the optical sheet 10 as the light incident surface. The reflection loss of incident light on the optical sheet 10 can be reduced. For example, an antireflection layer is provided on the concavo-convex coating 3 when the concavo-convex coating Pm is used as a light incident surface.

なお、本発明の光学シート10は、凹凸塗膜面Pmが粗面を呈する凹凸塗膜3から構成されるが、単位光学要素2が存在しない本体部1と凹凸塗膜3との状態で、全光線透過率としては90%以上と透明性の高い光学部材とすることができる。また同様の状態で、ヘーズは10%以下とすることができる。また同様の状態で、透過鮮明度は0.125mm及び0.5mmの光学櫛に於いて、50%以上とすることができる。
なお、全光線透過率はJIS K−7361に準拠して測定し、ヘーズはJIS K−7136に準拠して測定することができる。例えば、ヘーズ・透過率計HM−15(株式会社村上色彩技術研究所製)等で測定できる。透過鮮明度は、JIS K−7105規定の像鮮明度に準拠して透過光で、5種類の光学櫛(0.125mm、0.25mm、0.5mm、1mm及び2mm)で測定し、各光学櫛に於ける像鮮明度を%表示し、値が大きい方が像鮮明度が良い。なお、測定は、例えば、写像性測定器(スガ試験機株式会社、ICM−1DP)等で測定できる。
In addition, although the optical sheet 10 of the present invention is composed of the uneven coating film 3 in which the uneven coating film surface Pm has a rough surface, in the state of the main body 1 and the uneven coating film 3 where the unit optical element 2 does not exist As the total light transmittance, an optical member having high transparency of 90% or more can be obtained. In the same state, the haze can be 10% or less. In the same state, the transmission definition can be 50% or more in the optical combs of 0.125 mm and 0.5 mm.
The total light transmittance can be measured according to JIS K-7361, and the haze can be measured according to JIS K-7136. For example, it can be measured with a haze / transmittance meter HM-15 (manufactured by Murakami Color Research Laboratory). The transmitted sharpness is measured with five types of optical combs (0.125 mm, 0.25 mm, 0.5 mm, 1 mm, and 2 mm) using transmitted light in accordance with the image sharpness defined in JIS K-7105. The image sharpness at the comb is displayed in%, and the larger the value, the better the image sharpness. In addition, a measurement can be measured with a image clarity measuring device (Suga Test Instruments Co., Ltd., ICM-1DP) etc., for example.

本発明の光学シート10においては、その凹凸塗膜面Pmが接触する相手の接触面は、自身の光学要素面Pe、或いは導光板32の出光面Pp以外に、拡散シート、その他の光学部材であっても良い。   In the optical sheet 10 of the present invention, the contact surface with which the concavo-convex coating surface Pm contacts is a diffusion sheet or other optical member other than its own optical element surface Pe or the light exit surface Pp of the light guide plate 32. There may be.

〔D〕面光源装置:
本発明による面光源装置は、図1(a)及び図2で示すように、少なくとも、光源31と、該光源からの光を入光し平滑な出光面Ppから出光する導光板32と、該導光板32の出光面Ppに対向して配置される光学シート10と、を備えた面光源装置である。
しかも、この光学シート10は、シート状の本体部1の一方の面1pに単位光学要素2を配列してなり、該本体部1の他方の面1qに、微小突起4によって表面が粗面を呈する凹凸塗膜3を有し、前記微小突起4は微粒子5としてウレタン樹脂ビーズを含み、前記導光板32の出光面Ppの硬度Hpと、前記凹凸塗膜3の粗面を成す凹凸塗膜面Pmの硬度Hmとについて、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)した鉛筆硬度で、
硬度Hp及び硬度Hmの関係が、鉛筆硬度スケール上で1単位硬い硬度を+1としたときに、硬度Hp+2≧硬度Hm≧硬度Hp+1となっている。
そして、この光学シート10は、その凹凸塗膜面Pmを前記導光板32の出光面Ppに対向して配置されている。
このため、光学シート10の向きは、その光学要素面Peを図面上方の出光面側とし、凹凸塗膜面Pmは導光板32側であり、導光板32の出光面Ppに接触している。
[D] Surface light source device:
As shown in FIGS. 1 (a) and 2, the surface light source device according to the present invention includes at least a light source 31, a light guide plate 32 that receives light from the light source and emits light from a smooth light exit surface Pp, The surface light source device includes the optical sheet 10 disposed to face the light exit surface Pp of the light guide plate 32.
Moreover, the optical sheet 10 is formed by arranging the unit optical elements 2 on one surface 1p of the sheet-like main body 1 and the surface of the main body 1 is roughened by the minute protrusions 4 on the other surface 1q. The concavo-convex coating 3 is present, the microprojections 4 include urethane resin beads as the fine particles 5, and the concavo-convex coating surface forming the hardness Hp of the light exit surface Pp of the light guide plate 32 and the rough surface of the concavo-convex coating 3. About the hardness Hm of Pm
With pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s),
The relationship between the hardness Hp and the hardness Hm is as follows: hardness Hp + 2 ≧ hardness Hm ≧ hardness Hp + 1, where 1 unit hardness on the pencil hardness scale is +1.
And this optical sheet 10 is arrange | positioned so that the uneven | corrugated coating film surface Pm may oppose the light emission surface Pp of the said light-guide plate 32. FIG.
Therefore, the orientation of the optical sheet 10 is such that the optical element surface Pe is on the light output surface side above the drawing, and the uneven coating film surface Pm is on the light guide plate 32 side, and is in contact with the light output surface Pp of the light guide plate 32.

さらに、図2に示す、実施形態においては、凹凸塗膜面Pmの硬度Hmと、導光板32の出光面Ppの硬度Hpとが、共にHB以上となっている。
これは、凹凸塗膜面Pmの硬度Hmについては、前述したようにHB以上であることが好ましいからである。
一方、導光板32の出光面Ppの硬度Hpについては、硬度が軟らかすぎると、出光面Ppが傷付くことがあるからである。
Furthermore, in the embodiment shown in FIG. 2, the hardness Hm of the uneven coating film surface Pm and the hardness Hp of the light exit surface Pp of the light guide plate 32 are both HB or more.
This is because the hardness Hm of the uneven coating surface Pm is preferably HB or more as described above.
On the other hand, if the hardness Hp of the light exit surface Pp of the light guide plate 32 is too soft, the light exit surface Pp may be damaged.

〔光学シート〕
面光源装置30を構成する光学シート10としては、前述した光学シート10を用いることができる。よって、さらなる説明は省略する。
[Optical sheet]
As the optical sheet 10 constituting the surface light source device 30, the optical sheet 10 described above can be used. Therefore, further explanation is omitted.

