JP2013167543A - Screening device using terahertz wave - Google Patents
Screening device using terahertz wave Download PDFInfo
- Publication number
- JP2013167543A JP2013167543A JP2012031247A JP2012031247A JP2013167543A JP 2013167543 A JP2013167543 A JP 2013167543A JP 2012031247 A JP2012031247 A JP 2012031247A JP 2012031247 A JP2012031247 A JP 2012031247A JP 2013167543 A JP2013167543 A JP 2013167543A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- terahertz
- circularly polarized
- light
- terahertz light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012216 screening Methods 0.000 title 1
- 238000002983 circular dichroism Methods 0.000 claims abstract description 41
- 238000007689 inspection Methods 0.000 claims abstract description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000005259 measurement Methods 0.000 claims description 26
- 238000001228 spectrum Methods 0.000 claims description 19
- 230000010287 polarization Effects 0.000 claims description 17
- 238000000691 measurement method Methods 0.000 claims description 12
- 238000001142 circular dichroism spectrum Methods 0.000 claims description 10
- 238000004611 spectroscopical analysis Methods 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 13
- 239000003814 drug Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 5
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 9
- 238000000862 absorption spectrum Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 229960005261 aspartic acid Drugs 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 235000003704 aspartic acid Nutrition 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000003255 drug test Methods 0.000 description 3
- 238000010183 spectrum analysis Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000978 circular dichroism spectroscopy Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000004081 narcotic agent Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960001252 methamphetamine Drugs 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001055 reflectance spectroscopy Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- 238000002235 transmission spectroscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/19—Dichroism
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は郵便物・封筒・荷物等の非開被検査をするためのテラヘルツ分光計測装置およびその方法に関する。 The present invention relates to a terahertz spectroscopic measurement apparatus and method for performing non-covering inspection of mail, envelopes, luggage, and the like.
郵便物の郵送や荷物の配送を利用した麻薬等の禁止薬物や爆発物等の流通を阻止するためには、郵便局あるいは配送センターにおいて親書等を含めた郵便物等の被開披検査が必要である。
この被開披検査のために、テラヘルツ波の反射・透過分光を用いて麻薬等を検出する方法が提案されている(非特許文献1)。
In order to prevent the distribution of prohibited drugs such as narcotics and explosives using postal mail and package delivery, it is necessary to conduct a public inspection of postal items including a letter at the post office or distribution center. It is.
A method for detecting narcotics or the like using reflection / transmission spectroscopy of terahertz waves has been proposed for this public inspection (Non-Patent Document 1).
また実際にテラヘルツ分光法を用いて郵便物の自動検査装置を行う装置が試作され、税関で試用に供されている(非特許文献2)。 In addition, an apparatus for automatically inspecting mails using terahertz spectroscopy has been prototyped and used for trial at customs (Non-Patent Document 2).
郵便物の自動検査装置では、一般に、郵便物・荷物等の流通量は膨大であることから、あらかじめX線画像検査装置を用いて親書・荷物内部を非開披検査し、特定の形状を有する試料を抽出してからテラヘルツ分光法を用いる方法が提案されている(特許文献1)。 In general, automatic mail inspection equipment has a large amount of mail and parcels, so it has a specific shape by using an X-ray image inspection device to pre-examine the inside of a letter and parcel. A method using terahertz spectroscopy after extracting a sample has been proposed (Patent Document 1).
しかし上述の方法を用いるとしても膨大な郵便物・荷物等の全数検査を行うとなると、検査効率が重要な因子となり、テラヘルツ分光法が行う検査においても数通(個)/秒程度の処理速度が必要となってくる。 However, even if the above method is used, inspection efficiency becomes an important factor when 100% inspection is performed on a large number of mails / packages, etc., and processing speeds of about several (pieces) / second are also used in inspections performed by terahertz spectroscopy. Will be needed.
一方、テラヘルツ領域において、生体分子に円二色性が見られることがシミュレーションによって確認されている。(非特許文献3) On the other hand, it has been confirmed by simulation that circular dichroism is seen in biomolecules in the terahertz region. (Non Patent Literature 3)
従前、封筒や梱包材に覆われている郵便物や荷物、例えば封筒に納められた親書は開披できないため、封筒を通過するテラヘルツ波を照射してその吸収スペクトルを計測することで、親書内部を非開披に検査することが試みられている。
この場合、封筒を透過したテラヘルツ波の吸収スペクトルには、計測したい内容物である親書による吸収だけでなく封筒による吸収によるスペクトル構造が見られる。
また郵便物検査は日常の生活環境において行われるため、封筒を透過したテラヘルツ波の吸収スペクトルには、上述の吸収に加え、大気中に存在する湿度(水分)や埃による吸収も観測される。
さらに内容物が、例えば粉末試料である場合にはその粒径によってもテラヘルツ波の吸収スペクトルが変化して観測される。
以上のように、テラヘルツ波を用いたとしても、計測したい検査対象物の吸収スペクトルはそれ以外の物質の吸収スペクトルと混在して観測されたり、検査対象物の形状に依存したりして、検査対象物固有の吸収スペクトル分析がうまくゆかず、テラヘルツ吸収スペクトルを用いて郵便物・荷物等の非開披検査を行うことは困難であった。
なお吸収スペクトルの計測について実際の測定は透過あるいは反射スペクトルを測定する。
Traditionally, mail items and packages covered by envelopes and packing materials, such as parent documents stored in envelopes, cannot be opened, so by measuring the absorption spectrum by irradiating terahertz waves that pass through the envelope, Attempts have been made to inspect non-opening.
In this case, in the absorption spectrum of the terahertz wave transmitted through the envelope, not only the absorption by the parent, which is the content to be measured, but also the spectrum structure due to the absorption by the envelope is seen.
