JP2013167564A - Closing member - Google Patents

Closing member Download PDF

Info

Publication number
JP2013167564A
JP2013167564A JP2012031599A JP2012031599A JP2013167564A JP 2013167564 A JP2013167564 A JP 2013167564A JP 2012031599 A JP2012031599 A JP 2012031599A JP 2012031599 A JP2012031599 A JP 2012031599A JP 2013167564 A JP2013167564 A JP 2013167564A
Authority
JP
Japan
Prior art keywords
pipe
closing member
closing
fluid
balloons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012031599A
Other languages
Japanese (ja)
Inventor
Kiyoshi Matsuo
浄 松尾
Kazuyoshi Torii
和敬 鳥居
Hiroshi Kimura
博 木村
Kazuya Oda
和也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2012031599A priority Critical patent/JP2013167564A/en
Publication of JP2013167564A publication Critical patent/JP2013167564A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pipe Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a closing member capable of reliably closing a pipeline penetrating through a radiation shielding wall at a desired position.SOLUTION: A closing member 10 is, for example, used for closing pipelines 12a to 12d penetrating through a radiation shielding wall 24 for isolating a reactor body 20 from the outside, and is a member for closing a pipeline 12a by expansion due to pouring of fluid for expansion. The closing member 10 partitions an internal space as a plurality of balloons 40a and 40b, the balloons 40a and 40b have injection ports 41a and 41b of fluid, respectively, and the respective balloons 40a and 40b can be expanded independently from each other.

Description

本発明は、放射能レベルの高い原子炉本体等を遮蔽する放射線遮蔽壁を貫通するように設置された配管を閉塞するための閉塞部材に関する。   The present invention relates to a closing member for closing a pipe installed so as to penetrate a radiation shielding wall that shields a nuclear reactor main body or the like having a high radioactivity level.

原子力発電所では、圧力容器や格納容器からなる原子炉本体が設置されたエリア等、放射能レベルの高いエリアを外部から遮蔽するため、このエリアを放射線遮蔽壁で仕切った構成が採用されている。そのため、該エリアの内外空間に設置された機器同士を連通するガスダクト等の配管は、遮蔽壁を貫通して設けられている。   At the nuclear power plant, in order to shield the area with high radiation level from the outside, such as the area where the reactor main body consisting of the pressure vessel and the containment vessel is installed, a configuration in which this area is partitioned by a radiation shielding wall is adopted. . Therefore, piping such as a gas duct that communicates devices installed in the inside and outside spaces of the area is provided through the shielding wall.

このような原子力発電所を廃炉にする場合や定期検査を行う場合には、気密性を確保して放射能漏れを防止するため、上記のような配管を所望の位置で気密に閉塞する必要があり、一般的には、配管各部にある既設バルブを閉止すれば配管内の閉塞が可能な仕組みが設けられている。   When such nuclear power plants are decommissioned or when periodic inspections are performed, it is necessary to hermetically close the above piping at a desired position in order to ensure airtightness and prevent radiation leakage. In general, there is a mechanism in which the piping can be closed by closing the existing valves in each part of the piping.

ところが、現状では、古い原子力発電所の場合や、既設バルブで対応できない予期せぬ箇所で配管内の気密確保が要求された場合の対応方法は提供されていない。配管内からアクセスして直接的に配管内を閉塞する方法も考えられるが、作業者の受ける被曝量の問題がある。また、遠隔解体装置を用いて配管の閉塞作業を行うことも考えられるが、現段階ではこのような機能を有した最適な装置が開発されていない。   However, at present, no countermeasure is provided for an old nuclear power plant or a case where airtightness in a pipe is required at an unexpected location that cannot be handled by existing valves. Although a method of directly closing the inside of the pipe by accessing from inside the pipe is conceivable, there is a problem of the exposure dose received by the worker. Although it is conceivable to use a remote dismantling device to close the piping, an optimum device having such a function has not been developed at this stage.

そこで、本出願人は、特許文献1において、放射線源に連通する配管を切断するための配管切断方法として、配管内に伸縮性を有する袋体を挿入し、この袋体に流体を流入させて膨張させることによって配管内を閉塞する方法を提案している。   Therefore, in Japanese Patent Application Laid-Open No. H10-260260, the applicant of the present invention has introduced a flexible bag body into the pipe as a pipe cutting method for cutting the pipe communicating with the radiation source, and has a fluid flow into the bag body. A method for closing the inside of a pipe by expanding the pipe has been proposed.

特開2010−32253号公報JP 2010-32253 A

ところで、上記特許文献1では、袋体の膨張用の流体として水等を用いる構成を開示しているが、水等の液体を注入した場合には、袋体が重力の影響によって変形し、配管内を確実に密閉することが難しい可能性がある。   By the way, in the said patent document 1, although the structure which uses water etc. as a fluid for expansion | swelling of a bag body is disclosed, when liquids, such as water, are inject | poured, a bag body deform | transforms by the influence of gravity and piping. It may be difficult to securely seal the inside.

本発明は、上記従来技術の課題を考慮してなされたものであり、放射線遮蔽壁を貫通する配管を所望の位置で確実に閉塞することができる閉塞部材を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a closing member that can reliably close a pipe penetrating a radiation shielding wall at a desired position.

本発明に係る閉塞部材は、放射線遮蔽壁を貫通する配管内に設置され、流体が注入されることで膨張して前記配管を閉塞するための閉塞部材であって、内部空間が複数の袋体として仕切られると共に、各袋体にそれぞれ前記流体の注入口を設けたことを特徴とする。   A closing member according to the present invention is a closing member that is installed in a pipe that penetrates a radiation shielding wall and expands when a fluid is injected to close the pipe. And each of the bags is provided with an inlet for the fluid.

