JP2013169496A - Method for packing catalyst in fixed bed multitubular reactor - Google Patents

Method for packing catalyst in fixed bed multitubular reactor Download PDF

Info

Publication number
JP2013169496A
JP2013169496A JP2012033792A JP2012033792A JP2013169496A JP 2013169496 A JP2013169496 A JP 2013169496A JP 2012033792 A JP2012033792 A JP 2012033792A JP 2012033792 A JP2012033792 A JP 2012033792A JP 2013169496 A JP2013169496 A JP 2013169496A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
reactor
fixed bed
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033792A
Other languages
Japanese (ja)
Inventor
Toyomitsu Shimizu
豊満 清水
Tadashi Abe
忠 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012033792A priority Critical patent/JP2013169496A/en
Publication of JP2013169496A publication Critical patent/JP2013169496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst packing method for packing reaction tubes equipped with temperature measuring units in a fixed bed multitubular reactor, with catalysts in consideration of variation in reaction activity, and exhibiting the whole performance of the catalysts to the maximum without causing a local temperature rise in the whole fixed bed multitubular reactor.SOLUTION: A catalyst packing method includes packing reaction tubes equipped with temperature measuring units, with catalysts having high reaction activity out of all catalysts to be packed in a fixed bed multitubular reactor when packing the reactor with solid catalysts.

Description

本発明は固体触媒を用いた固定床多管式反応器における触媒充填方法に関するものである。   The present invention relates to a catalyst filling method in a fixed bed multi-tubular reactor using a solid catalyst.

国際公開第2005/005037号(特許文献1)には、触媒が充填された固定床多管式反応器の反応管長手方向の温度分布を正確にかつ実用的に測定し、ホットスポット部の位置を把握することで、酸化反応を安定にしかも最適条件での操業が可能となることが開示されている。   International Publication No. 2005/005037 (Patent Document 1) accurately and practically measures the temperature distribution in the longitudinal direction of a reaction tube of a fixed bed multitubular reactor packed with a catalyst, It is disclosed that, by grasping the above, it is possible to stabilize the oxidation reaction and operate under optimum conditions.

また特開平10−309457号公報(特許文献2)には、温度測定ユニットを備えている管形反応器および温度測定ユニットを備えていない管形反応器を導入される固体粒子の質量が当該の管形反応器の自由横断面積に対して正比例し、かつ、管形反応器中の流れ抵抗または圧力降下、ひいては平均直線速度が自由横断面積に比例するガス流量が管を通過する際、同一であるように設定する装置および方法が記載されている。   JP-A-10-309457 (Patent Document 2) describes the mass of solid particles introduced into a tubular reactor equipped with a temperature measuring unit and a tubular reactor equipped with no temperature measuring unit. When the gas flow through the tube is directly proportional to the free cross-sectional area of the tubular reactor and the flow resistance or pressure drop in the tubular reactor, and thus the average linear velocity is proportional to the free cross-sectional area, An apparatus and method for setting up as such is described.

特開平3−176440号公報(特許文献3)には、触媒組成を変動させて調整した活性の異なる複数個の触媒を原料ガス入口側から出口側に向かって活性がより高くなるように充填する方法が開示されている。   In Japanese Patent Laid-Open No. 3-176440 (Patent Document 3), a plurality of catalysts having different activities adjusted by varying the catalyst composition are charged so that the activity becomes higher from the raw material gas inlet side toward the outlet side. A method is disclosed.

また特開2002−212127号公報(特許文献4)には、固定床管型反応器にてイソブチレンおよび/または第3級ブタノールを固体酸化触媒の存在下に分子状酸素で気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法において、触媒層中に熱媒浴の温度と触媒層の温度との差が50℃を越える箇所が1箇所もなく、かつその温度差が15〜50℃となる高温域を2箇所以上設ける方法が開示されている。   Japanese Patent Laid-Open No. 2002-212127 (Patent Document 4) discloses that isobutylene and / or tertiary butanol is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of a solid oxidation catalyst in a fixed bed tubular reactor. In the method for producing methacrolein and methacrylic acid, there is no place in the catalyst layer where the difference between the temperature of the heat medium bath and the temperature of the catalyst layer exceeds 50 ° C., and the temperature difference is 15 to 50 ° C. A method of providing two or more high temperature regions is disclosed.

さらに、特開平8−92147号公報(特許文献5)には、熱媒浴を備えた多管式固定床反応器を用いて、プロピレンをアクロレインに気相酸化する際に、熱媒浴の温度が反応器の入口部と出口部の間で2〜10℃上がるように熱媒の流れを制御する方法が開示されている。   Further, JP-A-8-92147 (Patent Document 5) describes the temperature of a heat medium bath when propylene is vapor-phase oxidized to acrolein using a multi-tubular fixed bed reactor equipped with a heat medium bath. Discloses a method of controlling the flow of the heating medium so that the temperature rises by 2 to 10 ° C. between the inlet and outlet of the reactor.