In addition, since the postal inspection is performed in the daily living environment, in addition to the above-described absorption, absorption due to humidity (moisture) and dust existing in the atmosphere is observed in the absorption spectrum of the terahertz wave transmitted through the envelope.
Further, when the content is, for example, a powder sample, the absorption spectrum of the terahertz wave is changed and observed depending on the particle size.
As described above, even if terahertz waves are used, the absorption spectrum of the inspection object to be measured is observed in combination with the absorption spectrum of other substances, or depends on the shape of the inspection object. Absorption spectrum analysis unique to the object has not been successful, and it has been difficult to perform non-inspection inspection of postal items, luggage, etc. using the terahertz absorption spectrum.
As for the measurement of the absorption spectrum, the actual measurement is the transmission or reflection spectrum.
本発明は、キラリティのある試料を識別し得るテラヘルツ分光計測方法であって、テラヘルツ光源からテラヘルツ光を発生するステップと、前記テラヘルツ光の偏光状態を右円偏光および左円偏光に円偏光させるステップと、前記円偏光したテラヘルツ光を前記試料に照射するステップと、前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を検出するステップと、前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光から、前記試料の円二色性を抽出するステップを有し、前記試料の円二色性によりキラリティのある試料を識別することを特徴とするテラヘルツ分光計測方法を提供する。
左右円偏光間での吸収の差である円二色性、屈折率の差である光学活性は波長域を選ぶことによって薬物等のキラリティのある試料にのみ発現する。
テラヘルツ分光計法においてそれらの円二色性もしくは光学活性を測定すれば、キラリティを有さない非対象物質に由来する不要な信号は観測されず、キラリティのある試料由来の信号のみを計測することができる。
すなわち封筒・プラスチックなどの容器の形状・厚さ・種類や湿度、対象物質の形状と言った検査諸条件は無視でき、キラリティのある試料のみを識別できるので、高精度な検査が期待できる。
The present invention is a terahertz spectroscopic measurement method capable of identifying a sample having chirality, the step of generating terahertz light from a terahertz light source, and the step of circularly polarizing the polarization state of the terahertz light into right circularly polarized light and left circularly polarized light Irradiating the sample with the circularly polarized terahertz light; detecting the circularly polarized terahertz light transmitted through the sample; and detecting the circularly polarized terahertz light reflected by the sample; and Extracting the circular dichroism of the sample from the transmitted circularly polarized terahertz light and the circularly polarized terahertz light reflected by the sample, and a sample having a chirality due to the circular dichroism of the sample A terahertz spectroscopic measurement method characterized in that is identified.
Circular dichroism, which is a difference in absorption between left and right circularly polarized light, and optical activity, which is a difference in refractive index, are expressed only in a sample having a chirality such as a drug by selecting a wavelength region.
When measuring their circular dichroism or optical activity in the terahertz spectrometer method, unnecessary signals derived from non-target substances that do not have chirality are not observed, and only signals derived from samples with chirality are measured. Can do.
In other words, inspection conditions such as the shape, thickness, type, humidity, and shape of the target substance such as envelopes and plastics can be ignored, and only a sample with chirality can be identified, so high-precision inspection can be expected.
本発明は、さらに前記検出した前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光テラヘルツ光を、再度直線偏光とするステップを有し、前記直線偏光したテラヘルツ光の強度変化等を用いて光学活性強度を抽出するステップを有することを特徴とする上に記載のテラヘルツ分光計測方法を提供する。
キラリティのある試料は、その光学活性の計測によっても識別することができる。
The present invention further includes the step of re-converting the circularly polarized terahertz light transmitted through the detected sample and the circularly polarized terahertz light reflected by the sample into linearly polarized light, and the linearly polarized terahertz light. The above-described terahertz spectroscopic measurement method is provided, which includes a step of extracting an optically active intensity using an intensity change or the like.
A sample with chirality can also be identified by measuring its optical activity.
本発明は、さらにキラリティが既知である試料の左手型分子構造と右手型分子構造の円二色性および光学活性を計測するステップを有し、前記キラリティが既知である試料について前記計測された円二色性スペクトルおよび光学活性スペクトルの対称性によりテラヘルツ分光計測方法の正確性を検証するステップをさらに有することを特徴とする上に記載のテラヘルツ分光計測方法を提供する。
この検証法により本発明の方法の正確性が担保される。
The present invention further includes a step of measuring circular dichroism and optical activity of a left-handed molecular structure and a right-handed molecular structure of a sample with known chirality, and the measured circle for the sample with known chirality. The terahertz spectroscopic measurement method described above is further provided with a step of verifying the accuracy of the terahertz spectroscopic measurement method based on the symmetry of the dichroic spectrum and the optically active spectrum.
This verification method ensures the accuracy of the method of the present invention.
また以上に述べたテラヘルツ分光計測方法を有することを特徴とする郵便物自動検査方法を提供できるので、従前に比べて、郵便物の効率的な非開披検査が可能となる。 In addition, since the postal matter automatic inspection method characterized by having the terahertz spectroscopic measurement method described above can be provided, the postal inspection can be performed more efficiently than before.
さらに本発明は、キラリティのある試料を識別し得るテラヘルツ分光計測装置であって、テラヘルツ光を発生し得るテラヘルツ光源を備え、前記発生したテラヘルツ光の偏光状態を右円偏光および左円偏光に円偏光させる手段を備え、前記円偏光したテラヘルツ光を前記試料に照射する手段を備え、前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を検出する手段を備え、前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光から、前記試料の円二色性を抽出する手段を備え、前記試料の円二色性計測によりキラリティを有する試料を識別することを特徴とするテラヘルツ分光計測装置を提供する。 Further, the present invention is a terahertz spectroscopic measurement apparatus capable of identifying a sample having chirality, and includes a terahertz light source capable of generating terahertz light, and the polarization state of the generated terahertz light is circularly converted into right circularly polarized light and left circularly polarized light. Means for polarizing, and means for irradiating the sample with the circularly polarized terahertz light, and means for detecting the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample Means for extracting the circular dichroism of the sample from the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample. Provided is a terahertz spectroscopic measurement device characterized by identifying a sample having chirality by measurement.