このような構成によれば、膨張性の閉塞部材の内部空間を複数に仕切って構成し、各袋体にそれぞれ流体の注入口を設けたことにより、各袋体をそれぞれ独立して膨張させることができる。このため、注入時の重力の影響によって閉塞部材が歪んだ状態で膨張し、配管内を完全に閉塞することができなくなるような不具合の発生を可及的に抑制することができる。しかも、内部空間が複数に仕切られているため、経年的な自重による潰れも少なくし、長期に渡って安定した気密状態を保つことができる。   According to such a configuration, the inner space of the inflatable closing member is divided into a plurality of parts, and each bag body is provided with a fluid inlet, whereby each bag body is inflated independently. Can do. For this reason, it is possible to suppress as much as possible the occurrence of a problem that the blocking member expands in a distorted state due to the influence of gravity at the time of injection and the piping cannot be completely blocked. In addition, since the internal space is partitioned into a plurality of parts, crushing due to aging weight is reduced, and a stable airtight state can be maintained over a long period of time.

当該閉塞部材は、前記配管内に設置された状態で前記袋体が上下方向に積層されるように少なくとも2個設けられると、自重による潰れや歪みに対する耐久性を一層向上させることができる。   When at least two of the closing members are provided so that the bags are stacked in the vertical direction in a state where they are installed in the pipe, durability against crushing and distortion due to their own weight can be further improved.

各袋体をまとめて包含する包含用袋体を設けると、包含用袋体が外皮となって各袋体の破損を阻止することができ、配管の長期の閉止に特に有効となる。また、包含用袋体で剛性を負担することができるため、どのような形状の袋体であっても要求形状を満足することが可能となり、汎用性が向上する。そこで、包含用袋体は、袋体よりも高強度に構成されることが好ましい。   When the inclusion bag body including the respective bag bodies is provided, the inclusion bag body serves as an outer skin to prevent the damage of each bag body, which is particularly effective for long-term piping closing. In addition, since the rigidity can be borne by the inclusion bag, any shape of the bag can satisfy the required shape, and versatility is improved. Therefore, the inclusion bag body is preferably configured to have a higher strength than the bag body.

本発明によれば、膨張性の閉塞部材の内部空間を複数に仕切って構成し、各袋体にそれぞれ流体の注入口を設けたことにより、各袋体をそれぞれ独立して膨張させることができる。このため、注入時の重力の影響によって閉塞部材が歪んだ状態で膨張し、配管内を完全に閉塞することができなくなるような不具合の発生を可及的に抑制することができる。   According to the present invention, the internal space of the inflatable closing member is divided into a plurality of parts, and each bag is provided with a fluid inlet, whereby each bag can be independently expanded. . For this reason, it is possible to suppress as much as possible the occurrence of a problem that the blocking member expands in a distorted state due to the influence of gravity at the time of injection and the piping cannot be completely blocked.

図1は、本発明の一実施形態に係る閉塞部材による閉塞対象となる配管を備えた原子炉設備の構成例を示す説明図である。FIG. 1 is an explanatory diagram illustrating a configuration example of a nuclear reactor facility provided with piping to be blocked by a blocking member according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る閉塞部材を用いた遮蔽壁貫通配管の閉塞方法の手順の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a procedure of a method for closing a shielding wall through pipe using a closing member according to an embodiment of the present invention. 図3は、配管の一部に作業設備を設置し、開口部を形成した状態を示す説明図である。FIG. 3 is an explanatory view showing a state in which work equipment is installed in a part of the piping and an opening is formed. 図4は、図3に示す状態から、開口部を通して配管内へと閉塞部材を挿入した状態を示す説明図である。FIG. 4 is an explanatory view showing a state in which the closing member is inserted into the pipe through the opening from the state shown in FIG. 図5は、図4に示す状態から、下側のバルーンに流体を流入させて膨張させた状態を示す説明図である。FIG. 5 is an explanatory view showing a state in which a fluid is introduced into the lower balloon and inflated from the state shown in FIG. 図6は、図5に示す状態から、上側のバルーンに流体を流入させることにより、閉塞部材を完全に膨張させた状態を示す説明図である。FIG. 6 is an explanatory diagram showing a state in which the closing member is completely inflated by allowing a fluid to flow into the upper balloon from the state shown in FIG. 図7は、本発明の一実施形態に係る閉塞部材を膨張させた状態での斜視図である。FIG. 7 is a perspective view of the closed member according to the embodiment of the present invention in an expanded state. 図8は、図7に示す閉塞部材を示す図であり、図8(A)は、側面図であり、図8(B)は、正面図である。8 is a view showing the closing member shown in FIG. 7, FIG. 8 (A) is a side view, and FIG. 8 (B) is a front view. 図9は、図7に示す閉塞部材を収縮させて丸めた状態を示す説明図である。FIG. 9 is an explanatory view showing a state in which the closing member shown in FIG. 7 is contracted and rounded.

以下、本発明に係る閉塞部材について、この部材を用いた遮蔽壁貫通配管の閉塞方法との関係で好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a closing member according to the present invention will be described in detail with reference to the accompanying drawings by giving preferred embodiments in relation to a closing method for a shielding wall through pipe using this member.

図1は、本発明の一実施形態に係る閉塞部材10(図7参照)による閉塞対象となる配管12a(12b〜12d)を備えた原子炉設備14の構成例を示す説明図である。   FIG. 1 is an explanatory diagram illustrating a configuration example of a nuclear reactor facility 14 including a pipe 12a (12b to 12d) to be closed by a closing member 10 (see FIG. 7) according to an embodiment of the present invention.