〔導光板〕
面光源装置30を構成する導光板32としては、アクリル樹脂、ポリカーボネート樹脂などの透明な樹脂を用いたものを使用することができる。導光板32は出光面Ppが平滑面となっている。導光板32は、その出光面Ppの硬度Hpを適宜な硬度にするために、塗膜を形成してもよい。導光板32の出光面Ppに対峙する面には、印刷やプリズム等により光拡散部が適宜設けられる。
〔Light guide plate〕
As the light guide plate 32 constituting the surface light source device 30, a light guide plate 32 using a transparent resin such as an acrylic resin or a polycarbonate resin can be used. The light guide plate 32 has a light exit surface Pp that is a smooth surface. The light guide plate 32 may form a coating film in order to make the hardness Hp of the light exit surface Pp appropriate. On the surface of the light guide plate 32 that faces the light exit surface Pp, a light diffusing portion is appropriately provided by printing, prism, or the like.

〔光源〕
面光源装置30を構成する光源31としては、特に制限はなく、公知のものを用いることができる。例えば、光源31とてしは、線状の冷陰極管等の蛍光灯の他、点状のLED(発光ダイオード)、或いは面状のEL(電場発光体)等を用いることができる。
〔light source〕
There is no restriction | limiting in particular as the light source 31 which comprises the surface light source device 30, A well-known thing can be used. For example, as the light source 31, in addition to a fluorescent lamp such as a linear cold cathode tube, a spot LED (light emitting diode), a planar EL (electroluminescent element), or the like can be used.

〔その他の構成要素〕
光学シート10、光源31及び導光板32以外の構成要素である、その他必要に応じて配置される光学部材など、またそれらの配置関係などは、従来公知の面光源装置の各種光学部材及び配置を、適宜採用することができる。
[Other components]
Other than the optical sheet 10, the light source 31 and the light guide plate 32, other optical members arranged as necessary, and their arrangement relationship, etc., are various optical members and arrangements of conventionally known surface light source devices. Can be employed as appropriate.

このようにして、光学シート10は、凹凸塗膜3によって導光板32との光学密着が防止されており、該光学密着による輝度の面内不均一化、干渉縞等を効果的に防げる効果が得られる。更に、凹凸塗膜面の耐擦傷性が向上しているので、光学シート10及び導光板32の互いに接触している接触面の傷付きを防げる効果が得られる。   In this way, the optical sheet 10 is prevented from optical contact with the light guide plate 32 by the concavo-convex coating film 3, and has the effect of effectively preventing in-plane luminance unevenness, interference fringes, and the like due to the optical contact. can get. Furthermore, since the scratch resistance of the concavo-convex coating surface is improved, an effect of preventing the contact surfaces of the optical sheet 10 and the light guide plate 32 that are in contact with each other can be obtained.

[面光源装置としての変形形態]
図2の実施形態では、光学シート10は1枚配置の形態例であったが、本発明においては、2枚重ねなど、複数枚を配置してもよい。
図2の面光源装置はエッジライト型の実施形態であったが、本発明においては、直下型の面光源装置でも良い。
また、光源31に対して、光源31からの光を導光板32や光学シート10側へ向ける為に反射板等の反射部材を通常は備える。反射部材は金属等の高反射率の材料で構成される。その他、必要に応じて、光拡散板、偏光分離フィルム、位相差板などの光学部材を更に配置してもよい。
[Deformation as a surface light source device]
In the embodiment of FIG. 2, the optical sheet 10 is an example in which one sheet is arranged. However, in the present invention, a plurality of sheets such as two sheets may be arranged.
Although the surface light source device of FIG. 2 is an edge light type embodiment, a direct surface light source device may be used in the present invention.
The light source 31 is usually provided with a reflecting member such as a reflecting plate in order to direct light from the light source 31 toward the light guide plate 32 or the optical sheet 10. The reflecting member is made of a highly reflective material such as metal. In addition, optical members such as a light diffusing plate, a polarization separation film, and a retardation plate may be further arranged as necessary.

〔E〕液晶表示装置:
本発明による液晶表示装置は、少なくとも、バックライトとしての上記面光源装置と、該面光源装置の出光面上に配置される透過表示可能な液晶パネルとを備える表示装置である。該面光源装置内に前記本発明による光学シート10が備えられている。この様な面光源装置、及び液晶パネル以外の構成部材、例えば、光学部材、パネル駆動回路などは、従来公知の液晶表示装置の構成部材を、適宜採用することができる。
例えば、図2で例示の様な液晶表示装置40では、上記した面光源装置30をバックライトとして、その出光面上に、透過型の液晶パネル41を隣接配置してある。従って、該面光源装置30の出光面は、同図に示す様に、光学シート10の光学要素面Peであったから該光学要素面Peが、光学シート10と接触する他の光学部材として、液晶パネル41の背面と接触している。なお、接触する液晶パネル41の背面は通常は偏光板が積層されている。そして、液晶パネル41の画像は、面光源装置30からの光によって、図面上方の観察者Vによって観察される。
このような構成の液晶表示装置として、光学シート10と液晶パネルとが隣接配置されていても、光学要素面Peの耐擦傷性が向上しているので、光学シート自身の傷付きを防げる構成となっている。
[E] Liquid crystal display device:
A liquid crystal display device according to the present invention is a display device including at least the surface light source device as a backlight and a transmissive displayable liquid crystal panel disposed on a light output surface of the surface light source device. The optical sheet 10 according to the present invention is provided in the surface light source device. As the constituent members other than the surface light source device and the liquid crystal panel, for example, optical members, panel driving circuits, and the like, conventionally known constituent members of the liquid crystal display device can be appropriately employed.
For example, in the liquid crystal display device 40 illustrated in FIG. 2, the above-described surface light source device 30 is used as a backlight, and a transmissive liquid crystal panel 41 is disposed adjacently on the light exit surface. Accordingly, as shown in the figure, the light emitting surface of the surface light source device 30 is the optical element surface Pe of the optical sheet 10, so that the optical element surface Pe is liquid crystal as another optical member that contacts the optical sheet 10. The panel 41 is in contact with the back surface. Note that a polarizing plate is usually laminated on the back surface of the liquid crystal panel 41 in contact. Then, the image on the liquid crystal panel 41 is observed by the observer V above the drawing by the light from the surface light source device 30.
As a liquid crystal display device having such a configuration, even when the optical sheet 10 and the liquid crystal panel are disposed adjacent to each other, the scratch resistance of the optical element surface Pe is improved, and thus the optical sheet itself can be prevented from being damaged. It has become.

