JP2013165881A - Self-propelled capsule endoscope apparatus - Google Patents

Self-propelled capsule endoscope apparatus Download PDF

Info

Publication number
JP2013165881A
JP2013165881A JP2012031679A JP2012031679A JP2013165881A JP 2013165881 A JP2013165881 A JP 2013165881A JP 2012031679 A JP2012031679 A JP 2012031679A JP 2012031679 A JP2012031679 A JP 2012031679A JP 2013165881 A JP2013165881 A JP 2013165881A
Authority
JP
Japan
Prior art keywords
capsule endoscope
self
magnetic field
propelled
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012031679A
Other languages
Japanese (ja)
Inventor
Naotake Otsuka
尚武 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012031679A priority Critical patent/JP2013165881A/en
Publication of JP2013165881A publication Critical patent/JP2013165881A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field

Abstract

PROBLEM TO BE SOLVED: To provide a self-propelled capsule endoscope apparatus capable of easily controlling the traveling direction and traveling speed of a capsule endoscope in the self-propelled capsule endoscope apparatus.SOLUTION: A self-propelled capsule endoscope apparatus includes a capsule endoscope 1 in which a disk-shaped magnet or ring-shaped magnet 3 with a direction of magnetization in the radial direction is mounted, in which a roller part 2 is provided at the rear end in the axial direction of a capsule endoscope body 11, and which can be self-propelled in vivo; and a capsule control device for controlling the self-propelling of the capsule endoscope in vitro as a rotating magnetic field whose direction of magnetic vectors rotates around an optionally selected axis is generated by adjusting the strength and phase of sin wave AC magnetic fields in orthogonally crossing triaxial directions. The roller part rotates in such a way that the direction of magnetization of the magnet is parallel to the direction of the rotating magnetic field as the magnet moves in response by receiving the rotating magnetic field, so that the propelling force in the axial direction is generated in the capsule endoscope.

Description

本発明は、体内において自走可能なカプセル内視鏡に関する。   The present invention relates to a capsule endoscope that can be self-propelled in the body.

近年においては、体内を検査する医療装置が知られている。この医療装置におけるカプセル内視鏡は、一般に、旧来の内視鏡のように内視鏡を操作するための食道等を通過する管を必要としないために、被検査者への負担が少なくなる。カプセル内視鏡は、これを被検査者が飲み込むと、胃や腸の蠕動運動により体内を進行しながら内蔵されているカメラで周囲を撮影し、撮影された画像が送信され体外の記憶媒体に記憶される。その後、カプセル内視鏡は、肛門から外部に排出される。しかしこのカプセル内視鏡は自ら動くことができず蠕動運動によって受動的に移動するので体内を詳細に観察することができないことや、画像の撮影や送信などに使用される電池寿命の制限から大腸検査ができないなどの問題がある。   In recent years, medical devices for examining the inside of the body are known. In general, the capsule endoscope in this medical apparatus does not require a tube passing through the esophagus or the like for operating the endoscope unlike the conventional endoscope, and therefore the burden on the examinee is reduced. . When the subject swallows the capsule endoscope, the surroundings are photographed with a built-in camera while advancing through the body by the peristaltic movement of the stomach and intestines, and the photographed image is transmitted to a storage medium outside the body. Remembered. Thereafter, the capsule endoscope is discharged from the anus to the outside. However, this capsule endoscope cannot move by itself and moves passively by peristaltic movement, so that it cannot observe the inside of the body in detail, and because of the limited battery life used for taking and transmitting images, the large intestine There are problems such as inability to inspect.

このようなカプセル内視鏡の問題を解決する自走可能なカプセル内視鏡は、蠕動運動によって受動的に移動する他に、自ら検査したいところに移動することができる。例えば、特許文献1には、軸方向(長手方向)と直交方向に磁化方向を有する磁石が搭載され、また、軸方向後端部に螺旋構造の推力発生部が設けられたカプセル内視鏡が記載されている。このカプセル内視鏡は、体外のカプセル制御装置で発生させた回転する磁場を受けて磁石が回転し、それにより推力発生部が回転することにより軸方向の推進力が生じる。   The self-propelled capsule endoscope that solves the problem of the capsule endoscope can be moved to a place to be examined by itself, in addition to being passively moved by a peristaltic motion. For example, Patent Document 1 discloses a capsule endoscope in which a magnet having a magnetization direction orthogonal to an axial direction (longitudinal direction) is mounted, and a thrust generating portion having a helical structure is provided at a rear end portion in the axial direction. Have been described. The capsule endoscope receives a rotating magnetic field generated by the capsule control apparatus outside the body, and the magnet rotates, whereby the thrust generating unit rotates, thereby generating an axial propulsive force.

特許文献2には、軸方向(長手方向)に磁化方向を有する磁石が搭載され、また、軸方向後端部にヒレ部が設けられたカプセル内視鏡が記載されている。このカプセル内視鏡は、体外のカプセル制御装置で発生させた交流磁場を受けて磁石が振動し、それによりヒレ部が曲がって振動して周囲の液体を後方に押し出すことにより軸方向の推進力が生じる。   Patent Document 2 describes a capsule endoscope in which a magnet having a magnetization direction in the axial direction (longitudinal direction) is mounted, and a fin portion is provided at a rear end portion in the axial direction. This capsule endoscope receives an alternating magnetic field generated by the capsule control device outside the body, and the magnet vibrates, whereby the fin portion bends and vibrates to push the surrounding liquid backward, thereby pushing the axial propulsive force. Occurs.