国際公開第2005/005037号International Publication No. 2005/005037 特開平10−309457号公報Japanese Patent Laid-Open No. 10-309457 特開平3−176440号公報Japanese Patent Laid-Open No. 3-176440 特開2002−212127号公報JP 2002-212127 A 特開平8−92147号公報JP-A-8-92147

しかしながら、現実的には固定床多管式反応器に充填する全ての触媒の反応活性は同一ではなく、少なからずバラツキが存在する。従って、自ずと多数の反応管から構成されている固定床多管式反応器における個々の反応管には反応活性が異なる触媒が充填されることになり、従来の技術では固定床多管式反応器に内蔵されている多数の反応管の内、温度測定ユニットが備え付けられている反応管は適正な温度になっているか、あるいは局所的な温度上昇(ホットスポット)が発生したかどうか判別することは可能であるが、温度測定ユニットが無い大多数の反応管の温度はどうなっているか、また局所的な温度上昇が発生したかどうかも判別することはできない。万一、局所的な温度上昇が発生した場合には触媒の活性低下のおそれもあり、さらに、固定床多管式反応器に充填された全触媒の性能を最大限に発揮させるための温度制御も不十分とならざるを得ない宿命がある。   However, in reality, the reaction activity of all the catalysts packed in the fixed bed multitubular reactor is not the same, and there are not a few variations. Accordingly, the individual reaction tubes in the fixed bed multitubular reactor, which is composed of a large number of reaction tubes, are naturally filled with catalysts having different reaction activities. It is possible to determine whether the reaction tube equipped with the temperature measurement unit among the many reaction tubes built in is at an appropriate temperature or whether a local temperature rise (hot spot) has occurred. Although it is possible, it is not possible to determine what the temperature of the majority of reaction tubes without a temperature measuring unit is, and whether a local temperature rise has occurred. In the unlikely event that a local temperature rise occurs, the activity of the catalyst may be reduced, and furthermore, temperature control to maximize the performance of all the catalysts packed in the fixed bed multitubular reactor However, there is a fate that must be inadequate.

固定床多管式反応器に充填する固体触媒の反応活性にバラツキが生じる要因としては、触媒を製造する際の原材料品質の僅かな変動、原材料の混合量および混合比の僅かな変動、触媒前駆体がスラリーの場合にはその混合状態の僅かな変動、スラリーを乾燥する場合には温度、圧力、処理時間などの僅かな変動、焼成を行う場合には温度、処理時間などの僅かな変動などが挙げられる。これに加えて、反応器への充填に必要な全量の触媒を1回の製造で生産できる場合は稀で、複数回の製造で生産される場合が多いことも触媒の反応活性にバラツキが生じる要因となっている。   Factors that may cause variations in the reaction activity of the solid catalyst packed in the fixed bed multi-tubular reactor include slight fluctuations in raw material quality, slight fluctuations in the mixing amount and mixing ratio of raw materials, catalyst precursor When the body is a slurry, a slight change in the mixing state, when the slurry is dried, a slight change in temperature, pressure, processing time, etc., when performing a baking, a slight change in temperature, processing time, etc. Is mentioned. In addition to this, it is rare that the entire amount of catalyst necessary for filling the reactor can be produced by a single production, and it is often produced by a plurality of productions, resulting in variations in the reaction activity of the catalyst. It is a factor.

これらのバラツキを回避すべく、固定床多管式反応器へ充填する全ての触媒を混合して反応活性を均一化することも考えられるが、現実的に固体触媒を均一に混合することは至難の業と言わざるを得ない。たとえば、内径25mm、長さ5mの反応管5万本から成る固定床多管式反応器に、嵩密度1g/cmの固体触媒を充填する場合、反応管1本当たりの触媒充填量は約2.5kgであるが、反応器に充填する全触媒量は約123トンにもなり、123トンの触媒を均一に混合することは現時的に不可能である。 In order to avoid these variations, it is possible to mix all the catalysts packed in the fixed bed multitubular reactor to make the reaction activity uniform. However, it is extremely difficult to actually mix the solid catalyst uniformly. I have to say that For example, when a solid catalyst having a bulk density of 1 g / cm 3 is charged into a fixed bed multitubular reactor composed of 50,000 reaction tubes having an inner diameter of 25 mm and a length of 5 m, the catalyst filling amount per reaction tube is about Although it is 2.5 kg, the total amount of catalyst charged in the reactor is about 123 tons, and it is currently impossible to uniformly mix 123 tons of catalyst.

固定床多管式反応器に充填される触媒の活性は、品質管理、触媒製造運転管理および性能規格合否判定などのため、触媒製造Lot毎に測定されるのが一般的であるので、どのLotの触媒の反応活性が一番高いか、逆に低いのか、平均的反応活性の触媒はどれか、更に全Lotの反応活性分布は容易にわかる。   Since the activity of the catalyst charged in the fixed bed multi-tubular reactor is generally measured for each catalyst production lot for quality control, catalyst production operation management, performance standard pass / fail judgment, etc., Which catalyst has the highest or lowest reaction activity, which catalyst has an average reaction activity, and the reaction activity distribution of all lots is easily known.

