JP2013164195A - Method for controlling steam pressure - Google Patents

Method for controlling steam pressure Download PDF

Info

Publication number
JP2013164195A
JP2013164195A JP2012027040A JP2012027040A JP2013164195A JP 2013164195 A JP2013164195 A JP 2013164195A JP 2012027040 A JP2012027040 A JP 2012027040A JP 2012027040 A JP2012027040 A JP 2012027040A JP 2013164195 A JP2013164195 A JP 2013164195A
Authority
JP
Japan
Prior art keywords
steam pressure
time
steam
boiler
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012027040A
Other languages
Japanese (ja)
Other versions
JP5772644B2 (en
Inventor
Akira Sugafuji
昭 菅藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012027040A priority Critical patent/JP5772644B2/en
Publication of JP2013164195A publication Critical patent/JP2013164195A/en
Application granted granted Critical
Publication of JP5772644B2 publication Critical patent/JP5772644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provided a method for controlling steam pressure capable of enhancing the control performance of the steam pressure in boiler turbine power generation facilities suppressing the generation of vibration even though the vibration is generated in the case of setting a large gain.SOLUTION: In a method for controlling a steam pressure including differential control, it is determined that the generation of the vibration of the steam pressure is generated, a fuel quantity correcting amount is corrected by a correcting gain according to a section of a steam pressure variation (ΔP) to a correcting amount by the differential control of the steam pressure variation (ΔP), and the correcting gain is made zero in a section including a value where the steam pressure variation (ΔP) becomes zero, in the case that a time (Tp) from a time 31 when the steam pressure variation (ΔP) deviates from a pressure range set in advance at the first time to a time 34 when the same enters the pressure range at the second time is not shorter than a time (Tv) set in advance, in the case (34) that the steam pressure variation (ΔP) between a steam pressure measured value and a vapor pressure set value deviates from the pressure range 37 set in advance (31), phenomena entering the pressure range 37 occur more than two times.

Description

本発明はボイラに燃料を供給して燃焼させた熱を熱交換器で吸収して発生させた蒸気をタービンへ供給して発電するボイラ・タービン・発電機設備の蒸気圧力制御方法に関するものである。   TECHNICAL FIELD The present invention relates to a steam pressure control method for a boiler, a turbine, and a generator facility that generates heat by supplying steam generated by supplying fuel to a boiler and absorbing the heat generated by a heat exchanger to a turbine. .

発電において用いるボイラ設備は、高温高圧の蒸気を使用する設備であり、ボイラ設備を用いた発電では、ボイラに燃料を供給して燃焼させ、その熱を熱交換器で吸収して発生させた蒸気をタービンへ供給し、発電機から出力するボイラ・タービン・発電機設備(以下、「BTG設備」という。)を用いている。   The boiler equipment used in power generation is equipment that uses high-temperature and high-pressure steam. In power generation using the boiler equipment, fuel is supplied to the boiler for combustion, and the heat generated by absorbing the heat with a heat exchanger. Is used for the boiler, turbine, and generator equipment (hereinafter referred to as “BTG equipment”).

BTG設備では、ボイラチューブの保護、タービン翼の保護、発電機が発電出力上限値を超過しないようにボイラ蒸気系統の制御性を高める必要がある。   In the BTG facility, it is necessary to improve the controllability of the boiler steam system so that the boiler tube protection, the turbine blade protection, and the generator do not exceed the power generation output upper limit.

図7はボイラ蒸気系統とその制御の概要を表した図である。ボイラ蒸気系統の制御機構は、BTG設備1、発電量指令10と蒸気圧力制御部18からの燃料量補正量22に応じてボイラ2に供給する燃料量を制御する燃料量制御部12と、発電量指令10に応じてガバナ弁3に流入させる蒸気流入量を制御するガバナ制御部14と、ボイラ2の蒸気圧力の設定値と実測値との偏差に基づき燃料量をフィードバックにより補正するボイラ蒸気圧力制御部18とから構成される。   FIG. 7 is a diagram showing an outline of the boiler steam system and its control. The boiler steam system control mechanism includes a BTG facility 1, a power generation amount command 10 and a fuel amount control unit 12 that controls the amount of fuel supplied to the boiler 2 in accordance with the fuel amount correction amount 22 from the steam pressure control unit 18, and a power generation A governor control unit 14 that controls the amount of steam flowing into the governor valve 3 according to the amount command 10 and a boiler steam pressure that corrects the fuel amount by feedback based on the deviation between the set value of the steam pressure of the boiler 2 and the measured value. And a control unit 18.