特許文献2のカプセル内視鏡は、交流磁場の方向にヒレ部が曲がるように姿勢が安定するので、特許文献1のカプセル内視鏡のように推力発生部の回転にともなって内蔵されているカメラによって撮影された画像の回転又は不安定な傾きが発生し易いものに比べ、画像が安定して検査し易いものとなる。また、特許文献2のカプセル内視鏡は、ヒレ部によって多量の液体を強い力で後方に移動させることができるので、特許文献1のように推力発生部の回転によって推進力を得るものに比べ、小型であっても推進力を大きくすることが容易であり、また、摩擦により体壁(体内の壁面)を傷付ける可能性を低減することが可能である。   Since the posture of the capsule endoscope of Patent Document 2 is stabilized so that the fin portion bends in the direction of the alternating magnetic field, the capsule endoscope is incorporated along with the rotation of the thrust generating portion like the capsule endoscope of Patent Document 1. The image is stable and easy to inspect as compared to the image that is easily rotated or unstable tilted by the camera. Moreover, since the capsule endoscope of Patent Document 2 can move a large amount of liquid backward with a strong force by the fin portion, as compared with the one that obtains a propulsive force by rotation of the thrust generating portion as in Patent Document 1. Even if it is small, it is easy to increase the propulsive force, and it is possible to reduce the possibility of damaging the body wall (wall surface in the body) due to friction.

特開2001−179700号公報JP 2001-179700 A 特開2008−279019号公報JP 2008-279019 A

このように特許文献2に記載されているようなヒレ部の振動により推進するカプセル内視鏡は、幾つかの利点を有している。しかしヒレによる推進力は基本的にはヒレが水中にあるときに発生するので、検査前にあらかじめ水などの液体を飲む必要が生じる。またカプセル内視鏡の比重が体内の液体より大きい場合は沈むことになるので振動するヒレと体内の壁面との摩擦により振動振幅が抑えられ、推進力が低下する問題が生じる。   Thus, the capsule endoscope propelled by the vibration of the fin portion as described in Patent Document 2 has several advantages. However, since the propulsive force generated by the fins is basically generated when the fins are in the water, it is necessary to drink a liquid such as water before the inspection. Also, if the specific gravity of the capsule endoscope is larger than the liquid in the body, the capsule endoscope will sink. Therefore, the vibration amplitude is suppressed by the friction between the vibrating fin and the wall surface in the body, resulting in a problem that the propulsive force is reduced.

本発明は係る事由に鑑みてなされたものであり、その目的は、体内においてローラー部の回転により推進する自走可能なカプセル内視鏡と、体外においてカプセル内視鏡の自走を制御するカプセル制御装置と、を備えた医療装置において、カプセル内視鏡の進行速度と進行方向の制御が容易にできる自走式カプセル内視鏡装置を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned reasons, and the object thereof is a self-propelled capsule endoscope that is propelled by rotation of a roller portion in the body, and a capsule that controls self-running of the capsule endoscope outside the body. It is an object of the present invention to provide a self-propelled capsule endoscope apparatus that can easily control the traveling speed and traveling direction of a capsule endoscope.

上記目的を達成するために、請求項1に記載の自走式カプセル内視鏡装置は、半径方向に磁化方向を有する円板状磁石またはリング状磁石が搭載され、カプセル内視鏡本体部の軸方向後端部に、前記円板状磁石またはリング状磁石とその中心に設置された回転軸が外枠に取り付けられることにより構成されるローラー部が設けられて体内において自走可能なカプセル内視鏡と、直交する3軸方向の正弦波交流磁場の強さおよび位相を調整することにより磁場ベクトルの方向が任意の軸まわりに回転する回転磁場が発生し体外においてカプセル内視鏡の自走を制御するカプセル制御装置と、を備えており、前記ローラー部は、前記回転磁場を受けて前記磁石が応動しそれによりその回転磁場の方向に前記磁石の磁化方向が平行になるように回動して前記カプセル内視鏡に軸方向の推進力が生じることを特徴とする。 In order to achieve the above object, the self-propelled capsule endoscope apparatus according to claim 1 is mounted with a disc-shaped magnet or a ring-shaped magnet having a magnetization direction in a radial direction, and the capsule endoscope main body portion is provided. In the capsule capable of self-propelled in the body, provided at the rear end portion in the axial direction is a roller portion configured by attaching the disc-shaped magnet or ring-shaped magnet and a rotating shaft installed at the center thereof to an outer frame. By adjusting the strength and phase of the sine wave AC magnetic field in the three axis directions orthogonal to the endoscope, a rotating magnetic field in which the direction of the magnetic field vector rotates around an arbitrary axis is generated, and the capsule endoscope is self-running outside the body. A capsule control device for controlling the magnet, and the roller portion receives the rotating magnetic field and rotates so that the magnet responds and the magnetization direction of the magnet is parallel to the direction of the rotating magnetic field. Wherein the driving force in the axial direction is generated in the capsule endoscope Te.

請求項2に記載の自走式カプセル内視鏡装置は、請求項1に記載の自走式カプセル内視鏡装置において、前記円板状磁石またはリング状磁石は周囲に撥水性のよいシリコンゴムなどの弾性力のある部材を貼り付け、前記弾性力のある部材は外表面に三角形または半円形または多角形の形状の突起を有することを特徴とする。   The self-propelled capsule endoscope apparatus according to claim 2 is the self-propelled capsule endoscope apparatus according to claim 1, wherein the disk-shaped magnet or the ring-shaped magnet is made of silicon rubber having good water repellency around it. A member having elasticity such as the above is pasted, and the member having elasticity has a projection of a triangular, semicircular or polygonal shape on the outer surface.

