JP2013169198A - Sake yeast and method for producing alcoholic drink or food using the same - Google Patents

Sake yeast and method for producing alcoholic drink or food using the same Download PDF

Info

Publication number
JP2013169198A
JP2013169198A JP2012036571A JP2012036571A JP2013169198A JP 2013169198 A JP2013169198 A JP 2013169198A JP 2012036571 A JP2012036571 A JP 2012036571A JP 2012036571 A JP2012036571 A JP 2012036571A JP 2013169198 A JP2013169198 A JP 2013169198A
Authority
JP
Japan
Prior art keywords
yeast
strain
sake
rim15
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012036571A
Other languages
Japanese (ja)
Other versions
JP2013169198A5 (en
Inventor
Daisuke Watanabe
大輔 渡辺
Yuya Araki
悠矢 荒木
Takeshi Akao
健 赤尾
Hitoshi Shimoii
仁 下飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2012036571A priority Critical patent/JP2013169198A/en
Publication of JP2013169198A publication Critical patent/JP2013169198A/en
Publication of JP2013169198A5 publication Critical patent/JP2013169198A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Alcoholic Beverages (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide sake yeast retaining high fermentability while having high stress resistance, and a method for producing alcoholic drinks or foods characterized by using the sake yeast.SOLUTION: There are provided sake yeast transformed with a recombinant vector expressing RIM15 gene, and a method for producing alcoholic drinks or foods characterized by using the sake yeast.

Description

本発明は、ストレス耐性を増強させるRIM15遺伝子の発現により、高い発酵力を維持しつつ、ストレスに対する優れた耐性を獲得した清酒酵母、並びに該清酒酵母を用いた酒類又は食品の製造方法に関するものである。   The present invention relates to a sake yeast that has acquired excellent resistance to stress while maintaining high fermentative power by expressing a RIM15 gene that enhances stress tolerance, and a method for producing alcoholic beverages or foods using the sake yeast. is there.

現在、全国のほとんどの清酒製造場では公益財団法人日本醸造協会から販売されている「きょうかい酵母」を使用して清酒を製造している。現在用いられているきょうかい酵母に共通した特徴として、清酒もろみにおけるエタノール発酵速度が高く、最終的なエタノール収量も高いという点が挙げられる。この特徴により、あらゆる醸造酒の中でも比較的アルコール度数が高いことで知られる清酒を効率的に製造することが可能となっている。   Currently, most sake breweries throughout the country produce sake using “Kyokai Yeast” sold by the Japan Brewing Association. A common feature of the currently used yeast is that the sake fermentation rate is high in sake moromi and the final ethanol yield is also high. This feature makes it possible to efficiently produce sake that is known to have a relatively high alcohol content among all brewed sake.

一方、きょうかい酵母は実験室酵母と比べて熱ショックやエタノールストレスなどの環境変化に弱く、またエタノール濃度の高い清酒もろみ末期においても多くの細胞が死滅していることが確認された(非特許文献1)。酵母の死滅とそれに伴う自己消化は、清酒の色度及びアミノ酸度の増加につながり、酒質を著しく損なうことが知られている。このため、きょうかい酵母のストレス耐性の改善が強く望まれている。   On the other hand, compared to laboratory yeast, it was confirmed that the yeast was weak against environmental changes such as heat shock and ethanol stress, and that many cells were killed even at the end of the sake mash with high ethanol concentration (non-patented). Reference 1). It is known that the death of yeast and accompanying autolysis leads to an increase in the chromaticity and amino acid content of sake and significantly impairs the quality of sake. For this reason, improvement of the stress tolerance of the yeast is strongly desired.

また近年、清酒の品質の多様化を目指して多酸性清酒酵母の開発が広く行われているが、有機酸の中で比較的爽快な酸味を呈するリンゴ酸の生成に関しても、酵母のストレス応答と関連があることが報告されている(非特許文献2)。具体的には、複数のリンゴ酸高生産性清酒酵母株において共通にストレス応答関連遺伝子群の発現上昇が認められたことから、リンゴ酸高生産性株がストレス耐性を獲得している可能性が示唆された。このことから、きょうかい酵母のストレス耐性の改善が、清酒の品質向上に資する可能性も考えられる。   In recent years, the development of multi-acid sake yeast has been widely conducted with the aim of diversifying the quality of sake. However, with regard to the production of malic acid that has a relatively refreshing acidity among organic acids, It has been reported that there is a relationship (Non-Patent Document 2). Specifically, since the expression of stress response-related genes was commonly observed in several malic acid high-producing sake yeast strains, the high malic acid-producing strains may have acquired stress tolerance. It was suggested. From this, it is considered that the improvement of the stress tolerance of the yeast can contribute to the quality improvement of sake.

出芽酵母は、発酵に適した環境では環境中の栄養源を勢いよく消費しながら増殖し細胞数を増加させるが、栄養源が枯渇し、生育に適さない環境になると、そのことを感知して増殖抑制及びストレス応答のためのシグナル伝達経路が速やかに働き、代謝活性の低い定常期と呼ばれる状態に移行する。このシグナル伝達経路の中心的役割を果たすのが、定常期移行制御因子Rim15pである(非特許文献3を参照)。   Saccharomyces cerevisiae grows and vigorously consumes nutrients in the environment in an environment suitable for fermentation and increases the number of cells, but when nutrients are depleted and the environment becomes unsuitable for growth, it is detected. Signal transduction pathways for growth inhibition and stress response work quickly and shift to a state called stationary phase with low metabolic activity. The stationary phase transition regulator Rim15p plays a central role in this signal transduction pathway (see Non-Patent Document 3).