ボイラ蒸気系統では、発電量指令10の変化に応じてガバナ弁を動作させて、蒸気圧力や流量変化を検出し、燃料量や給水量等を制御する方式のボイラ追従制御や、要求負荷指令をボイラ及びタービンに並列に入力し、ガバナ弁の開度、燃料量、給水量等を制御する方式のボイラ・タービン協調制御が設置されている。   In the boiler steam system, the governor valve is operated according to the change in the power generation command 10, and the steam pressure and flow rate change is detected, and the fuel follow-up control method and the required load command are controlled. Boiler / turbine cooperative control is installed that controls the opening of the governor valve, the amount of fuel, the amount of water supply, etc., which are input in parallel to the boiler and turbine.

例えば、ボイラ2へ供給される燃料量が過剰であると、蒸気の発生量が増大しボイラの蒸気圧力が増加する。このときタービン供給圧力が増加すると発電出力が過剰となるので、ガバナ制御部14はガバナ弁3を閉じ、タービン4へ供給する蒸気量の増加を防止する。これにより、発電機5から出力される電力を一定に保つことができる。また、ボイラ2へ供給される燃料量が不足していると、蒸気の発生量が減少しボイラの蒸気圧力が減少する。このときタービン供給圧力が減少すると発電出力が不足している状態となる。このとき、ガバナ制御部14はガバナ弁3を開き、タービン4へ供給する蒸気量の減少を防止する。これにより、発電機5から出力される電力を一定に保つことができる。   For example, if the amount of fuel supplied to the boiler 2 is excessive, the amount of steam generated increases and the steam pressure of the boiler increases. At this time, if the turbine supply pressure increases, the power generation output becomes excessive. Therefore, the governor control unit 14 closes the governor valve 3 to prevent an increase in the amount of steam supplied to the turbine 4. Thereby, the electric power output from the generator 5 can be kept constant. Moreover, if the amount of fuel supplied to the boiler 2 is insufficient, the amount of steam generated decreases and the steam pressure of the boiler decreases. At this time, if the turbine supply pressure decreases, the power generation output is insufficient. At this time, the governor control unit 14 opens the governor valve 3 to prevent a reduction in the amount of steam supplied to the turbine 4. Thereby, the electric power output from the generator 5 can be kept constant.

さらに、ガバナ弁3の開閉によってボイラ2からタービン4へ供給される蒸気量が変化すると、ボイラ2内の蒸気圧力(ボイラ蒸気圧力)が変化する。すなわち、ボイラ2へ供給される燃料量が過剰であるときには、ボイラ2で発生した蒸気のうち一部のみがタービン4へ供給されるので、ボイラ蒸気圧力は上昇する。   Furthermore, when the amount of steam supplied from the boiler 2 to the turbine 4 changes due to the opening and closing of the governor valve 3, the steam pressure in the boiler 2 (boiler steam pressure) changes. That is, when the amount of fuel supplied to the boiler 2 is excessive, only a part of the steam generated in the boiler 2 is supplied to the turbine 4, so that the boiler steam pressure rises.

さて、一定量の発電を行う場合には発電量指令10は固定値であるが、次のような問題がある。   Now, when a certain amount of power is generated, the power generation amount command 10 is a fixed value, but there are the following problems.

例えば、ボイラ2へ供給される燃料量が不足しているときには、ボイラ2で発生される以上の蒸気量をタービン4へ供給するため、ボイラ蒸気圧力は低下する。ボイラ蒸気圧力制御部18は、このように変化するボイラ蒸気圧力を所定の設定値となるように、例えば蒸気圧力実績値19の蒸気圧力設定値9に対する偏差である蒸気圧力偏差21(△P)に比例ゲインを乗じた値を用いて補正する比例制御、蒸気圧力偏差21(△P)を積分した値に積分ゲインを乗じた値を用いて燃料量を補正する積分制御、ないし、蒸気圧力偏差21(△P)を微分した値に微分ゲインを乗じた値を用いて燃料量を補正する微分制御が用いられている。このような制御方法については、特許文献1ないし2に開示されている。   For example, when the amount of fuel supplied to the boiler 2 is insufficient, the amount of steam generated in the boiler 2 is supplied to the turbine 4 so that the boiler steam pressure decreases. For example, the steam pressure deviation 21 (ΔP) is a deviation of the actual steam pressure value 19 from the steam pressure set value 9 so that the boiler steam pressure changing in this way becomes a predetermined set value. Proportional control for correcting using a value obtained by multiplying the proportional gain by the integral control, integral control for correcting the fuel amount using a value obtained by multiplying the integral gain by the value obtained by integrating the steam pressure deviation 21 (ΔP), or the steam pressure deviation Differential control is used in which the fuel amount is corrected using a value obtained by multiplying a value obtained by differentiating 21 (ΔP) by a differential gain. Such a control method is disclosed in Patent Documents 1 and 2.