なお、図2に例示の液晶表示装置40では、それが備える面光源装置30はエッジライト型であったが、前記の様に、直下型としても良い。   In the liquid crystal display device 40 illustrated in FIG. 2, the surface light source device 30 included in the liquid crystal display device 40 is an edge light type, but may be a direct type as described above.

以下、実施例及び比較例によって、本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples and comparative examples.

〔凹凸塗膜形成用塗料の準備〕
各種鉛筆硬度の凹凸塗膜を形成するために、次の各組成の塗料を準備した。
[Preparation of paint for forming uneven film]
In order to form uneven coating films having various pencil hardnesses, paints having the following respective compositions were prepared.

(組成A1:鉛筆硬度2B用)
プレポリマー(カプロラクトン変性ウレタンアクリレート) 10質量部
プレポリマー(トリレンジイソシアネート系ウレタンアクリレート) 8質量部
ビスフェノールAジアクリレート(EO4モル変性)(2官能モノマー)68質量部
イソシアヌル酸トリアクリレート(EO3モル変性)(3官能モノマー)10質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A1: for pencil hardness 2B)
Prepolymer (caprolactone-modified urethane acrylate) 10 parts by weight Prepolymer (tolylene diisocyanate urethane acrylate) 8 parts by weight Bisphenol A diacrylate (EO4 mole modified) (bifunctional monomer) 68 parts by weight Isocyanuric acid triacrylate (EO3 mole modified) (Trifunctional monomer) 10 parts by mass Fine particles (cross-linked urethane resin beads; average particle size 6 μm) 1 part by mass (Negami Kogyo Co., Ltd., Art Pearl (registered trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A2:鉛筆硬度B用)
プレポリマー(カプロラクトン変性ウレタンアクリレート) 10質量部
プレポリマー(トリレンジイソシアネート系ウレタンアクリレート) 8質量部
ビスフェノールAジアクリレート(EO4モル変性)(2官能モノマー)48質量部
イソシアヌル酸トリアクリレート(EO3モル変性)(3官能モノマー)30質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A2: for pencil hardness B)
Prepolymer (caprolactone-modified urethane acrylate) 10 parts by weight Prepolymer (tolylene diisocyanate urethane acrylate) 8 parts by weight Bisphenol A diacrylate (EO4 mole modification) (bifunctional monomer) 48 parts by weight Isocyanuric acid triacrylate (EO3 mole modification) (Trifunctional monomer) 30 parts by mass Fine particles (cross-linked urethane resin beads; average particle size 6 μm) 1 part by mass (Negami Kogyo Co., Ltd., Art Pearl (registered trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A3:鉛筆硬度HB用)
フッ素原子含有ウレタンアクリレート系紫外線硬化性樹脂 99質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A3: for pencil hardness HB)
Fluorine atom-containing urethane acrylate UV curable resin 99 parts by mass Fine particles (cross-linked urethane resin beads; average particle size 6 μm) 1 part by mass (Negami Kogyo Co., Ltd., Art Pearl (registered trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A4:鉛筆硬度F用)
フッ素原子含有ウレタンアクリレート系紫外線硬化性樹脂 49.5質量部
ペンタエリスリトールトリアクリレート 49.5質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A4: for pencil hardness F)
Fluorine atom-containing urethane acrylate UV curable resin 49.5 parts by mass Pentaerythritol triacrylate 49.5 parts by mass Fine particles (cross-linked urethane resin beads; average particle diameter 6 μm) 1 part by mass (Negami Kogyo Co., Ltd., Art Pearl (registered) Trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A5:鉛筆硬度H用)
ペンタエリスリトールトリアクリレート 99質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A5: for pencil hardness H)
Pentaerythritol triacrylate 99 parts by mass Fine particles (cross-linked urethane resin beads; average particle size 6 μm) 1 part by mass (Negami Kogyo Co., Ltd., Art Pearl (registered trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A6:鉛筆硬度2H用)
ペンタエリスリトールトリアクリレート 49.5質量部
ジペンタエリスリトールヘキサアクリレート 49.5質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A6: for pencil hardness 2H)
Pentaerythritol triacrylate 49.5 parts by mass Dipentaerythritol hexaacrylate 49.5 parts by mass Fine particles (cross-linked urethane resin beads; average particle diameter 6 μm) 1 part by mass (Negami Kogyo Co., Ltd., Art Pearl (registered trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A7:鉛筆硬度3H用)
ジペンタエリスリトールヘキサアクリレート 99質量部
微粒子(架橋ウレタン樹脂ビーズ;平均粒子径6μm) 1質量部
(根上工業株式会社製、アートパール(登録商標))
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A7: for pencil hardness 3H)
99 parts by weight of dipentaerythritol hexaacrylate Fine particles (cross-linked urethane resin beads; average particle size 6 μm) 1 part by weight (Negami Kogyo Co., Ltd., Art Pearl (registered trademark))
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

〔実施例A1〕[He=B、Hm=HB]
図1(a)の様な、単位光学要素2として単位柱状プリズムを採用した光学シート10を作製した。
[Example A1] [He = B, Hm = HB]
The optical sheet 10 which employ | adopted the unit columnar prism as the unit optical element 2 like FIG.

先ず、成形型として単位柱状プリズムからなるプリズム群とは逆凹凸形状の型面を有する金属製のシリンダ状の成形型を用意した。そして、この成形型に、下記単位光学要素形成用の樹脂組成の透明なアクリル系の紫外線硬化性樹脂液を塗布し、更にその上に、厚み188μmの透明な2軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を重ねた状態で、高圧水銀灯からの紫外線照射によって該樹脂液を硬化させた。そして、単位光学要素2として単位柱状プリズムがその稜線を互いに平行に、シート状の本体部1の一方の面1pに配列して成るプリズム群を有する、プリズムシート部材を作製した。   First, a metallic cylinder-shaped mold having an uneven surface opposite to the prism group composed of unit columnar prisms was prepared as a mold. Then, a transparent acrylic ultraviolet curable resin liquid having a resin composition for forming unit optical elements described below was applied to the mold, and a transparent biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 188 μm was further formed thereon. The resin liquid was cured by ultraviolet irradiation from a high pressure mercury lamp. Then, a prism sheet member having a prism group in which unit columnar prisms as unit optical elements 2 are arranged on one surface 1p of the sheet-like main body portion 1 in parallel with each other in the ridgeline was manufactured.