一方、本発明者らは、現在用いられているきょうかい酵母において、Rim15pのC末を欠失させ、当該因子の構造及び機能を欠損させる新規突然変異を同定した(非特許文献4を参照)。このことから、きょうかい酵母では、清酒もろみ中のエタノール濃度が上昇しても定常期に移行しにくいことが原因で、高い代謝活性を維持できているのではないかと考えられた。従って、ストレス耐性を改善するために、当該定常期移行制御因子の遺伝子(RIM15)をきょうかい酵母に導入すると、きょうかい酵母の有する高いエタノール生産能が低下することが予想された。   On the other hand, the present inventors have identified a novel mutation that deletes the C-terminal of Rim15p and deletes the structure and function of the factor in the currently used yeast (see Non-Patent Document 4). . From this, it was considered that in the yeast, high metabolic activity could be maintained due to the difficulty of shifting to the stationary phase even if the ethanol concentration in sake mash is increased. Therefore, when the stationary phase transition regulator gene (RIM15) was introduced into the yeast to improve stress tolerance, it was expected that the high ethanol-producing ability of the yeast was reduced.

H. Urbanczyk, C. Noguchi, H. Wu, D. Watanabe, T. Akao, H. Takagi, and H. Shimoi; J. Biosci. Bioeng. 112, 44-48 (2011)H. Urbanczyk, C. Noguchi, H. Wu, D. Watanabe, T. Akao, H. Takagi, and H. Shimoi; J. Biosci. Bioeng. 112, 44-48 (2011) T. Oba, H. Suenaga, S. Nakayama, S. Mitsuiki, H. Kitagaki, K. Tashiro, and S. Kuhara; Biosci. Biotechnol. Biochem. 75, 2025-2029 (2011)T. Oba, H. Suenaga, S. Nakayama, S. Mitsuiki, H. Kitagaki, K. Tashiro, and S. Kuhara; Biosci. Biotechnol. Biochem. 75, 2025-2029 (2011) E. Swinnen, V. Wanke, J. Roosen, B. Smets, F. Dubouloz, I. Pedruzzi, E. Cameroni, C. De Virgilio, and J. Winderickx; Cell Dev. 1, 3 (2006)E. Swinnen, V. Wanke, J. Roosen, B. Smets, F. Dubouloz, I. Pedruzzi, E. Cameroni, C. De Virgilio, and J. Winderickx; Cell Dev. 1, 3 (2006) 第63回日本生物工学会大会講演要旨集、2011年8月25日発行、公益社団法人日本生物工学会発行、第64頁、1Jp12Abstracts of the 63rd Annual Meeting of the Biotechnology Society of Japan, published on August 25, 2011, published by the Japan Society for Biotechnology, page 64, 1Jp12

そこで本発明の課題は、高発酵性を維持しつつ高いストレス耐性も併せ持つ清酒酵母、並びにかかる酵母を使用することを特徴とする酒類又は発酵食品の製造方法を提供することにある。   Then, the subject of this invention is providing the manufacturing method of alcoholic beverage or fermented food characterized by using sake yeast which has high stress tolerance while maintaining high fermentability, and using such yeast.

本発明者らは、正常な構造のRim15pを有する実験室酵母において、RIM15遺伝子を破壊するとエタノール発酵速度が著しく向上することを明らかにした(後述の参考例1、2)。したがって、きょうかい酵母のRIM15遺伝子における機能欠失変異が、当該酵母の高発酵性に大きく寄与しているのだろうと推測された。   The inventors of the present invention have revealed that the ethanol fermentation rate is remarkably improved when the RIM15 gene is disrupted in laboratory yeast having a normal structure of Rim15p (Reference Examples 1 and 2 described later). Therefore, it was speculated that the loss-of-function mutations in the RIM15 gene of Japanese yeast would greatly contribute to the high fermentability of the yeast.

一方、従来の知見から、きょうかい酵母のストレス耐性を増強するためには、きょうかい酵母において欠損しているRim15pの機能を回復することが必要であると考えた。そのことを証明するために、親株であるきょうかい酵母に、正常な構造を有する実験室酵母由来のRIM15遺伝子を導入した形質転換酵母を作成したところ、当該形質転換酵母が親株と比べて著しく高いストレス耐性を示すことが判明した。   On the other hand, from the conventional knowledge, it was considered necessary to restore the function of Rim15p that is deficient in the yeast to enhance the stress tolerance of the yeast. In order to prove this, when a transformed yeast was prepared by introducing the RIM15 gene derived from a laboratory yeast having a normal structure into the parent yeast strain, the transformed yeast was significantly higher than the parent strain. It was found to show stress tolerance.

さらに、かかる形質転換酵母の発酵試験を行った結果、意外なことに、当該形質転換酵母は親株とほぼ同程度の発酵速度を示した。後述の参考例1、2から示唆されるように、Rim15pの欠損が酵母のストレス耐性低下及び発酵性向上と完全に合致していることから、RIM15遺伝子の導入により、発酵速度の低下が予測できた。それにも関わらず、RIM15遺伝子を回復しても発酵速度が低下しないことは、きょうかい酵母を用いた解析によって初めて見出された現象である。そこで、本発明者らは、当該現象はきょうかい酵母の高い発酵性を維持しながらストレス耐性を改善させるために利用可能であると考え、当該形質転換酵母を用いた発酵試験の結果をより詳細に解析することにより、本発明を完成するに至った。   Furthermore, as a result of conducting a fermentation test of such transformed yeast, surprisingly, the transformed yeast showed a fermentation rate almost equal to that of the parent strain. As suggested in Reference Examples 1 and 2 below, the lack of Rim15p is perfectly consistent with yeast stress tolerance reduction and fermentability improvement, so the introduction of RIM15 gene can predict a reduction in fermentation rate. It was. Nevertheless, the fact that the fermentation rate does not decrease even when the RIM15 gene is restored is a phenomenon that has been found for the first time by analysis using a yeast strain. Therefore, the present inventors consider that the phenomenon can be used to improve stress tolerance while maintaining the high fermentability of the yeast, and more detailed results of the fermentation test using the transformed yeast. By analyzing the above, the present invention has been completed.