図1に示すように、原子炉設備14は、原子炉圧力容器16と、原子炉圧力容器16を囲繞する原子炉格納容器18とを有する原子炉本体20を備え、この原子炉本体20をコンクリート製等で構成される原子炉建屋22内に設けて構成されている。原子炉本体20の周囲は、原子炉建屋22の一部を構成する放射線遮蔽壁(遮蔽壁)24によって覆われており、この放射線遮蔽壁24により、その内側(原子炉本体20側)で放射能レベルの高い放射能汚染領域と、その外側で放射能汚染のない又は少ないクリーン領域とが仕切られている。   As shown in FIG. 1, the nuclear reactor equipment 14 includes a reactor main body 20 having a reactor pressure vessel 16 and a reactor containment vessel 18 surrounding the reactor pressure vessel 16. It is provided and configured in the reactor building 22 made of manufactured or the like. The periphery of the reactor main body 20 is covered by a radiation shielding wall (shielding wall) 24 that constitutes a part of the reactor building 22, and the radiation shielding wall 24 radiates the inside (reactor main body 20 side). A high-activity level radioactively contaminated area is separated from a clean area free from or low in radioactive contamination.

放射線遮蔽壁24には、複数(図1では4本)の配管12a、12b、12c、12dが貫通している。各配管12a〜12dは、例えば、放射線汚染領域内にある原子炉本体20と、クリーン領域にある機器25、26(例えば、熱交換器)とを連通するためのガスダクトである。   A plurality (four in FIG. 1) of pipes 12a, 12b, 12c, and 12d pass through the radiation shielding wall 24. Each piping 12a-12d is a gas duct for communicating the reactor main body 20 in a radiation pollution area | region, and the apparatuses 25 and 26 (for example, heat exchanger) in a clean area, for example.

本実施形態に係る閉塞部材(密閉部材、気密部材)10は、例えば、このように放射線汚染領域をクリーン領域から隔離する放射線遮蔽壁24を貫通している配管12aを、所望の位置で気密に閉塞するために有効に用いられる。以下では、閉塞部材10を用いて配管12aを放射線遮蔽壁24の壁面近辺(図1中で破線丸印で囲む部分)で閉塞する方法(遮蔽壁貫通配管の閉塞方法)を例示しつつ、当該閉塞部材10の具体的な構成について説明する。   The closing member (sealing member, airtight member) 10 according to the present embodiment, for example, airtightly connects the pipe 12a penetrating the radiation shielding wall 24 that isolates the radiation-contaminated region from the clean region at a desired position. Effectively used to occlude. In the following, while exemplifying a method (blocking method of the shielding wall through pipe), the piping 12a is closed by the blocking member 10 in the vicinity of the wall surface of the radiation shielding wall 24 (a portion surrounded by a broken circle in FIG. 1). A specific configuration of the closing member 10 will be described.

図2は、本発明の一実施形態に係る閉塞部材10を用いた遮蔽壁貫通配管の閉塞方法の手順の一例を示すフローチャートである。また、図3〜図6は、図2に示す遮蔽壁貫通配管の閉塞方法による配管12aの閉塞手順の一例を示す動作説明図である。   FIG. 2 is a flowchart showing an example of the procedure of the blocking method for the shielding wall through pipe using the blocking member 10 according to the embodiment of the present invention. Moreover, FIGS. 3-6 is operation | movement explanatory drawing which shows an example of the obstruction | occlusion procedure of the piping 12a by the obstruction | occlusion method of the shielding wall penetration piping shown in FIG.

図2中のステップS1において、先ず、配管12aの一部、ここでは放射線遮蔽壁24の外側(原子炉本体20側とは反対側)の壁面付近に開口部28を貫通形成する(図3参照)。例えば、配管12aが板厚22mmで直径1800mmの炭素鋼の場合に、開口部28は一辺が500mm程度の正方形として配管12aの一面を切断するとよい。   In step S1 in FIG. 2, first, an opening 28 is formed through a part of the pipe 12a, here near the wall surface outside the radiation shielding wall 24 (opposite to the reactor body 20 side) (see FIG. 3). ). For example, when the pipe 12a is a carbon steel having a plate thickness of 22 mm and a diameter of 1800 mm, the opening 28 may be cut into one side of the pipe 12a as a square having a side of about 500 mm.

このような開口部28の形成に先立ち、開口部28を形成する部位周辺の作業エリアとなる場所に作業設備、例えば、作業床30、遮蔽板32、バリア34及び換気設備36を設置しておく。作業床30は配管12aの上面上に敷設され、遮蔽板32は放射線遮蔽壁24の外側面に密着するように設けられる。バリア34は、配管12a内のガスが開口部28から外部に漏れ出すことを防止するために、開口部28外側の空間を囲む遮蔽部材であり、その内部のガスが換気設備36によって換気される。   Prior to the formation of such an opening 28, work facilities such as a work floor 30, a shielding plate 32, a barrier 34, and a ventilation facility 36 are installed in a place serving as a work area around the site where the opening 28 is formed. . The work floor 30 is laid on the upper surface of the pipe 12 a, and the shielding plate 32 is provided so as to be in close contact with the outer surface of the radiation shielding wall 24. The barrier 34 is a shielding member that surrounds the space outside the opening 28 in order to prevent the gas in the pipe 12 a from leaking outside through the opening 28, and the gas inside the barrier 34 is ventilated by the ventilation facility 36. .