[単位光学要素形成用の樹脂組成]
プレポリマー(カプロラクトン変性ウレタンアクリレート) 11質量部
プレポリマー(トリレンジイソシアネート系ウレタンアクリレート) 8質量部
2官能モノマー(ビスフェノールAジアクリレート) 47質量部
3官能モノマー(グリセリンエポキシトリアクリレート) 30質量部
開始剤 2.5質量部
(2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド)
滑剤(リン酸エステル系滑剤) 1質量部
[Resin composition for unit optical element formation]
Prepolymer (caprolactone-modified urethane acrylate) 11 parts by weight Prepolymer (tolylene diisocyanate urethane acrylate) 8 parts by weight Bifunctional monomer (bisphenol A diacrylate) 47 parts by weight Trifunctional monomer (glycerin epoxy triacrylate) 30 parts by weight Initiator 2.5 parts by mass (2,4,6-trimethylbenzoyldiphenylphosphine oxide)
Lubricant (phosphate ester lubricant) 1 part by mass

なお、本体部1は上記PETフィルムと、該PETフィルムと成形型面上の凸部と間の上記紫外線硬化性樹脂液の硬化物層の厚みに該当する該硬化物層の一部から構成される。また、該硬化物層の残りの厚み部分が、多数の単位柱状プリズムを単位光学要素2とするプリズム群を構成する。また、単位柱状プリズムの形状は、主切断面形状が、頂角90°の直角二等辺三角形で底辺が50μm、高さは一定で25μm、配列周期は50μmである。また、この単位柱状プリズムからなる単位光学要素2は本体部1の一方の面1pを完全に被覆して、同一形状同一寸法同一周期で、単位光学要素を配列したプリズム構造が形成され、この表面が光学要素面Peとなっている。   The main body 1 is composed of the PET film and a part of the cured product layer corresponding to the thickness of the cured product layer of the ultraviolet curable resin liquid between the PET film and the convex portion on the mold surface. The Further, the remaining thickness portion of the cured product layer constitutes a prism group having a number of unit columnar prisms as unit optical elements 2. The unit columnar prism has a main cut surface shape of a right isosceles triangle having an apex angle of 90 °, a base of 50 μm, a constant height of 25 μm, and an arrangement period of 50 μm. Further, the unit optical element 2 composed of the unit columnar prisms completely covers one surface 1p of the main body 1 to form a prism structure in which unit optical elements are arranged with the same shape, the same size and the same period. Is the optical element surface Pe.

次に、上記プリズムシート部材の裏面側である本体部1の他方の面1qに、前記組成A3の凹凸塗膜形成用塗料を塗布し加熱乾燥後、紫外線照射して硬化させて厚み3μmの凹凸塗膜3を形成し、目的とする光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeがB、凹凸塗膜面Pmの硬度HmがHBを示した。
Next, the other surface 1q of the main body 1 that is the back surface side of the prism sheet member is coated with the coating film for forming an uneven film of the composition A3, dried by heating, and then cured by irradiating with ultraviolet rays to form an uneven surface with a thickness of 3 μm. The coating film 3 was formed, and the target optical sheet was produced.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was HB.

〔実施例A2〕[He=B、Hm=F]
実施例A1に於いて、凹凸塗膜形成用塗料を組成A4に変更した他は、実施例A1と同様にして光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度HmはFを示した。
[Example A2] [He = B, Hm = F]
In Example A1, an optical sheet was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film was changed to composition A4.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was F.

〔実施例A3〕[He=B、Hm=H]
実施例A1に於いて、凹凸塗膜形成用塗料を組成A5に変更した他は、実施例A1と同様にして光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度HmはHを示した。
[Example A3] [He = B, Hm = H]
In Example A1, an optical sheet was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film was changed to composition A5.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was H.

〔実施例A4〕[He=B、Hm=2H]
実施例A1に於いて、凹凸塗膜形成用塗料を組成A6に変更した他は、実施例A1と同様にして光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度Hmは2Hを示した。
[Example A4] [He = B, Hm = 2H]
In Example A1, an optical sheet was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film was changed to composition A6.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating film surface Pm was 2H.

〔実施例A5〕[He=B、Hm=3H]
実施例A1に於いて、凹凸塗膜形成用塗料を組成A7に変更した他は、実施例A1と同様にして光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度Hmは3Hを示した。
[Example A5] [He = B, Hm = 3H]
In Example A1, an optical sheet was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film was changed to composition A7.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating film surface Pm was 3H.

〔比較例A1〕[He=B、Hm=2B]
実施例A1に於いて、凹凸塗膜形成用塗料を組成A1に変更した他は、実施例A1と同様にして光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度Heは2Bで、凹凸塗膜面Pmの硬度Hmは2Bを示した。
[Comparative Example A1] [He = B, Hm = 2B]
In Example A1, an optical sheet was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film was changed to composition A1.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was 2B, and the hardness Hm of the uneven coating surface Pm was 2B.

〔実施例A6〕[He=B、Hm=B]
実施例A1に於いて、凹凸塗膜形成用塗料を組成A2に変更した他は、実施例A1と同様にして光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度HmはBを示した。
[Example A6] [He = B, Hm = B]
In Example A1, an optical sheet was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film was changed to composition A2.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was B.

〔実施例B1〕[He=HB、Hm=HB]
実施例A1に於いて、凹凸塗膜形成用塗料は組成A3のままとして、単位光学要素形成用の樹脂組成物を次の組成に変更し、実施例A1と同様にして光学シートを作製した。
光学要素形成用の樹脂組成物は、プレポリマーとしてカプロラクトン変性ウレタンアクリレートとエチレンオキサイド変性ビフェニロキシエチルアクリレートとを用い、これに更に2官能モノマーとしてネオペンチルグリコールメタクリレートとビスフェノールAジアクリレートとを用い、3官能モノマーとしてグリセリンエポキシトリアクリレートを用いたもので、更に開始剤としてビスアシルフォスフィンオキサイド系開始剤及び1−ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184)を添加し、リン酸エステル系滑剤を添加した樹脂組成物である。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度HmはHBを示した。
[Example B1] [He = HB, Hm = HB]
In Example A1, the coating composition for forming an uneven coating film was left as composition A3, the resin composition for forming unit optical elements was changed to the following composition, and an optical sheet was produced in the same manner as in Example A1.
The resin composition for forming an optical element uses caprolactone-modified urethane acrylate and ethylene oxide-modified biphenyloxyethyl acrylate as prepolymers, and further uses neopentyl glycol methacrylate and bisphenol A diacrylate as bifunctional monomers. A glycerin epoxy triacrylate is used as a functional monomer, and a bisacylphosphine oxide-based initiator and 1-hydroxycyclohexyl phenyl ketone (Irgacure (registered trademark) 184) are added as initiators, and a phosphate ester-based lubricant is added. It is the added resin composition.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was HB.