しかしながら、ボイラに燃料を供給して燃焼させた熱を熱交換器で吸収して発生させた蒸気をタービンへ供給して発電するボイラ・タービン・発電機設備の蒸気圧力制御系は、投入した燃料により水蒸気が発生するまでには数分程度の時間遅れがあり、燃料量が補正により変動すること自体が制御系の振動を誘発するという問題がある。   However, the steam pressure control system of boilers, turbines, and generator equipment that generates electricity by supplying steam generated by absorbing fuel generated by supplying fuel to the boiler with a heat exchanger is not Therefore, there is a time delay of several minutes until the water vapor is generated, and there is a problem that the fluctuation of the fuel amount by the correction itself induces the vibration of the control system.

微分制御を用いる場合にあっては、蒸気圧力偏差(△P)の微小な変化に対しても燃料量を補正することになり 、結果として制御系の振動を誘発することとなる。また、微分制御を用いた場合には、微分制御による補正量の波形は蒸気圧力偏差(△P)に対して90°位相が進んだ波形となるため、蒸気圧力偏差が振動を開始したときに微分制御を行うと、かえって振動を助長することとなる。   When differential control is used, the fuel amount is corrected even for a minute change in the steam pressure deviation (ΔP), and as a result, the vibration of the control system is induced. In addition, when differential control is used, the waveform of the correction amount by differential control is a waveform with a 90 ° phase advance with respect to the steam pressure deviation (ΔP), so when the steam pressure deviation starts to vibrate. When differential control is performed, vibration is promoted.

一方、制御に用いるゲインを小さくすると、制御の応答が遅くなって制御性が悪くなるという問題を有する。   On the other hand, when the gain used for the control is reduced, there is a problem that the control response is delayed and the controllability is deteriorated.

特開2006−200875号公報JP 2006-2000875 A 特開2004−190913号公報JP 2004-190913 A

本発明は、上記の課題を解決するためになされたものであり、本発明の目的とするところは、蒸気圧力の制御性を向上させ、かつ、大きなゲインを設定した場合において振動が発生してもその発生を抑制しうる蒸気圧力制御方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to improve the controllability of the steam pressure and to generate vibration when a large gain is set. Another object of the present invention is to provide a steam pressure control method capable of suppressing the generation thereof.

発明者はボイラに燃料を供給して燃焼させた熱を熱交換器で吸収して発生させた蒸気をタービンへ供給して発電するボイラ・タービン・発電機設備の蒸気圧力制御について鋭意研究開発を行い、蒸気圧力偏差(△P)が予め設定した圧力範囲を逸脱し、かつ、前記圧力範囲に突入する現象が2回以上発生した場合に、前記蒸気圧力偏差(△P)が予め設定した圧力範囲を第1回目に逸脱した時刻から第2回目に前記圧力範囲に突入するまでの時間(TP)が予め設定した時間(TV)以下である場合には蒸気圧偏差(△P)が振動を開始したと判断できることを見出すとともに、蒸気圧力偏差(△P)が振動を開始した場合は、蒸気圧力偏差(△P)が零となる付近において微分制御の修正ゲインを零とすることにより振動の助長を抑制できることを見出した。 The inventor has earnestly researched and developed steam pressure control for boilers, turbines, and generator equipment that generates heat by supplying steam generated by supplying fuel to the boiler and absorbing the heat generated by the heat exchanger. When the steam pressure deviation (ΔP) deviates from the preset pressure range and the phenomenon of entering the pressure range occurs more than once, the steam pressure deviation (ΔP) is a preset pressure. When the time (T P ) from the time when the range departs from the first time to the time when the pressure enters the pressure range for the second time is equal to or less than the preset time (T V ), the vapor pressure deviation (ΔP) is It can be determined that the vibration has started, and if the steam pressure deviation (ΔP) starts to vibrate, the correction gain for differential control is set to zero in the vicinity where the steam pressure deviation (ΔP) becomes zero. Can suppress vibration It was found that.