続いて、図4に示すように、収縮させて丸めた(又は折り畳んだ)状態の閉塞部材10を開口部28から配管12a内へと挿入した後(ステップS2)、図示しないコンプレッサ等を用いて閉塞部材10内に空気を圧送し、閉塞部材10をある程度膨らませて所望の閉塞位置に設置する(ステップS3)。   Subsequently, as shown in FIG. 4, after the closing member 10 in a contracted and rounded (or folded) state is inserted into the pipe 12 a from the opening 28 (step S <b> 2), using a compressor or the like (not shown). Air is pumped into the closing member 10, and the closing member 10 is inflated to some extent and installed at a desired closing position (step S3).

ここで、図7〜図9を参照して、本実施形態に係る閉塞部材10の構成例について説明する。   Here, with reference to FIGS. 7-9, the structural example of the closure member 10 which concerns on this embodiment is demonstrated.

図7、図8(A)及び図8(B)に示すように、閉塞部材10は、完全に膨らんだ状態で配管12aの内部空間形状に合致する形状(例えば、直径1800mm、軸方向長さ2000mmの円柱形状)に製作された柔軟な袋状部材である。閉塞部材10は、膨張(拡張)用の流体の注入口41a、41bがそれぞれ設けられ、内部空間が互いに独立した一対のバルーン(袋体)40a、40bを上下方向に積層配置し、その外周を補強用袋体(包含用袋体)44によって包含した構成となっている。補強用袋体44は、その材質や形状等を適宜選択することにより、バルーン40a、40bよりも高強度、例えば、耐圧性能や形状保持性能が高い構造とすることが好ましい。   As shown in FIGS. 7, 8 </ b> A, and 8 </ b> B, the closing member 10 has a shape (for example, a diameter of 1800 mm and an axial length) that matches the shape of the internal space of the pipe 12 a in a fully expanded state. It is a flexible bag-like member manufactured in a 2000 mm cylindrical shape. The closing member 10 is provided with inlets 41a and 41b for inflating (expanding) fluid, and a pair of balloons (bags) 40a and 40b whose inner spaces are independent from each other are stacked in the vertical direction, and the outer periphery thereof is arranged. The reinforcing bag body (included bag body) 44 is included. The reinforcing bag body 44 preferably has a structure having higher strength than the balloons 40a and 40b, for example, pressure resistance performance and shape retention performance, by appropriately selecting the material, shape, and the like.

より具体的には、閉塞部材10は、完全に膨らんだ状態で円柱形状となるものであり、断面半円形の2本のチューブ状の袋体であるバルーン(バルーンチューブ)40a、40bを上下に貼り合わせ又は一体的に成形することで、内部空間を複数の袋体(バルーン40a、40b)として仕切り、その外周面を補強用袋体44で一周するように包含している。つまり、本実施形態の場合、バルーン40a、40bの軸方向で両端側にある端面は、補強用袋体44で包含されず、バルーン40a、40bの外周面のみが筒状の補強用袋体44で囲繞されており、バルーン40a、40bと補強用袋体44とは縁切れしている。なお、バルーン40a、40bの全面を補強用袋体44で包含しても勿論よい。   More specifically, the closing member 10 has a cylindrical shape in a completely inflated state, and balloons (balloon tubes) 40a and 40b, which are two tube-shaped bag bodies having a semicircular cross section, are moved up and down. By bonding or integrally molding, the internal space is partitioned as a plurality of bag bodies (balloons 40a and 40b), and the outer peripheral surface is included so as to make a round with the reinforcing bag body 44. That is, in the case of this embodiment, the end surfaces on both ends in the axial direction of the balloons 40a and 40b are not included in the reinforcing bag body 44, and only the outer peripheral surfaces of the balloons 40a and 40b are cylindrical reinforcing bag bodies 44. The balloons 40a and 40b and the reinforcing bag 44 are cut off. Of course, the entire surface of the balloons 40a and 40b may be included in the reinforcing bag 44.

下側のバルーン40aの注入口41aは、例えば、該バルーン40aの一方の端面に一対設けられ、上側のバルーン40bの注入口41bは、例えば、該バルーン40bの外周面頂部に一対設けられる。これら注入口41a、41bには、それぞれ注入ホース42a、42bが連結される(図4〜図6参照)。   For example, a pair of injection ports 41a of the lower balloon 40a is provided at one end surface of the balloon 40a, and a pair of injection ports 41b of the upper balloon 40b is provided at the top of the outer peripheral surface of the balloon 40b, for example. Injection hoses 42a and 42b are connected to the injection ports 41a and 41b, respectively (see FIGS. 4 to 6).

図9に示すように、閉塞部材10は、内部に膨張(拡張)用の流体(例えば、モルタル)を注入していない状態では、収縮させてコンパクトに丸めた状態とすることができる。従って、上記ステップS2では、丸めた状態の閉塞部材10を小さな開口部28から配管12a内へと容易に挿入することができる。なお、上記ステップS3は、コンパクトに畳まれた状態の閉塞部材10内に、流体注入用の注入ホース42a、42bを用いて空気を圧送することにより、閉塞部材10を配管12a内である程度広げて所定位置に設置し、次工程の流体(モルタル)注入を円滑に実施することができる状態とするための工程である。換言すれば、閉塞部材10が幾重にも折り畳まれた状態等で膨張用の流体を注入しても、閉塞部材10を円滑に膨張させることが難しいことがあり、このため、本実施形態では閉塞部材10内に空気を送り込むことにより、閉塞部材10が丸まった状態を解消して平坦に延びた状態とし、次の流体流入に備えている。   As shown in FIG. 9, the closing member 10 can be contracted and compactly rolled in a state where a fluid for expansion (expansion) (for example, mortar) is not injected therein. Therefore, in the step S2, the closed blocking member 10 in a rolled state can be easily inserted into the pipe 12a from the small opening 28. In step S3, air is pumped into the closing member 10 in a compactly folded state using the injection hoses 42a and 42b for fluid injection, so that the closing member 10 is expanded to some extent in the pipe 12a. It is a process for installing in a predetermined position and making it possible to smoothly carry out fluid (mortar) injection in the next process. In other words, it may be difficult to smoothly inflate the closing member 10 even if the expansion fluid is injected in a state in which the closing member 10 is folded several times. By sending air into the member 10, the closed member 10 is removed from the rounded state and is in a state of extending flatly to prepare for the next fluid inflow.