しかしながら、これまで温度測定ユニットが備えられた反応管にどのような反応活性を有する触媒を充填すべきか意図したものは無く、また実際にどのような反応活性を有する触媒が充填されたかも必ずしも明確ではなかった。   However, there has been no intention of what kind of reaction activity should be filled in a reaction tube equipped with a temperature measuring unit so far, and it is not always clear what kind of reaction activity is actually filled. It wasn't.

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、固定床多管式反応器において、温度測定ユニットが備え付けられた反応管に反応活性のバラツキを考慮した触媒を充填し、固定床多管式反応器全体で局所的な温度上昇を招くことなく、しかも触媒全体の性能を最大限に発揮させる触媒充填方法を提供することである。特に、大きな発熱反応を伴う気相接触酸化反応において非常に有効な触媒充填方法である。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to consider variation in reaction activity in a reaction tube equipped with a temperature measurement unit in a fixed-bed multitubular reactor. It is an object of the present invention to provide a catalyst filling method in which the catalyst is charged and the performance of the entire catalyst is maximized without causing a local temperature rise in the entire fixed bed multitubular reactor. In particular, it is a catalyst filling method that is very effective in a gas phase catalytic oxidation reaction involving a large exothermic reaction.

本発明は、固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で、高い反応活性を有する触媒(さらには、平均的な反応活性を有する触媒、および/または、低い反応活性を有する触媒)をそれぞれの触媒層の温度測定ユニットが備え付けられた反応管に充填し、これらの温度を測定することによって反応器に充填された全ての触媒層の温度適正化と局所的な温度上昇の発生を防止し、触媒性能を最大限に発揮させる触媒充填方法に係わるものである。すなわち、本発明は以下のとおりである。   In the present invention, when a solid catalyst is charged into a fixed bed multitubular reactor, among all the catalysts charged in the reactor, a catalyst having a high reaction activity (further, a catalyst having an average reaction activity). , And / or a catalyst having a low reaction activity) is packed in a reaction tube equipped with a temperature measuring unit of each catalyst layer, and by measuring these temperatures, all the catalyst layers filled in the reactor are measured. The present invention relates to a catalyst filling method that optimizes the temperature and prevents the occurrence of local temperature rise and maximizes the catalyst performance. That is, the present invention is as follows.

本発明の触媒充填方法は、固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で高い反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填することを特徴とする。   In the catalyst filling method of the present invention, when a fixed bed multitubular reactor is filled with a solid catalyst, a temperature measuring unit is provided with a catalyst having a high reaction activity among all the catalysts charged in the reactor. The reaction tube is filled.

本発明の触媒充填方法において、固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で平均的な反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填することが好ましい。   In the catalyst charging method of the present invention, when a solid catalyst is charged into a fixed bed multitubular reactor, a temperature measuring unit is provided with a catalyst having an average reaction activity among all the catalysts charged in the reactor. It is preferable to fill the reaction tube.

本発明の触媒充填方法において、固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で低い反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填することが好ましい。   In the catalyst filling method of the present invention, when a solid catalyst is filled in a fixed bed multitubular reactor, a temperature measuring unit is provided with a catalyst having a low reaction activity among all the catalysts charged in the reactor. It is preferable to fill the reaction tube.

本発明の触媒充填方法において、触媒が充填された固定床多管式反応器は発熱反応に適用されることが好ましく、当該発熱反応は気相接触酸化反応であることがより好ましく、当該気相接触酸化反応は塩化水素ガスと酸素を含有するガスから塩素を生成する反応であることが特に好ましい。   In the catalyst filling method of the present invention, the fixed bed multitubular reactor filled with the catalyst is preferably applied to an exothermic reaction, and the exothermic reaction is more preferably a gas phase catalytic oxidation reaction, and the gas phase The catalytic oxidation reaction is particularly preferably a reaction for producing chlorine from a hydrogen chloride gas and a gas containing oxygen.

本発明によれば、固体触媒を充填する固定床多管式反応器において、該反応器に充填する全ての触媒の中で、高い反応活性を有する触媒(さらには、平均的反応活性を有する触媒、および/または、低い反応活性を有する触媒)をそれぞれの触媒層の温度測定ユニットが備え付けられた反応管に充填し、これらの温度を測定することによって、多数の反応管に充填された全ての触媒層の局所的な温度上昇の発生や反応器全体の触媒性能を最大限に発揮させることが可能となる触媒充填方法を提供する。   According to the present invention, in a fixed bed multitubular reactor filled with a solid catalyst, among all the catalysts charged in the reactor, a catalyst having a high reaction activity (further, a catalyst having an average reaction activity). , And / or a catalyst having a low reaction activity) is filled in a reaction tube equipped with a temperature measuring unit of each catalyst layer, and by measuring these temperatures, all the reaction tubes filled in a large number of reaction tubes are measured. Provided is a catalyst filling method capable of generating a local temperature rise in a catalyst layer and maximizing the catalyst performance of the entire reactor.