すなわち、本発明の要旨は、
〔1〕RIM15遺伝子を発現する組換えベクターで形質転換されてなる、清酒酵母;
〔2〕清酒酵母がSaccharomyces cerevisiae K701 UT-1T [pAUR112-ScRIM15](受領番号NITE AP-1219)である、前記〔1〕に記載の清酒酵母;
〔3〕前記〔1〕又は〔2〕に記載の清酒酵母を用いることを特徴とする、酒類又は食品の製造方法;並びに
〔4〕酒類又は食品が、清酒、焼酎、ビール、ワイン、パン類及び醤油からなる群より選択される少なくとも一種である、前記〔3〕に記載の製造方法;に関するものである。
That is, the gist of the present invention is as follows.
[1] Sake yeast transformed with a recombinant vector expressing RIM15 gene;
[2] The sake yeast according to [1], wherein the sake yeast is Saccharomyces cerevisiae K701 UT-1T [pAUR112-ScRIM15] (reception number NITE AP-1219);
[3] A method for producing alcoholic beverages or foods using the sake yeast according to [1] or [2]; and [4] alcoholic beverages or foods are sake, shochu, beer, wine, breads And the production method according to [3] above, which is at least one selected from the group consisting of soy sauce and soy sauce.

本発明の形質転換酵母はストレス耐性が高いという特性を有するので、これを使用すれば、酒類又は発酵食品の製造中における酵母の死滅を抑制することができる。その結果、酒類又は発酵食品をより効率的に製造することが可能となるだけでなく、アミノ酸や有機酸を含む呈味成分に特徴を有する酒類又は発酵食品の製造方法を提供することが可能となる。   Since the transformed yeast of the present invention has a characteristic of high stress tolerance, the use of this can suppress the death of the yeast during the production of alcoholic beverages or fermented foods. As a result, it becomes possible not only to produce alcoholic beverages or fermented foods more efficiently, but also to provide a method for producing alcoholic beverages or fermented foods characterized by taste ingredients including amino acids and organic acids. Become.

図1は、親株である実験室酵母BY4743株及び遺伝子破壊株(BY4743 Δrim15)を用いて清酒製造を行った際の二酸化炭素発生速度(左)及び二酸化炭素総発生量(右)を示す図である。点線が親株、実線がRIM15遺伝子破壊株のデータを示す。FIG. 1 is a graph showing carbon dioxide generation rate (left) and total carbon dioxide generation amount (right) when sake production is performed using the parent strain laboratory yeast BY4743 strain and gene disruption strain (BY4743 Δrim15). is there. The dotted line shows the parent strain, and the solid line shows the RIM15 gene disrupted strain. 図2は、親株である実験室酵母BY4743株及び遺伝子破壊株(BY4743 Δrim15)を用いてエタノール発酵試験を行った際の二酸化炭素発生速度(左)及び二酸化炭素総発生量(右)を示す図である。点線が親株、実線がRIM15遺伝子破壊株のデータを示す。FIG. 2 is a graph showing the carbon dioxide generation rate (left) and the total carbon dioxide generation amount (right) when an ethanol fermentation test was conducted using the parent strain laboratory yeast BY4743 strain and gene disruption strain (BY4743 Δrim15). It is. The dotted line shows the parent strain, and the solid line shows the RIM15 gene disrupted strain. 図3は、対照株である清酒酵母(K701 UT-1T [pAUR112])及び形質転換株(K701 UT-1T [pAUR112-ScRIM15])を用いたストレス耐性試験の結果を示す図である。点線が対照株、実線が形質転換株のデータを示す。FIG. 3 is a diagram showing the results of a stress tolerance test using sake yeast (K701 UT-1T [pAUR112]) and a transformed strain (K701 UT-1T [pAUR112-ScRIM15]) as control strains. The dotted line shows the data of the control strain and the solid line shows the data of the transformed strain. 図4は、対照株である清酒酵母(K701 UT-1T [pAUR112])及び形質転換株(K701 UT-1T [pAUR112-ScRIM15])を用いて清酒製造を行った際の二酸化炭素発生速度(左)及び二酸化炭素総発生量(右)を示す図である。点線が対照株、実線が形質転換株のデータを示す。Fig. 4 shows the carbon dioxide generation rate (left) when sake was produced using the sake yeast (K701 UT-1T [pAUR112]) and the transformed strain (K701 UT-1T [pAUR112-ScRIM15]) as control strains. ) And the total amount of carbon dioxide generated (right). The dotted line shows the data of the control strain and the solid line shows the data of the transformed strain.

以下、本発明について具体的に説明する。本発明の酒類又は食品に限定はないが、酒類としては、清酒、焼酎、ビール、ワイン等を例示できる。また、食品としては、パン類、醤油等を例示することができる。   Hereinafter, the present invention will be specifically described. The liquor or food of the present invention is not limited, but examples of the liquor include sake, shochu, beer, wine and the like. Examples of foods include breads and soy sauce.

本発明において形質転換に使用する酵母としては、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)に属する清酒酵母が望ましい。具体例として、日本醸造協会から配布されている「きょうかい酵母」(きょうかい7号、きょうかい701号、きょうかい9号等)を挙げることができる。   As the yeast used for transformation in the present invention, sake yeast belonging to Saccharomyces cerevisiae is desirable. Specific examples include “Kyokai Yeast” (Kyokai No. 7, Kyokai No. 701, Kyokai No. 9, etc.) distributed by the Japan Brewing Association.

遺伝子クローニング方法としては、酵母において公知の遺伝子クローニング方法、例えばPCR法を用いて目的遺伝子を増幅させる方法、ショットガンクローニングを行う方法等を適宜選択して用いれば良く、有効な遺伝子クローニング法としてはPCR法が好ましい。   As a gene cloning method, a known gene cloning method in yeast, for example, a method of amplifying a target gene using a PCR method, a method of performing shotgun cloning, etc. may be appropriately selected and used. As an effective gene cloning method, The PCR method is preferred.

RIM15遺伝子については、SGD(Saccharomyces Genome Database)のホームページ(http://genome-www.stanford.edu/Saccharomyces)に配列が記載されており、かかる配列に基づいて、PCRプライマーを設計して正常なRIM15遺伝子構造を有する酵母のゲノムDNAをテンプレートにしてPCRを行うことにより、目的遺伝子を得ることができる。正常なRIM15遺伝子構造を有する酵母としては、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)に属する実験室酵母(X2180、BY4743等)等が例示される。RIM15遺伝子を増幅するために用いるDNAのプライマーとしては、RIM15-F(配列表の配列番号1)、RIM15-R(配列表の配列番号2)等が例示される。   The sequence of the RIM15 gene is described on the SGD (Saccharomyces Genome Database) homepage (http://genome-www.stanford.edu/Saccharomyces). A target gene can be obtained by PCR using yeast genomic DNA having the RIM15 gene structure as a template. Examples of yeast having a normal RIM15 gene structure include laboratory yeasts (X2180, BY4743, etc.) belonging to Saccharomyces cerevisiae. Examples of DNA primers used for amplifying the RIM15 gene include RIM15-F (SEQ ID NO: 1 in the sequence listing), RIM15-R (SEQ ID NO: 2 in the sequence listing), and the like.