本発明はまた、キラリティのある試料を識別し得るテラヘルツ分光計測装置であって、テラヘルツ光を発生し得るテラヘルツ光源を備え、前記発生した円偏光テラヘルツ波を右円偏光と左円偏光に分割する手段を備え、前記円偏光した二系統のテラヘルツ光を前記試料に照射する手段を備え、前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を検出する手段を備え、前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光から、前記試料の円二色性を抽出する手段を備え、前記試料の円二色性計測によりキラリティを有する試料を識別することを特徴とするテラヘルツ分光計測装置を提供できる。
上に記載した手段において右円偏光と左円偏光の円偏光テラヘルツ光を2系統として各々の検出器で計測しその後分析器で統合分析する装置である。
The present invention is also a terahertz spectroscopic measurement apparatus capable of identifying a sample having chirality, comprising a terahertz light source capable of generating terahertz light, and dividing the generated circularly polarized terahertz wave into right circularly polarized light and left circularly polarized light Means for irradiating the sample with two circularly polarized terahertz lights, and detecting the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample Means for extracting the circular dichroism of the sample from the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample. It is possible to provide a terahertz spectroscopic measurement device characterized by identifying a sample having chirality by sex measurement.
In the means described above, the circularly polarized terahertz light of right circularly polarized light and left circularly polarized light is measured by each detector as two systems and then integrated and analyzed by the analyzer.
さらに前記検出した前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を直線偏光する手段を備え、前記直線偏光したテラヘルツ光から光学活性強度を抽出する手段を備えることを特徴とする上に記載のテラヘルツ分光計測装置を提供する。
キラリティのある試料は、上のいずれの装置でも、その光学活性の計測によっても識別することができる。
Further, means for linearly polarizing the circularly polarized terahertz light transmitted through the detected sample and the circularly polarized terahertz light reflected by the sample, and means for extracting optically active intensity from the linearly polarized terahertz light The terahertz spectroscopic measurement apparatus described above is provided.
A chiral sample can be identified by measuring the optical activity of any of the above devices.
さらにキラリティが既知である試料の左手型分子構造と右手型分子構造の円二色性および光学活性を計測する手段を有し、前記キラリティが既知である試料について前記計測された円二色性スペクトルおよび光学活性スペクトルの対称性によりテラヘルツ分光計測装置の正確性を検証する手段をさらに備えることを特徴とする上に記載のテラヘルツ分光計測装置を提供する。
この検証手段により本発明の装置の正確性が担保される。
最終的には、以上に述べたテラヘルツ分光計測装置を備えることを特徴とする郵便物自動検査装置が提供されるので、従前に比べて、郵便物の効率的な非開披検査が可能となる。
Furthermore, it has means for measuring the circular dichroism and optical activity of the left-handed molecular structure and the right-handed molecular structure of the sample with known chirality, and the measured circular dichroism spectrum for the sample with known chirality And a terahertz spectrometer as described above, further comprising means for verifying the accuracy of the terahertz spectrometer by the symmetry of the optically active spectrum.
This verification means ensures the accuracy of the apparatus of the present invention.
Eventually, an automatic mail inspection device provided with the above-described terahertz spectroscopic measurement device will be provided, enabling more efficient non-inspection inspection of postal items compared to the past. .
上述したように、本発明によって、テラヘルツ光を用いた透過・反射スペクトル分析から、対象検査物以外の交雑物、水蒸気、梱包材等の影響を取り除くことができるようになり、対象検査物のみの情報を得ることができるようになった。
また、計測される円二色性および光学活性を利用して、薬品類の光学純度を測定することが可能となった
As described above, according to the present invention, it becomes possible to remove the influence of hybrids, water vapor, packing materials, etc. other than the target inspection object from the transmission / reflection spectrum analysis using terahertz light, and only the target inspection object can be removed. Information can be obtained.
In addition, it has become possible to measure the optical purity of chemicals using the measured circular dichroism and optical activity.
以下に、本発明であるテラヘルツ分光計測方法の概要について、図1を用いて説明する。
図1(a)は一般的な透過・反射スペクトル分析手法における結果の一例を表わし、図1(b)は本発明による円二色性分光手法における結果の一例を表わしている。
一般にテラヘルツ分光計測では、図1(a)に示すように、試料の信号(1)だけでなく、試料を包んでいる容器や梱包材に由来するバックグラウンド信号(4)、水蒸気(3)や夾雑物由来の信号(2)が重畳して計測される。
そのため各対象で異なるバックグラウンドや計測環境の変化の影響を正確に考慮して試料の信号(1)のみに対して信頼性の高い計測を行うことは難しかった。
Below, the outline | summary of the terahertz spectroscopy measuring method which is this invention is demonstrated using FIG.
FIG. 1A shows an example of a result in a general transmission / reflection spectrum analysis technique, and FIG. 1B shows an example of a result in a circular dichroism spectroscopy technique according to the present invention.
In general, in terahertz spectroscopy, as shown in FIG. 1 (a), not only a signal (1) of a sample, but also a background signal (4) derived from a container and a packaging material enclosing the sample, water vapor (3), A signal (2) derived from impurities is superimposed and measured.