請求項3に記載の自走式カプセル内視鏡装置は、請求項1または請求項2に記載の自走式カプセル内視鏡装置において、前記円板状磁石またはリング状磁石が回転するローラー部の上部に屋根を設置することによって、ローラー部の上部がローラー部の下部と逆方向に回転するために体内の壁面と接触して前記カプセル内視鏡の進行方向と反対方向の推進力が発生することを防ぐことを特徴とする。   The self-propelled capsule endoscope apparatus according to claim 3 is a roller unit in which the disk-shaped magnet or the ring-shaped magnet rotates in the self-propelled capsule endoscope apparatus according to claim 1 or 2. By installing a roof on the upper part of the roller, the upper part of the roller part rotates in the opposite direction to the lower part of the roller part, so that a propulsive force in the direction opposite to the traveling direction of the capsule endoscope is generated due to contact with the wall surface in the body It is characterized by preventing.

請求項4に記載の自走式カプセル内視鏡装置は、請求項1〜3のいずれか1項に記載の自走式カプセル内視鏡装置において、前記屋根の外側に前記ローラーを覆うように差し出した廂を設置することによって、前記カプセル内視鏡が前記ローラーが設置されている方向に進行する際などに体内の壁面がローラー部に接触したり巻き込まれることを防ぐことを特徴とする。   The self-propelled capsule endoscope apparatus according to claim 4 is the self-propelled capsule endoscope apparatus according to any one of claims 1 to 3, wherein the roller is covered outside the roof. It is characterized in that the wall surface in the body is prevented from coming into contact with or being caught in the roller part when the capsule endoscope advances in the direction in which the roller is installed, by installing the inserted heel.

請求項5に記載の自走式カプセル内視鏡装置は、請求項1〜4のいずれか1項に記載の自走式カプセル内視鏡装置において、前記カプセル内視鏡と前記ローラー部とが互いに自由に回転することのできる蝶番により接合されていることを特徴とする。   The self-propelled capsule endoscope apparatus according to claim 5 is the self-propelled capsule endoscope apparatus according to any one of claims 1 to 4, wherein the capsule endoscope and the roller unit are It is characterized by being joined by hinges that can freely rotate with each other.

請求項6に記載の自走式カプセル内視鏡装置は、請求項1〜5のいずれか1項に記載の装置において、大きさが同じで位相が90°ずれた直交する2軸方向の交流磁場によって磁場ベクトルが回転する回転磁場を発生することによって自走式カプセル内視鏡が駆動力を得るとともに、交流磁場の周波数を調整することによってカプセル内視鏡の進行速度を制御し、上記2軸に直交する第3軸方向に上記一方の交流磁場と位相が同じ交流磁場を与えて磁場の強さを調整することによって回転磁場が発生する回転面の方向を変化させ、自走式カプセル内視鏡の進行方向を制御することを特徴とする。 The self-propelled capsule endoscope apparatus according to claim 6 is the apparatus according to any one of claims 1 to 5, wherein the alternating currents are orthogonal and biaxial with the same size and 90 ° phase shift. The self-propelled capsule endoscope obtains a driving force by generating a rotating magnetic field in which the magnetic field vector is rotated by the magnetic field, and the traveling speed of the capsule endoscope is controlled by adjusting the frequency of the alternating magnetic field. In the self-propelled capsule, the direction of the rotating surface where the rotating magnetic field is generated is changed by adjusting the strength of the magnetic field by applying an alternating magnetic field having the same phase as the one alternating magnetic field in the third axis direction orthogonal to the axis. The moving direction of the endoscope is controlled.

本発明の自走式カプセル内視鏡装置によれば、体内のカプセル内視鏡の進行速度を回転磁場の周波数により制御し、それと独立に、進行方向を回転磁場のベクトル方向により制御するので、カプセル内視鏡の進行速度及び進行方向の精密な制御が容易になる。   According to the self-propelled capsule endoscope apparatus of the present invention, the traveling speed of the capsule endoscope in the body is controlled by the frequency of the rotating magnetic field, and independently, the traveling direction is controlled by the vector direction of the rotating magnetic field. Precise control of the traveling speed and traveling direction of the capsule endoscope is facilitated.