閉塞部材10の材質は、特に限定されないが、バルーン40a、40bとしては、ウレタン、例えば、分子内にウレタン結合(−NHCOO−)を持つ高分子化合物である熱可塑性ポリウレタン(例えば、ポリエーテル系。軟化温度150℃、引火点240℃、比重約1.1)を用いるとよく、その組成は、例えば、(−O−R’−OCO−NH−R−NHCO−)n、となる。ここで、R’は、ポリエーテル(エーテル結合−O−)である。一方、補強用袋体44としては、超高分子量ポリエチレン(超高強力ポリエチレン繊維)、例えば、(CH−CH)n、の化学式で表され、炭素(C)と水素(H)からできた材料(例えば、ダイニーマ(登録商標)。軟化温度130℃、引火点400℃、比重約0.97)を用いるとよい。 The material of the closing member 10 is not particularly limited, but as the balloons 40a and 40b, urethane, for example, thermoplastic polyurethane (for example, polyether type) which is a high molecular compound having a urethane bond (—NHCOO—) in the molecule. A softening temperature of 150 ° C., a flash point of 240 ° C., and a specific gravity of about 1.1) may be used, and the composition is, for example, (—O—R′—OCO—NH—R—NHCO—) n. Here, R ′ is a polyether (ether bond —O—). On the other hand, the reinforcing bag 44 is represented by a chemical formula of ultra high molecular weight polyethylene (ultra high strength polyethylene fiber), for example, (CH 2 —CH 2 ) n, and is made of carbon (C) and hydrogen (H). (Eg, Dyneema (registered trademark), softening temperature 130 ° C., flash point 400 ° C., specific gravity about 0.97) may be used.

なお、閉塞部材10の形状は、閉塞する配管12aの内部空間形状に合わせて適宜設計すればよいことは勿論であり、要は、収縮して開口部28から配管12a内へと容易に挿入でき、しかも配管12a内で確実に膨張して該配管12aの内面に密着し、該配管12a内でのガスの流通を遮断し得るように気密に閉塞できる形状であればよい。   Needless to say, the shape of the closing member 10 may be appropriately designed in accordance with the shape of the internal space of the pipe 12a to be closed. In short, it can be easily inserted into the pipe 12a from the opening 28 by contracting. In addition, any shape may be used as long as it can be surely expanded in the pipe 12a, tightly adhered to the inner surface of the pipe 12a, and hermetically closed so as to block the gas flow in the pipe 12a.

図2に戻り、ステップS4では、配管12a内の所定位置に配置された閉塞部材10内へと、図示しないモルタルポンプと注入ホース42a、42bを用いて、膨張用の流体であるモルタルを注入する(図5及び図6参照)。これにより、閉塞部材10が完全に膨張し、配管12aの内面全周に密着することで該配管12a内が気密な状態で閉塞される(図6参照)。   Returning to FIG. 2, in step S4, mortar, which is an expansion fluid, is injected into the closing member 10 disposed at a predetermined position in the pipe 12a by using a mortar pump and injection hoses 42a and 42b (not shown). (See FIGS. 5 and 6). As a result, the closing member 10 is completely inflated, and is tightly contacted with the entire inner circumference of the pipe 12a, thereby closing the inside of the pipe 12a in an airtight state (see FIG. 6).

本実施形態では、上記のように、2個のバルーン40a、40bを用いた上下2段構造の閉塞部材10を用いているため、先ず、一方の注入用ホース42aを注入口41aに連通させて下側のバルーンチューブ40a内にモルタルを注入し(図5参照)、続いて、他方の注入用ホース42bを注入口41bに連通させて上側のバルーンチューブ40b内にモルタルを注入する(図6参照)。このように閉塞部材10を上下2層に構成し、下側のバルーン40aから順にモルタルを注入すると、注入時の重力の影響によって閉塞部材10が歪んだ状態で膨張し、配管12a内を完全に閉塞することができなくなるような不具合の発生を可及的に抑制することができ、また経年的な自重による潰れも少なくなる。勿論、閉塞部材10の内部空間は3層以上に仕切ってもよく、この場合には、3個以上のバルーンを上下方向に多層に設けるとよい。   In the present embodiment, as described above, the closing member 10 having the upper and lower two-stage structure using the two balloons 40a and 40b is used. First, one injection hose 42a is communicated with the injection port 41a. Mortar is injected into the lower balloon tube 40a (see FIG. 5), and then the other injection hose 42b is communicated with the injection port 41b to inject mortar into the upper balloon tube 40b (see FIG. 6). ). When the occluding member 10 is configured in two upper and lower layers and mortar is injected sequentially from the lower balloon 40a in this way, the occluding member 10 expands in a distorted state due to the influence of gravity at the time of injection, and the inside of the pipe 12a is completely removed. It is possible to suppress as much as possible the occurrence of a problem that makes it impossible to block, and the crushed due to its own weight over time is reduced. Of course, the internal space of the closing member 10 may be divided into three or more layers. In this case, three or more balloons may be provided in multiple layers in the vertical direction.