Therefore, it has been difficult to perform highly reliable measurement only on the sample signal (1) in consideration of the influence of changes in the background and measurement environment that are different for each object.
左右円偏光間での吸収の差である円二色性、屈折率の差である光学活性はキラリティのある試料にのみ発現する。
本発明では、図1(b)に示すように、キラリティのある試料の円二色性もしくは光学活性を測定する。
円二色性もしくは光学活性を測定すると、キラリティを有さない夾雑物由来の信号(2)等は観測されないので、試料由来の信号(1)のみ計測することができる。
すなわち容器の形状・厚さ・種類や環境湿度等本来試料に由来しない検査諸条件は無視でき、試料に照準をあわせた高精度な検査をすることができる。
Circular dichroism, which is a difference in absorption between left and right circularly polarized light, and optical activity, which is a difference in refractive index, are expressed only in a sample having chirality.
In the present invention, as shown in FIG. 1B, circular dichroism or optical activity of a sample having chirality is measured.
When circular dichroism or optical activity is measured, no signal (2) or the like derived from a foreign substance having no chirality is observed, so that only the signal (1) derived from the sample can be measured.
That is, inspection conditions not originally derived from the sample, such as the shape, thickness, type, and environmental humidity of the container, can be ignored, and high-precision inspection can be performed while aiming at the sample.
図2は本発明を実施する装置の構成を示している。
図2aを用いて、薬物検査を目的とした円二色性計測について説明する。
テラヘルツ光源(31)から出たテラヘルツ光(21)を試料台(26)に載せた試料(25)に照射する。キラリティを有する物質の多くは、透過光や反射光の強度に円偏光の左右で差が生じるため、右円偏光(23)と左円偏光(24)の透過・反射スペクトルには違いが見られる。透過・反射テラヘルツ光(27)を検出器(29)で測定し、左円偏光と左円偏光間での試料透過・反射光強度の差、すなわち円二色性を抽出して計測する。
FIG. 2 shows the configuration of an apparatus for carrying out the present invention.
With reference to FIG. 2a, circular dichroism measurement for the purpose of drug testing will be described.
The sample (25) placed on the sample stage (26) is irradiated with terahertz light (21) emitted from the terahertz light source (31). Many of the materials having chirality have a difference in the intensity of transmitted light and reflected light between right and left circularly polarized light, and thus there is a difference in transmission / reflection spectra of right circularly polarized light (23) and left circularly polarized light (24). . The transmitted / reflected terahertz light (27) is measured by the detector (29), and the difference in the sample transmitted / reflected light intensity between the left circularly polarized light and the left circularly polarized light, that is, circular dichroism is extracted and measured.
以下、本手法について詳しく説明する。円偏光テラヘルツ波(23)(24)を発生し、試料台(26)に載せた試料(25)へ照射する。テラヘルツ光源(31)から発生したテラヘルツ光(21)を円偏光とし、何らかの方法で左円偏光状態および右円偏光状態を切り替えて照射する。ここで円偏光状態を切り替える一つの方法として、例えば波長板を入射光に垂直な面内方向で回転させるものが挙げられるがこれに限らない。右偏光(23)に対する吸収と、左偏光(24)に対する吸収の差は非常にわずかであるため、試料透過光もしくは反射光(27)を検出器(29)で検出し、ロックインアンプ(30)等を用いて円偏光の切り替え周波数と同じ周波数成分の信号を抽出して計測することで、左右円偏光での透過・反射強度の差、すなわち円二色性を高感度で計測する。このとき左円偏光状態および右円偏光の切り替え周波数信号を参照信号(22)としてロックインアンプ(30)に入力する。
キラリティのある物質の円二色性スペクトルには、ある波長域において左右円偏光の吸収に差が見られ、これが正あるいは負のピークとしてスペクトル上に観測される。これによってキラリティのある試料を識別する。キラリティのない試料は、左右円偏光に対する吸収が等しいため、スペクトルの差分を取ると原理的にはゼロとなることから、キラリティのある物質のみを高感度に検出できる。
Hereinafter, this method will be described in detail. Circularly polarized terahertz waves (23) and (24) are generated and irradiated to the sample (25) placed on the sample stage (26). The terahertz light (21) generated from the terahertz light source (31) is circularly polarized, and the left circular polarization state and the right circular polarization state are switched and irradiated by some method. Here, as one method of switching the circularly polarized state, for example, a method of rotating a wave plate in an in-plane direction perpendicular to incident light can be cited, but the present invention is not limited thereto. Since the difference between the absorption with respect to the right polarized light (23) and the absorption with respect to the left polarized light (24) is very small, the sample transmitted light or reflected light (27) is detected by the detector (29), and the lock-in amplifier (30 ) Or the like to extract and measure a signal having the same frequency component as the switching frequency of circularly polarized light, thereby measuring the difference in transmission / reflection intensity between right and left circularly polarized light, that is, circular dichroism with high sensitivity. At this time, the switching frequency signal of the left circular polarization state and the right circular polarization is input to the lock-in amplifier (30) as a reference signal (22).
In the circular dichroism spectrum of a substance with chirality, a difference is observed in the absorption of left and right circularly polarized light in a certain wavelength range, and this is observed on the spectrum as a positive or negative peak. This identifies the sample with chirality. Since a sample without chirality has the same absorption with respect to right and left circularly polarized light, it is zero in principle when the difference in spectrum is taken, so that only a substance with chirality can be detected with high sensitivity.