本発明の触媒充填方法では、固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で高い反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填する。これによって、触媒層のピーク温度を制御することで、温度測定ユニットが備え付けられていない大多数の反応管で局所的な温度上昇の発生が起こることを防止する上で最大の効果が発揮される。反応活性が高い触媒としては固定床多管式反応器に充填される全触媒の質量あるいは体積当たりの反応活性度数分布の中で90%以上の反応活性を有する触媒が適している。   In the catalyst filling method of the present invention, when a fixed bed multitubular reactor is filled with a solid catalyst, a temperature measuring unit is provided with a catalyst having a high reaction activity among all the catalysts charged in the reactor. Fill the reaction tube. In this way, by controlling the peak temperature of the catalyst layer, the maximum effect is exhibited in preventing the occurrence of local temperature rise in the majority of reaction tubes not equipped with a temperature measurement unit. . As the catalyst having a high reaction activity, a catalyst having a reaction activity of 90% or more in the distribution of the reaction activity number per mass or volume of the total catalyst charged in the fixed bed multitubular reactor is suitable.

本発明の触媒充填方法では、さらに、上述した全ての触媒の中で高い反応活性を有する触媒を充填した温度測定ユニットが備え付けられた反応管以外の温度測定ユニットが備え付けられた反応管に、平均的な反応活性を有する触媒を充填することが、好ましい。これによって、触媒層のピーク温度および反応管長手方向の触媒層の温度分布を測定することで、全触媒量に対して平均的な反応活性を有する触媒の占める割合が最も高いことから、反応器全体の反応率、選択率などの性能を最大限に発揮させる上で最も効果が発揮される。反応活性が平均的な触媒としては全触媒の反応活性度数分布の中で50±10%の反応活性を有する触媒が適している。   In the catalyst filling method of the present invention, the reaction tube provided with the temperature measurement unit other than the reaction tube provided with the temperature measurement unit filled with the catalyst having a high reaction activity among all the above-described catalysts is further averaged. It is preferable to charge a catalyst having a typical reaction activity. By measuring the peak temperature of the catalyst layer and the temperature distribution of the catalyst layer in the longitudinal direction of the reaction tube, the proportion of the catalyst having the average reaction activity with respect to the total catalyst amount is the highest. It is most effective in maximizing performance such as overall reaction rate and selectivity. As a catalyst having an average reaction activity, a catalyst having a reaction activity of 50 ± 10% in the distribution of reaction activity numbers of all catalysts is suitable.

本発明の触媒充填方法では、さらに、上述した全ての触媒の中で高い反応活性を有する触媒を充填した温度測定ユニットが備え付けられた反応管以外の温度測定ユニットが備え付けられた反応管に、低い反応活性を有する触媒を充填することが、好ましい。これによって、原料ガスあるいは反応生成ガスの成分が触媒層の温度が低い触媒に高沸物が選択的に吸着して、反応阻害を起して急激に反応活性が低下したり閉塞を来たすことを防止するという効果が発揮される。反応活性が低い触媒としては全触媒の反応活性度数分布の中で10%以下の反応活性を有する触媒が適している。   In the catalyst filling method of the present invention, the reaction tube equipped with a temperature measurement unit other than the reaction tube equipped with the temperature measurement unit filled with a catalyst having a high reaction activity among all the catalysts described above is low in the reaction tube. It is preferable to charge a catalyst having reaction activity. As a result, components of the raw material gas or reaction product gas are selectively adsorbed by the high-boiling substances on the catalyst having a low catalyst layer temperature, causing reaction inhibition and suddenly decreasing or blocking the reaction activity. The effect of preventing is exhibited. As the catalyst having a low reaction activity, a catalyst having a reaction activity of 10% or less in the reaction activity number distribution of all the catalysts is suitable.

なお、本発明の触媒充填方法においては、少なくとも2本の温度測定ユニットが備え付けられた反応管に、全ての触媒の中で高い反応活性を有する触媒、全ての触媒の中で低い反応活性を有する触媒をそれぞれ充填するようにしてもよい。また、少なくとも3本の温度測定ユニットが備え付けられた反応管に、全ての触媒の中で高い反応活性を有する触媒、平均的な反応活性を有する触媒、全ての触媒の中で低い反応活性を有する触媒をそれぞれ充填するようにしてもよく、この態様が最も好ましい。   In the catalyst filling method of the present invention, a reaction tube equipped with at least two temperature measurement units has a catalyst having a high reaction activity among all the catalysts and a low reaction activity among all the catalysts. You may make it each fill with a catalyst. In addition, a reaction tube equipped with at least three temperature measuring units has a high reaction activity among all the catalysts, a catalyst with an average reaction activity, and a low reaction activity among all the catalysts. Each catalyst may be filled, and this embodiment is most preferred.

本発明が適用される「固定床多管式反応器」とは、少なくとも3本以上の反応管を有し、反応管外部から反応熱を除去するシステムから構成されたものであって、反応管の内径、外径、長さ、材質および反応熱除去設備、反応熱除去方法には特に制限は無い。反応熱を除去する媒体としてはダウサムなどの熱媒体であってもよいし、硝酸カリウム、亜硝酸ナトリウムなどから成る溶融塩であってもよいし、ボイラー水を供給しスチームを発生させるものであってもよい。   The “fixed-bed multitubular reactor” to which the present invention is applied is a system having at least three reaction tubes and removing heat of reaction from the outside of the reaction tubes. There are no particular restrictions on the inner diameter, outer diameter, length, material, reaction heat removal equipment, and reaction heat removal method. As a medium for removing reaction heat, a heat medium such as Dowsum may be used, or a molten salt composed of potassium nitrate, sodium nitrite, etc., or boiler water may be supplied to generate steam. Also good.