以上から、本発明の要旨は以下の通りである。
(1)ボイラに燃料を供給して燃焼させた熱を熱交換器で吸収して発生させた蒸気をタービンへ供給して発電するボイラ・タービン・発電機設備のボイラ蒸気圧力実績値を一定値に制御すべくボイラに供給する燃料量を補正するにあたり、ボイラ蒸気圧力設定値とボイラ蒸気圧力実績値の差を蒸気圧力偏差(ΔP)とし、蒸気圧力偏差(△P)の微分値に微分ゲインKdを乗じた値を用いて前記燃料量補正量を算出して補正(以下、「微分制御」という。)する方法であって、
前記蒸気圧力偏差(△P)が予め設定した圧力範囲を逸脱し、かつ、前記圧力範囲に突入する現象が2回以上発生した場合であって、前記蒸気圧力偏差(△P)が予め設定した圧力範囲を第1回目に逸脱した時刻(以下、「第1回目の逸脱時刻」という。)から第2回目に前記圧力範囲に突入する時刻(以下、「第2回目の突入時刻」という。)までの時間(以下、「疑似振動周期」という。)(TP)が予め設定した時間(TV)以下であったときの当該第2回目の突入時刻(以下、「開始時刻」という。)に、前記微分制御による補正量に対して、前記蒸気圧力偏差(△P)の区分に応じて前記燃料量補正量を修正ゲインにより修正するステップを有し、
前記蒸気圧力偏差(△P)が零となる値を含む区分においては、前記修正ゲインを零とすることを特徴とする蒸気圧力制御方法。
From the above, the gist of the present invention is as follows.
(1) The actual value of boiler steam pressure in boilers, turbines, and generator equipment that generates electricity by supplying steam generated by absorbing fuel generated by supplying fuel to the boiler with a heat exchanger. When correcting the amount of fuel to be supplied to the boiler for control, the difference between the boiler steam pressure setting value and the actual boiler steam pressure value is the steam pressure deviation (ΔP), and the differential gain is added to the differential value of the steam pressure deviation (ΔP). A method of calculating and correcting the fuel amount correction amount using a value multiplied by Kd (hereinafter referred to as “differential control”),
The steam pressure deviation (ΔP) deviates from a preset pressure range and the phenomenon of entering the pressure range has occurred twice or more, and the steam pressure deviation (ΔP) is preset. The time of entering the pressure range for the second time from the time when the pressure range deviated for the first time (hereinafter referred to as “first time of departure”) (hereinafter referred to as the “second time of entry”). The second entry time (hereinafter referred to as “start time”) when the time until (hereinafter referred to as “pseudo-vibration period”) (T P ) is equal to or less than a preset time (T V ). And correcting the fuel amount correction amount with a correction gain according to the classification of the steam pressure deviation (ΔP) with respect to the correction amount by the differential control,
A steam pressure control method, wherein the correction gain is set to zero in a section including a value at which the steam pressure deviation (ΔP) is zero.

本発明の装置並びに方法によれば、蒸気圧力の制御性を向上させ、大きなゲイン設定においても発生した振動を抑制することができるという顕著な効果を奏する。   According to the apparatus and method of the present invention, it is possible to improve the controllability of the steam pressure, and to exert a remarkable effect that vibration generated even at a large gain setting can be suppressed.

蒸気圧力偏差制御系のブロック図Steam pressure deviation control system block diagram 制御部のブロック図Block diagram of control unit 微分制御部のブロック図Block diagram of differential control unit 微分制御部のブロック図Block diagram of differential control unit 振動開始の判断Judgment of vibration start 本発明のグラフであり、(a)微分制御のみを実施した場合It is a graph of the present invention, and (a) when only differential control is performed 本発明のグラフであり、(b)比例・積分制御とともに微分制御を実施した場合It is a graph of the present invention, and (b) When differential control is performed together with proportional / integral control 比較例のグラフであり、(a)微分制御のみを実施した場合It is a graph of a comparative example, (a) When only differential control is performed 比較例のグラフであり、(b)比例・積分制御とともに微分制御を実施した場合It is a graph of a comparative example, (b) When differential control is implemented together with proportional / integral control ボイラ・タービン・発電機設備並び制御設備の概念図Conceptual diagram of boiler, turbine, generator equipment and control equipment

本発明を実施するための形態は、ボイラに燃料を供給して燃焼させた熱を熱交換器で吸収して発生させた蒸気をタービンへ供給して発電するボイラ・タービン・発電機設備のボイラ蒸気圧力実績値を一定値に制御すべくボイラに供給する燃料量を補正する方法である。   An embodiment for carrying out the present invention is a boiler for a turbine, a turbine, and a generator facility that generates electricity by supplying steam generated by absorbing heat generated by supplying fuel to a boiler and burning it with a heat exchanger. This is a method of correcting the amount of fuel supplied to the boiler to control the actual steam pressure value to a constant value.

ボイラ蒸気圧力制御においては、蒸気圧力実績値の蒸気圧力設定値に対する偏差である蒸気圧力偏差(△P)を指標とし、比例制御、積分制御、微分制御またはこれらを組み合わせた制御が行われる。   In boiler steam pressure control, proportional control, integral control, differential control, or a combination of these is performed using the steam pressure deviation (ΔP), which is a deviation of the actual steam pressure value from the steam pressure set value, as an index.