上述の方法で増幅したRIM15遺伝子を発現ベクターに接続して、酵母に導入することができる。発現ベクターとしては、単コピー型、多コピー型、染色体組込み型のいずれも利用可能である。なお、形質転換の際に用いる選択マーカーとして、アミノ酸などの栄養要求マーカーや薬剤に対する耐性マーカー等が利用可能である。有効な発現ベクターの具体例として、pAUR112(タカラバイオ社製)が例示される。かかる発現ベクターを用いて、RIM15遺伝子を有する組換えベクターを調製する方法は、公知の方法を採用することができる。酵母への組換えベクターの導入方法は、酵母にDNAを導入する方法であれば特に限定されず、例えば酢酸リチウム法、エレクトロポレーション法、スフェロプラスト法等が挙げられる。   The RIM15 gene amplified by the method described above can be connected to an expression vector and introduced into yeast. As the expression vector, any of a single copy type, a multi copy type, and a chromosomal integration type can be used. In addition, as a selection marker used at the time of transformation, an auxotrophic marker such as an amino acid or a resistance marker for a drug can be used. A specific example of an effective expression vector is pAUR112 (manufactured by Takara Bio Inc.). A known method can be adopted as a method for preparing a recombinant vector having the RIM15 gene using such an expression vector. The method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and examples thereof include a lithium acetate method, an electroporation method, and a spheroplast method.

RIM15遺伝子を発現する組換えベクターで形質転換されてなる清酒酵母の一例としては、Saccharomyces cerevisiae K701 UT-1T [pAUR112-ScRIM15]株が挙げられる。この株は、K701 UT-1T [pAUR112-ScRIM15]株と命名され、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受領番号NITE AP-1219(受領日:平成24年2月2日)(現在、寄託番号取得手続中)として寄託されている。   An example of sake yeast transformed with a recombinant vector that expresses the RIM15 gene is the Saccharomyces cerevisiae K701 UT-1T [pAUR112-ScRIM15] strain. This strain is named K701 UT-1T [pAUR112-ScRIM15], and received the NITE AP-1219 (Receipt date: February 2, 2012) at the National Institute of Technology and Evaluation for Microorganisms. It is deposited as (currently in the process of obtaining the deposit number).

本発明の酒類又は食品の製造方法は、酵母を用いる製造工程において、酵母として本発明の清酒酵母を採用することにより実施することができる。   The method for producing an alcoholic beverage or food of the present invention can be carried out by employing the sake yeast of the present invention as yeast in the production process using yeast.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例等によりなんら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited at all by these Examples.

参考例1
サッカロミセス・セレビシエBY4743株及びこれを親株としたRIM15遺伝子破壊株を用いた清酒製造試験を行った。なお、BY4743株、BY4743 Δrim15株については、いずれもEUROSCARFから、それぞれY20000、Y37281として入手可能である。
Reference example 1
Sake production test using Saccharomyces cerevisiae BY4743 strain and RIM15 gene-disrupted strain which was the parent strain was conducted. The BY4743 strain and BY4743 Δrim15 strain are both available from EUROSCARF as Y20000 and Y37281, respectively.

親株であるBY4743株とBY4743 Δrim15株を用いて、以下に示す方法で清酒を製造した。   Sake was produced using the parent strains BY4743 and BY4743 Δrim15 in the following manner.

掛米40g、麹米10g、水80mL、90%乳酸17.8μL混合による一段仕込を実施した。掛米として精米歩合70%のアルファー化米、麹米として精白歩合70%の乾燥麹を用いた。各酵母は、YPD培地(酵母エキス1%、ペプトン2%、グルコース2%含有)において一晩振とう培養した後、滅菌蒸留水により洗浄し、酵母数が1×107cells/mLになるように仕込時に添加した。発酵温度は15℃とした。仕込試験は各株について4回ずつ繰り返した。仕込後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図1に示す。 One-stage charging was performed by mixing 40 g of rice, 10 g of glutinous rice, 80 mL of water, and 17.8 μL of 90% lactic acid. Alpha rice with a 70% polishing rate was used as the hanging rice, and dried rice with a 70% polishing rate was used as the polished rice. Each yeast is cultured overnight in a YPD medium (contains 1% yeast extract, 2% peptone, 2% glucose) and then washed with sterilized distilled water so that the yeast count becomes 1 × 10 7 cells / mL. Was added at the time of charging. The fermentation temperature was 15 ° C. The preparation test was repeated four times for each strain. After the preparation, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG.

二酸化炭素発生速度のピーク値及び二酸化炭素総発生量について、親株と遺伝子破壊株における値の有意差検定も行った。さらに、仕込後20日目には、遠心分離によって回収した清酒におけるエタノール濃度を測定し、各株について平均エタノール濃度を算出した。また、得られた平均エタノール濃度について、親株と遺伝子破壊株における濃度の有意差検定も行った。なお、エタノール濃度の測定は、株式会社島津製作所製ガスクロマトグラフGC-17Aを用いて行った。   For the peak value of the carbon dioxide generation rate and the total amount of carbon dioxide generation, a significant difference test was also performed between the parent strain and the gene-disrupted strain. Furthermore, on the 20th day after preparation, the ethanol concentration in sake recovered by centrifugation was measured, and the average ethanol concentration was calculated for each strain. In addition, the obtained average ethanol concentration was also subjected to a significant difference test between the parent strain and the gene-disrupted strain. The ethanol concentration was measured using a gas chromatograph GC-17A manufactured by Shimadzu Corporation.