本発明の実施形態に係る自走式カプセル内視鏡装置の構成を示す模式図である。It is a mimetic diagram showing composition of a self-propelled capsule endoscope apparatus concerning an embodiment of the present invention. 同上の自走式カプセル内視鏡装置の半径方向に磁化方向を有するリング状磁石の模式図である。It is a schematic diagram of the ring-shaped magnet which has a magnetization direction in the radial direction of the self-propelled capsule endoscope apparatus same as the above. 同上の自走式カプセル内視鏡装置の三角形の形状の突起を有するシリコンゴム製の弾性力のある部材を展伸した一例を示す図である。It is a figure which shows an example which extended the elastic member made from a silicon rubber which has the triangular-shaped protrusion of the self-propelled capsule endoscope apparatus same as the above. 同上の自走式カプセル内視鏡装置のリング状磁石の周囲に三角形の形状の突起を有するシリコンゴム製の弾性力のある部材を貼り付けた実施例を示す図である。It is a figure which shows the Example which affixed the elastic member made from silicon rubber which has a triangular-shaped protrusion around the ring-shaped magnet of the self-propelled capsule endoscope apparatus same as the above. 同上の自走式カプセル内視鏡装置のローラー部をカプセル内視鏡に設置するための外枠の実施例を示す図である。It is a figure which shows the Example of the outer frame for installing the roller part of a self-propelled capsule endoscope apparatus same as the above in a capsule endoscope. 同上の自走式カプセル内視鏡装置のローラー部の上部に屋根を設置した外枠の実施例を示す図である。It is a figure which shows the Example of the outer frame which installed the roof in the upper part of the roller part of a self-propelled capsule endoscope apparatus same as the above. 同上の自走式カプセル内視鏡装置の概略を示す外観図であって、(a)がローラー部の上部に屋根を設置した外枠を有する構成、(b)がローラー部の上部に、カプセル内視鏡の外径よりはみ出さない大きさの屋根を設置した外枠を有する構成、(c)がローラー部の上部に屋根および廂を設置した外枠を有する構成である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view which shows the outline of a self-propelled capsule endoscope apparatus same as the above, (a) is the structure which has the outer frame which installed the roof in the upper part of a roller part, (b) is a capsule in the upper part of a roller part. It is the structure which has the outer frame which installed the roof of the magnitude | size which does not protrude from the outer diameter of an endoscope, (c) is the structure which has the outer frame which installed the roof and the eaves on the upper part of a roller part. 同上の自走式カプセル内視鏡装置のリング状磁石の外周に貼り付けたシリコンゴム製の弾性力のある部材の三角形状の突起の特性図であり、(a)が突起の数と突起先端の角度がカプセル内視鏡の進行速度に及ぼす影響、(b)が突起の数と突起先端の角度がカプセル内視鏡の駆動力に及ぼす影響である。It is a characteristic view of the triangular protrusion of the elastic member made of silicon rubber affixed to the outer periphery of the ring-shaped magnet of the self-propelled capsule endoscope apparatus same as above, (a) is the number of protrusions and the protrusion tip (B) shows the influence of the number of protrusions and the angle of the protrusion tip on the driving force of the capsule endoscope. 同上の自走式カプセル内視鏡装置のカプセル制御装置によって磁場ベクトルの方向が任意の軸まわりに回転して回転磁場が発生する原理を示す模式図である。It is a schematic diagram which shows the principle which the direction of a magnetic field vector rotates around an arbitrary axis | shaft by the capsule control apparatus of a self-propelled capsule endoscope apparatus same as the above, and a rotating magnetic field generate | occur | produces.

以下、本発明を実施するための好ましい形態について図面を参照しながら説明する。
本発明の実施形態に係る自走式カプセル内視鏡装置は、被検査者の体内の検査等を行うもので、図1に示すように、被検査者の体内において自走可能なカプセル内視鏡1と、カプセル内視鏡11の自走を体外において制御するカプセル制御装置と、を備えている。
被検査者は、通常、後述する図9にその原理図を示すカプセル制御装置の磁場発生部が画定する所要範囲の内方に胴部を位置させ、自走式カプセル内視鏡1を口から飲み込んだ上で検査を受ける。肛門から自走式カプセル内視鏡1を逆走させることも可能である。
Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings.
A self-propelled capsule endoscope apparatus according to an embodiment of the present invention performs an inspection or the like in a subject's body, and as shown in FIG. 1, a capsule endoscope capable of self-propelled in the subject's body. A mirror 1 and a capsule control device that controls the self-running of the capsule endoscope 11 outside the body are provided.
The inspected person usually positions the torso inward of the required range defined by the magnetic field generator of the capsule control device whose principle is shown in FIG. 9 described later, and the self-propelled capsule endoscope 1 from the mouth. Swallow and get tested. It is also possible to reverse the self-propelled capsule endoscope 1 from the anus.

自走式カプセル内視鏡1は、軸方向(長手方向)に進行する全体的に大略円柱状のものであって、図1に示すように、内部にカメラなどを搭載するカプセル内視鏡本体部11と、内部に半径方向に磁化方向を有する磁石3を搭載するローラー部2と、を有している。ローラー部2は、カプセル内視鏡本体部11の軸方向後端部に設けられており、詳しくはローラー部2の前端が内視鏡本体部11の後端に固定されるか或いはキャップ形状の媒体などを介して固定されている。   The self-propelled capsule endoscope 1 has a generally cylindrical shape that travels in the axial direction (longitudinal direction). As shown in FIG. 1, the capsule endoscope main body has a camera or the like mounted therein. It has the part 11, and the roller part 2 which mounts the magnet 3 which has a magnetization direction in a radial direction inside. The roller unit 2 is provided at the axial rear end of the capsule endoscope main body 11. Specifically, the front end of the roller unit 2 is fixed to the rear end of the endoscope main body 11 or has a cap shape. It is fixed via a medium.

カプセル内視鏡本体部11の構造は本発明の要旨ではなく、従来のカプセル内視鏡で用いられている公知のものが流用可能である。このようなカプセル内視鏡本体部11は、一般的には、前述のカメラの他に、カプセル内視鏡11の各部に電源を供給する電源供給部、カメラによる撮影のために外部を照射する照射部、カメラが撮影した画像を処理して無線で画像モニター装置に送信する無線通信部、などが含まれる。   The structure of the capsule endoscope main body 11 is not the gist of the present invention, and a known structure used in a conventional capsule endoscope can be used. Such a capsule endoscope main body 11 generally irradiates the outside for photographing by the camera, in addition to the above-described camera, a power supply unit that supplies power to each part of the capsule endoscope 11. An irradiation unit, a wireless communication unit that processes an image captured by the camera and wirelessly transmits the image to the image monitor device, and the like are included.