何らかの理由でボイラの蒸気圧力偏差(△P)が振動を開始した場合を考える。振動の途中、蒸気圧力偏差(△P)がゼロとなる付近では、通常は蒸気圧力偏差(△P)の微分値はその絶対値が最大となる。そのため、蒸気圧力偏差(△P)がゼロである近傍では、実際には燃料量の補正が必要ないにもかかわらず、微分制御量が大きな値(絶対値)となって燃料量の補正を行うことになり、蒸気圧力偏差(△P)振動収束の障害となっていることがわかった。そのため、蒸気圧力偏差(△P)に対して一定値となる微分ゲインを用いるとかえって振動を助長することとなる。このことは言い換えれば、蒸気圧力偏差(△P)が予め設定した値以下の場合において微分制御量を小さくすることとすれば、振動の助長を防止できることを意味する。   Consider a case where the steam pressure deviation (ΔP) of the boiler starts to oscillate for some reason. In the middle of vibration, in the vicinity where the steam pressure deviation (ΔP) becomes zero, the absolute value of the differential value of the steam pressure deviation (ΔP) is usually the maximum. Therefore, in the vicinity where the steam pressure deviation (ΔP) is zero, the differential control amount becomes a large value (absolute value) and the fuel amount is corrected although the correction of the fuel amount is not actually required. As a result, it was found that the steam pressure deviation (ΔP) was an obstacle to convergence of vibration. Therefore, if a differential gain that is a constant value with respect to the steam pressure deviation (ΔP) is used, vibration is promoted. In other words, if the differential control amount is reduced when the steam pressure deviation (ΔP) is equal to or less than a preset value, it means that the promotion of vibration can be prevented.

そこで本発明は、蒸気圧力偏差(△P)の微分値に微分ゲインKdを乗じた値を用いて前記燃料量補正量を算出して補正を行う微分制御において、前記蒸気圧力偏差(△P)が零となる値近傍においてはその補正量が零となるように修正ゲインを乗ずることにより、ボイラ蒸気圧力の振動を有効に抑制できることを見出した。   Therefore, the present invention provides the steam pressure deviation (ΔP) in the differential control in which the fuel amount correction amount is calculated and corrected using a value obtained by multiplying the differential value of the steam pressure deviation (ΔP) by the differential gain Kd. It has been found that the vibration of the boiler steam pressure can be effectively suppressed by multiplying the correction gain so that the correction amount becomes zero in the vicinity of the value where becomes zero.

微分制御のゲインに上記修正ゲインを乗ずる開始時刻は、蒸気圧力偏差が振動を開始した以降である。そして蒸気圧力偏差(△P)が振動を開始したことは、図4に示すように、前記蒸気圧力偏差21(△P)が31で予め設定した圧力範囲37を逸脱し(1回目の逸脱)、その後32で圧力範囲37に突入し(1回目の突入)、また33で圧力範囲37を逸脱し(2回目の逸脱)、さらに34で圧力範囲37に突入(2回目の突入)した場合であって、第1回目の逸脱時刻31から第2回目の突入時刻34までの時間(TP)が予め設定した時間(TV)以下である場合に認定する。蒸気圧力偏差の振動の開始時刻については、当該第2回目の突入時刻34とする。 The start time of multiplying the differential control gain by the correction gain is after the steam pressure deviation starts to oscillate. The fact that the steam pressure deviation (ΔP) starts oscillating indicates that the steam pressure deviation 21 (ΔP) deviates from the pressure range 37 set in advance at 31 (first deviation), as shown in FIG. After that, the pressure range 37 is entered at 32 (first entry), 33 is deviated from the pressure range 37 (second departure), and 34 is entered into the pressure range 37 (second entry). In this case, the determination is made when the time (T P ) from the first departure time 31 to the second entry time 34 is equal to or less than a preset time (T V ). The start time of the vibration of the steam pressure deviation is the second entry time 34.

(制御系の構成)
図1には、本発明の制御系の基本的構成が示されている。ボイラ2により生成される蒸気の蒸気圧力実測値(P)19が引出点28から引き出され、加算点29において蒸気圧力設定値(PN)9から減算することにより蒸気圧力偏差(△P)が算出されている。
すなわち、△P=PN−Pである。
蒸気圧力制御部18では、蒸気圧力偏差(△P)21を入力として燃料量補正量(△F)が算出される。燃料量制御部12では、燃料量補正量(△F)を入力として燃料量(F)23が算出される。ボイラ2には算出された燃料量23が与えられ、これに応じて新たな蒸気が発生し、さらに、当該蒸気は温度制御部16で温度制御がなされる。温度制御がなされた蒸気は、タービン4、発電機5に与えられて発電が実行される。
(Control system configuration)
FIG. 1 shows the basic configuration of the control system of the present invention. The steam pressure actual measurement value (P) 19 of the steam generated by the boiler 2 is drawn from the drawing point 28 and subtracted from the steam pressure set value (PN) 9 at the addition point 29 to calculate the steam pressure deviation (ΔP). Has been.
That is, ΔP = PN−P.
The steam pressure control unit 18 calculates the fuel amount correction amount (ΔF) with the steam pressure deviation (ΔP) 21 as an input. The fuel amount control unit 12 calculates the fuel amount (F) 23 with the fuel amount correction amount (ΔF) as an input. The calculated fuel amount 23 is given to the boiler 2, and in response to this, new steam is generated, and the temperature of the steam is controlled by the temperature control unit 16. The steam whose temperature has been controlled is given to the turbine 4 and the generator 5 to generate power.