次に図2bを用いて、薬物検査を目的とした光学活性計測について説明する。
光学活性を測定する場合は試料(25)と検出器(29)間にさらに直線偏光子(28)を挿入し、円二色性計測時と同様に試料透過光もしくは反射光(27)を検出器(29)で検出し、ロックインアンプ(30)等を用いて円偏光の切り替え周波数と同じ周波数成分の信号を抽出して計測することで、光学活性を高感度で計測する。これによってキラリティのある試料が識別できる。このとき左円偏光状態および右円偏光の切り替え周波数信号を参照信号(22)としてロックインアンプ(30)に入力する。
Next, the optical activity measurement for the purpose of drug inspection will be described with reference to FIG.
When measuring the optical activity, a linear polarizer (28) is further inserted between the sample (25) and the detector (29), and the sample transmitted light or reflected light (27) is detected in the same manner as in circular dichroism measurement. The optical activity is measured with high sensitivity by extracting the signal having the same frequency component as the circularly polarized light switching frequency using the lock-in amplifier (30) and the like. As a result, a sample having chirality can be identified. At this time, the switching frequency signal of the left circular polarization state and the right circular polarization is input to the lock-in amplifier (30) as a reference signal (22).
効果的かつ効率的に試料の弁別や特定を行うためには、試料や測定条件によって円二色性もしくは光学活性のどちらを用いるかを適宜選択する。
円偏光テラヘルツ波の波長は試料によって選択することが可能であり、試料の円二色性・光学活性がよくあらわれる波長であればテラヘルツ光に限定しなくてもよい。
In order to discriminate and identify a sample effectively and efficiently, it is appropriately selected whether to use circular dichroism or optical activity depending on the sample and measurement conditions.
The wavelength of the circularly polarized terahertz wave can be selected depending on the sample, and is not limited to the terahertz light as long as the circular dichroism and optical activity of the sample appear well.
次に図3を用いて、本発明の有効性を検証する方法について説明する。 Next, a method for verifying the effectiveness of the present invention will be described with reference to FIG.
アスパラギン酸などの、キラリティが既知である試料を封書等に封緘した状態で円二色性を計測し、本手法の有効性を検証する例を示す。
一般的に、光学活性スペクトルと円二色性スペクトルとにはクラマース・クローニッヒの関係があり、複素屈折率においては、光学活性スペクトルと円二色性スペクトルはどちらか一方を測定すればもう一方は計算で求めることができることが知られている。
本実施例は、このことを利用して本発明の有効性を検証する方法である。
An example of verifying the effectiveness of this method by measuring circular dichroism with a sample of known chirality such as aspartic acid sealed in a sealed letter or the like is shown.
In general, there is a Kramers-Kronig relationship between optically active spectrum and circular dichroism spectrum. In complex refractive index, if either optically active spectrum or circular dichroic spectrum is measured, the other is It is known that it can be obtained by calculation.
The present embodiment is a method for verifying the effectiveness of the present invention using this fact.
検証用試料のひとつであるアミノ酸の一種であるアスパラギン酸は左手型(15)と右手型(16)の分子構造を有してキラリティがあり、また波数45(cm-1)近傍に吸収ピークを持つことが知られている。波数とは波長の逆数である。
そこで波数45(cm-1)近傍において、左手型(15)と右手型(16)の分子構造を持つアスパラギン酸に対して円二色性と光学活性計測を行い、それぞれの波長スペクトル(17)と(20)、および(18)と(19)が45(cm-1)を中心として短波長側と長波長側で形が対称であるかを確認する。また円二色性スペクトルと光学活性スペクトル間にクラマース・クローニッヒの関係が成り立つかどうかを確認する。
Aspartic acid, a kind of amino acid that is one of the verification samples, has a left-handed (15) and right-handed (16) molecular structure and is chiral, and has an absorption peak in the vicinity of a wave number of 45 (cm -1 ). It is known to have. The wave number is the reciprocal of the wavelength.
Therefore, in the vicinity of wave number 45 (cm −1 ), circular dichroism and optical activity measurement are performed on aspartic acid having a left-handed (15) and right-handed (16) molecular structure, and each wavelength spectrum (17). And (20), and (18) and (19) are confirmed to be symmetrical on the short wavelength side and the long wavelength side with 45 (cm −1 ) as the center. It is also confirmed whether the Kramers-Kronig relationship is established between the circular dichroism spectrum and the optical activity spectrum.
円二色性と光学活性について波長スペクトルが対称であること、またクラマース・クローニッヒの関係の成立が確認されれば、正確な信号が計測された証拠となる。 If it is confirmed that the wavelength spectrum is symmetrical with respect to circular dichroism and optical activity, and the establishment of the Kramers-Kronig relationship, it is evidence that an accurate signal has been measured.