本発明が適用される固体触媒とは反応前後および反応中に固体状態を維持している触媒であれば、形状、粒径、粒長などの制限はない。当然、目的の反応に適した触媒が適用される。   If the solid catalyst to which the present invention is applied is a catalyst that maintains a solid state before and after the reaction and during the reaction, there is no limitation on the shape, particle size, particle length, and the like. Naturally, a catalyst suitable for the target reaction is applied.

固体触媒を例示すれば、プロピレンの気相接触酸化によるアクリル酸の製造では1段目のプロピレンからアクロレインを合成する触媒としてモリブデン−ビスマス系の多元触媒、2段目のアクロレインからアクリル酸を合成する触媒としてモリブデン−バナジウム系の多元触媒がそれぞれ一般的に用いられている。   For example, in the production of acrylic acid by vapor-phase catalytic oxidation of propylene, as a catalyst for synthesizing acrolein from the first stage propylene, a molybdenum-bismuth multi-way catalyst and acrylic acid from the second stage acrolein are synthesized. As the catalyst, a molybdenum-vanadium multi-way catalyst is generally used.

イソブチレンあるいは第3級ブタノールの気相接触酸化によるメタクリル酸の製造では1段目のイソブチレンあるいは第3級ブタノールからメタクロレインを合成する触媒としてモリブデン−ビスマス系の多成分複合酸化物触媒、2段目のメタクロレインからメタクリル酸を合成する触媒としてリン−モリブデン系のヘテロポリ酸触媒がそれぞれ用いられている。   In the production of methacrylic acid by gas phase catalytic oxidation of isobutylene or tertiary butanol, molybdenum-bismuth multi-component composite oxide catalyst as the catalyst for synthesizing methacrolein from the first stage isobutylene or tertiary butanol, the second stage As a catalyst for synthesizing methacrylic acid from methacrolein, a phosphorus-molybdenum heteropolyacid catalyst is used.

塩化水素の気相接触酸化反応による塩素の製造では、酸化ルテニウム系触媒、酸化クロム系触媒などが用いられている。   In the production of chlorine by the gas phase catalytic oxidation reaction of hydrogen chloride, a ruthenium oxide catalyst, a chromium oxide catalyst, or the like is used.

反応管に充填された触媒層の温度あるいは反応管長手方向の温度分布測定ユニットとしては、従来の技術である特開平10−309457号公報に記載されている装置および方法、特開2002−212127号公報に記載されている方法、国際公開第2005/005037号に記載されている方法などが適用可能であり、特に制限はない。   As a unit for measuring the temperature of the catalyst layer filled in the reaction tube or the temperature distribution in the longitudinal direction of the reaction tube, the apparatus and method described in JP-A-10-309457, which is a conventional technique, and JP-A No. 2002-212127 are disclosed. The method described in the publication, the method described in International Publication No. 2005/005037, and the like can be applied, and there is no particular limitation.

固定床多管式反応器に供給される原料は、該反応器の上部から供給してもよいし、下部から供給してもよい。   The raw material supplied to the fixed bed multitubular reactor may be supplied from the upper part of the reactor or from the lower part.

原料は一般的に反応器に供給される前に反応に適した温度に加熱あるいは冷却される場合が多いが、加熱および冷却の有無に係わらず本発明は適用可能である。   In general, the raw material is often heated or cooled to a temperature suitable for the reaction before being supplied to the reactor, but the present invention can be applied regardless of the presence or absence of heating and cooling.

固定床多管式反応器の操作圧力についても、反応に適した圧力で操作すればよく、特に制限はない。   The operation pressure of the fixed bed multitubular reactor is not particularly limited as long as it is operated at a pressure suitable for the reaction.

本発明の触媒充填方法で得られた触媒が充填された固定床多管式反応器は、発熱反応に適用されることが好ましく、当該発熱反応は気相接触酸化反応であることがより好ましい。気相接触酸化反応の場合、用いる酸素源としては酸素あるいは空気を用いることができる。反応原料のモル比、流量、温度、圧力についても、目的とする反応と使用する触媒によって異なるが、特に制限はない。   The fixed bed multitubular reactor filled with the catalyst obtained by the catalyst filling method of the present invention is preferably applied to an exothermic reaction, and the exothermic reaction is more preferably a gas phase catalytic oxidation reaction. In the case of the gas phase catalytic oxidation reaction, oxygen or air can be used as the oxygen source to be used. The molar ratio, flow rate, temperature, and pressure of the reaction raw materials also vary depending on the target reaction and the catalyst used, but are not particularly limited.