(蒸気圧力制御部)
図2には蒸気圧力制御の構成が記載されている。蒸気圧力制御部は、振動開始判断部、微分制御部、積分制御部並びに比例制御部から構成されている。振動開始判断部は、蒸気圧力偏差(△P)が振動しているか否かを常時監視して、振動を開始したと判断したときは、微分制御部、さらに必要に応じて積分制御部、比例制御部にその旨の通知をおこなう。積分制御部は、蒸気圧力偏差(△P)を引出点28から引き出して入力として、積分制御補正量58を算出している。比例制御分は、蒸気圧力偏差(△P)を引出点28から引き出して入力として、比例制御補正量68を算出している。積分制御補正量58と比例制御補正量68は加算点29で加えられて燃料量補正量22となる。
(Steam pressure control unit)
FIG. 2 shows the configuration of the steam pressure control. The steam pressure control unit includes a vibration start determination unit, a differential control unit, an integral control unit, and a proportional control unit. The vibration start determination unit constantly monitors whether or not the steam pressure deviation (ΔP) is oscillating, and when it is determined that the vibration has started, the differential control unit and, if necessary, the integral control unit, proportional A notification to that effect is sent to the control unit. The integral control unit calculates an integral control correction amount 58 using the steam pressure deviation (ΔP) as an input after being drawn from the withdrawal point 28. For the proportional control, the proportional pressure correction amount 68 is calculated by taking the steam pressure deviation (ΔP) from the extraction point 28 as an input. The integral control correction amount 58 and the proportional control correction amount 68 are added at the addition point 29 to become the fuel amount correction amount 22.

(振動開始判断部)
図2の80が振動開始判断部である。また、図4は蒸気圧力偏差(△P)が振動を開始した旨の判断の概要について記載されている。
(Vibration start determination unit)
Reference numeral 80 in FIG. 2 denotes a vibration start determination unit. FIG. 4 shows an outline of the determination that the steam pressure deviation (ΔP) has started to vibrate.

図4おいて、縦軸は蒸気圧力偏差(△P)であり、横軸は時刻(t)であり、35は蒸気圧力偏差(△P)上限値を示す線であり、36は蒸気圧力偏差(△P)の下限値を示す線であり、37は蒸気圧力偏差(△P)の予め設定した圧力範囲である。   In FIG. 4, the vertical axis represents the steam pressure deviation (ΔP), the horizontal axis represents time (t), 35 is a line indicating the upper limit value of the steam pressure deviation (ΔP), and 36 is the steam pressure deviation. This is a line indicating the lower limit of (ΔP), and 37 is a preset pressure range of the steam pressure deviation (ΔP).

30は蒸気圧力偏差(△P)の時々刻々の挙動を表わすグラフであり、蒸気圧力偏差(△P)上限値を表わす線35とは31、32において交差しており、蒸気圧力偏差(△P)下限値を表わす線36とは33、34において交差している。   30 is a graph representing the behavior of the steam pressure deviation (ΔP) from time to time, and intersects with the line 35 representing the upper limit value of the steam pressure deviation (ΔP) at 31 and 32, and the steam pressure deviation (ΔP) ) Crosses the line 36 representing the lower limit at 33 and 34.

図4において、31に対応する時刻は蒸気圧力偏差(△P)が予め設定した圧力範囲37を第1回目に逸脱した時刻であり、32に対応する時刻は蒸気圧力偏差(△P)が予め設定した圧力範囲37に第1回目に突入した時刻であり、33に対応する時刻は蒸気圧力偏差(△P)が予め設定した圧力範囲37を第2回目に逸脱した時刻であり、34に対応する時刻は蒸気圧力偏差(△P)が予め設定した圧力範囲37に第2回目に突入した時刻である。   In FIG. 4, the time corresponding to 31 is the time when the steam pressure deviation (ΔP) deviates from the preset pressure range 37 for the first time, and the time corresponding to 32 is the time when the steam pressure deviation (ΔP) is This is the time when the pressure range 37 is first entered, and the time corresponding to 33 is the time when the steam pressure deviation (ΔP) deviates from the preset pressure range 37 for the second time, corresponding to 34. The time when the steam pressure deviation (ΔP) enters the pressure range 37 set in advance for the second time.

したがって、31に対応する時刻と34に対応する時刻との時間は前記蒸気圧力偏差(△P)が予め設定した圧力範囲を第1回目に逸脱した時刻から第2回目に前記圧力範囲に突入するまでの時間(TP)である。 Therefore, the time corresponding to the time corresponding to 31 and the time corresponding to 34 enters the pressure range for the second time from the time when the steam pressure deviation (ΔP) deviates from the preset pressure range for the first time. Time (T P ).