図4を用いて、本手法を用いた郵便物検査装置の例を示す。テラヘルツ光源(31)から発生した直線偏光テラヘルツ波(21)を波長板(32)を用いて右円偏光(23)および左円偏光(24)に変換し、波長板(32)の回転角あるいは円偏光度などの位相情報を参照信号(22)としてロックインアンプ(30)へ入力する。波長板(32)は、電子ビームに偏光変調磁場を印加することで左右の円偏光を動的に変調するための磁場発生器、あるいは電気的に位相変調する素子としてもよい。いずれにせよ、円偏光テラヘルツ波を高速で位相変調させることができればよい。
ここで発生した円偏光テラヘルツ波(23)(24)を、試料送り台(34)に載せた郵便物(33)に照射し、検出器(29)を用いて、透過あるいは反射光を測定し、これをロックインアンプ(30)に入力して、円二色性が抽出されて計測される。検出器(29)は分光を行う能力があるものとする。左右の円偏光を切り替える際の偏光変調周波数(ν)は、画素の大きさをdとして次の数式(1)で表される。
ここでnは画素あたりの偏光切り替え回数、vは試料送り台(34)の移動速度である。例えば試料の送り速度を毎秒10cm、画素サイズを1mm、画素あたりの偏光切り替え回数を100とした場合、νは10kHzとなるため、波長板(32)を高速で回転する必要がある。このような場合、テラヘルツ波に任意の位相遅れを生じさせる電気的な素子等を用いると良い。また、このような高速の測定を行うには高強度のテラヘルツ光源が必要となるが、電子加速器等から発生するコヒーレント放射などを用いることで解決が可能である。
図5に検査装置の他の例を示す。テラヘルツ光源(31)から発生したテラヘルツ波(21)を偏光スプリッター(35)を用いて分岐させ、右円偏光(23)と左円偏光(24)とする。図5の例では直進光は右円偏光(23)とし、分岐光は左円偏光(24)として90度方向を変えさらにミラー(37)で90度方向を戻して、試料送り台(34)に載せた郵便物(33)へ、直進光とは異なる位置で照射される。それぞれの透過光、反射光(27)は検出器(29)によって検出され、透過あるいは反射光スペクトルを測定する。検出器(29)は分光を行う能力があるものとする。それぞれの信号は分析器(36)によって分析され、円二色性や光学活性が抽出されて計測される。
An example of a mail inspection apparatus using this method will be described with reference to FIG. The linearly polarized terahertz wave (21) generated from the terahertz light source (31) is converted into right circularly polarized light (23) and left circularly polarized light (24) using the wave plate (32), and the rotation angle of the wave plate (32) or Phase information such as the degree of circular polarization is input to the lock-in amplifier (30) as a reference signal (22). The wave plate (32) may be a magnetic field generator for dynamically modulating left and right circularly polarized light by applying a polarization modulation magnetic field to the electron beam, or an element for electrically phase modulating. In any case, it suffices if the circularly polarized terahertz wave can be phase-modulated at high speed.
The circularly polarized terahertz waves (23) and (24) generated here are irradiated onto the postal matter (33) placed on the sample feed base (34), and the transmitted or reflected light is measured using the detector (29). This is input to the lock-in amplifier (30), and circular dichroism is extracted and measured. It is assumed that the detector (29) is capable of performing spectroscopy. The polarization modulation frequency (ν) when switching between left and right circularly polarized light is expressed by the following formula (1), where d is the size of the pixel.
Here, n is the number of times of polarization switching per pixel, and v is the moving speed of the sample feed table (34). For example, when the sample feed rate is 10 cm per second, the pixel size is 1 mm, and the number of times of polarization switching per pixel is 100, ν is 10 kHz. Therefore, it is necessary to rotate the wave plate (32) at a high speed. In such a case, an electrical element or the like that causes an arbitrary phase delay in the terahertz wave may be used. In addition, a high-intensity terahertz light source is required to perform such high-speed measurement, but this can be solved by using coherent radiation generated from an electron accelerator or the like.
FIG. 5 shows another example of the inspection apparatus. A terahertz wave (21) generated from the terahertz light source (31) is branched using a polarization splitter (35) to obtain right circularly polarized light (23) and left circularly polarized light (24). In the example of FIG. 5, the straight traveling light is right circularly polarized light (23), and the branched light is left circularly polarized light (24). The direction is changed by 90 degrees and the mirror (37) returns the direction by 90 degrees. The postal matter (33) placed on is irradiated at a position different from the straight light. Each transmitted light and reflected light (27) is detected by a detector (29), and a transmitted or reflected light spectrum is measured. It is assumed that the detector (29) is capable of performing spectroscopy. Each signal is analyzed by an analyzer (36), and circular dichroism and optical activity are extracted and measured.
メタンフェタミンなどの麻薬物質はテラヘルツ領域に特徴的な吸収を持ち、かつキラリティを有しているため、円二色性・光学活性も同様にテラヘルツ領域に発現すると予測される。
本手法を用いると、キラリティを持たない物質は信号として観測されないため、キラリティのある物質だけを高感度で検出することが可能である。そのため、試料中の夾雑物、周囲の水蒸気、梱包材などのバックグラウンド信号を効果的かつ効率的に除去可能であり、郵便局・税関・配送センターでの郵便物・親書・荷物等の効率的な非開披検査が可能となった。
また本発明はキラリティを有する成分を含む医薬品の多形分析、テラヘルツ領域のエリプソメトリーにも有効である。
Since narcotic substances such as methamphetamine have characteristic absorption in the terahertz region and have chirality, circular dichroism and optical activity are also expected to appear in the terahertz region as well.
When this method is used, since a substance having no chirality is not observed as a signal, only a substance having a chirality can be detected with high sensitivity. As a result, it is possible to effectively and efficiently remove background signals such as contaminants in the sample, surrounding water vapor, and packing materials, and efficient use of postal items, personal documents, and packages at post offices, customs, and distribution centers. Unopened inspection is now possible.
The present invention is also effective for polymorph analysis of pharmaceuticals containing components having chirality and ellipsometry in the terahertz region.