〔実施例B2〜B5〕[He=HB、Hm=HB〜3H]
実施例B1において、凹凸塗膜形成用塗料を、組成A4〜A7にそれぞれ変更した他は、実施例B1と同様にして光学シートを作製した。
[Examples B2 to B5] [He = HB, Hm = HB to 3H]
In Example B1, an optical sheet was produced in the same manner as in Example B1, except that the coating for forming an uneven coating film was changed to compositions A4 to A7.

〔比較例B1〜B2〕[He=HB、Hm=2B〜B]
実施例B1において、凹凸塗膜形成用塗料を、組成A1〜A2にそれぞれ変更した他は、実施例B1と同様にして光学シートを作製した。
[Comparative Examples B1-B2] [He = HB, Hm = 2B-B]
An optical sheet was produced in the same manner as in Example B1, except that the uneven coating film-forming coating material was changed to compositions A1 and A2 in Example B1.

〔実施例C〜D系列及び比較例C〜D系列〕[He=F〜H、Hm=2B〜3H]
光学要素面Peの硬度HeがFおよびHとなるように、単位光学要素形成用の樹脂組成物を調整して、実施例A1と同様にして作成した、プリズムシート部材の裏面側である本体部1の他方の面1qに、前記した硬度が異なる組成A1〜A7の凹凸塗膜形成用塗料を塗布し加熱乾燥後、紫外線照射して硬化させて厚み3μmの凹凸塗膜3を形成し、実施例A1と同様にして、目的とする光学シートを作製した。
[Examples C to D series and Comparative examples C to D series] [He = F to H, Hm = 2B to 3H]
A main body part on the back side of the prism sheet member prepared in the same manner as in Example A1 by adjusting the resin composition for forming the unit optical element so that the hardness He of the optical element surface Pe becomes F and H The other surface 1q of 1 is coated with a coating film for forming an uneven coating film having compositions A1 to A7 having different hardnesses, heated and dried, and then cured by irradiation with ultraviolet rays to form an uneven coating film 3 having a thickness of 3 μm. A target optical sheet was produced in the same manner as in Example A1.

〔比較例E系列〕[He=HB〜F、Hm=2B〜3H]
実施例及び比較例のB系列、並びに実施例及び比較例のC系列において、凹凸塗膜3中の架橋ウレタン樹脂ビーズを、架橋アクリル樹脂ビーズ(平均粒子径5μm)に変更した他は、同様にして、目的とする光学シートを作製した。
[Comparative Example E Series] [He = HB to F, Hm = 2B to 3H]
In the B series of Examples and Comparative Examples, and the C series of Examples and Comparative Examples, except that the crosslinked urethane resin beads in the concavo-convex coating film 3 were changed to crosslinked acrylic resin beads (average particle diameter of 5 μm). Thus, a target optical sheet was produced.

〔性能評価〕
上記の各実施例及び各比較例で得た光学シートの耐擦傷性を、面光源装置に組み込んで導光板32の平滑な出光面Ppに凹凸塗膜面Pmが接触する状態での、接触面の耐擦傷性を評価するために、導光板32に見立てた透明な樹脂板との接触状態での接触面の傷付き具合で耐擦傷性を評価した。
また、光学シートと、上記アクリル樹脂板の鉛筆硬度を測定した。光学要素面Peの鉛筆硬度試験は、鉛筆をプリズム稜線方向に移動させて行った。
また、面光源装置に組み込む前段階での、光学シート10自身の表裏面が接触状態での耐擦傷性も評価した。
[Performance evaluation]
The contact surface in the state where the uneven coating surface Pm is in contact with the smooth light exit surface Pp of the light guide plate 32 by incorporating the scratch resistance of the optical sheet obtained in each of the above Examples and Comparative Examples into the surface light source device. In order to evaluate the scratch resistance, the scratch resistance was evaluated based on the degree of scratching of the contact surface in the contact state with the transparent resin plate assumed to be the light guide plate 32.
Moreover, the pencil hardness of the optical sheet and the acrylic resin plate was measured. The pencil hardness test of the optical element surface Pe was performed by moving the pencil in the prism ridge direction.
Moreover, the scratch resistance in the state in which the front and back surfaces of the optical sheet 10 itself were in contact with each other before the incorporation into the surface light source device was also evaluated.

(1)鉛筆硬度は、JIS K5600−5−4(1999年版)に準拠して、荷重1000g、速度1mm/sの条件で測定する。
(2)耐擦傷性は、保存、運搬時の振動を想定した振動試験を行った後の、接触面の傷の発生状況によって評価する。
(1) The pencil hardness is measured under the conditions of a load of 1000 g and a speed of 1 mm / s according to JIS K5600-5-4 (1999 edition).
(2) Scratch resistance is evaluated by the occurrence of scratches on the contact surface after a vibration test assuming vibration during storage and transportation.

<振動試験>
導光板に見立てた寸法が縦110mm×横100mm×厚さ3mmの透明な第1のアクリル樹脂板上に、寸法が縦100mm×横90mmの光学シートを載置する。この際、光学シートは、凹凸塗膜面Pmが第1のアクリル樹脂板の面と対向するように設置する。光学シート四辺の周囲に光学シートの厚みより250μm厚いスペーサを、額縁状に第1のアクリル樹脂板に固定する。光学シートは、四辺のスペーサの間で、光学シート面に平行な水平方向に移動可能な状態であり、その最大移動量は各辺に平行方向で5mmとした。
次に、第1のアクリル樹脂板上に、上記スペーサを介して、寸法が縦110mm×横100mm×厚さ3mmの透明な第2のアクリル樹脂板を重ねて、両方のアクリル樹脂板を外側から四辺周囲を粘着テープで固定して、光学シートが、上下は第1及び第2のアクリル樹脂板によって囲われ、左右はスペーサによって囲われた状態とする。
そして、光学シートが、第1及び第2のアクリル樹脂板の間で移動可能な状態であり、なおかつ、第1及び第2のアクリル樹脂板の間に目視で異物が混入してないことを、確認した上で、振動試験機の加振台の上に載せて固定した状態で、振動試験を行う。
振動試験は、上記の光学シートが囲われた2枚のアクリル樹脂板を、振動試験機(アイデッスク株式会社製、BF−50UL)の水平な加振台の上に固定した状態で、上下及び左右の3軸同時振動を加える。振動は、加速度7.3G、周波数67Hzの振動を20分間加える。
<Vibration test>
An optical sheet having dimensions of 100 mm in length and 90 mm in width is placed on a transparent first acrylic resin plate having dimensions of 110 mm in length, 100 mm in width, and 3 mm in thickness as if viewed from the light guide plate. At this time, the optical sheet is installed so that the uneven coating film surface Pm faces the surface of the first acrylic resin plate. A spacer 250 μm thicker than the thickness of the optical sheet is fixed to the first acrylic resin plate in a frame shape around the four sides of the optical sheet. The optical sheet is movable in the horizontal direction parallel to the optical sheet surface between the spacers on the four sides, and the maximum movement amount is 5 mm in the direction parallel to each side.
Next, on the first acrylic resin plate, a transparent second acrylic resin plate having dimensions of 110 mm in length, 100 mm in width, and 3 mm in thickness is stacked via the spacer, and both acrylic resin plates are placed from the outside. The periphery of the four sides is fixed with an adhesive tape, and the optical sheet is surrounded by the first and second acrylic resin plates on the top and bottom and surrounded by the spacers on the left and right.
Then, after confirming that the optical sheet is movable between the first and second acrylic resin plates and that no foreign matter is visually mixed between the first and second acrylic resin plates. The vibration test is performed in a state where the vibration test machine is mounted on the vibration table and fixed.
In the vibration test, two acrylic resin plates surrounded by the optical sheet were fixed on a horizontal vibration table of a vibration tester (manufactured by IDEX Co., Ltd., BF-50UL). 3 axis simultaneous vibration is added. The vibration is an acceleration of 7.3 G and a frequency of 67 Hz for 20 minutes.