閉塞部材10内に注入されたモルタルが凝結することで配管12a内が内部が固型状となった閉塞部材10によって完全に閉塞されるため、続くステップS5では、注入ホース42a、42bを撤去し、開口部28を完全閉止する。開口部28の閉止は、配管12aと同質材料の板材等を溶接等によって接合すればよい。これにより、配管12a内には、内部でモルタルが凝結して固型状となった閉塞部材10が配管通路を気密に閉塞した状態で設置される。   Since the mortar injected into the closing member 10 condenses, the inside of the pipe 12a is completely closed by the closing member 10 whose inside is solid, so in the subsequent step S5, the injection hoses 42a and 42b are removed. The opening 28 is completely closed. What is necessary is just to join the board | plate material etc. of the same material as the piping 12a by welding etc., for the opening part 28 to close. Thereby, the closing member 10 in which the mortar is condensed inside and solidified is installed in the pipe 12a in a state where the pipe passage is airtightly closed.

そこで、ステップS6では、閉塞部材10の挿入・膨張のために用いた作業設備、例えば、作業床30、遮蔽板32、バリア34及び換気設備36等を撤去し、その後、ステップS7では、原子炉本体20側から配管12aを介して放射能漏れが生じることを阻止した状態で、原子炉設備14を廃炉にする作業や所定機器の定期検査等の別作業を実施することができる。   Therefore, in step S6, the work equipment used for insertion / expansion of the closing member 10, for example, the work floor 30, the shielding plate 32, the barrier 34, the ventilation equipment 36, and the like are removed, and then in step S7, the nuclear reactor is removed. In a state in which leakage of radioactivity is prevented from occurring from the main body 20 via the pipe 12a, other operations such as the operation of decommissioning the nuclear reactor facility 14 and the periodic inspection of predetermined equipment can be performed.

以上のように、本実施形態に係る閉塞部材10は、放射線遮蔽壁24を貫通する配管12a(12b〜12d)内に設置され、流体が注入されることで膨張して配管12aを閉塞するための部材であって、内部空間が複数のバルーン40a、40bとして仕切られると共に、各バルーン40a、40bにそれぞれ前記流体の注入口41a、41bを設けて構成している。   As described above, the closing member 10 according to the present embodiment is installed in the pipe 12a (12b to 12d) penetrating the radiation shielding wall 24, and is expanded when the fluid is injected to close the pipe 12a. The internal space is partitioned as a plurality of balloons 40a and 40b, and the fluid inlets 41a and 41b are provided in the balloons 40a and 40b, respectively.

このように、閉塞部材10では、膨張性の閉塞部材10の内部を複数層に仕切って構成したことにより、注入時の重力の影響によって閉塞部材10が歪んだ状態で膨張し、配管12a内を完全に閉塞することができなくなるような不具合の発生を可及的に抑制することができる。しかも、内部が複数層に仕切られているため、経年的な自重による潰れも少なくし、長期に渡って安定した気密状態を保つことができる。このため、配管12aの閉塞したい部位の近傍に開口部28を形成し、そこから閉塞部材10を挿入して膨張させるだけで配管12a内を閉塞し気密することができることから、古い原子力発電所や既設バルブで対応できない予期せぬ箇所であっても、放射線遮蔽壁24を貫通する配管12aを所望の箇所で容易に閉塞することができ、例えば、原子炉設備14を廃炉にする解体作業や定期検査等の別作業時に、配管12aから放射線漏れを生じることを防止して、作業を円滑に実施することが可能となる。   Thus, in the closing member 10, the inside of the inflatable closing member 10 is divided into a plurality of layers, so that the closing member 10 expands in a distorted state due to the influence of gravity at the time of injection, and the inside of the pipe 12 a is expanded. It is possible to suppress as much as possible the occurrence of problems that cannot be completely blocked. In addition, since the interior is partitioned into a plurality of layers, it is possible to reduce crushing due to its own weight over time and maintain a stable airtight state over a long period of time. For this reason, since the opening part 28 is formed in the vicinity of the site | part which wants to obstruct | occlude the piping 12a, and the inside of the piping 12a can be obstruct | occluded and airtight only by inserting the obstruction | occlusion member 10 and expanding it, Even in an unexpected location that cannot be handled by an existing valve, the pipe 12a penetrating the radiation shielding wall 24 can be easily closed at a desired location, for example, It is possible to prevent the leakage of radiation from the pipe 12a at the time of another work such as a periodic inspection, and to carry out the work smoothly.

この場合、閉塞部材10は、配管12a内に設置された状態でバルーン40a、40bが上下方向に積層されるように少なくとも2個設けられると、自重による潰れや歪みに対する耐久性を一層向上させることができる。   In this case, when at least two closing members 10 are provided so that the balloons 40a and 40b are stacked in the vertical direction in the state where they are installed in the pipe 12a, the durability against crushing and distortion due to their own weight is further improved. Can do.

閉塞部材10では、積層配置されたバルーン40a、40bをまとめて包含する補強用袋体44を設けることも有効である。そうすると、補強用袋体44が外皮となってバルーン40a、40bの破損を阻止することができ、配管12aの長期の閉止に特に有効となる。また、補強用袋体44で剛性を負担することができるため、どのような形状のバルーン40a、40bであっても要求形状を満足することが可能となり、汎用性が向上する。このため、補強用袋体44は、バルーン40a、40bよりも高強度に構成されることが好ましい。   In the closing member 10, it is also effective to provide a reinforcing bag body 44 that collectively includes the balloons 40a and 40b arranged in a stacked manner. As a result, the reinforcing bag body 44 becomes an outer skin to prevent the balloons 40a and 40b from being damaged, which is particularly effective for long-term closing of the pipe 12a. In addition, since the rigidity can be borne by the reinforcing bag 44, the required shape can be satisfied regardless of the shape of the balloons 40a and 40b, and versatility is improved. For this reason, it is preferable that the reinforcing bag body 44 is configured to have higher strength than the balloons 40a and 40b.