1 試料の信号(真)
2 夾雑物の信号(偽)
3 水蒸気などの信号(偽)
4 梱包材の信号(偽)
5 左手型分子に対する円二色性スペクトルの例
6 右手型分子に対する円二色性スペクトルの例
7 左手型試料の例としてL-アスパラギン酸の分子構造
8 右手型試料の例としてD-アスパラギン酸の分子構造
11 吸収スペクトルを測定
12 円二色性と光学活性を測定
13 左手型と右手型が対称となることを証明
14 円二色性と光学活性間におけるクラマース・クローニッヒ関係の成立の証明
15 左手型試料の例としてL-アスパラギン酸の分子構造
16 右手型試料の例としてD-アスパラギン酸の分子構造
17 左手型の分子構造の円二色性スペクトル
18 左手型の分子構造の光学活性スペクトル
19 右手型の分子構造の光学活性スペクトル
20 右手型の分子構造の円二色性スペクトル
21 テラヘルツ光
22 参照信号
23 右円偏光
24 左円偏光
25 試料
26 試料台
27 透過光、反射光
28 偏光子
29 検出器
30 ロックインアンプ
31 テラヘルツ光源
32 波長板
33 郵便物
34 試料送り台
35 偏光スプリッター
36 分析器
37 ミラー
1 Sample signal (true)
2 Contaminant signal (false)
3 Signals such as water vapor (false)
4 Packaging material signal (false)
5 Example of circular dichroism spectrum for left-handed molecule 6 Example of circular dichroism spectrum for right-handed molecule 7 Molecular structure of L-aspartic acid as an example of left-handed sample 8 Example of D-aspartic acid as an example of right-handed
Claims (9)
テラヘルツ光源からテラヘルツ光を発生するステップと、
前記テラヘルツ光の偏光状態を右円偏光および左円偏光に円偏光させるステップと、
前記円偏光したテラヘルツ光を前記試料に照射するステップと、
前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を検出するステップと、
前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光から、前記試料の円二色性を抽出するステップを有し、
前記試料の円二色性によりキラリティのある試料を識別することを特徴とするテラヘルツ分光計測方法。 A terahertz spectroscopic measurement method capable of identifying a sample having chirality,
Generating terahertz light from a terahertz light source;
Circularly polarizing the terahertz light into right circularly polarized light and left circularly polarized light;
Irradiating the sample with the circularly polarized terahertz light;
Detecting the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample;
Extracting the circular dichroism of the sample from the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample;
A terahertz spectroscopic measurement method, wherein a sample having chirality is identified by circular dichroism of the sample.
前記直線偏光したテラヘルツ光から光学活性強度を抽出するステップを有することを特徴とする請求項1に記載のテラヘルツ分光計測方法。 And further comprising linearly polarizing the circularly polarized terahertz light transmitted through the detected sample and the circularly polarized terahertz light reflected by the sample,
The terahertz spectroscopic measurement method according to claim 1, further comprising: extracting an optically active intensity from the linearly polarized terahertz light.
前記キラリティが既知である試料について前記計測された円二色性スペクトルおよび光学活性スペクトルの対称性によりテラヘルツ分光計測方法の正確性を検証するステップをさらに有することを特徴とする請求項1
乃至請求項2のいずれか1項に記載のテラヘルツ分光計測方法。 And measuring the circular dichroism and optical activity of a left-handed and right-handed molecular structure of a sample of known chirality,
2. The method according to claim 1, further comprising the step of verifying the accuracy of the terahertz spectroscopic measurement method based on the symmetry of the measured circular dichroism spectrum and optical activity spectrum for a sample with known chirality.
The terahertz spectroscopy measurement method according to any one of claims 2 to 3.
テラヘルツ光を発生し得るテラヘルツ光源を備え、
前記発生したテラヘルツ光の偏光状態を右円偏光および左円偏光に円偏光させる手段を備え、
前記円偏光したテラヘルツ光を前記試料に照射する手段を備え、
前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を検出する手段を備え、
前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光から、前記試料の円二色性を抽出する手段を備え、
前記試料の円二色性計測によりキラリティを有する試料を識別することを特徴とするテラヘルツ分光計測装置。 A terahertz spectrometer capable of identifying a sample having chirality,
It has a terahertz light source that can generate terahertz light,
Means for circularly polarizing the polarization state of the generated terahertz light into right circularly polarized light and left circularly polarized light;
Means for irradiating the sample with the circularly polarized terahertz light;
Means for detecting the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample;
Means for extracting the circular dichroism of the sample from the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample;
A terahertz spectroscopic measurement apparatus that identifies a sample having chirality by circular dichroism measurement of the sample.
テラヘルツ光を発生し得るテラヘルツ光源を備え、
前記発生した円偏光テラヘルツ波を右円偏光と左円偏光に分割する手段を備え、
前記円偏光した二系統のテラヘルツ光を前記試料に照射する手段を備え、
前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光を検出する手段を備え、
前記試料を透過した前記円偏光したテラヘルツ光、および前記試料により反射した前記円偏光したテラヘルツ光から、前記試料の円二色性を抽出する手段を備え、
前記試料の円二色性計測によりキラリティを有する試料を識別することを特徴とするテラヘルツ分光計測装置。 A terahertz spectrometer capable of identifying a sample having chirality,
It has a terahertz light source that can generate terahertz light,
Means for dividing the generated circularly polarized terahertz wave into right circularly polarized light and left circularly polarized light,
Means for irradiating the sample with the two systems of circularly polarized terahertz light;
Means for detecting the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample;
Means for extracting the circular dichroism of the sample from the circularly polarized terahertz light transmitted through the sample and the circularly polarized terahertz light reflected by the sample;
A terahertz spectroscopic measurement apparatus that identifies a sample having chirality by circular dichroism measurement of the sample.
前記直線偏光したテラヘルツ光から光学活性強度を抽出する手段を備えることを特徴とする請求項5乃至請求項6のいずれか1項に記載のテラヘルツ分光計測装置。 And further comprising means for linearly polarizing the circularly polarized terahertz light transmitted through the detected sample and the circularly polarized terahertz light reflected by the sample,
The terahertz spectrometer according to any one of claims 5 to 6, further comprising means for extracting an optically active intensity from the linearly polarized terahertz light.