塩素製造用反応器および塩素の製造方法に関する特開2005−306734号公報に記載されている多管式熱交換反応器のシェル内を管軸方向に仕切板で複数の領域に分割して、それぞれの領域を循環させる熱媒の温度制御手段を備え、反応器の反応管の入口から出口方向に触媒活性の異なる触媒を層状に充填することも適用可能である。   The inside of the shell of the multi-tube heat exchange reactor described in JP 2005-306734 A relating to a chlorine production reactor and a chlorine production method is divided into a plurality of regions by partition plates in the tube axis direction, It is also possible to apply a temperature control means for the heat medium that circulates in this region, and to fill the catalyst with different catalyst activities in layers from the inlet to the outlet of the reaction tube of the reactor.

一般的に気相接触酸化反応における単位時間当りの反応熱量は原料濃度の高い触媒層の入口近傍で大きいので、入口部の触媒を不活性粒子で希釈して充填する場合にも本発明は適用可能である。   In general, the heat of reaction per unit time in the gas phase catalytic oxidation reaction is large near the inlet of the catalyst layer having a high raw material concentration. Therefore, the present invention can be applied even when the catalyst at the inlet is diluted with inert particles and packed. Is possible.

以下、実施例を挙げて本発明を更に詳細に説明するが、この実施例により、本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited by this Example.

(触媒の調整)
酸化チタン(堺化学(株)製のSTR−60R、100%ルチル型)とα−アルミナ(住友化学(株)製のAES−12)をそれぞれ34:66の質量比で混合し、次いで純水を加えて混練した。この混合物を直径3.0mmの円柱状に押出し、長さ5mm程度にカッティングして成型体を得た。この成型体を空気中、800℃で3時間焼成し、酸化チタンとα−アルミナの混合物から成る担体を得た。この担体に酸化ルテニウムとして2質量%担持されるように、予め塩化ルテニウムの質量を求めておき、その質量の塩化ルテニウムに純水を加えて混合溶解した後、該塩化ルテニウム水溶液をポアフィリング法にて担体に含浸し、乾燥した後、空気中、250℃で2時間焼成して、塩化水素酸化触媒Lot.1を得た。Lot.1と同じ触媒の調整の方法を繰り返し、Lot.2〜32の触媒を得た。
(Catalyst adjustment)
Titanium oxide (STR-60R manufactured by Sakai Chemical Co., Ltd., 100% rutile type) and α-alumina (AES-12 manufactured by Sumitomo Chemical Co., Ltd.) were mixed at a mass ratio of 34:66, respectively, and then purified water And kneaded. This mixture was extruded into a cylindrical shape having a diameter of 3.0 mm and cut to a length of about 5 mm to obtain a molded body. This molded body was calcined in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and α-alumina. The mass of ruthenium chloride is obtained in advance so that 2% by mass of ruthenium oxide is supported on the carrier, and pure water is added to the mass of ruthenium chloride to mix and dissolve, and then the ruthenium chloride aqueous solution is subjected to a pore filling method. After impregnating the support, drying, and calcining in air at 250 ° C. for 2 hours, the hydrogen chloride oxidation catalyst Lot. 1 was obtained. Lot. 1 and the same catalyst preparation method was repeated. 2-32 catalysts were obtained.

(各Lot触媒の塩化水素酸化反応活性の測定)
Lot.1の触媒1.0gを直径2mmのα−アルミナ球(ニッカトー(株)製のSSA995)12gで希釈し、内径14mmのNi製反応管(外径3.8mmの触媒層温度測定用鞘管付で、鞘管には熱電対が挿入されている)に充填し、さらに触媒層上部にニッカトー(株)製の直径2mmのα−アルミナ球12gを充填し、原料ガス予熱層とした。
(Measurement of hydrogen chloride oxidation reaction activity of each Lot catalyst)
Lot. 1 catalyst (1.0 g) was diluted with 12 g of α-alumina sphere having a diameter of 2 mm (SSA995 manufactured by Nikkato Co., Ltd.), and a reaction tube made of Ni having an inner diameter of 14 mm (outer diameter of 3.8 mm with a sheath tube for measuring the catalyst layer temperature) Then, a thermocouple is inserted in the sheath tube), and 12 g of α-alumina spheres having a diameter of 2 mm manufactured by Nikkato Co., Ltd. are filled in the upper part of the catalyst layer to form a raw material gas preheating layer.

この反応管自体を電気ヒータ付き溶融塩(硝酸カルウムと亜硝酸ナトリウムの混合物)バス中に浸漬して、塩化水素ガス0.214モル/hと酸素ガス0.107モル/hを十分に予備混合し反応管上部から供給した。触媒層の温度が282℃になるように溶融塩の温度を制御した。   This reaction tube itself is immersed in a molten salt bath (mixture of calcium nitrate and sodium nitrite) equipped with an electric heater, and hydrogen chloride gas 0.214 mol / h and oxygen gas 0.107 mol / h are sufficiently premixed. It was supplied from the upper part of the reaction tube. The temperature of the molten salt was controlled so that the temperature of the catalyst layer was 282 ° C.