RIM15遺伝子破壊株は、親株に比べて発酵に伴う二酸化炭素発生速度のピーク値が大きく(親株:14.7±0.8mg/30min、RIM15遺伝子破壊株:20.5±0.7mg/30min、0.1%未満の危険率で有意に親株より大きい)、二酸化炭素総発生量の値も大きかった(親株:5.60±0.00g、RIM15遺伝子破壊株:10.07±0.24g、0.1%未満の危険率で有意に親株より大きい)。さらに、最終的なエタノール濃度も、親株が11.2±0.3容量%であるのに対し、RIM15遺伝子破壊株が17.0±0.2容量%と著しく高い(0.1%未満の危険率で有意に親株より高い)ことから、RIM15遺伝子破壊株を用いた場合、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。   RIM15 gene-disrupted strain has a higher peak carbon dioxide generation rate during fermentation than the parent strain (parent strain: 14.7 ± 0.8mg / 30min, RIM15 gene-disrupted strain: 20.5 ± 0.7mg / 30min, risk rate less than 0.1% And significantly larger than the parent strain), and the total amount of carbon dioxide generation was also large (parent strain: 5.60 ± 0.00 g, RIM15 gene disruption strain: 10.07 ± 0.24 g, significantly higher than the parent strain with a risk rate of less than 0.1%). Furthermore, the final ethanol concentration is 11.2 ± 0.3% by volume for the parent strain, whereas the RIM15 gene disruption strain is significantly higher at 17.0 ± 0.2% by volume (significantly higher than the parent strain at a risk rate of less than 0.1%). From the results, it was found that when the RIM15 gene disrupted strain was used, the ethanol fermentation rate was fast and the ethanol productivity was excellent.

参考例2
上述のサッカロミセス・セレビシエBY4743株及びBY4743 Δrim15株を用いてエタノール発酵試験を実施した。
Reference example 2
An ethanol fermentation test was performed using the above Saccharomyces cerevisiae BY4743 strain and BY4743 Δrim15 strain.

高濃度グルコース含有YPD培地(酵母エキス1%、ペプトン2%、グルコース20%含有)50mLを用いたエタノール発酵試験を実施した。各酵母は、YPD培地において一晩振とう培養した後、酵母密度がOD660=0.1/mLになるように高濃度グルコース含有YPD培地に添加し、5日間静置培養した。発酵温度は30℃とした。発酵試験は各株について4回ずつ繰り返した。培養開始後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図2に示す。二酸化炭素発生速度のピーク値及び二酸化炭素総発生量については、親株と遺伝子破壊株における値の有意差検定も行った。 An ethanol fermentation test using 50 mL of a high-concentration glucose-containing YPD medium (containing 1% yeast extract, 2% peptone, and 20% glucose) was performed. Each yeast was cultured in a YPD medium with shaking overnight, and then added to a high-concentration glucose-containing YPD medium so that the yeast density was OD 660 = 0.1 / mL, followed by stationary culture for 5 days. The fermentation temperature was 30 ° C. The fermentation test was repeated four times for each strain. After the start of culture, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG. The peak value of carbon dioxide generation rate and the total amount of carbon dioxide generation were also tested for significant differences between the parent strain and the gene-disrupted strain.

RIM15遺伝子破壊株は、親株に比べて発酵に伴う二酸化炭素発生速度のピーク値が大きく(親株:11.3±1.5mg/15min、RIM15遺伝子破壊株:16.3±2.7mg/15min、5%未満の危険率で有意に親株より大きい)二酸化炭素総発生量の値も大きいことから(親株:2.74±0.13g、RIM15遺伝子破壊株:3.23±0.21g、0.1%未満の危険率で有意に親株より大きい)、RIM15遺伝子破壊株を用いた場合、エタノール発酵速度が速く、エタノール生産性に優れることが分かった。   RIM15 gene-disrupted strain has a higher peak carbon dioxide generation rate during fermentation than the parent strain (parent strain: 11.3 ± 1.5mg / 15min, RIM15 gene-disrupted strain: 16.3 ± 2.7mg / 15min, less than 5% risk rate Because the total amount of carbon dioxide generated is significantly larger than the parent strain (parent strain: 2.74 ± 0.13g, RIM15 gene disruption strain: 3.23 ± 0.21g, significantly larger than the parent strain with a risk rate of less than 0.1%), When the RIM15 gene disrupted strain was used, it was found that the ethanol fermentation rate was fast and the ethanol productivity was excellent.

実施例1
〔形質転換株の作成〕
RIM15遺伝子の上流811bp、RIM15遺伝子のコード領域5313bp及びRIM15遺伝子の下流500bpを含むPCR産物を得るために、プライマーRIM15-F(配列表の配列番号1)、RIM15-R(配列表の配列番号2)を設計した。プライマー設計のためのソフトウェアは、SGD(Saccharomyces Genome Database)のホームページ(http://genome-www.stanford.edu/Saccharomyces)に添付のものを使用した。
Example 1
[Create transformants]
In order to obtain a PCR product containing 811 bp upstream of the RIM15 gene, 5313 bp coding region of the RIM15 gene and 500 bp downstream of the RIM15 gene, primers RIM15-F (SEQ ID NO: 1 in the sequence listing), RIM15-R (SEQ ID NO: 2 in the sequence listing) ) Designed. The software for primer design used was the one attached to the SGD (Saccharomyces Genome Database) website (http://genome-www.stanford.edu/Saccharomyces).

実験室酵母X2180からゲノムDNAを抽出し、プライマーRIM15-F(配列表の配列番号1)、RIM15-R(配列表の配列番号2)を用いてPCR法によりDNA増幅を実施し、PCR産物をpAUR112ベクターのSmaIサイトにクローニングした。得られた組換えベクターを、酢酸リチウム法により清酒酵母きょうかい701号由来ウラシル要求性株(K701 UT-1T株)に導入した。SC-Ura寒天培地(0.67%yeast nitrogen base without amino acids、0.77 g/L complete supplement mixture minus uracil、2%グルコース含有)上で、30℃、3日間培養し、得られた単コロニーを同じ組成のSC-Ura寒天培地で再度培養し、生育してきたものを形質転換株とした。この株は、K701 UT-1T [pAUR112-ScRIM15]株と命名され、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受領番号NITE AP-1219(受領日:平成24年2月2日)(現在、寄託番号取得手続中)として寄託された。また、同様の方法により、空ベクターを導入した対照株も作成された。この株は、K701 UT-1T [pAUR112]株と命名され、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受領番号NITE AP-1218(受領日:平成24年2月2日)(現在、寄託番号取得手続中)として寄託された。   Genomic DNA was extracted from laboratory yeast X2180, and DNA amplification was performed by PCR using primers RIM15-F (SEQ ID NO: 1 in the sequence listing) and RIM15-R (SEQ ID NO: 2 in the sequence listing). It was cloned into the SmaI site of the pAUR112 vector. The obtained recombinant vector was introduced into a uracil-requiring strain (K701 UT-1T strain) derived from sake yeast Kyokai No. 701 by the lithium acetate method. Culturing on SC-Ura agar medium (0.67% yeast nitrogen base without amino acids, 0.77 g / L complete supplement mixture minus uracil, containing 2% glucose) at 30 ° C for 3 days. The cells were re-cultured on SC-Ura agar and grown to obtain transformants. This strain is named K701 UT-1T [pAUR112-ScRIM15], and received the NITE AP-1219 (Receipt date: February 2, 2012) at the National Institute of Technology and Evaluation for Microorganisms. Deposited as (currently in the process of obtaining the deposit number). In addition, a control strain into which an empty vector was introduced was also prepared by the same method. This strain was named K701 UT-1T [pAUR112] and received the NITE AP-1218 (Receipt date: February 2, 2012) at the National Institute of Technology and Evaluation for Microorganisms (Receipt date: February 2, 2012) (currently Deposited as deposit number).

〔ストレス耐性試験〕
上述のK701 UT-1T [pAUR112]株及びK701 UT-1T [pAUR112-ScRIM15]株を用いてストレス耐性試験を実施した。各酵母は、SC-Ura培地において一晩振とう培養した後、酵母密度がOD660=0.1/mLになるようにYPD培地(酵母エキス 1%、ペプトン2%、グルコース2%含有)に添加し、1週間振とう培養して定常期の細胞を得た。培養温度は25℃とした。当該細胞を54℃の温浴に移して熱ショックを与え、直後(0分)、15分、30分後にサンプリングを行った。各試料をYPD寒天培地上に塗布し、30℃、3日間培養し、得られた単コロニーの数を計測した。
[Stress tolerance test]
A stress tolerance test was performed using the K701 UT-1T [pAUR112] and K701 UT-1T [pAUR112-ScRIM15] strains described above. Each yeast is cultured overnight in SC-Ura medium and then added to YPD medium (yeast extract 1%, peptone 2%, glucose 2%) so that the yeast density is OD 660 = 0.1 / mL. Then, stationary phase cells were obtained by shaking culture for 1 week. The culture temperature was 25 ° C. The cells were transferred to a 54 ° C. water bath and subjected to heat shock, and sampling was performed immediately (0 minutes), 15 minutes, and 30 minutes later. Each sample was applied on a YPD agar medium, cultured at 30 ° C. for 3 days, and the number of single colonies obtained was counted.

試験は各株について3回以上繰り返した。各株において熱ショック付与直後のコロニー数を100%とした時のコロニー数を求め、平均生存率を算出した。結果を図3に示す。平均生存率については、両株における値の有意差検定も行った。   The test was repeated 3 times or more for each strain. In each strain, the number of colonies when the number of colonies immediately after application of heat shock was taken as 100% was determined, and the average survival rate was calculated. The results are shown in FIG. For the mean survival rate, a significant difference test of values in both strains was also performed.

図3から明らかなように、形質転換株は、対照株に比べて熱ショック処理後の平均生存率が1%未満の危険率で有意に高いことが示された(対照株(15分後):0.018%、形質転換株(15分後):10.4%、対照株(30分後):0.0016%、形質転換株(30分後):4.4%)。この結果から、実験室酵母由来のRIM15遺伝子の導入により、親株である清酒酵母きょうかい701号のストレス耐性が顕著に回復したことが示された。   As is clear from FIG. 3, it was shown that the transformant had a significantly higher average survival rate after heat shock treatment than the control strain at a risk rate of less than 1% (control strain (after 15 minutes)). : 0.018%, transformed strain (after 15 minutes): 10.4%, control strain (after 30 minutes): 0.0016%, transformed strain (after 30 minutes): 4.4%). From this result, it was shown that the stress tolerance of sake yeast No. 701, the parent strain, was significantly recovered by the introduction of RIM15 gene derived from laboratory yeast.

〔清酒製造試験〕
上述のK701 UT-1T [pAUR112]株及びK701 UT-1T [pAUR112-ScRIM15]株を用いて以下に示す方法で清酒を製造した。掛米40g、麹米10g、水80mL、90%乳酸17.8μL混合による一段仕込を実施した。掛米として精米歩合70%のアルファー化米、麹米として精白歩合70%の乾燥麹を用いた。各酵母は、SC-Ura培地において一晩振とう培養した後、滅菌蒸留水により洗浄し、酵母数が1×107cells/mLになるように仕込時に添加した。発酵温度は15℃とした。仕込試験は各株について3回以上繰り返した。
[Sake production test]
Using the K701 UT-1T [pAUR112] and K701 UT-1T [pAUR112-ScRIM15] strains described above, sake was produced by the method described below. One-stage charging was performed by mixing 40 g of rice, 10 g of glutinous rice, 80 mL of water, and 17.8 μL of 90% lactic acid. Alpha rice with a 70% polishing rate was used as the hanging rice, and dried rice with a 70% polishing rate was used as the polished rice. Each yeast was cultured overnight in SC-Ura medium after shaking, washed with sterilized distilled water, and added at the time of preparation so that the number of yeast was 1 × 10 7 cells / mL. The fermentation temperature was 15 ° C. The preparation test was repeated three times or more for each strain.