前記キラリティが既知である試料について前記計測された円二色性スペクトルおよび光学活性スペクトルの対称性によりテラヘルツ分光計測装置の正確性を検証する手段をさらに備えることを特徴とする請求項5乃至請求項7のいずれか1項に記載のテラヘルツ分光計測装置。 Furthermore, it has means for measuring the circular dichroism and optical activity of the left-handed molecular structure and the right-handed molecular structure of a sample with known chirality,
6. The apparatus according to claim 5, further comprising means for verifying the accuracy of the terahertz spectrometer by the symmetry of the measured circular dichroism spectrum and optical activity spectrum with respect to the sample of which the chirality is known. 8. The terahertz spectroscopic measurement device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012031247A JP2013167543A (en) | 2012-02-16 | 2012-02-16 | Screening device using terahertz wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012031247A JP2013167543A (en) | 2012-02-16 | 2012-02-16 | Screening device using terahertz wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013167543A true JP2013167543A (en) | 2013-08-29 |
Family
ID=49178050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012031247A Pending JP2013167543A (en) | 2012-02-16 | 2012-02-16 | Screening device using terahertz wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013167543A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155843A (en) * | 2014-02-20 | 2015-08-27 | パイオニア株式会社 | Terahertz wave measurement device, terahertz wave measurement method, computer program, and recording medium |
CN108732123A (en) * | 2017-04-18 | 2018-11-02 | 富泰华工业(深圳)有限公司 | Safe examination system based on THz wave |
WO2019192268A1 (en) * | 2018-04-04 | 2019-10-10 | 雄安华讯方舟科技有限公司 | Method for identifying chiral drug based on terahertz time domain spectrometer |
WO2019223364A1 (en) * | 2018-05-25 | 2019-11-28 | 深圳市太赫兹科技创新研究院有限公司 | Method for detecting quality of cordyceps sinensis based on electromagnetic wave in terahertz band |
CN112285029A (en) * | 2020-10-26 | 2021-01-29 | 南开大学 | Terahertz microstructure polarization sensing system for liquid chiral sample and detection method thereof |
CN112798535A (en) * | 2021-03-05 | 2021-05-14 | 南开大学 | Terahertz microstructure circular dichroism sensing system for living cell detection |
CN113219223A (en) * | 2021-03-15 | 2021-08-06 | 北京航空航天大学 | Totally-enclosed rectangular terahertz darkroom |
-
2012
- 2012-02-16 JP JP2012031247A patent/JP2013167543A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155843A (en) * | 2014-02-20 | 2015-08-27 | パイオニア株式会社 | Terahertz wave measurement device, terahertz wave measurement method, computer program, and recording medium |
CN108732123A (en) * | 2017-04-18 | 2018-11-02 | 富泰华工业(深圳)有限公司 | Safe examination system based on THz wave |
WO2019192268A1 (en) * | 2018-04-04 | 2019-10-10 | 雄安华讯方舟科技有限公司 | Method for identifying chiral drug based on terahertz time domain spectrometer |
WO2019223364A1 (en) * | 2018-05-25 | 2019-11-28 | 深圳市太赫兹科技创新研究院有限公司 | Method for detecting quality of cordyceps sinensis based on electromagnetic wave in terahertz band |
CN112285029A (en) * | 2020-10-26 | 2021-01-29 | 南开大学 | Terahertz microstructure polarization sensing system for liquid chiral sample and detection method thereof |
CN112798535A (en) * | 2021-03-05 | 2021-05-14 | 南开大学 | Terahertz microstructure circular dichroism sensing system for living cell detection |
CN113219223A (en) * | 2021-03-15 | 2021-08-06 | 北京航空航天大学 | Totally-enclosed rectangular terahertz darkroom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013167543A (en) | Screening device using terahertz wave | |
Lu et al. | Detection and identification of illicit drugs using terahertz imaging | |
US5017007A (en) | Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same | |
Blum et al. | Understanding tip‐enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study | |
WO2015096788A1 (en) | Raman spectroscopy method used for detecting sample in accommodating body | |
Kebukawa et al. | Spatial distribution of organic matter in the Bells CM2 chondrite using near‐field infrared microspectroscopy | |
BE1024456B1 (en) | NEW DEVICE | |
Ntziouni et al. | Review of existing standards, guides, and practices for Raman spectroscopy | |
CN104007115A (en) | Method and system for detecting jewelry structure by using terahertz time domain spectroscopic technique | |
TW201205062A (en) | Sample inspection device and sample inspection method | |
Rakesh et al. | Quantitative analytical applications of FTIR spectroscopy in pharmaceutical and allied areas | |
CN102213682A (en) | Method for measuring transmission of interference-insensitive terahertz wave | |
KR930703594A (en) | Simultaneous Multi-Angle / Multi-wavelength Elliptical Polarimeter and Measurement Method | |
Bulgarevich et al. | A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy | |
CN104237143A (en) | Solid pesticide identification method based on terahertz spectroscopy | |
TW201713933A (en) | Mail detection device and method | |
US10690588B2 (en) | System for measuring transport properties of materials and related method | |
Gruszecki et al. | Nanoscale resolution in infrared imaging of protein-containing lipid membranes | |
EP4042223B1 (en) | Methods and apparatus for optimised interferometric scattering microscopy | |
KR101692869B1 (en) | thermal image microscope based on the optical indicator | |
US20110102786A1 (en) | Method of Determining the Spatial Configuration of Molecules in Particles or Macromolecules, Especially for Determining the Shape of Metal Nanoparticles and Device for the Implementation Thereof | |
CN109406449A (en) | A kind of portable near infrared spectrometer | |
Luo et al. | Terahertz reflection time-domain spectroscopy for measuring alcohol concentration | |
Hinrichs et al. | Field manipulation of infrared absorption properties in thin films | |
US20130301043A1 (en) | Illumination chamber for raman spectroscopy |