発明者らは鋭意研究開発の結果、第1回目に逸脱した時刻から第2回目に前記圧力範囲に突入するまでの時間(TP)が予め設定した時間(TV)以下である場合には、蒸気圧力偏差(△P)が振動を開始したと判断し、当該判断を下した時刻である34に対応する時刻以降直ちに振動抑制のための手段を講じることで、当該振動を有効に抑制できることを見出した。 As a result of diligent research and development, the inventors have found that when the time (T P ) from the time of departure from the first time to the time of entering the pressure range at the second time is less than or equal to the preset time (T V ) It is possible to effectively suppress the vibration by determining that the steam pressure deviation (ΔP) has started to vibrate, and immediately taking measures for suppressing the vibration after the time corresponding to 34, which is the time when the judgment is made. I found.

予め設定した時間(TV)とは、通常発生する振動周期であり、5〜20分、望ましくは8分〜18分、さらに望ましくは10〜16分程度の時間である。 The preset time (T V ) is a vibration cycle that usually occurs, and is 5 to 20 minutes, preferably 8 to 18 minutes, and more preferably about 10 to 16 minutes.

(微分制御部)
微分制御部は図3(a)に示されたように、微分器71、微分ゲインKd77、修正ゲインKdg1から構成されている。蒸気圧力偏差(△P)21は、微分器71により微分され、これに微分ゲインKdが乗じられる。振動開始が認識された場合にはさらに修正ゲインKdg1が乗じられて微分制御補正量78が算出される。
(Differential control part)
Differential control unit, as shown in FIG. 3 (a), a differentiator 71, a differential gain Kd77, and a corrected gain Kdg 1. The steam pressure deviation (ΔP) 21 is differentiated by a differentiator 71 and multiplied by a differential gain Kd. When the start of vibration is recognized, the correction gain Kdg 1 is further multiplied to calculate a differential control correction amount 78.

修正ゲインKdg1は、図3(b)のように蒸気圧力偏差(△P)の範囲区分毎に独立した修正ゲインが設定できるようになっている。特に、蒸気圧力偏差(△P)が零となる値を範囲とする区分に対しては、修正ゲインは零と設定されている。これは、蒸気圧力偏差(△P)が零近傍にあるときには、微分制御を積極的に行うと、蒸気圧力偏差(△P)の振動を助長することになるという経験則に基づいている。 As the correction gain Kdg 1 , an independent correction gain can be set for each range section of the steam pressure deviation (ΔP) as shown in FIG. In particular, the correction gain is set to zero for a section whose range is a value at which the steam pressure deviation (ΔP) is zero. This is based on an empirical rule that, when the steam pressure deviation (ΔP) is near zero, if the differential control is positively performed, vibration of the steam pressure deviation (ΔP) is promoted.

以下、本発明例と比較例について説明する。図7に示すようなボイラ・タービン・発電機設備において、図1に示す制御系の基本的構成を用い、ボイラの蒸気圧力実績値を一定値に制御すべくボイラに供給する燃料量を補正する方法を実施した。   Examples of the present invention and comparative examples will be described below. In the boiler / turbine / generator facility as shown in FIG. 7, the basic configuration of the control system shown in FIG. 1 is used to correct the amount of fuel supplied to the boiler so as to control the actual steam pressure value of the boiler to a constant value. The method was carried out.

(本発明例)
本発明の方法を用いて蒸気圧力偏差(△P)を制御して蒸気圧力偏差(△P)、微分制御による燃料補正量、全燃料補正量をグラフにしたものを図5に示した。
(Example of the present invention)
FIG. 5 is a graph showing the steam pressure deviation (ΔP) by controlling the steam pressure deviation (ΔP) using the method of the present invention, the fuel correction amount by differential control, and the total fuel correction amount.

<微分制御のみの場合>
微分制御のみを実施した場合について図5(a)に示した。
<For differential control only>
FIG. 5A shows the case where only the differential control is performed.