反応開始後1.5時間経過した時点で、反応管出口の反応ガスを30重量%のヨウ化カリウム水溶液に流通開始させ20分間サンプリングした。このサンプリング液をヨウ素滴定法により塩素生成量を測定し、塩素生成速度(モル/h)を求め、次式より塩化水素酸化反応活性を計算した。   When 1.5 hours had elapsed after the start of the reaction, the reaction gas at the outlet of the reaction tube was started to flow in a 30 wt% aqueous potassium iodide solution and sampled for 20 minutes. The chlorine production amount of this sampling solution was measured by the iodine titration method, the chlorine production rate (mol / h) was determined, and the hydrogen chloride oxidation reaction activity was calculated from the following formula.

塩化水素酸化反応活性(%/g−触媒)=[塩素生成速度(モル/h)×2/[塩化水素供給速度(モル/h)]×100
Lot.1と同じ方法にて、Lot.2〜Lot.32の塩化水素酸化反応活性の測定をおこなった結果を表1に示す。
Hydrogen chloride oxidation reaction activity (% / g-catalyst) = [chlorine production rate (mol / h) × 2 / [hydrogen chloride supply rate (mol / h)] × 100
Lot. 1 in the same manner as in Lot. 2-Lot. Table 1 shows the results of measuring the hydrogen chloride oxidation reaction activity of 32.

Figure 2013169496
Figure 2013169496

<実施例>
内径25mm、外径27mm、長さ5.7mのNi製反応管3本(それぞれの反応管には外形6mmの温度測定用鞘管を挿入している)と溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1質量比)を熱媒体とするジャケットが備え付けられた固定床多管式反応器を用い、溶融塩の温度は電気ヒータにて一定値になるよう制御した。
<Example>
Three Ni reaction tubes with an inner diameter of 25 mm, an outer diameter of 27 mm, and a length of 5.7 m (each reaction tube is inserted with a 6 mm outer shell for temperature measurement) and molten salt (potassium nitrate / sodium nitrite = The temperature of the molten salt was controlled to be a constant value with an electric heater, using a fixed bed multitubular reactor equipped with a jacket having a heat ratio of 1/1 mass ratio).

この3本の反応管に表1のLot.26の最も高い反応活性を有する触媒、平均的な反応活性を有するLot.17の触媒、最も低い反応活性を有するLot.5の触媒をそれぞれ充填した。触媒充填後、反応器下部から空気を所定流量流し、それぞれの反応管の圧力損失を測定し、ほぼ同一になることを確認した。   In these three reaction tubes, Lot. 26 catalyst having the highest reaction activity, Lot. 17 catalysts, Lot. With the lowest reaction activity. Each of 5 catalysts was charged. After filling the catalyst, air was flowed at a predetermined flow rate from the lower part of the reactor, and the pressure loss of each reaction tube was measured, and it was confirmed that they were almost the same.

反応スタート時の溶融塩温度を290℃に調整した後、260℃に加熱された塩化水素ガス0.79モル/minと酸素ガス0.42モル/minの混合ガスを反応器上部から導入した。反応器の入口圧力は0.5MPaGに調整した。反応スタート後、温度測定用鞘管に取り付けられた熱電対を動かして、それぞれの反応管の触媒層のピーク温度を測定した。   After adjusting the molten salt temperature at the start of the reaction to 290 ° C., a mixed gas of hydrogen chloride gas 0.79 mol / min and oxygen gas 0.42 mol / min heated to 260 ° C. was introduced from the upper part of the reactor. The inlet pressure of the reactor was adjusted to 0.5 MPaG. After starting the reaction, the thermocouple attached to the temperature measurement sheath tube was moved to measure the peak temperature of the catalyst layer of each reaction tube.

同様な操作をそれぞれのLotの新品触媒にて、反応スタート時の溶融塩温度を300℃、310℃、320℃の条件で行った。   The same operation was performed with each lot of new catalyst under the conditions of 300, 310, and 320 ° C. molten salt temperatures at the start of the reaction.

なお、この塩化水素酸化触媒は450℃を超えると反応活性の低下速度が大きくなることを事前に確認している。   In addition, it has been confirmed in advance that this hydrogen chloride oxidation catalyst increases the rate of decrease in reaction activity when it exceeds 450 ° C.

反応スタート時の溶融塩温度と各反応活性触媒層のピーク温度の測定結果を表2に示す。   Table 2 shows the measurement results of the molten salt temperature at the start of the reaction and the peak temperature of each reaction active catalyst layer.

Figure 2013169496
Figure 2013169496

表2より、反応スタート時の溶融塩温度を310℃にした場合には高い反応活性触媒の触媒層のピーク温度は530℃にも達しているが、平均的な反応活性触媒と低い反応活性触媒のピーク温度はそれぞれ415℃、374℃であった。さらに、反応スタート時の溶融塩温度を320℃にした場合には反応活性が高い触媒と平均的な反応活性触媒共に触媒層のピーク温度は550℃以上にもなっているが、低い反応活性触媒のピーク温度は429℃であった。   From Table 2, when the molten salt temperature at the start of the reaction is 310 ° C., the peak temperature of the catalyst layer of the high reaction active catalyst reaches 530 ° C., but the average reaction active catalyst and the low reaction active catalyst The peak temperatures were 415 ° C. and 374 ° C., respectively. Furthermore, when the molten salt temperature at the start of the reaction is set to 320 ° C., the peak temperature of the catalyst layer is 550 ° C. or higher for both the catalyst having high reaction activity and the average reaction active catalyst. The peak temperature of was 429 ° C.