<第1のアクリル樹脂板の硬度>
上記第1のアクリル樹脂板は、鉛筆硬度を変えて振動試験を行う。鉛筆硬度がH、F、およびHBのものについては市販品を用い、Bについては、HBの市販品の表面に、前記した凹凸塗膜形成用の組成A3から微粒子のみを除いた組成の塗料で塗膜を形成したものを用いた。
<Hardness of the first acrylic resin plate>
The first acrylic resin plate is subjected to a vibration test by changing the pencil hardness. For those having a pencil hardness of H, F, and HB, a commercially available product is used. For B, a paint having a composition in which only fine particles are removed from the above-described composition A3 for forming an uneven coating film on the surface of a commercially available product of HB. What formed the coating film was used.

<光学シート単体の耐擦傷性を評価するための振動試験>
光学シート10を面光源装置に組み込む前段階としての基本的性能として、光学シートがその表裏面が接触状態となって振動を受けたときの耐擦傷性は以下のようにして評価する。
上記振動試験のおいて、前記第1のアクリル樹脂板の上に載置する、光学シートは10枚を、それぞれの光学シートの各光学要素面を下側に向けて且つ各単位光学要素つまり単位柱状プリズムの配列方向を同じ方向に揃えて重ね、更にその上から第2のアクリル樹脂板を重ねて、四辺周囲を粘着テープで固定する。これを、振動試験機の加振台の上に載せて、更にその上から荷重10gの重りを載せて固定した状態で、振動試験を行う。振動試験の振動条件は上記と同じである。
<Vibration test for evaluating the scratch resistance of a single optical sheet>
As basic performance as a step before incorporating the optical sheet 10 into the surface light source device, scratch resistance when the optical sheet is subjected to vibration with the front and back surfaces in contact with each other is evaluated as follows.
In the vibration test, 10 optical sheets are placed on the first acrylic resin plate, each optical element surface of each optical sheet faces downward, and each unit optical element, that is, unit. The alignment direction of the columnar prisms is aligned in the same direction and stacked, and a second acrylic resin plate is stacked thereon, and the four sides are fixed with an adhesive tape. The vibration test is performed in a state in which this is placed on a vibration table of a vibration tester and a weight with a load of 10 g is further placed thereon and fixed. The vibration conditions for the vibration test are the same as above.

<傷の評価>
振動を加えた後の光学シート及び第1のアクリル樹脂板について、その表面具合を倍率500倍の顕微鏡による目視での観察により、傷の発生状況の有無で優劣を評価する。
a)凹凸塗膜面Pmは、面積9mm2の正方形の領域を観察して、傷が無い(0個)場合は良好(OK)、1箇所以上の場合は不良(NG)と判定した。
b)導光板の出光面Ppは、第1のアクリル樹脂板の面積9mm2の正方形の領域を観察して、傷が無い(0個)場合は良好(OK)、1箇所以上の場合は不良(NG)と判定した。
c)光学要素面Peは、単位柱状プリズムの稜線部分の長さ3mmに亘った領域を観察し、傷が無い(0個)場合は良好(OK)、1箇所以上の場合は不良(NG)と判定した。
d)総合評価として、互いに接触した面のそれぞれの傷の評価から、次のようにした。図4及〜図6に総合評価の結果を示す。
・接触面が共にOKのものを良好(○印)、
・凹凸塗膜面PmのみNGのものは、やや良好(上向き三角の△印)、
・第1のアクリル樹脂板のみNGのものは、やや良好(下向き三角の▽印)、
・接触面が共にNGのものを不良(×印)とした。
<Scratch evaluation>
For the optical sheet and the first acrylic resin plate after the vibration is applied, the surface condition is evaluated by visual observation with a microscope having a magnification of 500 times, and the superiority or inferiority is evaluated by the presence or absence of the occurrence of scratches.
a) As for the concavo-convex coating film surface Pm, a square region having an area of 9 mm 2 was observed, and when there were no scratches (0 pieces), it was judged good (OK), and when there were more than one place, it was judged bad (NG).
b) As for the light exit surface Pp of the light guide plate, a square region having an area of 9 mm 2 of the first acrylic resin plate is observed. If there is no scratch (0), it is good (OK), and if it is more than one place, it is bad. It was determined as (NG).
c) As for the optical element surface Pe, an area extending over a length of 3 mm of the ridge line portion of the unit columnar prism is observed. When there is no scratch (0), it is good (OK), and when it is one or more, it is bad (NG). It was determined.
d) As a comprehensive evaluation, from the evaluation of each scratch on the surfaces in contact with each other, the following was performed. 4 and 6 show the results of the comprehensive evaluation.
・ Both contact surfaces are good (circle),
・ Only concavo-convex film surface Pm is NG, slightly good (upward triangular triangle mark),
・ Only the first acrylic resin plate is NG, a little better (downward triangle ▽ mark),
・ If the contact surfaces were both NG, the defect was marked as x.