仕込後、発酵モニター装置(アトー株式会社製ファーモグラフII)を用いて発酵に伴う二酸化炭素発生量を求め、各株について平均二酸化炭素発生量を算出した。結果を図4に示す。二酸化炭素発生速度のピーク値及び二酸化炭素総発生量について、対照株と形質転換株における値の有意差検定も行った。さらに、発酵開始後20日経過時点においては、清酒もろみ中における酵母の死滅率並びに遠心分離によって回収した清酒におけるエタノール濃度、日本酒度、酸度、アミノ酸度及び有機酸組成を測定し、各株について平均値を算出した。結果を表1に示す。また、得られた平均値について、対照株と形質転換株における値の有意差検定も行った。   After the preparation, the amount of carbon dioxide generated during fermentation was determined using a fermentation monitor device (Farmograph II manufactured by Ato Co., Ltd.), and the average amount of carbon dioxide generated for each strain was calculated. The results are shown in FIG. For the peak value of the carbon dioxide generation rate and the total amount of carbon dioxide generation, a significant difference test was also conducted between the control strain and the transformed strain. Furthermore, at the time when 20 days have passed since the start of fermentation, the death rate of yeast in sake mash and the ethanol concentration, sake degree, acidity, amino acid degree and organic acid composition in sake recovered by centrifugation were measured, and the average for each strain The value was calculated. The results are shown in Table 1. Moreover, about the obtained average value, the significant difference test of the value in a control strain and a transformed strain was also performed.

なお、酵母の死滅率はメチレンブルー染色法により計測した。エタノール濃度の測定は、株式会社島津製作所製ガスクロマトグラフGC-17Aを用いて行った。日本酒度、酸度及びアミノ酸度については、国税庁所定分析法に従って分析した。有機酸組成は、株式会社島津製作所製高速液体クロマトグラフLC-10ADを用いて分析を行った。   The yeast death rate was measured by the methylene blue staining method. The ethanol concentration was measured using a gas chromatograph GC-17A manufactured by Shimadzu Corporation. About sake degree, acidity, and amino acid degree, it analyzed according to the National Tax Agency predetermined analysis method. The organic acid composition was analyzed using a high performance liquid chromatograph LC-10AD manufactured by Shimadzu Corporation.

Figure 2013169198
Figure 2013169198

図4から明らかなように、発酵に伴う二酸化炭素発生速度のピーク値又は二酸化炭素総発生量について、形質転換株は対照株との有意な差を示さなかった(危険率5%)。具体的には、二酸化炭素発生速度のピーク値は、対照株で15.5±0.3mL/30min、形質転換株で15.3±0.2mL/30minであり、二酸化炭素総発生量は、対照株で7.02±0.20L、形質転換株で7.01±0.14Lであり、いずれもほぼ同程度であった。二酸化炭素発生速度については、発酵開始後4.5〜8.7日では対照株の方が有意に大きい値を示したが(危険率5%)、15.7日以降では形質転換株の方が有意に値が大きく(危険率5%)、20日間の発酵期間全体を通して見ると両株においてほぼ同じ程度まで発酵が進行したと考えられる。さらに、最終的なエタノール濃度も、対照株で19.55±0.25容量%、形質転換株で19.20±0.28容量%であり、有意な差は観察されなかった(危険率5%)。以上の結果から、実験室酵母由来のRIM15遺伝子の導入が清酒酵母きょうかい701号を用いたエタノール発酵に及ぼす影響はごくわずかしかないことが確認された。   As is apparent from FIG. 4, the transformed strain did not show a significant difference from the control strain in terms of the peak value of the carbon dioxide generation rate or the total amount of carbon dioxide generated during fermentation (risk rate 5%). Specifically, the peak value of the carbon dioxide generation rate is 15.5 ± 0.3 mL / 30 min for the control strain, 15.3 ± 0.2 mL / 30 min for the transformed strain, and the total carbon dioxide generation rate is 7.02 ± 0.20 for the control strain. The L and transformed strains were 7.01 ± 0.14 L, both of which were almost the same. Regarding the carbon dioxide generation rate, the control strain showed a significantly larger value from 4.5 to 8.7 days after the start of fermentation (risk rate 5%), but the transformed strain was significantly larger after 15.7 days. (Risk rate 5%), it is considered that the fermentation progressed to almost the same degree in both strains over the entire 20-day fermentation period. Furthermore, the final ethanol concentration was 19.55 ± 0.25% by volume in the control strain and 19.20 ± 0.28% by volume in the transformed strain, and no significant difference was observed (risk rate 5%). From the above results, it was confirmed that the introduction of RIM15 gene derived from laboratory yeast had very little effect on ethanol fermentation using sake yeast No.701.

一方、清酒もろみ中の酵母の死滅率については、形質転換株において顕著に低下しており、実験室酵母由来のRIM15遺伝子の導入によるストレス耐性回復効果が認められた。このことに関連して、形質転換株において、アミノ酸度は有意に低く、酸度は有意に高いことが示され、中でも特にリンゴ酸の含有量は対照株と比較して48%増大していた。   On the other hand, the death rate of yeast in sake moromi was significantly reduced in the transformed strains, and the stress tolerance recovery effect by introduction of RIM15 gene derived from laboratory yeast was observed. In this connection, it was shown that in the transformed strains the amino acid content was significantly lower and the acidity was significantly higher, in particular the malic acid content was increased by 48% compared to the control strain.

酵母は清酒製造環境において高濃度エタノールや低温などのストレスを受けている。これらのストレスを長時間受けると酵母は死滅し、製造効率が低下するだけでなく、酵母細胞の自己消化等に伴い、清酒の品質にも悪影響を及ぼす。ところが、本発明の製造方法では、高い発酵性を維持したままストレス耐性を回復した清酒酵母を使用することにより、アミノ酸度が低く、リンゴ酸濃度が高いという良好な特徴を有する清酒を効率的に製造することが可能となる。また、高いストレス耐性を有する本発明の酵母は、清酒に限らず、焼酎、ビール、ワイン等の酒類やパン類、醤油等の食品の製造にも好適に用いられる。   Yeast is subjected to stress such as high-concentration ethanol and low temperature in the sake production environment. When subjected to these stresses for a long time, not only does the yeast die and the production efficiency decreases, but it also has an adverse effect on the quality of sake with the self-digestion of the yeast cells. However, in the production method of the present invention, by using sake yeast that has recovered stress resistance while maintaining high fermentability, sake having good characteristics of low amino acid content and high malic acid concentration can be efficiently obtained. It can be manufactured. In addition, the yeast of the present invention having high stress resistance is not limited to sake, and is also suitably used for the production of alcoholic beverages such as shochu, beer and wine, and foods such as breads and soy sauce.