また、閉塞部材10の膨張用の流体としてモルタルを用いることにより、モルタルは水より密度が大きいため、配管12a内で高い放射線遮蔽効果を得ることができ、作業従事者の被曝量も低減することができる。しかも、注入後にモルタルが凝結し固型化するため、配管12a内を安定して閉塞することができ、その後閉塞部材10が破損しても気密性に影響が出ることがなく、配管12aを長期に渡り安定して閉塞することができる。   Further, by using mortar as the fluid for expanding the closing member 10, since the density of the mortar is higher than that of water, it is possible to obtain a high radiation shielding effect in the pipe 12a and to reduce the exposure dose of the worker. Can do. Moreover, since the mortar condenses and solidifies after the injection, the inside of the pipe 12a can be stably closed, and even if the closing member 10 is broken thereafter, the airtightness is not affected, and the pipe 12a is kept for a long time. It can be stably blocked over the period.

なお、閉塞部材10の膨張用の流体としては、通常のモルタルに代えて、重量モルタルを用いることも有効である。モルタルよりも密度の大きい重量モルタルを用いることにより、配管12a内での放射線遮蔽効果を一層向上させることができる。   In addition, it is also effective to use a weight mortar instead of a normal mortar as the fluid for expanding the closing member 10. By using a weight mortar having a density higher than that of the mortar, the radiation shielding effect in the pipe 12a can be further improved.

閉塞部材10の膨張用の流体としては、水を用いることも有効である。水は、モルタルに比べてその取り扱いが容易であると共に、コストも低減することができつつ、配管12a内で十分な放射線遮蔽効果を得ることができる。水を用いると、ステップS7での別作業が完了し、配管12aの閉止要求が解除された後は、閉塞部材10内の水を吸水除去して閉塞部材10を容易に撤去することができるため、例えば、定期検査のように配管12a内を一時的に閉塞したい場合等に特に有効である。この場合には、ステップS5での開口部28の完全閉止を一次閉止(仮閉止)に留めておくとよい。   It is also effective to use water as the fluid for expanding the closing member 10. Water is easier to handle than mortar and can reduce costs, while at the same time providing a sufficient radiation shielding effect in the pipe 12a. If water is used, after the separate operation in step S7 is completed and the closing request for the pipe 12a is released, the water in the closing member 10 can be absorbed and removed so that the closing member 10 can be easily removed. For example, it is particularly effective when it is desired to temporarily close the inside of the pipe 12a as in a periodic inspection. In this case, the complete closing of the opening 28 in step S5 may be kept at the primary closing (temporary closing).

膨張用の流体である水を閉塞部材10内で氷結させることも有効である。そうすると、閉塞部材10内を固型化させることができるため、水をそのまま閉塞部材10内に貯留させておく場合に比べて、取り扱い容易性とコスト低減効果は維持しつつ、一層安定した状態で配管12aを気密に閉塞することが可能となる。この際、ステップS7での別作業が完了し、配管12aの閉止要求が解除された後は、閉塞部材10内の氷を融解させるだけで吸水除去し、閉塞部材10を容易に撤去することができるため、例えば、定期検査のように配管12a内を一時的に閉塞したい場合等に特に有効である。   It is also effective to freeze water that is a fluid for expansion in the closing member 10. Then, since the inside of the closing member 10 can be solidified, compared to the case where water is stored in the closing member 10 as it is, the ease of handling and the cost reduction effect are maintained, and in a more stable state. The pipe 12a can be airtightly closed. At this time, after the completion of another operation in step S7 and the request for closing the pipe 12a being canceled, the ice in the closing member 10 can be removed by absorbing water and the closing member 10 can be easily removed. Therefore, it is particularly effective when, for example, it is desired to temporarily close the inside of the pipe 12a as in a periodic inspection.

なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.

例えば、閉塞部材10を膨張するための流体としては、上記のモルタル、重量モルタル、水以外のものを用いてもよいが、ある程度の放射線遮蔽性能を持つ材料を用いることが好ましく、さらに注入時に液体状であり注入後に固型化し得る材料を用いることが一層好ましい。   For example, a fluid other than the mortar, weight mortar, and water may be used as the fluid for expanding the closing member 10, but a material having a certain level of radiation shielding performance is preferably used. It is more preferable to use a material that is in the form of a solid and can be solidified after injection.

10 閉塞部材
12a〜12d 配管
20 原子炉本体
24 放射線遮蔽壁
28 開口部
40a、40b バルーン
41a、41b 注入口
42a、42b 注入ホース
44 補強用袋体
DESCRIPTION OF SYMBOLS 10 Closure member 12a-12d Piping 20 Reactor main body 24 Radiation shielding wall 28 Opening part 40a, 40b Balloon 41a, 41b Inlet 42a, 42b Injection hose 44 Reinforcing bag

Claims (4)