〔性能比較〕
微粒子5としてウレタン樹脂ビーズを用い、導光板に見立てた第1のアクリル樹脂板との接触状態での評価を、図4に示し、微粒子5としてウレタン樹脂ビーズに代えてアクリル樹脂ビーズを用いた場合を、図5に示す。図中、横軸が導光板の出光面Ppの硬度Hpに対応し、縦軸が凹凸塗膜面Pmの硬度Hmに対応する。
[Performance comparison]
When urethane resin beads are used as the fine particles 5 and evaluation is made in a contact state with the first acrylic resin plate that looks like a light guide plate, FIG. 4 shows the case where acrylic resin beads are used as the fine particles 5 instead of the urethane resin beads. Is shown in FIG. In the figure, the horizontal axis corresponds to the hardness Hp of the light exit surface Pp of the light guide plate, and the vertical axis corresponds to the hardness Hm of the uneven coating surface Pm.

図4のように、硬度Hmと硬度Hpとが前記した特定の条件を満たす領域では、耐擦傷性が良好であることが判る。図中、領域Eaが、硬度Hp+2≧硬度Hm≧硬度Hp+1となる領域である。   As shown in FIG. 4, it can be seen that the scratch resistance is good in the region where the hardness Hm and the hardness Hp satisfy the specific conditions described above. In the drawing, a region Ea is a region where hardness Hp + 2 ≧ hardness Hm ≧ hardness Hp + 1.

次に、図5に示すとおり、第1のアクリル樹脂板との接触状態において、微粒子5がウレタン樹脂ビーズではなく、アクリル樹脂ビーズである場合は、図4中で良好な硬度関係の範囲内でも、耐擦傷性は、ウレタン樹脂ビーズの場合ほどには、良い結果が得られない。アクリル樹脂ビーズの場合は、良い結果が得られる条件が非常に狭く、図5に示す結果において、わずかに、硬度Hm=F且つ硬度Hp=HBのときと、硬度Hm=H且つ硬度Hp=Hのときだけであり、それも接触面の両方が良い○ではなく、片方の出光面Ppのみが良い△である。   Next, as shown in FIG. 5, when the fine particles 5 are not urethane resin beads but acrylic resin beads in the contact state with the first acrylic resin plate, even within the range of good hardness relationship in FIG. The scratch resistance is not as good as that of urethane resin beads. In the case of acrylic resin beads, the conditions under which good results are obtained are very narrow. In the results shown in FIG. 5, the hardness Hm = F and the hardness Hp = HB are slightly different from the hardness Hm = H and the hardness Hp = H. This is only when the contact surface is good, and only one light exit surface Pp is good.

また、面光源装置に組み込まれる前段階での、光学シート10自身での表裏面の接触による耐擦傷性は、図6に示すとおりとなった。図中、領域Ebが、硬度Hm≧硬度Heとなる領域であり、領域Ecが、硬度He+2≧硬度Hm≧硬度He+1となる領域である。硬度Hmと硬度Heとが前記した特定の条件を満たす領域では、耐擦傷性が良好であることが判る。   In addition, the scratch resistance due to the contact between the front and back surfaces of the optical sheet 10 itself before being incorporated into the surface light source device was as shown in FIG. In the drawing, a region Eb is a region where hardness Hm ≧ hardness He, and a region Ec is a region where hardness He + 2 ≧ hardness Hm ≧ hardness He + 1. It can be seen that the scratch resistance is good in the region where the hardness Hm and the hardness He satisfy the specific conditions described above.

1 本体部
1p 一方の面
1q 他方の面
2 単位光学要素
3 凹凸塗膜
4 微小突起
5 微粒子
10 光学シート
30 面光源装置
31 光源
32 導光板
40 液晶表示装置
41 液晶パネル
He 光学要素面の鉛筆硬度
Hm 凹凸塗膜面の鉛筆硬度
Hp 導光板の出光面の鉛筆硬度
nd 法線
Pe 光学要素面
Pm 凹凸塗膜面
Pp 導光板の出光面
V 観察者

DESCRIPTION OF SYMBOLS 1 Main-body part 1p One surface 1q The other surface 2 Unit optical element 3 Uneven coating film 4 Microprotrusion 5 Fine particle 10 Optical sheet 30 Surface light source device 31 Light source 32 Light guide plate 40 Liquid crystal display device 41 Liquid crystal panel He Pencil hardness of an optical element surface Hm Pencil hardness of uneven surface Hp Pencil hardness of light exit surface of light guide plate nd Normal Pe Optical element surface Pm Convex surface Pp Light exit surface V of light guide plate

Claims (4)

シート状の本体部の一方の面に単位光学要素を配列してなり、該本体部の他方の面に、微小突起によって表面が粗面を呈する凹凸塗膜を有する光学シートであって、
前記微小突起は微粒子としてウレタン樹脂ビーズを含み、
前記配列された単位光学要素で形成される光学要素面の硬度Heと、前記凹凸塗膜の粗面を成す凹凸塗膜面の硬度Hmとについて、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)した鉛筆硬度で、硬度Hmが硬度He以上(硬度Hm≧硬度He)である、光学シート。
An optical sheet having a concavo-convex coating film in which unit optical elements are arranged on one surface of a sheet-like main body, and the other surface of the main body has a rough surface due to microprotrusions,
The microprojections include urethane resin beads as fine particles,
About the hardness He of the optical element surface formed by the arrayed unit optical elements, and the hardness Hm of the concavo-convex coating film surface forming the rough surface of the concavo-convex coating film,
An optical sheet having a pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s) and having a hardness Hm equal to or higher than hardness He (hardness Hm ≧ hardness He).
上記硬度He及び硬度Hmの関係が、更に、鉛筆硬度スケール上で1単位硬い硬度を+1としたときに、硬度He+2≧硬度Hm≧硬度He+1である、請求項1記載の光学シート。   2. The optical sheet according to claim 1, wherein the relationship between the hardness He and the hardness Hm further satisfies the following formula: hardness He + 2 ≧ hardness Hm ≧ hardness He + 1, where 1 unit hardness on the pencil hardness scale is +1. 光源と、該光源からの光を入光し平滑な出光面から出光する導光板と、該導光板の出光面に対向して配置される光学シートと、を少なくとも備えた、面光源装置であって、
前記光学シートは、シート状の本体部の一方の面に単位光学要素を配列してなり、該本体部の他方の面に、微小突起によって表面が粗面を呈する凹凸塗膜を有し、
前記微小突起は微粒子としてウレタン樹脂ビーズを含み、
前記導光板の出光面の硬度Hpと、前記凹凸塗膜の粗面を成す凹凸塗膜面の硬度Hmとについて、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)した鉛筆硬度で、
硬度Hp及び硬度Hmの関係が、鉛筆硬度スケール上で1単位硬い硬度を+1としたときに、硬度Hp+2≧硬度Hm≧硬度Hp+1であり、
前記凹凸塗膜面を前記導光板の出光面に対向して配置されている、
面光源装置。
A surface light source device comprising at least a light source, a light guide plate that receives light from the light source and emits light from a smooth light exit surface, and an optical sheet disposed to face the light exit surface of the light guide plate. And
The optical sheet is formed by arranging unit optical elements on one surface of a sheet-like main body, and has a concavo-convex coating whose surface is roughened by microprotrusions on the other surface of the main body.
The microprojections include urethane resin beads as fine particles,
About the hardness Hp of the light exit surface of the light guide plate and the hardness Hm of the concavo-convex coating film surface forming the rough surface of the concavo-convex coating film,
With pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s),
When the relationship between the hardness Hp and the hardness Hm is +1 when the hardness of one unit on the pencil hardness scale is +1, the hardness Hp + 2 ≧ the hardness Hm ≧ the hardness Hp + 1,
The uneven coating film surface is disposed to face the light exit surface of the light guide plate,
Surface light source device.
請求項3記載の面光源装置と、該面光源装置の出光面上に載置した透過型液晶表示パネルとを、少なくとも備えた液晶表示装置。
A liquid crystal display device comprising at least the surface light source device according to claim 3 and a transmissive liquid crystal display panel placed on a light output surface of the surface light source device.
JP2012032752A 2012-02-17 2012-02-17 Optical sheet, surface light source device and liquid crystal display device Pending JP2013171056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032752A JP2013171056A (en) 2012-02-17 2012-02-17 Optical sheet, surface light source device and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032752A JP2013171056A (en) 2012-02-17 2012-02-17 Optical sheet, surface light source device and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2013171056A true JP2013171056A (en) 2013-09-02