配列表の配列番号1は、RIM15増幅用プライマーである。
配列表の配列番号2は、RIM15増幅用プライマーである。
Sequence number 1 of a sequence table is a primer for RIM15 amplification.
Sequence number 2 of a sequence table is a primer for RIM15 amplification.

Claims (4)

RIM15遺伝子を発現する組換えベクターで形質転換されてなる、清酒酵母。   Sake yeast transformed with a recombinant vector expressing the RIM15 gene. 清酒酵母がSaccharomyces cerevisiae K701 UT-1T [pAUR112-ScRIM15](受領番号NITE AP-1219)である、請求項1に記載の清酒酵母。   The sake yeast according to claim 1, wherein the sake yeast is Saccharomyces cerevisiae K701 UT-1T [pAUR112-ScRIM15] (reception number NITE AP-1219). 請求項1又は2に記載の清酒酵母を用いることを特徴とする、酒類又は食品の製造方法。   A method for producing alcoholic beverages or foods, wherein the sake yeast according to claim 1 or 2 is used. 酒類又は食品が、清酒、焼酎、ビール、ワイン、パン類及び醤油からなる群より選択される少なくとも一種である、請求項3に記載の製造方法。   The production method according to claim 3, wherein the liquor or food is at least one selected from the group consisting of sake, shochu, beer, wine, breads and soy sauce.
JP2012036571A 2012-02-22 2012-02-22 Sake yeast and method for producing alcoholic drink or food using the same Pending JP2013169198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036571A JP2013169198A (en) 2012-02-22 2012-02-22 Sake yeast and method for producing alcoholic drink or food using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036571A JP2013169198A (en) 2012-02-22 2012-02-22 Sake yeast and method for producing alcoholic drink or food using the same

Publications (2)

Publication Number Publication Date
JP2013169198A true JP2013169198A (en) 2013-09-02
JP2013169198A5 JP2013169198A5 (en) 2015-01-22

Family

ID=49263584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036571A Pending JP2013169198A (en) 2012-02-22 2012-02-22 Sake yeast and method for producing alcoholic drink or food using the same

Country Status (1)

Country Link
JP (1) JP2013169198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677098B2 (en) 2014-12-18 2017-06-13 Samsung Electronics Co., Ltd. Yeast cell-producing lactate with reduced activity of rim15 and igo2, method of producing the yeast cell, and method of producing lactate by using the yeast cell
CN115974990A (en) * 2023-02-27 2023-04-18 山东大学 Saccharomyces cerevisiae Rim15 protein mutant and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015041769; URBANCZYK, Henryk et al.: '"Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation"' J. Biosci. Bioeng. Vol. 112, 2011, p. 44-48 *
JPN6015041771; REINDERS, Anke et al.: '"Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through' Genes Dev. Vol. 12, 1998, p. 2943-2955 *
JPN6015041772; IAMZU, Hiromi et al.: '"Saccharomyces cerevisiae Heat Shock Transcription Factor Regulates Cell Wall Remodeling in Response' Eukaryot. Cell Vol. 4, 2005, p. 1050-1056 *
JPN6015041773; 鈴木太郎, 他5名: '"清酒酵母の胞子形成能に関する研究"' 第63回日本生物工学会大会講演要旨集 , 20110825, p. 65, 1Jp13 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677098B2 (en) 2014-12-18 2017-06-13 Samsung Electronics Co., Ltd. Yeast cell-producing lactate with reduced activity of rim15 and igo2, method of producing the yeast cell, and method of producing lactate by using the yeast cell
CN115974990A (en) * 2023-02-27 2023-04-18 山东大学 Saccharomyces cerevisiae Rim15 protein mutant and application thereof
CN115974990B (en) * 2023-02-27 2024-04-12 山东大学 Saccharomyces cerevisiae Rim15 protein mutant and application thereof

Similar Documents

Publication Publication Date Title
Cubillos et al. Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers
Passoth et al. Biotechnology, physiology and genetics of the yeast Pichia anomala
Kitagaki et al. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives
Verstrepen et al. Glucose and sucrose: hazardous fast-food for industrial yeast?
Petruzzi et al. Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains
de Souza et al. Improvement of Brazilian bioethanol production–Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process
JP4963488B2 (en) Mutant yeast and substance production method using the same
JP2020195384A (en) Method for producing acetoin
Budroni et al. Saccharomyces and non-Saccharomyces starter yeasts
US20220154113A1 (en) Expression of heterologous enzymes in yeast for flavoured alcoholic beverage production
Le Borgne Genetic engineering of industrial strains of Saccharomyces cerevisiae
Schifferdecker et al. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
WO2012133275A1 (en) Kluyveromyces yeast mutant and method for producing ethanol using same
JP2013169198A (en) Sake yeast and method for producing alcoholic drink or food using the same
JP4269037B2 (en) Process for producing organic acid-rich sake
CA2956189C (en) Microorganism strains for the production of 2.3- butanediol
WO2005123917A1 (en) Stabilized proline transporter
CN115552016A (en) Reduction of acetic acid production by yeast overexpressing MIG polypeptides
CN102146346B (en) Saccharomyces cerevisiae and constructing method and application of saccharomyces cerevisiae
Maxwell et al. Isolation and characterization of yeast inhabiting alcohol processing environment in Bayelsa state, Nigeria
JP2013169198A5 (en)
KR102018536B1 (en) Saccharomyces cerevisiae ksd-yc which is a novel yeast
Akpan Gidado Rose Suniso Maxwell1, 2 Isu Rosemary Nennaya2 and Etuk-Udo
CN105274133A (en) Method for reducing saccharomyces cerevisiae urea accumulation by modifying urea metabolism regulation approach
CN105296525A (en) Method for improving non-preference type nitrogen source utilization of saccharomyces cerevisiae

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160201