放射線遮蔽壁を貫通する配管内に設置され、流体が注入されることで膨張して前記配管を閉塞するための閉塞部材であって、
内部空間が複数の袋体として仕切られると共に、各袋体にそれぞれ前記流体の注入口を設けたことを特徴とする閉塞部材。
A blocking member that is installed in a pipe that penetrates the radiation shielding wall and expands when the fluid is injected to close the pipe.
An occlusion member characterized in that an internal space is partitioned as a plurality of bags and an inlet for the fluid is provided in each bag.
請求項1記載の閉塞部材において、
当該閉塞部材は、前記配管内に設置された状態で前記袋体が上下方向に積層されるように少なくとも2個設けられることを特徴とする閉塞部材。
The closure member according to claim 1,
The closure member is provided with at least two such closure members so that the bags are stacked in the vertical direction in a state of being installed in the pipe.
請求項1又は2記載の閉塞部材において、
各袋体をまとめて包含する包含用袋体を設けたことを特徴とする閉塞部材。
The closure member according to claim 1 or 2,
An occlusion member provided with an inclusion bag that collectively includes each bag.
請求項3記載の閉塞部材において、
前記袋体よりも前記包含用袋体が高強度であることを特徴とする閉塞部材。
The closure member according to claim 3,
The closure member characterized in that the inclusion bag body has higher strength than the bag body.
JP2012031599A 2012-02-16 2012-02-16 Closing member Pending JP2013167564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012031599A JP2013167564A (en) 2012-02-16 2012-02-16 Closing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012031599A JP2013167564A (en) 2012-02-16 2012-02-16 Closing member

Publications (1)

Publication Number Publication Date
JP2013167564A true JP2013167564A (en) 2013-08-29

Family

ID=49178069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012031599A Pending JP2013167564A (en) 2012-02-16 2012-02-16 Closing member

Country Status (1)

Country Link
JP (1) JP2013167564A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680651A (en) * 2013-12-03 2014-03-26 清华大学 Radioactive atmosphere isolation technology for high temperature gas-cooled reactor maintenance
CN104103326A (en) * 2014-06-25 2014-10-15 中国核电工程有限公司 Device used for sealing detection on containment outer isolation valve
JP2015111052A (en) * 2013-10-31 2015-06-18 日立Geニュークリア・エナジー株式会社 Prevention method of expansion of contamination and shielding method in power plant, and investigation method of inside of power plant
WO2016152653A1 (en) * 2015-03-20 2016-09-29 千代田化工建設株式会社 Working sheath pipe and environment improvement method for performing renovation work on pump discharge pipeline

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203172U (en) * 1981-06-22 1982-12-24
JP2010032253A (en) * 2008-07-25 2010-02-12 Shimizu Corp Pipe-cutting method
JP2010230524A (en) * 2009-03-27 2010-10-14 Atox Co Ltd Method for forming radiation shield and bag body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203172U (en) * 1981-06-22 1982-12-24
JP2010032253A (en) * 2008-07-25 2010-02-12 Shimizu Corp Pipe-cutting method
JP2010230524A (en) * 2009-03-27 2010-10-14 Atox Co Ltd Method for forming radiation shield and bag body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111052A (en) * 2013-10-31 2015-06-18 日立Geニュークリア・エナジー株式会社 Prevention method of expansion of contamination and shielding method in power plant, and investigation method of inside of power plant
CN103680651A (en) * 2013-12-03 2014-03-26 清华大学 Radioactive atmosphere isolation technology for high temperature gas-cooled reactor maintenance
CN104103326A (en) * 2014-06-25 2014-10-15 中国核电工程有限公司 Device used for sealing detection on containment outer isolation valve
WO2016152653A1 (en) * 2015-03-20 2016-09-29 千代田化工建設株式会社 Working sheath pipe and environment improvement method for performing renovation work on pump discharge pipeline
JP2016176533A (en) * 2015-03-20 2016-10-06 千代田化工建設株式会社 Sheath pipe for work and environment maintenance method for repair work of pump discharge pipeline
AU2016237529B2 (en) * 2015-03-20 2018-07-05 Chiyoda Corporation Working sheath tube and environmental maintenance method for renovating operation of pump-discharge pipe
US10598313B2 (en) 2015-03-20 2020-03-24 Chiyoda Corporation Working sheath tube and environmental maintenance method for renovating operation of pump-discharge pipe

Similar Documents

Publication Publication Date Title
JP2013167564A (en) Closing member
ES2581702T3 (en) Apparatus and method to repair the junction of the main line of the sewage channel and a side pipe
ES2371550T3 (en) DEVICE AND METHOD FOR REPAIRING PIPES USING HYDROPHYTIC OBTURATIONS.
ES2333466T3 (en) DEVICE AND METHOD OF INVESTMENT BY AIR AND CURING WITH WATER STEAM OF LINES CURED IN POSITION.
US9442037B2 (en) System and method for storing and leak testing a radioactive materials storage canister
KR101842478B1 (en) flexible connection pipe assembly
US20160169427A1 (en) Flange joint containment device
CN102794282B (en) Isobaric inflatable seal joint device for cleaning internal wall of tube
JP5787171B2 (en) How to close the shielding wall through pipe
ES2903382T3 (en) A stop flow tool for pipelines
JP6581837B2 (en) Double tube liquid leakage prevention structure and construction method
KR200465270Y1 (en) A packer for sealing in the pipe
KR101418500B1 (en) Expansion joint with earthquake-proof performance
EP2279370A1 (en) Sealing means
KR101692440B1 (en) Apparatus and method for impregnating repair liner, partial lining method using the same
KR102120637B1 (en) Multi gas dam
JP2017009309A (en) Piping removal method
JP6067346B2 (en) Pipe shut-off device
JP2020133649A (en) Water shut-off plug
JP5242609B2 (en) Seismic retrofitting method for existing pipe manhole connections
US9903521B2 (en) Upstream pipe plug
JP7358165B2 (en) Piping connection members, connection joints
JP5147029B1 (en) Ground injection material injection device and method
JP2013108956A (en) Method for flooding nuclear reactor containment
JP2016011703A (en) Opening portion closing method, opening portion closing structure, and closing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811