Family

ID=49265048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032752A Pending JP2013171056A (en) 2012-02-17 2012-02-17 Optical sheet, surface light source device and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2013171056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069097A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Optical sheet, surface light source device, display device, and manufacturing method for the optical sheet
JP2015192107A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 Backside protective sheet for solar batteries, manufacturing method thereof, and solar battery module
WO2015182412A1 (en) * 2014-05-26 2015-12-03 浜松ホトニクス株式会社 Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310775A (en) * 1999-04-27 2000-11-07 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2003107219A (en) * 2001-09-28 2003-04-09 Keiwa Inc Light diffusing sheet and back light unit using the same
JP3913870B2 (en) * 1997-08-26 2007-05-09 大日本印刷株式会社 Optical sheet, optical sheet laminate, surface light source device, and transmissive display device
JP2009037204A (en) * 2007-03-27 2009-02-19 Dainippon Printing Co Ltd Sheet-shaped optical member, resin composition for optical sheet, optical sheet and process for producing the same
JP2009103884A (en) * 2007-10-23 2009-05-14 Goyo Paper Working Co Ltd Punchable abrasion flaw-resistant double layer lens film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913870B2 (en) * 1997-08-26 2007-05-09 大日本印刷株式会社 Optical sheet, optical sheet laminate, surface light source device, and transmissive display device
JP2000310775A (en) * 1999-04-27 2000-11-07 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2003107219A (en) * 2001-09-28 2003-04-09 Keiwa Inc Light diffusing sheet and back light unit using the same
JP2009037204A (en) * 2007-03-27 2009-02-19 Dainippon Printing Co Ltd Sheet-shaped optical member, resin composition for optical sheet, optical sheet and process for producing the same
JP2009103884A (en) * 2007-10-23 2009-05-14 Goyo Paper Working Co Ltd Punchable abrasion flaw-resistant double layer lens film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069097A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Optical sheet, surface light source device, display device, and manufacturing method for the optical sheet
JP2015192107A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 Backside protective sheet for solar batteries, manufacturing method thereof, and solar battery module
WO2015182412A1 (en) * 2014-05-26 2015-12-03 浜松ホトニクス株式会社 Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
JP2015224885A (en) * 2014-05-26 2015-12-14 浜松ホトニクス株式会社 Optical plate, light irradiation device, optical measurement device, light irradiation method and optical measurement method
CN106537116A (en) * 2014-05-26 2017-03-22 浜松光子学株式会社 Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
US10180525B2 (en) 2014-05-26 2019-01-15 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
US20190121013A1 (en) * 2014-05-26 2019-04-25 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
US10495804B2 (en) 2014-05-26 2019-12-03 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
CN106537116B (en) * 2014-05-26 2020-05-19 浜松光子学株式会社 Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method

Similar Documents

Publication Publication Date Title
WO2018164088A1 (en) Optical sheet and backlight unit
KR101551588B1 (en) Resin composition for optical sheet, optical sheet, and process for producing the optical sheet
US9140831B2 (en) Optical sheet, optical member, surface light source device, and liquid crystal display device
JP5665509B2 (en) Prism sheet, active energy ray-curable resin composition for optical member, surface light source device, and liquid crystal display device
JP5196335B2 (en) Optical sheet, optical member, surface light source device, and liquid crystal display device
JP5789931B2 (en) Prism sheet, surface light source device and liquid crystal display device
JP5343492B2 (en) Optical sheet
JP2010160437A (en) Optical sheet, back light unit and display
JP5182639B2 (en) Optical sheet, backlight unit and display device
JP2013171056A (en) Optical sheet, surface light source device and liquid crystal display device
JP2011021114A (en) Ionizing radiation-curable resin composition for optical sheet, and optical sheet
JP5961959B2 (en) Optical sheet, surface light source device, and liquid crystal display device
JP2012128178A (en) Optical sheet, surface light source device and liquid crystal display device
JP2012198423A (en) Optical sheet, surface light source device and image display device
JP2012133072A (en) Optical sheet, face light source device, and liquid crystal display apparatus
JP2016212191A (en) Prism sheet, surface light source device, image source unit, and liquid crystal display device
JP2016177902A (en) Surface light source device, video source unit, liquid crystal display device, and optical sheet
TWI685705B (en) Buffer sheet and flat panel display
US20210116628A1 (en) Optical sheet and backlight unit
JP2015200898A (en) Optical sheet, surface light source device, and liquid crystal display device
JP5971390B2 (en) Optical sheet, surface light source device, and image display device
JP2016090945A (en) Optical member, method for manufacturing optical member, surface light source device, image source unit, and liquid crystal display device
JP6611002B2 (en) Surface light source device and image display device
JP5699328B2 (en) Optical sheet, surface light source device, and liquid crystal display device
KR20120033902A (en) Condensing type optical sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160928