図1に示すローター部2の磁石3は、円板状またはリング状の磁石であり、図2に示すように、半径方向に磁化方向を有している。磁石3は、図3に示すように、外側に複数の突起を有するシリコン樹脂などの弾性力のある部材4を、図4のように磁石の外周に接着剤などを用いて貼り付けられている。また、磁石3は円形の中心に設置された回転軸が、図5のような外枠6の回転軸固定穴5に取り付けられることによってローラー部2を構成している。このローラー部2の前端は、前述のようにカプセル内視鏡本体部11の後端に固定されるか或いはキャップ形状の媒体などを介して固定されている。
磁石3は、後述するようにカプセル制御装置の磁場発生部で発生する回転磁場を受けると、その回転する磁場ベクトルの方向に平行になるように回動する。そして、その回動の方向に従ってローター2が回動することにより自走式カプセル内視鏡1が軸方向に前進または後進する。
The magnet 3 of the rotor part 2 shown in FIG. 1 is a disk-shaped or ring-shaped magnet, and has a magnetization direction in the radial direction as shown in FIG. As shown in FIG. 3, the magnet 3 has an elastic member 4 such as a silicone resin having a plurality of protrusions on the outside, and is attached to the outer periphery of the magnet using an adhesive or the like as shown in FIG. . Moreover, the magnet 3 comprises the roller part 2 by attaching the rotating shaft installed in the center of circular to the rotating shaft fixing hole 5 of the outer frame 6 like FIG. The front end of the roller unit 2 is fixed to the rear end of the capsule endoscope main body 11 as described above, or is fixed through a cap-shaped medium or the like.
As will be described later, when the magnet 3 receives a rotating magnetic field generated by a magnetic field generation unit of the capsule control device, the magnet 3 rotates so as to be parallel to the direction of the rotating magnetic field vector. The self-propelled capsule endoscope 1 moves forward or backward in the axial direction by rotating the rotor 2 according to the rotating direction.

前記の外枠6は、図6のように上部に屋根7を設置することによって、ローラー部の上部がローラー部の下部と逆方向に回転するために体内の壁面と接触して前記カプセル内視鏡の進行方向と反対方向の推進力が発生することを防ぐことができる。その実施例を図7の(a)および(b)に示す。ここで図7(a)は屋根の高さがカプセル内視鏡の直径より大きく人が口から自走式カプセル内視鏡を飲み込む際に困難を生じる。そこで図7(b)の実施例は、カプセル内視鏡の外径より屋根がはみ出さない大きさになるよう、磁石を小型化するとともに屋根7の形状を小型化した実施例である。
しかし前記自走式カプセル内視鏡が進行方向と逆方向に戻る場合や、ローラー2の方向を先頭にして進む場合などでは、体内の壁面がローラー部に接触したり巻き込まれて進行が妨げられる場合があるので、これを防ぐため、前記屋根の外側に前記ローラーを覆うように差し出した廂8を設置した実施例を図7(c)に示す。
As shown in FIG. 6, the outer frame 6 has a roof 7 at the top, so that the upper part of the roller part rotates in the direction opposite to the lower part of the roller part, so that the inner wall of the body comes into contact with the inside of the capsule. It is possible to prevent a propulsive force in the direction opposite to the traveling direction of the mirror from being generated. Examples thereof are shown in FIGS. 7A and 7B. Here, in FIG. 7A, when the height of the roof is larger than the diameter of the capsule endoscope and a person swallows the self-propelled capsule endoscope from the mouth, difficulty occurs. Therefore, the embodiment of FIG. 7B is an embodiment in which the magnet is downsized and the shape of the roof 7 is downsized so that the roof does not protrude beyond the outer diameter of the capsule endoscope.
However, when the self-propelled capsule endoscope returns in the direction opposite to the direction of travel, or when it proceeds with the direction of the roller 2 as the head, the body wall comes into contact with or is caught in the roller portion, and the progress is prevented. Since there is a case, in order to prevent this, the Example which installed the cage | basket 8 extended so that the said roller might be covered on the outer side of the said roof is shown in FIG.7 (c).

前述のように、磁石3の外周は、外側に複数の突起を有するシリコン樹脂などの弾性力のある部材4を貼り付けることによって、体内の壁面との間の摩擦力を増して進行する際の駆動力の増大を図ることができる。このときの突起形状は、三角形または半円形または多角形など任意の形状を用いることができるが、三角形の場合は半円形または長方形の形状の突起より大きな駆動力が得られることが多い。
外径が6 mmのリング状磁石について、弾性力のある部材4の外側に、先端の角度が60°または90°の三角形の突起を8個または6個取付けた場合について、特性の柔軟性のある疑似小腸上を進行させたときの推進速度と駆動力を比較した実施例を図8に示す。突起先端角度が60°で突起の数が8個の場合が、他の条件の場合に比して図8(a)の推進速度および(b)の駆動力ともに大きくなっている。これらのことから、突起の先端角度を小さくし突起の数を多くしたほうが、推進速度および駆動力ともに有利になる傾向があると考えられる。
As described above, when the outer periphery of the magnet 3 advances by increasing the frictional force between the inner wall surface and the elastic member 4 such as silicon resin having a plurality of protrusions on the outside, the outer periphery of the magnet 3 is advanced. The driving force can be increased. Any shape such as a triangle, a semicircle, or a polygon can be used as the protrusion shape at this time, but in the case of a triangle, a driving force larger than that of a semicircular or rectangular protrusion is often obtained.
For a ring-shaped magnet with an outer diameter of 6 mm, when 8 or 6 triangular projections with a tip angle of 60 ° or 90 ° are attached to the outside of the elastic member 4, the flexibility of the characteristics FIG. 8 shows an example in which the propulsion speed and the driving force are compared when a certain pseudo small intestine is advanced. In the case where the protrusion tip angle is 60 ° and the number of protrusions is eight, both the propulsion speed in FIG. 8A and the driving force in FIG. 8B are larger than in other conditions. From these facts, it is considered that the propulsion speed and the driving force tend to be more advantageous when the tip angle of the protrusion is reduced and the number of protrusions is increased.

次に、カプセル制御装置による駆動方法を、図9の模式図を用いて説明する。
カプセル制御装置は、平行に設置した2つのコイルが1組となったコイルに正弦波の交流電流を流すことによって、コイル軸方向に交流磁場が発生する磁場発生装置を、互いに直交するよう設置した3軸の磁場発生装置から構成される。この3軸の磁場発生装置のうち、例えば直交する2組のコイル軸が図9(a)のY軸およびZ軸である場合について例示すると、Y軸およびZ軸の2組のコイルに流す正弦波交流電流の位相を90°ずらすことによって、2組のコイル軸によって形成され、コイルで囲まれるYZ平面内で、磁場ベクトルが回転する回転磁場が発生する。そこで前述のように、この回転磁場空間内に、自走式カプセル内視鏡1を設置すると、磁石3が磁場ベクトルの方向に平行になるように回動することによりローラー部2がYZ平面内で回動する。仮に図9(a)のXY平面が水平面内にある場合は、自走式カプセル内視鏡はY軸方向に進行する。このときの進行速度は、図8(a)に示されるように、交流磁場の周波数にほぼ比例して増大するので、コイルに流す交流電流の周波数を調節することにより制御することが可能である。
ここでYZ平面内で回転する回転磁場に加えて、Y軸方向の交流磁場と同じ位相であるが振幅が異なる交流磁場を新たにX軸方向に加えた場合を考える。この場合、XY平面内ではY軸方向の磁場ベクトルとX軸方向の磁場ベクトルを合成した合成ベクトルの磁場が図9(b)に示すように発生する。この合成ベクトルの大きさと方向はX軸方向の磁場の大きさを変えることによって調整し制御することができる。
そこでこのとき、この合成ベクトルによる交流磁場と位相が90°ずれたZ方向の交流磁場によって、合成磁場ベクトル方向とZ軸により形成される新たな平面内で回転磁場が発生するので、磁石3はこの新たな平面内で回動することになり、自走式カプセル内視鏡はこの新たな平面内で進行する。すなわちXY平面が水平面であるとすると、図9(b)に示すように、自走式カプセル内視鏡の進行方向は従来のY軸方向から、合成ベクトルの方向に方向を変えて進行し、この進行方向はX軸方向の交流磁場の大きさを調節することによって制御することができる。
この進行方向の変化量が大きい場合は自走式カプセル内視鏡が転倒することがあるので、カプセル内視鏡本体11とローラー部2とが互いに自由に回転することのできる蝶番を用いて接合することにより転倒を防止することができる。
Next, a driving method by the capsule control device will be described with reference to the schematic diagram of FIG.
In the capsule control device, magnetic field generators that generate an alternating magnetic field in the direction of the coil axis by passing a sinusoidal alternating current through a pair of two coils installed in parallel are installed so as to be orthogonal to each other. It consists of a three-axis magnetic field generator. Of these three-axis magnetic field generators, for example, when two orthogonal coil axes are the Y-axis and Z-axis in FIG. 9A, a sine flowing through two sets of Y-axis and Z-axis coils is illustrated. By shifting the phase of the wave alternating current by 90 °, a rotating magnetic field is generated in which a magnetic field vector rotates in a YZ plane formed by two sets of coil axes and surrounded by the coils. Therefore, as described above, when the self-propelled capsule endoscope 1 is installed in the rotating magnetic field space, the roller 3 is moved in the YZ plane by rotating the magnet 3 so as to be parallel to the direction of the magnetic field vector. To rotate. If the XY plane in FIG. 9A is in the horizontal plane, the self-propelled capsule endoscope advances in the Y-axis direction. As shown in FIG. 8A, the traveling speed at this time increases almost in proportion to the frequency of the alternating magnetic field, and therefore can be controlled by adjusting the frequency of the alternating current flowing through the coil. .
Here, in addition to the rotating magnetic field rotating in the YZ plane, a case is considered in which an alternating magnetic field having the same phase but different amplitude as the alternating magnetic field in the Y-axis direction is newly applied in the X-axis direction. In this case, in the XY plane, a magnetic field of a combined vector obtained by combining the magnetic field vector in the Y-axis direction and the magnetic field vector in the X-axis direction is generated as shown in FIG. The magnitude and direction of this combined vector can be adjusted and controlled by changing the magnitude of the magnetic field in the X-axis direction.
Therefore, at this time, the rotating magnetic field is generated in a new plane formed by the combined magnetic field vector direction and the Z axis by the alternating magnetic field in the Z direction that is 90 ° out of phase with the alternating magnetic field by the combined vector. The self-propelled capsule endoscope will move in this new plane. That is, assuming that the XY plane is a horizontal plane, as shown in FIG. 9B, the traveling direction of the self-propelled capsule endoscope changes from the conventional Y-axis direction to the direction of the combined vector, This traveling direction can be controlled by adjusting the magnitude of the alternating magnetic field in the X-axis direction.
When the amount of change in the traveling direction is large, the self-propelled capsule endoscope may fall over, so the capsule endoscope body 11 and the roller unit 2 are joined using a hinge that can freely rotate with each other. By doing so, the fall can be prevented.