従って、表1に示したLot.1〜Lot.32の全ての触媒を固定床多管式反応器に充填した場合、反応スタート時の溶融塩温度は少なくとも約300℃以下で行う必要があることが、少なくとも塩化水素反応活性が最も高いLot.26を温度測定ユニットが備え付けられた反応管に充填することにより判明した。   Therefore, the Lot. 1-Lot. When all 32 catalysts are packed in a fixed bed multi-tubular reactor, it is necessary that the molten salt temperature at the start of the reaction be at least about 300 ° C. or less. 26 was filled into a reaction tube equipped with a temperature measuring unit.

Claims (6)

固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で高い反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填することを特徴とする触媒充填方法。   When filling a fixed bed multitubular reactor with a solid catalyst, a catalyst having a high reaction activity among all the catalysts charged in the reactor is filled in a reaction tube equipped with a temperature measuring unit. And a catalyst filling method. 固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で平均的な反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填することを特徴とする請求項1に記載の方法。   When filling a fixed bed multitubular reactor with a solid catalyst, a catalyst having an average reaction activity among all the catalysts charged in the reactor is charged into a reaction tube equipped with a temperature measuring unit. The method of claim 1, wherein: 固定床多管式反応器に固体触媒を充填する際、該反応器に充填する全ての触媒の中で低い反応活性を有する触媒を温度測定ユニットが備え付けられている反応管に充填することを特徴とする請求項1または2に記載の方法。   When filling a fixed bed multitubular reactor with a solid catalyst, a catalyst having a low reaction activity among all the catalysts charged in the reactor is filled in a reaction tube equipped with a temperature measuring unit. The method according to claim 1 or 2. 触媒が充填された固定床多管式反応器を発熱反応に適用することを特徴とする請求項1〜3のいずれかに記載の方法。   4. The process according to claim 1, wherein a fixed bed multitubular reactor filled with a catalyst is applied to an exothermic reaction. 発熱反応が気相接触酸化反応であることを特徴とする請求項4に記載の方法。   The method according to claim 4, wherein the exothermic reaction is a gas phase catalytic oxidation reaction. 気相接触酸化反応が、塩化水素ガスと酸素を含有するガスから塩素を生成する反応に適用することを特徴とする請求項5に記載の方法。   6. The method according to claim 5, wherein the gas phase catalytic oxidation reaction is applied to a reaction for producing chlorine from a gas containing hydrogen chloride gas and oxygen.
JP2012033792A 2012-02-20 2012-02-20 Method for packing catalyst in fixed bed multitubular reactor Pending JP2013169496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033792A JP2013169496A (en) 2012-02-20 2012-02-20 Method for packing catalyst in fixed bed multitubular reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033792A JP2013169496A (en) 2012-02-20 2012-02-20 Method for packing catalyst in fixed bed multitubular reactor

Publications (1)

Publication Number Publication Date
JP2013169496A true JP2013169496A (en) 2013-09-02

Family

ID=49263827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033792A Pending JP2013169496A (en) 2012-02-20 2012-02-20 Method for packing catalyst in fixed bed multitubular reactor

Country Status (1)

Country Link
JP (1) JP2013169496A (en)

Similar Documents

Publication Publication Date Title
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6294883B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
CN103270013B (en) Method for long-term operation of a heterogeneously catalyzed partial gas phase oxidation of propene to obtain acrolein
JP2011074083A (en) Method for catalytic gas-phase oxidation of acrolein into acrylic acid
RU2654063C2 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
US20110130596A1 (en) Process for preparing (meth)acrolein by heterogeneously catalyzed gas phase partial oxidation
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
US20160059220A1 (en) Catalyst For Producing Unsaturated Aldehyde And/or Unsaturated Carboxylic Acid, Method For Producing The Catalyst, And Method For Producing Unsaturated Aldehyde and/or Unsaturated Carboxylic Acid Using The Catalyst
JP6912153B2 (en) Manufacturing method of unsaturated aldehyde
JP2009114119A (en) Method for producing methacrolein and/or methacrylic acid
JPWO2014073419A1 (en) Method for producing methacrolein and methacrylic acid
JP2014181203A (en) Method for manufacturing methacrylic acid
JP2013169496A (en) Method for packing catalyst in fixed bed multitubular reactor
JP2001064274A (en) Production of phthalic anhydride
JP4812034B2 (en) Method for producing methacrylic acid production catalyst, methacrylic acid production catalyst, and methacrylic acid production method
CN108884006B (en) Restarting method
WO2016147324A1 (en) Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5902374B2 (en) Acrylic acid production method
JP2010235504A (en) Method for producing acrolein and acrylic acid
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP2020044485A (en) Reaction method and reactor
JP7506031B2 (en) Method for producing unsaturated aldehydes
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JP2016106082A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid