JP2013164905A - Method for manufacturing negative electrode plate - Google Patents

Method for manufacturing negative electrode plate Download PDF

Info

Publication number
JP2013164905A
JP2013164905A JP2012026101A JP2012026101A JP2013164905A JP 2013164905 A JP2013164905 A JP 2013164905A JP 2012026101 A JP2012026101 A JP 2012026101A JP 2012026101 A JP2012026101 A JP 2012026101A JP 2013164905 A JP2013164905 A JP 2013164905A
Authority
JP
Japan
Prior art keywords
negative electrode
thickener
active material
electrode plate
electrode paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026101A
Other languages
Japanese (ja)
Other versions
JP5751186B2 (en
Inventor
Tomoyuki Uezono
知之 上薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012026101A priority Critical patent/JP5751186B2/en
Publication of JP2013164905A publication Critical patent/JP2013164905A/en
Application granted granted Critical
Publication of JP5751186B2 publication Critical patent/JP5751186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode plate with a negative electrode paste that exhibits excellent filter penetrability and coating properties and requires only a short period of processing time (dispersion time).SOLUTION: A method for manufacturing a negative electrode plate 131 includes the steps of: making a negative electrode paste 60 by dispersing at least a portion of a negative electrode active material 20 and a first thickener 30 that exhibits a viscosity (mPa s) higher than or equal to 5000 and lower than or equal to 10000 in a 1 wt.% solution, in water 10, then adding and dispersing a second thickener 40 that exhibits a viscosity (mPa s) higher than or equal to 1000 and lower than 5000 in a 1 wt.% solution, and then adding and dispersing a binder 50; and forming a negative electrode active material layer 133 by applying the negative electrode paste 60 to negative electrode foil 132.

Description

本発明は、負極電極箔とこの上に塗工形成された負極活物質層とを備える、二次電池用の負極板の製造方法に関する。   The present invention relates to a method for producing a negative electrode plate for a secondary battery, comprising a negative electrode foil and a negative electrode active material layer coated and formed thereon.

従来より、二次電池を構成する負極板として、負極電極箔に負極活物質層を塗工形成したものが知られている。このような負極板は、例えば、水に負極活物質と増粘剤と結着剤とを分散させた負極ペーストを作製し、この負極ペーストを負極電極箔に塗工して負極活物質層を形成する方法により製造される。   2. Description of the Related Art Conventionally, as a negative electrode plate constituting a secondary battery, a negative electrode foil coated with a negative electrode active material layer is known. Such a negative electrode plate is prepared, for example, by preparing a negative electrode paste in which a negative electrode active material, a thickener, and a binder are dispersed in water, and applying the negative electrode paste to a negative electrode foil to form a negative electrode active material layer. Manufactured by the forming method.

また、特許文献1には、負極ペーストの作製方法として、まず1wt%水溶液の粘度が10〜1800mPa・sの低粘度の増粘剤と負極活物質とを水の存在下で分散させ、その後更に1wt%水溶液の粘度が3000〜10000mPa・sの高粘度の増粘剤を加えて分散させ、その後に結着剤を加えて、スラリー状の塗工組成物(負極ペースト)を作製することが開示されている(特許文献1の請求項1等を参照)。   In Patent Document 1, as a method for preparing a negative electrode paste, first, a low-viscosity thickener having a viscosity of 10 wt% to 1800 mPa · s of a 1 wt% aqueous solution and a negative electrode active material are dispersed in the presence of water, and then further. It is disclosed that a 1 wt% aqueous solution having a viscosity of 3000 to 10000 mPa · s is added and dispersed, and then a binder is added to prepare a slurry-like coating composition (negative electrode paste). (See claim 1 of Patent Document 1).

特開2009−099441号公報JP 2009-099441 A

しかしながら、特許文献1の方法では、負極ペーストをフィルタに透過させる際や負極ペーストを負極電極箔に塗工する際などに、ダイラタンシ(負極ペーストにせん断力が掛かったときに粘度が急激に上昇する現象)が生じて、負極ペーストのフィルタ透過性が悪くなったり、塗工性が悪くなることがあった。また、特許文献1の方法では、負極ペーストの加工時間(分散時間)が長く掛かるデメリットもあった。   However, in the method of Patent Document 1, when the negative electrode paste is passed through a filter or when the negative electrode paste is applied to the negative electrode foil, the viscosity increases rapidly when a shear force is applied to the negative electrode paste. Phenomenon), the filter permeability of the negative electrode paste may deteriorate, or the coating property may deteriorate. Further, the method of Patent Document 1 has a demerit that the processing time (dispersion time) of the negative electrode paste is long.

本発明は、かかる現状に鑑みてなされたものであって、負極ペーストのフィルタ透過性及び塗工性を良好にできると共に、負極ペーストの加工時間(分散時間)を短くできる負極板の製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and provides a method for producing a negative electrode plate that can improve the filter permeability and coatability of the negative electrode paste and can reduce the processing time (dispersion time) of the negative electrode paste. The purpose is to provide.

上記課題を解決するための本発明の一態様は、負極活物質の少なくとも一部と1wt%水溶液の粘度が5000mPa・s以上10000mPa・s以下の第1増粘剤とを水に分散させ、その後に1wt%水溶液の粘度が1000mPa・s以上5000mPa・s未満の第2増粘剤を更に加えて分散させ、その後に結着剤を加えて分散させて、負極ペーストを作製する負極ペースト作製工程と、前記負極ペーストを負極電極箔に塗工して負極活物質層を形成する負極活物質層形成工程と、を備える負極板の製造方法である。   In one embodiment of the present invention for solving the above problems, at least a part of the negative electrode active material and a first thickener having a viscosity of 1 wt% aqueous solution of 5000 mPa · s to 10,000 mPa · s are dispersed in water, and then A negative electrode paste preparation step of preparing a negative electrode paste by further adding and dispersing a second thickener having a viscosity of 1 wt% aqueous solution of 1000 mPa · s or more and less than 5000 mPa · s, and then adding and dispersing a binder. And a negative electrode active material layer forming step of forming a negative electrode active material layer by coating the negative electrode paste on a negative electrode electrode foil.

この負極板の製造方法によれば、負極ペーストのフィルタ透過性及び塗工性を良好にできると共に、負極ペーストの加工時間(分散時間)を短くできる。
なお、第1,第2増粘剤の1wt%水溶液の粘度(mPa・s)は、BH型粘度計で測定した値を指す。
また、「負極活物質」としては、例えば、球形化黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛や、人造黒鉛などの黒鉛(グラファイト)が挙げられる。また、低温焼成コークス、ハードカーボン、など非晶質炭素(アモルファス炭素)などが挙げられる。
According to this method for producing a negative electrode plate, the filter permeability and coating property of the negative electrode paste can be improved, and the processing time (dispersion time) of the negative electrode paste can be shortened.
The viscosity (mPa · s) of the 1 wt% aqueous solution of the first and second thickeners is a value measured with a BH viscometer.
Examples of the “negative electrode active material” include natural graphite such as spheroidized graphite, flaky graphite, massive graphite, and earthy graphite, and graphite (graphite) such as artificial graphite. Moreover, amorphous carbon (amorphous carbon) etc., such as low temperature baking coke and hard carbon, are mentioned.

また、「第1増粘剤」及び「第2増粘剤」としては、例えば、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)などが挙げられる。
また、「結着剤」としては、例えば、スチレン・ブタジエンゴム(SBR)、アクリルニトリル・ブタジエンゴム(NBR)、アクリルゴム、エチレン・プロピレンゴム(EPR)、エチレン・ブテンゴム(EBR)、エチレン・プロピレン・ジエンゴム(EPDM)などが挙げられる。
Examples of the “first thickener” and “second thickener” include carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), and the like.
Examples of the “binder” include styrene / butadiene rubber (SBR), acrylonitrile / butadiene rubber (NBR), acrylic rubber, ethylene / propylene rubber (EPR), ethylene / butene rubber (EBR), and ethylene / propylene. -Diene rubber (EPDM) etc. are mentioned.

また、「負極ペースト作製工程」は、例えば、ホモジナイザ、プラネタリーミキサ、ジェットミル、超音波分散機、ディスパ(攪拌翼)等のメディアレス分散機や、押出混練機で行うことができる。また、ビーズミルやボールミル等の分散機に、ガラス、ジルコニア等のセラミックビーズを投入して分散を行うメディア分散を用いて、負極ペーストを作製してもよい。   The “negative electrode paste preparation step” can be performed, for example, with a medialess disperser such as a homogenizer, a planetary mixer, a jet mill, an ultrasonic disperser, a disperser (stirring blade), or an extrusion kneader. Alternatively, the negative electrode paste may be produced using media dispersion in which ceramic beads such as glass and zirconia are introduced into a dispersing machine such as a bead mill or a ball mill.

また、「負極活物質の少なくとも一部と第1増粘剤とを水に分散させる」方法としては、(1)分散機等に、まず水を入れ、これに負極活物質及び第1増粘剤を同時に加えて分散させる方法、(2)分散機等に、まず水を入れ、これに負極活物質を加えて撹拌した後、第1増粘剤を加えて分散させる方法、(3)分散機等に、まず水を入れ、これに第1増粘剤を加えて撹拌した後、負極活物質を加えて分散させる方法、(4)分散機等に、まず負極活物質及び第1増粘剤を入れて混ぜ、これに水を加えて分散させる方法、(5)分散機等に、まず第1増粘剤を入れ、これに水を加えて撹拌し、その後に負極活物質を加えて分散させる方法などが挙げられる。   In addition, as a method of “dispersing at least a part of the negative electrode active material and the first thickener in water”, (1) water is first put into a disperser or the like, and then the negative electrode active material and the first thickener are added thereto. (2) A method in which water is first added to a disperser, etc., a negative electrode active material is added thereto and stirred, and then a first thickener is added and dispersed. (3) Dispersion First, water is added to the machine, the first thickener is added and stirred, and then the negative electrode active material is added and dispersed. (4) The negative electrode active material and the first thickener are first added to the disperser. (5) A first thickener is first added to a disperser, etc., and water is added to this, followed by stirring, and then a negative electrode active material is added. Examples include a method of dispersing.

また、負極活物質の一部のみを第1増粘剤と共に水に分散させた場合には、負極活物質の残部は、第2増粘剤を加えた後に加えて分散させることができる。なお、結着剤を加えた後に負極活物質の残部を加えて分散させると、負極活物質を分散させるための強いせん断力により、結着剤の密着機能が低下しがちである。従って、負極活物質の残部は、第2増粘剤を加えた後、接着剤を加える前に加えて分散させるのが好ましい。   Further, when only a part of the negative electrode active material is dispersed in water together with the first thickener, the remainder of the negative electrode active material can be added and dispersed after the second thickener is added. In addition, when the remainder of the negative electrode active material is added and dispersed after the binder is added, the adhesion function of the binder tends to be reduced due to the strong shearing force for dispersing the negative electrode active material. Therefore, the remainder of the negative electrode active material is preferably added and dispersed after adding the second thickener and before adding the adhesive.

更に、上記の負極板の製造方法であって、前記負極ペーストにおける前記第1増粘剤と前記第2増粘剤との重量比(第1増粘剤/第2増粘剤)は、0.4〜2.5である負極板の製造方法とすると良い。   Furthermore, in the method for manufacturing the negative electrode plate, the weight ratio of the first thickener to the second thickener (first thickener / second thickener) in the negative electrode paste is 0. A method for producing a negative electrode plate of 4 to 2.5 is preferable.

負極ペーストにおける第1増粘剤と第2増粘剤との重量比(第1増粘剤/第2増粘剤)が0.4よりも小さいと、負極ペーストにダイラタンシが生じ易くなって、負極ペーストのフィルタ透過性や塗工性が悪くなりがちである。一方、重量比(第1増粘剤/第2増粘剤)が2.5よりも大きいと、負極ペーストの分散時間が長くなりがちである。これに対し、上記の負極板の製造方法では、重量比(第1増粘剤/第2増粘剤)を0.4〜2.5の範囲内としているので、負極ペーストのダイラタンシを効果的に防止し、負極ペーストのフィルタ透過性及び塗工性を特に良好にできると共に、負極ペーストの分散時間を特に短くできる。   If the weight ratio of the first thickener and the second thickener in the negative electrode paste (first thickener / second thickener) is less than 0.4, dilatancy is likely to occur in the negative paste, The filter permeability and coating property of the negative electrode paste tend to deteriorate. On the other hand, when the weight ratio (first thickener / second thickener) is larger than 2.5, the dispersion time of the negative electrode paste tends to be long. On the other hand, since the weight ratio (first thickener / second thickener) is in the range of 0.4 to 2.5 in the negative electrode plate manufacturing method, the dilatancy of the negative electrode paste is effective. The filter permeability and coating property of the negative electrode paste can be made particularly good, and the dispersion time of the negative electrode paste can be made particularly short.

なお、負極ペーストの固形分における増粘剤全体(第1増粘剤と第2増粘剤の合計)の重量比は、0.5〜2.0wt%の範囲内とするのが好ましい。その理由は、この重量比が0.5wt%よりも小さいと、負極ペーストにダイラタンシが生じ易くなって、負極ペーストのフィルタ透過性や塗工性が悪くなるからである。一方、この重量比が2.0wt%よりも大きいと、電池のIV抵抗が大きくなるからである。   In addition, it is preferable that the weight ratio of the whole thickener (total of a 1st thickener and a 2nd thickener) in solid content of a negative electrode paste shall be in the range of 0.5-2.0 wt%. The reason is that if this weight ratio is smaller than 0.5 wt%, dilatancy is likely to occur in the negative electrode paste, and the filter permeability and coating properties of the negative electrode paste are deteriorated. On the other hand, when the weight ratio is larger than 2.0 wt%, the IV resistance of the battery increases.

更に、上記のいずれかに記載の負極板の製造方法であって、前記負極ペーストは、その固形分濃度が50wt%以上である負極板の製造方法とすると良い。   Furthermore, in the method for manufacturing a negative electrode plate according to any one of the above, the negative electrode paste may be a method for manufacturing a negative electrode plate having a solid content concentration of 50 wt% or more.

負極ペーストの固形分濃度が低いと、負極電極箔に塗工した負極ペーストを乾燥させる際に熱量が多く必要となり、乾燥時間も長く掛かり、また、長い乾燥炉が必要となるなど設備コストが高くなる。また、負極板を形成するのに必要な負極活物質の量に対して、負極ペーストの量が多くなるので、分散機やポンプ、タンクなど負極ペーストの作製や取り扱いに必要な設備が大型化し、コストが高くなる。従って、負極ペーストの固形分濃度を高く、具体的には50wt%以上とするのが好ましい。   If the solid content concentration of the negative electrode paste is low, a large amount of heat is required to dry the negative electrode paste applied to the negative electrode foil, which requires a long drying time and a long drying furnace, resulting in high equipment costs. Become. Also, since the amount of negative electrode paste is larger than the amount of negative electrode active material required to form the negative electrode plate, the facilities necessary for the preparation and handling of the negative electrode paste, such as a disperser, a pump, and a tank, are increased in size. Cost increases. Therefore, it is preferable that the solid content concentration of the negative electrode paste is high, specifically 50 wt% or more.

しかしながら、前述の特許文献1の方法によって固形分濃度の高い負極ペーストを作製すると、負極ペーストにダイラタンシが特に生じ易くなり、負極ペーストのフィルタ透過性や塗工性が特に悪くなる。このため、特許文献1の方法では、負極ペーストを高固形分化するのが難しかった。これに対し、前述のように負極ペースト作製工程を行えば、負極ペーストの固形分濃度が高くても、負極ペーストのダイラタンシを防止して負極ペーストのフィルタ透過性及び塗工性を良好にすると共に、負極ペーストの分散時間を短くできる。従って、固形分濃度が50wt%以上の負極ペーストを作製する場合に、特に、前述の負極ペースト作製工程を行うのが有効である。   However, when a negative electrode paste having a high solid content concentration is prepared by the method of Patent Document 1 described above, dilatancy is particularly likely to occur in the negative electrode paste, and the filter permeability and coating properties of the negative electrode paste are particularly deteriorated. For this reason, in the method of Patent Document 1, it is difficult to highly solidify the negative electrode paste. On the other hand, if the negative electrode paste preparation process is performed as described above, even if the solid content concentration of the negative electrode paste is high, dilatancy of the negative electrode paste is prevented and the filter permeability and coating properties of the negative electrode paste are improved. The dispersion time of the negative electrode paste can be shortened. Therefore, when producing a negative electrode paste having a solid content concentration of 50 wt% or more, it is particularly effective to perform the above-described negative electrode paste production process.

なお、負極ペーストの固形分濃度は、60wt%以下であるのが好ましい。その理由は、固形分濃度が高すぎると、負極ペーストにダイラタンシが生じ易くなって、負極ペーストのフィルタ透過性や塗工性が悪くなるからである。   In addition, it is preferable that the solid content concentration of a negative electrode paste is 60 wt% or less. The reason is that if the solid content concentration is too high, dilatancy is likely to occur in the negative electrode paste, and the filter permeability and coating properties of the negative electrode paste are deteriorated.

更に、上記のいずれかに記載の負極板の製造方法であって、前記第2増粘剤は、予め水に溶解させずに粉体のまま加える負極板の製造方法とすると良い。   Furthermore, in the method for manufacturing a negative electrode plate according to any one of the above, the second thickener may be a negative electrode plate manufacturing method in which powder is added in advance without being dissolved in water.

このように第2増粘剤を予め水に溶解させずに粉体のまま加えることで、第2増粘剤の水溶液を予め調整するための工数や設備を省略できる。   Thus, by adding the second thickener in the form of powder without dissolving it in water in advance, the man-hours and equipment for adjusting the aqueous solution of the second thickener in advance can be omitted.

更に、上記のいずれかに記載の負極板の製造方法であって、ホモジナイザ型の分散機を用いて、前記負極ペーストを作製する負極板の製造方法とすると良い。   Furthermore, the negative electrode plate manufacturing method according to any one of the above, wherein the negative electrode plate is manufactured by using a homogenizer-type disperser.

例えばプラネタリーミキサなどを用いて負極ペーストを作製する場合には、固練り工程を経る必要があり、その際、負極活物質同士が擦れ合って負極活物質の非晶質皮膜が剥がれるなど負極活物質が変質するおそれがある。これに対し、この負極板の製造方法では、ホモジナイザ型の分散機を用いて負極ペーストを作製するので、固練り工程を行う必要がなく、負極ペースト作製中に負極活物質が変質するのを防止できる。   For example, when preparing a negative electrode paste using a planetary mixer or the like, it is necessary to go through a kneading process. At that time, the negative electrode active materials are rubbed with each other and the negative electrode active material is peeled off. Material may be altered. On the other hand, in this negative electrode plate manufacturing method, the negative electrode paste is prepared using a homogenizer-type disperser, so there is no need to perform a kneading step, and the negative electrode active material is prevented from being altered during the preparation of the negative electrode paste. it can.

更に、上記のいずれかに記載の負極板の製造方法であって、前記第1増粘剤及び前記第2増粘剤は、いずれも、カルボキシメチルセルロースである負極板の製造方法とすると良い。   Furthermore, it is a manufacturing method of the negative electrode plate in any one of said, Comprising: The said 1st thickener and the said 2nd thickener are all good as the manufacturing method of the negative electrode plate which is carboxymethylcellulose.

第1増粘剤及び第2増粘剤として、カルボキシメチルセルロース(CMC)を用いることで、負極ペーストの粘度を適切な粘度に容易に調整できると共に、電池特性への影響を少なくできる。   By using carboxymethyl cellulose (CMC) as the first thickener and the second thickener, the viscosity of the negative electrode paste can be easily adjusted to an appropriate viscosity, and the influence on the battery characteristics can be reduced.

更に、上記のいずれかに記載の負極板の製造方法であって、前記結着剤は、スチレン・ブタジエンゴムである負極板の製造方法とすると良い。   Furthermore, in any of the above methods for producing a negative electrode plate, the binder is preferably a method for producing a negative electrode plate made of styrene-butadiene rubber.

結着剤として、スチレン・ブタジエンゴム(SBR)を用いることで、負極活物質層の剥離強度を高くできると共に、電池特性への影響を少なくできる。   By using styrene-butadiene rubber (SBR) as the binder, the peel strength of the negative electrode active material layer can be increased and the influence on the battery characteristics can be reduced.

実施形態に係るリチウムイオン二次電池を示す斜視図である。It is a perspective view which shows the lithium ion secondary battery which concerns on embodiment. 実施形態に係るリチウムイオン二次電池を示す縦断面図である。It is a longitudinal cross-sectional view which shows the lithium ion secondary battery which concerns on embodiment. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。It is an expanded view of an electrode body which concerns on embodiment and shows the state which mutually accumulated the positive electrode plate and the negative electrode plate through the separator. 実施形態に係る負極板の製造方法に関し、負極ペースト作製工程を示す説明図である。It is explanatory drawing which shows a negative electrode paste preparation process regarding the manufacturing method of the negative electrode plate which concerns on embodiment.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池100(以下、単に電池100とも言う)を示す。また、図3に、この電池100を構成する捲回型の電極体120を展開した状態を示す。なお、以下では、電池100の厚み方向BH、幅方向CH、高さ方向DHを、図1及び図2に示す方向と定めて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a lithium ion secondary battery 100 (hereinafter also simply referred to as a battery 100) according to the present embodiment. FIG. 3 shows a state where the wound electrode body 120 constituting the battery 100 is developed. In the following description, the thickness direction BH, the width direction CH, and the height direction DH of the battery 100 are defined as the directions shown in FIGS.

この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池100は、直方体形状の電池ケース110と、この電池ケース110内に収容された扁平状捲回型の電極体120と、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1及び図2参照)。また、電池ケース110内には、非水系の電解液117が保持されている。   The battery 100 is a square battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular parallelepiped battery case 110, a flat wound electrode body 120 accommodated in the battery case 110, a positive terminal 150 and a negative terminal 160 supported by the battery case 110, and the like. (See FIGS. 1 and 2). In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

このうち電池ケース110は、金属(具体的にはアルミニウム)により形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接された矩形板状のケース蓋部材113とから構成されている(図1及び図2参照)。ケース蓋部材113には、非復帰型の安全弁113vが設けられている。また、ケース蓋部材113には、電解液117の注液孔113hが設けられており、封止部材115で気密に封止されている。   Among these, the battery case 110 is made of metal (specifically, aluminum). The battery case 110 includes a box-shaped case main body member 111 opened only on the upper side, and a rectangular plate-shaped case cover member 113 welded in a form to close the opening 111h of the case main body member 111. (See FIGS. 1 and 2). The case lid member 113 is provided with a non-returnable safety valve 113v. Further, the case lid member 113 is provided with a liquid injection hole 113 h for the electrolytic solution 117, and is hermetically sealed with the sealing member 115.

また、ケース蓋部材113のうち、その長手方向(電池100の幅方向CH)の両端近傍には、電池ケース110の内部から外部に延出する形態の正極端子(正極端子部材)150及び負極端子(負極端子部材)160がそれぞれ固設されている。具体的には、これらの端子150,160は、これらにバスバや圧着端子など電池外の接続端子を締結するためのボルト153,163と共に、樹脂からなる絶縁部材155,165を介して、ケース蓋部材113に固設されている。   Further, in the case lid member 113, in the vicinity of both ends in the longitudinal direction (the width direction CH of the battery 100), a positive terminal (positive terminal member) 150 and a negative terminal that extend from the inside of the battery case 110 to the outside. (Negative electrode terminal member) 160 is fixed. Specifically, these terminals 150 and 160 are connected to the case lid via insulating members 155 and 165 made of resin together with bolts 153 and 163 for fastening connection terminals outside the battery, such as bus bars and crimp terminals. It is fixed to the member 113.

次に、電極体120について説明する。この電極体120は、その軸線(捲回軸)が電池100の幅方向CHと平行となるように横倒しにした状態で、電池ケース110内に収容されている(図2参照)。この電極体120は、帯状の正極板121と帯状の負極板131とを、樹脂製の多孔質膜からなる帯状の2枚のセパレータ141,141を介して互いに重ねて(図3参照)、軸線周りに捲回し、扁平状に圧縮したものである。   Next, the electrode body 120 will be described. The electrode body 120 is housed in the battery case 110 in a state where the electrode body 120 is laid down so that its axis (winding axis) is parallel to the width direction CH of the battery 100 (see FIG. 2). In this electrode body 120, a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 are overlapped with each other via two belt-like separators 141 and 141 made of a resin porous film (see FIG. 3). It is wound around and compressed into a flat shape.

正極板121の幅方向の一部は、セパレータ141,141から軸線方向の一方側AC(図2中、左方、図3中、上方)に渦巻き状をなして突出しており、前述した正極端子(正極端子部材)150と接続(溶接)している。また、負極板131の幅方向の一部は、セパレータ141,141から軸線方向の他方側AD(図2中、右方、図3中、下方)に渦巻き状をなして突出しており、前述した負極端子(負極端子部材)160と接続(溶接)している。   A part of the positive electrode plate 121 in the width direction protrudes from the separators 141 and 141 in a spiral shape to one side AC (in FIG. 2, left, upper in FIG. 3) in the axial direction. (Positive electrode terminal member) 150 is connected (welded). Further, a part of the negative electrode plate 131 in the width direction protrudes in a spiral shape from the separators 141 and 141 to the other side AD in the axial direction (in FIG. 2, right side, in FIG. 3, downward). The negative electrode terminal (negative electrode terminal member) 160 is connected (welded).

このうち正極板121は、芯材として、アルミニウムからなる帯状の正極電極箔122を有する。この正極電極箔122の両主面のうち幅方向の他方側ADの一部には、それぞれ長手方向EH(図3中、左右方向)に帯状に延びる正極活物質層(正極合剤層)123,123が形成されている。これらの正極活物質層123,123は、正極活物質と導電剤と結着剤とから形成されている。   Among these, the positive electrode plate 121 has a strip-shaped positive electrode foil 122 made of aluminum as a core material. A positive electrode active material layer (positive electrode mixture layer) 123 extending in a strip shape in the longitudinal direction EH (left and right direction in FIG. 3) is formed on a part of the other side AD in the width direction of both main surfaces of the positive electrode foil 122. , 123 are formed. These positive electrode active material layers 123 and 123 are formed of a positive electrode active material, a conductive agent, and a binder.

負極板131は、芯材として、銅からなる帯状の負極電極箔132を有する。この負極電極箔132の両主面のうち幅方向の一方側ACの一部には、それぞれ長手方向EHに帯状に延びる負極活物質層(負極合剤層)133,133が形成されている。
これらの負極活物質層133,133は、負極活物質20と増粘剤(具体的には第1増粘剤30及び第2増粘剤40)と結着剤50とから形成されている。本実施形態では、負極活物質20としてアモルファスコートグラファイトを、増粘剤(第1増粘剤30及び第2増粘剤40)として後述するカルボキシメチルセルロース(CMC)を、結着剤50としてスチレン・ブタジエンゴム(SBR)を用いている。また、負極活物質20と増粘剤(第1増粘剤30と第2増粘剤40の合計)と結着剤50の混合割合は、重量比で98.3:0.7:1.0である。また、増粘剤における第1増粘剤30と第2増粘剤40との混合割合は、重量比で0.2:0.5である。
The negative electrode plate 131 has a strip-shaped negative electrode foil 132 made of copper as a core material. Negative electrode active material layers (negative electrode mixture layers) 133 and 133 extending in a strip shape in the longitudinal direction EH are respectively formed on a part of one side AC in the width direction of both main surfaces of the negative electrode foil 132.
These negative electrode active material layers 133 and 133 are formed of the negative electrode active material 20, thickeners (specifically, the first thickener 30 and the second thickener 40), and the binder 50. In this embodiment, amorphous coated graphite is used as the negative electrode active material 20, carboxymethyl cellulose (CMC), which will be described later as thickeners (first thickener 30 and second thickener 40), and styrene. Butadiene rubber (SBR) is used. Moreover, the mixing ratio of the negative electrode active material 20, the thickener (the total of the first thickener 30 and the second thickener 40) and the binder 50 is 98.3: 0.7: 1. 0. Moreover, the mixing ratio of the 1st thickener 30 and the 2nd thickener 40 in a thickener is 0.2: 0.5 by weight ratio.

第1増粘剤30は、1wt%水溶液の粘度が5000mPa・s以上10000mPa・s以下の高粘度のCMCである。具体的には、1wt%水溶液をBH型粘度計で測定した値が6000〜8000mPaの範囲内に含まれるCMC(第一工業製薬:セロゲンBSH−12)である。
また、第2増粘剤40は、1wt%水溶液の粘度が1000mPa・s以上5000mPa・s未満の低粘度のCMCである。具体的には、1wt%水溶液をBH型粘度計で測定した値が3000〜4000mPaの範囲内に含まれるCMC(第一工業製薬:セロゲンBSH−6)である。
The first thickener 30 is a high viscosity CMC in which the viscosity of a 1 wt% aqueous solution is 5000 mPa · s or more and 10,000 mPa · s or less. Specifically, it is CMC (Daiichi Kogyo Seiyaku: Serogen BSH-12) in which a value obtained by measuring a 1 wt% aqueous solution with a BH viscometer is within a range of 6000 to 8000 mPa.
The second thickener 40 is a low-viscosity CMC in which the viscosity of a 1 wt% aqueous solution is 1000 mPa · s or more and less than 5000 mPa · s. Specifically, it is CMC (Daiichi Kogyo Seiyaku: Serogen BSH-6) in which a value obtained by measuring a 1 wt% aqueous solution with a BH viscometer is within a range of 3000 to 4000 mPa.

次いで、上記負極板131及び電池100の製造方法について説明する。
まず、負極板131の製造方法について説明する。まず、負極ペースト作製工程において、負極活物質20、第1増粘剤30、第2増粘剤40、結着剤50を水10に分散させた負極ペースト60を作製する(図4参照)。具体的には、ホモジナイザ型の分散機に、予め水10を入れておく。そして、ホモジナイザ型の分散機を作動させながら、この水10に、最初に第1増粘剤30を投入して撹拌する。その後、これに負極活物質20を投入して撹拌し、第1増粘剤30及び負極活物質20を水10に分散させる。その後、更に第2増粘剤40を投入して分散させる。その後、これに結着剤50を投入して分散させる。かくして、負極ペースト60が作製される。
Next, a method for manufacturing the negative electrode plate 131 and the battery 100 will be described.
First, a method for manufacturing the negative electrode plate 131 will be described. First, in the negative electrode paste preparation step, a negative electrode paste 60 is prepared in which the negative electrode active material 20, the first thickener 30, the second thickener 40, and the binder 50 are dispersed in water 10 (see FIG. 4). Specifically, water 10 is previously placed in a homogenizer type disperser. Then, the first thickener 30 is first added to the water 10 and stirred while operating the homogenizer type disperser. Thereafter, the negative electrode active material 20 is added thereto and stirred, and the first thickener 30 and the negative electrode active material 20 are dispersed in the water 10. Thereafter, the second thickener 40 is further introduced and dispersed. Thereafter, the binder 50 is charged and dispersed therein. In this way, the negative electrode paste 60 is produced.

なお、負極活物質20と第1増粘剤30と第2増粘剤40と結着剤50の混合割合は、前述したように、重量比で98.3:0.2:0.5:1.0である。また、これらの固形分20,30,40,50と水10との混合割合は、重量比で54:46である。従って、この負極ペースト60は、その固形分濃度が54wt%である。   In addition, the mixing ratio of the negative electrode active material 20, the first thickener 30, the second thickener 40, and the binder 50 is 98.3: 0.2: 0.5: by weight as described above. 1.0. Moreover, the mixing ratio of these solid content 20, 30, 40, 50 and water 10 is 54:46 by weight ratio. Therefore, the negative electrode paste 60 has a solid content concentration of 54 wt%.

次に、銅からなる帯状の負極電極箔132を用意し、負極活物質層形成工程において、負極ペースト60を負極電極箔132に塗工して負極活物質層133,133を形成する。具体的には、負極電極箔132のうち一方の主面の幅方向の一部に、ダイコータを用いて負極ペースト60を塗布する。その後、これを熱風により乾燥させて、負極活物質層133を形成する。同様に、負極電極箔132の反対側の主面にも、その幅方向の一部に、負極ペースト60を塗布し、これを熱風により乾燥させて、負極活物質層133を形成する。その後、加圧ロールにより負極活物質層133,133を圧縮して、その密度を高める。かくして、負極板131が形成される。   Next, a strip-shaped negative electrode foil 132 made of copper is prepared, and in the negative electrode active material layer forming step, the negative electrode paste 60 is applied to the negative electrode foil 132 to form the negative electrode active material layers 133 and 133. Specifically, the negative electrode paste 60 is applied to a part of one main surface in the width direction of the negative electrode foil 132 using a die coater. Then, this is dried with hot air to form the negative electrode active material layer 133. Similarly, the negative electrode paste 60 is applied to a part of the main surface on the opposite side of the negative electrode foil 132 in the width direction, and dried with hot air to form the negative electrode active material layer 133. Thereafter, the negative electrode active material layers 133 and 133 are compressed by a pressure roll to increase the density. Thus, the negative electrode plate 131 is formed.

また別途、正極板121を製造する。即ち、アルミニウムからなる帯状の正極電極箔122を用意する。そして、この正極電極箔122のうち一方の主面の幅方向の一部に、正極活物質、導電剤及び結着剤を含む正極ペーストを塗布し、熱風により乾燥させて、正極活物質層123を形成する。同様に、正極電極箔122の反対側の主面にも、その幅方向の一部に、上記の正極ペーストを塗布し、熱風により乾燥させて、正極活物質層123を形成する。その後、加圧ロールにより正極活物質層123,123を圧縮して、その密度を高める。かくして、正極板121が形成される。   Separately, the positive electrode plate 121 is manufactured. That is, a strip-shaped positive electrode foil 122 made of aluminum is prepared. And the positive electrode paste containing a positive electrode active material, a electrically conductive agent, and a binder is apply | coated to a part of width direction of one main surface among this positive electrode electrode foil 122, It is made to dry with a hot air, The positive electrode active material layer 123 Form. Similarly, the positive electrode paste is applied to a part of the main surface on the opposite side of the positive electrode foil 122 in the width direction and dried with hot air to form the positive electrode active material layer 123. Thereafter, the positive electrode active material layers 123 and 123 are compressed by a pressure roll to increase the density. Thus, the positive electrode plate 121 is formed.

次に、帯状のセパレータ141,141を2枚用意し、前述の正極板121と負極板131とをセパレータ141,141を介して互いに重ね(図3参照)、巻き芯を用いて軸線周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する。
また別途、ケース蓋部材113と正極端子部材150と負極端子部材160とボルト153,163とを用意し、これらを射出成形用の金型にセットする。そして、射出成形により絶縁部材155,165を一体的に成形して、ケース蓋部材113に正極端子部材(正極端子)150及び負極端子部材(負極端子)160を固設しておく。
Next, two strip-shaped separators 141 and 141 are prepared, and the above-described positive electrode plate 121 and negative electrode plate 131 are overlapped with each other through the separators 141 and 141 (see FIG. 3). Turn. Thereafter, the electrode body 120 is formed by compressing it into a flat shape.
Separately, a case lid member 113, a positive electrode terminal member 150, a negative electrode terminal member 160, and bolts 153 and 163 are prepared, and these are set in a mold for injection molding. Then, the insulating members 155 and 165 are integrally formed by injection molding, and the positive terminal member (positive terminal) 150 and the negative terminal member (negative terminal) 160 are fixed to the case lid member 113.

次に、正極端子150及び負極端子160を電極体120にそれぞれ溶接する。その後、ケース本体部材111を用意し、ケース本体部材111内に電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、ケース本体部材111とケース蓋部材113とを溶接する。
次に、電解液117を注液孔113hから電池ケース110内に注液し、封止部材115で注液孔113hを気密に封止する。その後は、この電池100について、初期充電やエージング、各種検査を行う。かくして、電池100が完成する。
Next, the positive electrode terminal 150 and the negative electrode terminal 160 are welded to the electrode body 120, respectively. Thereafter, the case body member 111 is prepared, the electrode body 120 is accommodated in the case body member 111, and the opening 111 h of the case body member 111 is closed with the case lid member 113. Then, the case main body member 111 and the case lid member 113 are welded.
Next, the electrolytic solution 117 is injected into the battery case 110 through the injection hole 113h, and the injection hole 113h is hermetically sealed with the sealing member 115. Thereafter, the battery 100 is subjected to initial charging, aging, and various inspections. Thus, the battery 100 is completed.

(実施例及び比較例)
次いで、実施形態に係る負極板131の製造方法の効果を検証するために行った試験の結果について説明する。
実施例1として、実施形態に係る負極板131の製造方法により負極板131を製造した。この負極板131の製造方法では、負極ペースト作製工程において、前述したように、先に高粘度の第1増粘剤30を加えて分散した後に、低粘度の第2増粘剤40を更に加えて分散している。負極ペースト60の固形分における増粘剤全体(第1増粘剤30及び第2増粘剤40)の重量割合は、0.7wt%である。また、第1増粘剤30と第2増粘剤40との重量比(第1増粘剤/第2増粘剤)は、0.20/0.50=0.4である。
(Examples and Comparative Examples)
Subsequently, the result of the test conducted in order to verify the effect of the manufacturing method of the negative electrode plate 131 according to the embodiment will be described.
As Example 1, the negative electrode plate 131 was manufactured by the manufacturing method of the negative electrode plate 131 according to the embodiment. In this method of manufacturing the negative electrode plate 131, in the negative electrode paste manufacturing step, as described above, the first thickener 30 having a high viscosity is first added and dispersed, and then the second thickener 40 having a low viscosity is further added. Are distributed. The weight ratio of the entire thickener (first thickener 30 and second thickener 40) in the solid content of the negative electrode paste 60 is 0.7 wt%. The weight ratio of the first thickener 30 to the second thickener 40 (first thickener / second thickener) is 0.20 / 0.50 = 0.4.

また、実施例2として、重量比(第1増粘剤/第2増粘剤)を、0.10/0.60=0.17とし、それ以外は実施形態(実施例1)と同様にして負極板を製造した。
また、実施例3として、重量比(第1増粘剤/第2増粘剤)を、0.35/0.35=1.0とし、それ以外は実施形態(実施例1)と同様にして負極板を製造した。
また、実施例4として、重量比(第1増粘剤/第2増粘剤)を、0.50/0.20=2.5とし、それ以外は実施形態(実施例1)と同様にして負極板を製造した。
In Example 2, the weight ratio (first thickener / second thickener) was set to 0.10 / 0.60 = 0.17, and the rest was the same as in the embodiment (Example 1). A negative electrode plate was manufactured.
In Example 3, the weight ratio (first thickener / second thickener) was set to 0.35 / 0.35 = 1.0, and other than that, the same as in the embodiment (Example 1). A negative electrode plate was manufactured.
In Example 4, the weight ratio (first thickener / second thickener) was set to 0.50 / 0.20 = 2.5, and other than that, the same as in the embodiment (Example 1). A negative electrode plate was manufactured.

一方、比較例1として、増粘剤として第1増粘剤30のみを用いて負極板を製造した。この比較例1では、第1増粘剤30の全量を負極活物質20の投入前に加えた。
また、比較例2として、第2増粘剤40の代わりに、低粘度の増粘剤、具体的には、1wt%水溶液の粘度が150〜250mPa・sのCMC(第一工業製薬:セロゲンWS−CN)を用いた(表1には「低粘度増粘剤」と表示した)。また、負極ペースト作製工程において、実施例1〜4とは逆に、先に低粘度の増粘剤を加えて分散し、その後に高粘度の第1増粘剤30を加えて分散して、負極ペーストを作製した。
On the other hand, as Comparative Example 1, a negative electrode plate was manufactured using only the first thickener 30 as the thickener. In Comparative Example 1, the entire amount of the first thickener 30 was added before the negative electrode active material 20 was charged.
Further, as Comparative Example 2, instead of the second thickener 40, a low-viscosity thickener, specifically, a CMC (Daiichi Kogyo Seiyaku: Serogen WS, whose 1 wt% aqueous solution has a viscosity of 150 to 250 mPa · s). -CN) (labeled "low viscosity thickener" in Table 1). In addition, in the negative electrode paste preparation step, contrary to Examples 1 to 4, the low viscosity thickener is first added and dispersed, and then the high viscosity first thickener 30 is added and dispersed. A negative electrode paste was prepared.

また、比較例3として、増粘剤として第2増粘剤40のみを用いて負極板を製造した。この比較例2では、第2増粘剤40の全量を負極活物質20の投入前に加えた。
また、比較例4として、負極ペースト作製工程において、実施例1〜4とは逆に、先に低粘度の第2増粘剤40を加えて分散し、その後に高粘度の第1増粘剤30を加えて分散して、負極ペーストを作製した。
Moreover, as Comparative Example 3, a negative electrode plate was manufactured using only the second thickener 40 as the thickener. In Comparative Example 2, the entire amount of the second thickener 40 was added before the negative electrode active material 20 was charged.
Further, as Comparative Example 4, in the negative electrode paste manufacturing step, contrary to Examples 1 to 4, first, the low-viscosity second thickener 40 is added and dispersed, and then the high-viscosity first thickener is added. 30 was added and dispersed to prepare a negative electrode paste.

これら実施例1〜4及び比較例1〜4について、負極ペーストを作製するのに掛かった加工時間(分散時間)(min)をそれぞれ測定した。具体的には、負極ペーストの粘度が、塗工可能な範囲である3000mPa・s以下に低下するまでの時間を加工時間(分散時間)とした。なお、負極ペーストの粘度は、レオメータ(アントンパール社製、せん断速度40/s)を用いて測定した。   For Examples 1 to 4 and Comparative Examples 1 to 4, the processing time (dispersion time) (min) required to produce the negative electrode paste was measured. Specifically, the time required for the viscosity of the negative electrode paste to drop to 3000 mPa · s or less, which is a range where coating can be performed, was defined as the processing time (dispersion time). The viscosity of the negative electrode paste was measured using a rheometer (Anton Paar, shear rate 40 / s).

また、実施例1〜4及び比較例1〜4に係る各負極ペーストについて、フィルタを透過させてフィルタ透過性をそれぞれ調査した。なお、フィルタには、SFT50(ロキテクノ社製)を用いた。フィルタ詰まりが全く生じなかったものを「○」、フィルタ詰まりが若干生じたものを「△」、フィルタ詰まりが生じたものを「×」とそれぞれ評価した。   Moreover, about each negative electrode paste which concerns on Examples 1-4 and Comparative Examples 1-4, the filter permeate | transmitted and investigated filter permeability | transmittance, respectively. The filter used was SFT50 (manufactured by Loki Techno Co.). The case where filter clogging did not occur was evaluated as “◯”, the case where filter clogging occurred slightly was evaluated as “Δ”, and the case where filter clogging occurred was evaluated as “x”.

また、実施例1〜4及び比較例1〜4に係る各負極ペーストを、負極電極箔132に塗工して、そのときに生じた塗工欠点数をそれぞれ調査した。なお、塗工欠点は、ダイコータ欠点検査機を用いて、帯状をなす負極板の単位長さ当たりの塗工欠点数を調査した。
これらの結果を表1に示す。
Moreover, each negative electrode paste which concerns on Examples 1-4 and Comparative Examples 1-4 was applied to the negative electrode foil 132, and the number of the coating defects produced at that time was investigated, respectively. As for coating defects, the number of coating defects per unit length of the strip-shaped negative electrode plate was investigated using a die coater defect inspection machine.
These results are shown in Table 1.

Figure 2013164905
Figure 2013164905

表1から、負極ペーストの加工時間(分散時間)が、比較例1では97分間、比較例2では58分間、比較例4では63分間と長く掛かったことが判る。これに対し、実施例1では7分間、実施例2では6分間、実施例3では14分間、実施例4では34分間、比較例3では4分間と分散時間が短かった。   From Table 1, it can be seen that the processing time (dispersion time) of the negative electrode paste was as long as 97 minutes in Comparative Example 1, 58 minutes in Comparative Example 2, and 63 minutes in Comparative Example 4. In contrast, the dispersion time was as short as 7 minutes in Example 1, 6 minutes in Example 2, 14 minutes in Example 3, 34 minutes in Example 4, and 4 minutes in Comparative Example 3.

実施例1〜4で分散時間が短くなった理由は、以下であると考えられる。即ち、実施例1〜4では、負極ペースト作製工程において、先に粘度の高い第1増粘剤30を加えているので、負極活物質20の表面には、この粘度の高い第1増粘剤30が優先的に吸着されている。一方、後に加えた粘度の低い第2増粘剤40は、負極活物質20には殆ど吸着されず、負極ペースト中の水10に溶解した状態で存在するので、負極ペーストの粘度が高くなり過ぎない。その結果、短時間の分散で十分に負極ペーストの粘度を低下させることができたと考えられる。
また、比較例3で分散時間が短くなった理由は、粘度の低い第2増粘剤のみを用いたので、負極ペーストの粘度が高くなり過ぎず、短時間の分散でも十分に負極ペーストの粘度を低下させることができたからと考えられる。
The reason why the dispersion time is shortened in Examples 1 to 4 is considered as follows. That is, in Examples 1 to 4, since the first thickener 30 having a high viscosity is added in the negative electrode paste preparation step, the first thickener having a high viscosity is formed on the surface of the negative electrode active material 20. 30 is preferentially adsorbed. On the other hand, since the second thickener 40 having a low viscosity added later is hardly adsorbed on the negative electrode active material 20 and exists in a state dissolved in the water 10 in the negative electrode paste, the viscosity of the negative electrode paste becomes too high. Absent. As a result, it is considered that the viscosity of the negative electrode paste could be sufficiently reduced by short-time dispersion.
In addition, the reason why the dispersion time was shortened in Comparative Example 3 was that only the second thickener having a low viscosity was used, so the viscosity of the negative electrode paste did not become too high, and the viscosity of the negative electrode paste was sufficient even with short-time dispersion. This is thought to be due to the reduction in

一方、比較例1で分散時間が長く掛かった理由は、粘度の高い第1増粘剤30のみを用いたので、負極活物質20に吸着させず、負極ペースト中の水10に溶解した状態の第1増粘剤30が多く存在する。このため、負極ペーストの粘度が高くなり、粘度を低下させるのに分散時間が長く掛かったためと考えられる。   On the other hand, the reason for the long dispersion time in Comparative Example 1 was that only the first thickener 30 having a high viscosity was used, so that it was not adsorbed on the negative electrode active material 20 and dissolved in water 10 in the negative electrode paste. There are many first thickeners 30. For this reason, it is considered that the viscosity of the negative electrode paste is increased, and it takes a long time to disperse the viscosity.

また、比較例2,4で分散時間が長く掛かった理由は、以下であると考えられる。即ち、比較例2,4では、負極ペースト作製工程において、先に粘度の低い第2増粘剤40等を加えているので、負極活物質20の表面には、この粘度の低い第2増粘剤40等が優先的に吸着されている。一方、後に加えた粘度の高い第1増粘剤30は、負極活物質20に殆ど吸着されず、負極ペースト中の水10に溶解した状態で存在するので、負極ペーストの粘度が高くなる。その結果、粘度を低下させるのに分散時間が長く掛かったと考えられる。   The reason why the dispersion time was long in Comparative Examples 2 and 4 is considered as follows. That is, in Comparative Examples 2 and 4, since the second thickener 40 having a low viscosity is first added in the negative electrode paste preparation step, the second thickening having a low viscosity is performed on the surface of the negative electrode active material 20. The agent 40 and the like are preferentially adsorbed. On the other hand, since the first thickener 30 having a high viscosity added later is hardly adsorbed by the negative electrode active material 20 and exists in a state dissolved in the water 10 in the negative electrode paste, the viscosity of the negative electrode paste increases. As a result, it is considered that it took a long dispersion time to lower the viscosity.

また表1から、比較例2〜4に係る負極ペーストは、フィルタ透過性が悪かった(評価「×」)ことが判る。これに対し、実施例2に係る負極ペーストは、比較例2〜4に比して、フィルタ透過性が良くなり(評価「△」)、実施例1,3,4では、フィルタ透過性が更に良好(評価「○」)であったことが判る。   Table 1 also shows that the negative electrode pastes according to Comparative Examples 2 to 4 had poor filter permeability (evaluation “x”). On the other hand, the negative electrode paste according to Example 2 has improved filter permeability (evaluation “Δ”) as compared with Comparative Examples 2 to 4. In Examples 1, 3, and 4, the filter permeability was further increased. It turns out that it was favorable (evaluation "(circle)").

比較例2〜4に係る負極ペーストでフィルタ透過性が悪かったのは、フィルタを透過させる際に、負極ペーストにダイラタンシが大きく生じたためである。これに対し、実施例2に係る負極ペーストではダイラタンシが若干生じたのみであり、また、実施例1,3,4ではダイラタンシが殆ど生じなかったために、フィルタ透過性が良好であったと考えられる。   The reason why the filter permeability of the negative electrode pastes according to Comparative Examples 2 to 4 was poor was that a large amount of dilatancy was generated in the negative electrode paste when passing through the filter. On the other hand, only a little dilatancy was produced in the negative electrode paste according to Example 2, and almost no dilatancy was produced in Examples 1, 3, and 4, so that it was considered that the filter permeability was good.

なお、ダイラタンシは、負極ペーストにせん断力が掛かったときに負極活物質同士が互いに接触することにより生じると考えられる。実施例1〜4では、前述したように、負極ペースト作製工程において、先に粘度の高い第1増粘剤30を加えているので、負極活物質20の表面には、粘度の高い(分子量の大きい)第1増粘剤30が吸着されている。このため、負極活物質同士の接触が防止され、ダイラタンシが生じ難かったと考えられる。一方、比較例2〜4では、粘度の低い(分子量の小さい)第2増粘剤40等が負極活物質20の表面に吸着されている。このため、負極活物質同士が接触した際の摩擦抵抗が大きくなり、ダイラタンシが生じたと考えられる。   In addition, it is thought that dilatancy arises when negative electrode active materials mutually contact when a shearing force is applied to negative electrode paste. In Examples 1 to 4, as described above, in the negative electrode paste preparation step, the first thickener 30 having a high viscosity is added first, so that the surface of the negative electrode active material 20 has a high viscosity (molecular weight). Large) first thickener 30 is adsorbed. For this reason, it is considered that contact between the negative electrode active materials was prevented and dilatancy was hardly generated. On the other hand, in Comparative Examples 2 to 4, the second thickener 40 having a low viscosity (low molecular weight) or the like is adsorbed on the surface of the negative electrode active material 20. For this reason, it is considered that the frictional resistance when the negative electrode active materials are in contact with each other increases and dilatancy occurs.

また表1から、塗工欠点が、比較例1では19個/m、比較例4では15個/mと多かったことが判る。これに対し、実施例1では4個/m、実施例2では3個/m、実施例3では4個/m、実施例4では6個/m、比較例2では4個/m、比較例3では1個/mと塗工欠点が少なかった。   Further, it can be seen from Table 1 that there were many coating defects of 19 / m in Comparative Example 1 and 15 / m in Comparative Example 4. In contrast, 4 / m in Example 1, 3 / m in Example 2, 4 / m in Example 3, 6 / m in Example 4, 4 / m in Comparative Example 2, and comparison In Example 3, there were few coating defects as 1 piece / m.

比較例1,4で塗工欠点が多かった理由は、以下であると考えられる。即ち、前述したように、比較例1,4では、粘度の高い第1増粘剤30が、負極活物質20に吸着されずに、負極ペースト中の水10に存在する。ところで、この粘度の高い第1増粘剤30は、粘度の低い第2増粘剤40に比して、水10に溶解し難いため、一部が溶け残った状態(いわゆる継粉、ダマ)になり易い。この継粉は、水に膨潤しており、その形状が容易に変形し得るので、フィルタ等を透過してしまう場合がある。このため、この継粉を含んだ負極ペーストを負極電極箔132に塗工すると、継粉の部分は乾燥により大幅に体積が減少して塗工欠点となると考えられる。   The reason why there were many coating defects in Comparative Examples 1 and 4 is considered as follows. That is, as described above, in Comparative Examples 1 and 4, the first thickener 30 having a high viscosity is not adsorbed by the negative electrode active material 20 but is present in the water 10 in the negative electrode paste. By the way, the first thickener 30 having a high viscosity is less soluble in the water 10 than the second thickener 40 having a low viscosity. It is easy to become. Since this spatter is swollen in water and its shape can be easily deformed, it may pass through a filter or the like. For this reason, when the negative electrode paste containing the spatter is applied to the negative electrode foil 132, it is considered that the portion of the spatter is greatly reduced in volume due to drying, resulting in a coating defect.

以上で説明したように、実施形態に係る負極板131の製造方法では、負極活物質20と粘度の高い第1増粘剤30とを水10に分散させ、その後に粘度の低い第2増粘剤40を更に加えて分散させ、その後に結着剤50を加えて分散させて、負極ペースト60を作製する。このようにすることで、負極ペースト60のフィルタ透過性及び塗工性を良好にできると共に、負極ペースト60の加工時間(分散時間)を短くできる。特に、本実施形態では、負極ペースト60の固形分濃度を50wt%以上(具体的には54wt%)としているので、ダイラタンシを防止して負極ペースト60のフィルタ透過性及び塗工性を良好にすると共に、負極ペースト60の分散時間を短くするメリットが、特に大きくなる。   As described above, in the method of manufacturing the negative electrode plate 131 according to the embodiment, the negative electrode active material 20 and the first thickener 30 having a high viscosity are dispersed in the water 10 and then the second thickening having a low viscosity is performed. The agent 40 is further added and dispersed, and then the binder 50 is added and dispersed to prepare the negative electrode paste 60. By doing in this way, while being able to make the filter permeability and coating property of the negative electrode paste 60 favorable, the processing time (dispersion time) of the negative electrode paste 60 can be shortened. In particular, in this embodiment, since the solid content concentration of the negative electrode paste 60 is 50 wt% or more (specifically, 54 wt%), dilatancy is prevented and the filter permeability and coating properties of the negative electrode paste 60 are improved. At the same time, the advantage of shortening the dispersion time of the negative electrode paste 60 is particularly great.

更に、本実施形態では、第1増粘剤30と第2増粘剤40との重量比(第1増粘剤/第2増粘剤)を0.4〜2.5の範囲内としているので、ダイラタンシを効果的に防止し、負極ペースト60のフィルタ透過性及び塗工性を特に良好にできると共に、負極ペースト60の分散時間を特に短くできる。
また、本実施形態では、第2増粘剤40を予め水に溶解させずに粉体のまま加えるので、第2増粘剤40の水溶液を予め調整するための工数や設備を省略できる。
また、本実施形態では、ホモジナイザ型の分散機を用いて負極ペースト60を作製するので、固練り工程を行う必要がなく、負極ペースト60の作製中に負極活物質20が変質するのを防止できる。
Furthermore, in this embodiment, the weight ratio (first thickener / second thickener) between the first thickener 30 and the second thickener 40 is in the range of 0.4 to 2.5. Therefore, dilatancy can be effectively prevented, the filter permeability and coating properties of the negative electrode paste 60 can be made particularly good, and the dispersion time of the negative electrode paste 60 can be made particularly short.
Moreover, in this embodiment, since the 2nd thickener 40 is added as powder without previously dissolving in water, the man-hour and equipment for adjusting the aqueous solution of the 2nd thickener 40 beforehand can be omitted.
Moreover, in this embodiment, since the negative electrode paste 60 is produced using a homogenizer type disperser, it is not necessary to perform a kneading step, and the negative electrode active material 20 can be prevented from being altered during the production of the negative electrode paste 60. .

また、本実施形態では、第1増粘剤30及び第2増粘剤40としてCMCを用いるので、負極ペースト60の粘度を適切な粘度に容易に調整できると共に、電池特性への影響を少なくできる。また、結着剤としてSBRを用いるので、負極活物質層133の剥離強度を高くできると共に、電池特性への影響を少なくできる。   Moreover, in this embodiment, since CMC is used as the first thickener 30 and the second thickener 40, the viscosity of the negative electrode paste 60 can be easily adjusted to an appropriate viscosity, and the influence on the battery characteristics can be reduced. . In addition, since SBR is used as the binder, the peel strength of the negative electrode active material layer 133 can be increased and the influence on the battery characteristics can be reduced.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、水10にまず第1増粘剤30を加え、その後に負極活物質20を加えて分散させたが、負極活物質20及び第1増粘剤30を水10に分散させる方法はこれに限られない。例えば、水10に負極活物質20及び第1増粘剤30を同時に加えて分散させてもよい。或いは、水10に、まず負極活物質20を加えて撹拌し、その後に第1増粘剤30を加えて分散させてもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the first thickener 30 is first added to the water 10 and then the negative electrode active material 20 is added and dispersed. However, the negative electrode active material 20 and the first thickener 30 are dispersed in the water 10. The method is not limited to this. For example, the negative electrode active material 20 and the first thickener 30 may be simultaneously added to the water 10 and dispersed. Alternatively, the negative electrode active material 20 may be first added to the water 10 and stirred, and then the first thickener 30 may be added and dispersed.

また、実施形態では、負極活物質20の全量を第1増粘剤30と共に水10に分散させたが、負極活物質20の一部のみを第1増粘剤30と共に水10に分散させてもよい。この場合、負極活物質20の残部は、第2増粘剤40を加えた後に加えて分散させることができる。   In the embodiment, the entire amount of the negative electrode active material 20 is dispersed in the water 10 together with the first thickener 30, but only a part of the negative electrode active material 20 is dispersed in the water 10 together with the first thickener 30. Also good. In this case, the remainder of the negative electrode active material 20 can be added and dispersed after the second thickener 40 is added.

10 水
20 負極活物質
30 第1増粘剤
40 第2増粘剤
50 結着剤
60 負極ペースト
100 リチウムイオン二次電池(電池)
120 電極体
121 正極板
131 負極板
132 負極電極箔
133 負極活物質層
141 セパレータ
10 water 20 negative electrode active material 30 first thickener 40 second thickener 50 binder 60 negative electrode paste 100 lithium ion secondary battery (battery)
120 Electrode body 121 Positive electrode plate 131 Negative electrode plate 132 Negative electrode electrode foil 133 Negative electrode active material layer 141 Separator

Claims (7)

負極活物質の少なくとも一部と1wt%水溶液の粘度が5000mPa・s以上10000mPa・s以下の第1増粘剤とを水に分散させ、その後に1wt%水溶液の粘度が1000mPa・s以上5000mPa・s未満の第2増粘剤を更に加えて分散させ、その後に結着剤を加えて分散させて、負極ペーストを作製する負極ペースト作製工程と、
前記負極ペーストを負極電極箔に塗工して負極活物質層を形成する負極活物質層形成工程と、を備える
負極板の製造方法。
At least a part of the negative electrode active material and a first thickener having a viscosity of 1 wt% aqueous solution of 5000 mPa · s to 5000 mPa · s are dispersed in water, and then the viscosity of 1 wt% aqueous solution is 1000 mPa · s to 5000 mPa · s. Less than the second thickener is further added and dispersed, and then the binder is added and dispersed to prepare a negative electrode paste preparation step,
A negative electrode active material layer forming step of coating the negative electrode paste on a negative electrode foil to form a negative electrode active material layer.
請求項1に記載の負極板の製造方法であって、
前記負極ペーストにおける前記第1増粘剤と前記第2増粘剤との重量比(第1増粘剤/第2増粘剤)は、0.4〜2.5である
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to claim 1,
The negative electrode paste has a weight ratio of the first thickener and the second thickener (first thickener / second thickener) of 0.4 to 2.5. .
請求項1または請求項2に記載の負極板の製造方法であって、
前記負極ペーストは、その固形分濃度が50wt%以上である
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to claim 1 or 2,
The said negative electrode paste is a manufacturing method of the negative electrode plate whose solid content concentration is 50 wt% or more.
請求項1〜請求項3のいずれか一項に記載の負極板の製造方法であって、
前記第2増粘剤は、予め水に溶解させずに粉体のまま加える
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to any one of claims 1 to 3,
The said 2nd thickener is a manufacturing method of the negative electrode plate which does not melt | dissolve in water previously but adds with powder.
請求項1〜請求項4のいずれか一項に記載の負極板の製造方法であって、
ホモジナイザ型の分散機を用いて、前記負極ペーストを作製する
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to any one of claims 1 to 4,
A method for producing a negative electrode plate, wherein the negative electrode paste is prepared using a homogenizer type disperser.
請求項1〜請求項5のいずれか一項に記載の負極板の製造方法であって、
前記第1増粘剤及び前記第2増粘剤は、いずれも、カルボキシメチルセルロースである
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to any one of claims 1 to 5,
Both the first thickener and the second thickener are carboxymethylcellulose manufacturing methods of a negative electrode plate.
請求項1〜請求項6のいずれか一項に記載の負極板の製造方法であって、
前記結着剤は、スチレン・ブタジエンゴムである
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to any one of claims 1 to 6,
The method for producing a negative electrode plate, wherein the binder is styrene-butadiene rubber.
JP2012026101A 2012-02-09 2012-02-09 Manufacturing method of negative electrode plate Active JP5751186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026101A JP5751186B2 (en) 2012-02-09 2012-02-09 Manufacturing method of negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026101A JP5751186B2 (en) 2012-02-09 2012-02-09 Manufacturing method of negative electrode plate

Publications (2)

Publication Number Publication Date
JP2013164905A true JP2013164905A (en) 2013-08-22
JP5751186B2 JP5751186B2 (en) 2015-07-22

Family

ID=49176160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026101A Active JP5751186B2 (en) 2012-02-09 2012-02-09 Manufacturing method of negative electrode plate

Country Status (1)

Country Link
JP (1) JP5751186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956455A (en) * 2014-05-07 2014-07-30 东莞市安德丰电池有限公司 Lithium electric positive and negative pole sizing agent low viscosity processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024550A (en) * 2004-06-07 2006-01-26 Matsushita Electric Ind Co Ltd Positive electrode plate for non-aqueous secondary battery and method for manufacturing the same
JP2009099441A (en) * 2007-10-18 2009-05-07 Panasonic Corp Negative electrode plate for nonaqueous electrolyte solution secondary battery, its manufacturing method, and nonaqueous electrolyte solution secondary battery
JP2010165493A (en) * 2009-01-14 2010-07-29 Sanyo Electric Co Ltd Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing negative electrode for non-aqueous electrolyte secondary battery
JP2011204576A (en) * 2010-03-26 2011-10-13 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same, and method of manufacturing the negative electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024550A (en) * 2004-06-07 2006-01-26 Matsushita Electric Ind Co Ltd Positive electrode plate for non-aqueous secondary battery and method for manufacturing the same
JP2009099441A (en) * 2007-10-18 2009-05-07 Panasonic Corp Negative electrode plate for nonaqueous electrolyte solution secondary battery, its manufacturing method, and nonaqueous electrolyte solution secondary battery
JP2010165493A (en) * 2009-01-14 2010-07-29 Sanyo Electric Co Ltd Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing negative electrode for non-aqueous electrolyte secondary battery
JP2011204576A (en) * 2010-03-26 2011-10-13 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same, and method of manufacturing the negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956455A (en) * 2014-05-07 2014-07-30 东莞市安德丰电池有限公司 Lithium electric positive and negative pole sizing agent low viscosity processing method
CN103956455B (en) * 2014-05-07 2016-04-27 东莞市安德丰电池有限公司 A kind of lithium electricity positive and negative electrode slurry low viscosity processing method

Also Published As

Publication number Publication date
JP5751186B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5708526B2 (en) Method for producing positive electrode plate for secondary battery
KR101530791B1 (en) Method of producing battery
KR101329934B1 (en) Electrode plate, secondary battery, and method for producing the electrode plate
JP4645778B2 (en) Electrode for lithium ion secondary battery
AU2018218262A1 (en) Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life and methods of making same
CN105431971B (en) The manufacture method of electrode paste agent
JP6605457B2 (en) Electrochemical device electrodes containing cobalt oxyhydroxide
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
JPWO2012026009A1 (en) Method for manufacturing battery electrode
JPWO2013179909A1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PREPARING THE ELECTRODE PASTE, AND METHOD FOR PRODUCING THE ELECTRODE
US9231242B2 (en) Method for producing non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode paste
KR20210054059A (en) Method for manufacturing conductive adhesive composition for electrochemical element electrode
KR20150003313A (en) Method for manufacturing cell
JP2013093240A (en) Method for manufacturing secondary battery electrode
JP2010129418A (en) Electrode using inorganic particle binder, and manufacturing method thereof
KR20150120871A (en) Positive electrode for nonaqueous electrolyte secondary battery and production method thereof
JP5751186B2 (en) Manufacturing method of negative electrode plate
US20130323586A1 (en) Manufacturing method of electrode, and battery
JPWO2010150397A1 (en) Positive electrode plate, battery, and method for manufacturing positive electrode plate
JP2012221568A (en) Method for manufacturing positive electrode plate
Song et al. Designing highly packed silicon anode slurries for high capacity and prolonged lifespan of lithium-ion batteries
Kwon et al. Towards high performance Li metal batteries: Surface functionalized graphene separator with improved electrochemical kinetics and stability
JP2013037955A (en) Method for manufacturing positive electrode plate
JP5659996B2 (en) Method for producing lithium ion secondary battery
JP2015005373A (en) Method of manufacturing negative plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R151 Written notification of patent or utility model registration

Ref document number: 5751186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151