以上、本発明の実施形態に係る自走式カプセル内視鏡装置について説明したが、本発明は、実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内での様々な設計変更が可能である。例えば、自走式カプセル内視鏡1のカプセル内視鏡本体部11の構造や形状は、様々なものが可能である。また、医療用に限らず工業用などさまざまな用途に利用することも可能である。   The self-propelled capsule endoscope apparatus according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the embodiment, and within the scope of the matters described in the claims. Various design changes are possible. For example, the structure and shape of the capsule endoscope body 11 of the self-propelled capsule endoscope 1 can be various. Moreover, it can be used for various purposes such as industrial use as well as medical use.

1 自走式カプセル内視鏡
11 カプセル内視鏡
2 ローラー部
3 磁石
4 弾性力のある部材
5 回転軸固定穴
6 外枠
7 屋根
8 廂
DESCRIPTION OF SYMBOLS 1 Self-propelled capsule endoscope 11 Capsule endoscope 2 Roller part 3 Magnet 4 Elastic member 5 Rotating shaft fixing hole 6 Outer frame 7 Roof 8 廂

Claims (6)

半径方向に磁化方向を有する円板状磁石またはリング状磁石が搭載され、カプセル内視鏡本体部の軸方向後端部に、前記円板状磁石またはリング状磁石とその中心に設置された回転軸が外枠に取り付けられることにより構成されるローラー部が設けられて体内において自走可能なカプセル内視鏡と、
直交する3軸方向の正弦波交流磁場の強さおよび位相を調整することにより磁場ベクトルの方向が任意の軸まわりに回転する回転磁場が発生し体外においてカプセル内視鏡の自走を制御するカプセル制御装置と、
を備えており、
前記ローラー部は、前記回転磁場を受けて前記磁石が応動しそれによりその回転磁場の方向に前記磁石の磁化方向が平行になるように回動して前記カプセル内視鏡に軸方向の推進力が生じることを特徴とする自走式カプセル内視鏡装置。
A disk-shaped magnet or a ring-shaped magnet having a magnetization direction in the radial direction is mounted, and the disk-shaped magnet or the ring-shaped magnet and a rotation installed at the center thereof are arranged at the axial rear end of the capsule endoscope body. A capsule endoscope provided with a roller part configured by attaching a shaft to an outer frame and capable of self-propelling in the body;
A capsule that controls the self-running of the capsule endoscope outside the body by adjusting the strength and phase of the sine wave AC magnetic field in three orthogonal directions to generate a rotating magnetic field whose magnetic field vector rotates around an arbitrary axis. A control device;
With
The roller unit receives the rotating magnetic field, and the magnet responds, whereby the roller unit rotates so that the magnetization direction of the magnet is parallel to the direction of the rotating magnetic field, and the axial driving force is applied to the capsule endoscope. A self-propelled capsule endoscope device characterized by
請求項1に記載の自走式カプセル内視鏡装置において、
前記円板状磁石またはリング状磁石は周囲に撥水性のよいシリコンゴムなどの弾性力のある部材を貼り付け、前記弾性力のある部材は外表面に三角形または半円形または多角形の形状の突起を有することを特徴とする自走式カプセル内視鏡装置。
The self-propelled capsule endoscope device according to claim 1,
The disk-shaped magnet or ring-shaped magnet has an elastic member such as silicon rubber having good water repellency around it, and the elastic member has a triangular, semi-circular or polygonal protrusion on the outer surface. A self-propelled capsule endoscope device comprising:
請求項1または請求項2に記載の自走式カプセル内視鏡装置において、
前記円板状磁石またはリング状磁石が回転するローラー部の上部に屋根を設置することによって、ローラー部の上部がローラー部の下部と逆方向に回転するために体内の壁面と接触して前記カプセル内視鏡の進行方向と反対方向の推進力が発生することを防ぐことを特徴とする自走式カプセル内視鏡装置。
In the self-propelled capsule endoscope device according to claim 1 or 2,
By installing a roof on the upper part of the roller part on which the disk-shaped magnet or ring-shaped magnet rotates, the upper part of the roller part rotates in the direction opposite to the lower part of the roller part, so that the capsule comes into contact with the wall surface in the body. A self-propelled capsule endoscope apparatus characterized by preventing generation of a propulsive force in a direction opposite to an advancing direction of an endoscope.
請求項1〜3のいずれか1項に記載の自走式カプセル内視鏡装置において、前記屋根の外側に前記ローラーを覆うように差し出した廂を設置することによって、前記カプセル内視鏡が前記ローラーが設置されている方向に進行する際などに体内の壁面がローラー部に接触したり巻き込まれることを防ぐことを特徴とする自走式カプセル内視鏡装置。   The self-propelled capsule endoscope apparatus according to any one of claims 1 to 3, wherein the capsule endoscope is configured to be installed by installing a ridge that is placed outside the roof so as to cover the roller. A self-propelled capsule endoscope device that prevents a wall surface in the body from coming into contact with or being caught in a roller portion when the roller is traveling in a direction in which the roller is installed. 請求項1〜4のいずれか1項に記載の自走式カプセル内視鏡装置において、
前記カプセル内視鏡と前記ローラー部とが互いに自由に回転することのできる蝶番により接合されていることを特徴とする自走式カプセル内視鏡装置。
In the self-propelled capsule endoscope apparatus according to any one of claims 1 to 4,
The self-propelled capsule endoscope apparatus, wherein the capsule endoscope and the roller unit are joined by a hinge that can freely rotate with each other.
請求項1〜5のいずれか1項に記載の装置において、大きさが同じで位相が90°ずれた直交する2軸方向の交流磁場によって磁場ベクトルが回転する回転磁場を発生することによって自走式カプセル内視鏡が駆動力を得るとともに、交流磁場の周波数を調整することによってカプセル内視鏡の進行速度を制御し、上記2軸に直交する第3軸方向に上記一方の交流磁場と位相が同じ交流磁場を与えて磁場の強さを調整することによって回転磁場が発生する回転面の方向を変化させ、自走式カプセル内視鏡の進行方向を制御することを特徴とする自走式カプセル内視鏡装置 6. The apparatus according to claim 1, wherein the apparatus is self-propelled by generating a rotating magnetic field in which a magnetic field vector is rotated by an alternating two-axis alternating magnetic field having the same magnitude and a phase shift of 90 °. The capsule endoscope obtains a driving force and controls the traveling speed of the capsule endoscope by adjusting the frequency of the alternating magnetic field, and the one alternating magnetic field and the phase in the third axis direction orthogonal to the two axes. Is a self-propelled type that controls the traveling direction of the self-propelled capsule endoscope by changing the direction of the rotating surface where the rotating magnetic field is generated by applying the same alternating magnetic field and adjusting the strength of the magnetic field Capsule endoscope device
JP2012031679A 2012-02-16 2012-02-16 Self-propelled capsule endoscope apparatus Pending JP2013165881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012031679A JP2013165881A (en) 2012-02-16 2012-02-16 Self-propelled capsule endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012031679A JP2013165881A (en) 2012-02-16 2012-02-16 Self-propelled capsule endoscope apparatus

Publications (1)

Publication Number Publication Date
JP2013165881A true JP2013165881A (en) 2013-08-29

Family

ID=49176842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012031679A Pending JP2013165881A (en) 2012-02-16 2012-02-16 Self-propelled capsule endoscope apparatus

Country Status (1)

Country Link
JP (1) JP2013165881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027782A (en) * 2014-06-30 2016-02-18 シナノケンシ株式会社 Wireless power supply device and wireless power supply system
CN109730622A (en) * 2019-01-25 2019-05-10 陈嘉浩 A kind of spiral gastroscope
CN110403565A (en) * 2018-04-27 2019-11-05 西安交通大学医学院第一附属医院 A kind of capsule endoscope magnetic and the bionical double-drive device of the awn of wheat
CN115089092A (en) * 2022-06-20 2022-09-23 元化智能科技(深圳)有限公司 Capsule endoscope motion control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027782A (en) * 2014-06-30 2016-02-18 シナノケンシ株式会社 Wireless power supply device and wireless power supply system
CN110403565A (en) * 2018-04-27 2019-11-05 西安交通大学医学院第一附属医院 A kind of capsule endoscope magnetic and the bionical double-drive device of the awn of wheat
CN110403565B (en) * 2018-04-27 2022-02-11 西安交通大学医学院第一附属医院 Magnetic and wheat-mango bionic dual-drive device of capsule endoscope
CN109730622A (en) * 2019-01-25 2019-05-10 陈嘉浩 A kind of spiral gastroscope
CN115089092A (en) * 2022-06-20 2022-09-23 元化智能科技(深圳)有限公司 Capsule endoscope motion control device

Similar Documents

Publication Publication Date Title
JP6207623B2 (en) Capsule-type endoscope drive control system and capsule-type endoscope system including the same
ES2887301T3 (en) Apparatus and method for controlling the movement of a capsule endoscope in the digestive tract of a human body
JP5916031B2 (en) Medical equipment
EP2995240B1 (en) Apparatus for controlling the movement of a capsule endoscope in the digestive tract of a human body
JP5237945B2 (en) Capsule medical device
US20070299301A1 (en) Medical System
US20100010300A1 (en) Device, System and Method for Orienting a Sensor In-Vivo
JP2013165881A (en) Self-propelled capsule endoscope apparatus
WO2008029460A1 (en) Medical device control system
JP2006263167A (en) Medical device control system
JP2010017553A (en) Guiding system and guiding method
JP2005103091A (en) Guiding system of capsule type medical apparatus
JP4153845B2 (en) Medical device guidance system
Zhang et al. Control theorem of a universal uniform-rotating magnetic vector for capsule robot in curved environment
JP2006149581A (en) Capsule type medical implement main body and capsule type medical system
JP5259881B2 (en) Capsule type medical device guidance system and magnetic field generator
JP2007301177A (en) Wireless power receiving apparatus
JP4763732B2 (en) Medical device control system
EP2561797B1 (en) Micro robot system and capsule endoscope system for examining a tubular digestive system
Zhang et al. Design and implementation of a highly integrated dual hemisphere capsule robot
JP6028271B2 (en) Self-propelled capsule endoscope fin member and travel control device
JP4824048B2 (en) Medical device control system
KR101781092B1 (en) Robot system for treatment
JP2007260423A (en) Medical device and medical device guiding system
Guo et al. Performance evaluation of the wireless microrobot in pipe with symmetrical spiral structure