蒸気圧力偏差(△P)が予め設定された範囲を逸脱し(1回目の逸脱)、2回目の突入により振動開始を認識する。振動開始の認識前は、微分制御ゲインとしてKdのみを用いている。振動開始を認識すると、微分制御ゲインとしてKdにさらに修正ゲインKdg1が乗じられる。また、微分制御Kdの修正ゲインKdg1は、蒸気圧力偏差(△P)毎に区分されており、蒸気圧力偏差(△P)が零となる値を含む区分においては零となるように設定されている。したがって、微分制御は振動開始時期では、蒸気圧力偏差(△P)の振動を抑制すべく燃料補正量を算出し、蒸気圧力偏差(△P)が予め設定された範囲内に収まるようになると燃料補正量を零として蒸気圧力偏差(△P)の振動の助長を抑制している。 The steam pressure deviation (ΔP) deviates from a preset range (first deviation), and the vibration start is recognized by the second entry. Before recognizing the start of vibration, only Kd is used as the differential control gain. When the vibration start is recognized, the correction gain Kdg 1 is further multiplied by Kd as a differential control gain. The correction gain Kdg 1 of the differential control Kd is divided for each steam pressure deviation (ΔP), and is set to be zero in a section including a value where the steam pressure deviation (ΔP) is zero. ing. Therefore, the differential control calculates the fuel correction amount so as to suppress the vibration of the steam pressure deviation (ΔP) at the vibration start timing, and when the steam pressure deviation (ΔP) falls within a preset range, the fuel is corrected. The correction amount is set to zero to suppress the promotion of vibration of the steam pressure deviation (ΔP).

この結果、蒸気圧力偏差(△P)は時間の経過と共に収束していることがわかる。   As a result, it can be seen that the steam pressure deviation (ΔP) converges with time.

<比例・積分制御と共に微分制御を実施した場合>
比例・積分制御と共に、微分制御を実施した場合について図5(b)に示した。
<When differential control is performed together with proportional / integral control>
FIG. 5B shows a case where differential control is performed together with proportional / integral control.

比例・積分制御と共に微分制御を実施するが、蒸気圧力偏差(△P)が予め設定された範囲を逸脱し(1回目の逸脱)、2回目の突入により振動開始を認識する。振動開始の認識前は、微分制御ゲインとしてKdのみを用いている。振動開始を認識すると、微分制御ゲインとしてKdにさらに修正ゲインKdg1が乗じられる。また、微分制御Kdの修正ゲインKdg1は、蒸気圧力偏差(△P)毎に区分されており、蒸気圧力偏差(△P)が零となる値を含む区分においては零となるように設定されている。したがって、微分制御は振動開始時期では、蒸気圧力偏差(△P)の振動を抑制すべく燃料補正量を算出し、蒸気圧力偏差(△P)が予め設定された範囲内に収まるようになると燃料補正量を零として蒸気圧力偏差(△P)の振動の助長を抑制している。 Although differential control is performed together with proportional / integral control, the steam pressure deviation (ΔP) deviates from a preset range (first deviation), and the start of vibration is recognized by the second entry. Before recognizing the start of vibration, only Kd is used as the differential control gain. When the vibration start is recognized, the correction gain Kdg 1 is further multiplied by Kd as a differential control gain. The correction gain Kdg 1 of the differential control Kd is divided for each steam pressure deviation (ΔP), and is set to be zero in a section including a value where the steam pressure deviation (ΔP) is zero. ing. Therefore, the differential control calculates the fuel correction amount so as to suppress the vibration of the steam pressure deviation (ΔP) at the vibration start timing, and when the steam pressure deviation (ΔP) falls within a preset range, the fuel is corrected. The correction amount is set to zero to suppress the promotion of vibration of the steam pressure deviation (ΔP).

この結果、蒸気圧力偏差(△P)は時間の経過と共に収束していることがわかる。   As a result, it can be seen that the steam pressure deviation (ΔP) converges with time.

(比較例)
本発明の方法を用いていない比較例を図6に示す。
(Comparative example)
A comparative example not using the method of the present invention is shown in FIG.

<微分制御のみの場合>
微分制御のみを実施した場合について図6(a)に示した。
<For differential control only>
FIG. 6A shows the case where only the differential control is performed.

比較例においては、蒸気圧力偏差(△P)の振動開始認識を行わず、従って本発明例において振動開始と認識すべき時期以前も以降も、従来どおりに微分制御ゲインとしてKdのみを用いている。本発明のような修正ゲインはない。   In the comparative example, the vibration start recognition of the steam pressure deviation (ΔP) is not performed. Therefore, only Kd is used as the differential control gain as before in the conventional example before and after the time when the vibration start should be recognized. . There is no correction gain as in the present invention.

したがって、微分制御により蒸気圧力偏差(△P)の振動が助長されて振動が拡大している。   Therefore, the vibration of the steam pressure deviation (ΔP) is promoted by the differential control, and the vibration is enlarged.

<比例・積分制御と共に微分制御を実施した場合>
比例・積分制御と共に、微分制御を実施した場合について図6(b)に示した。
<When differential control is performed together with proportional / integral control>
FIG. 6B shows a case where differential control is performed together with proportional / integral control.

比較例においては、蒸気圧力偏差(△P)の振動開始認識を行わず、従って本発明例において振動開始と認識すべき時期以前も以降も、従来どおりに微分制御ゲインとしてKdのみを用いている。本発明のような修正ゲインはない。   In the comparative example, the vibration start recognition of the steam pressure deviation (ΔP) is not performed. Therefore, only Kd is used as the differential control gain as before in the conventional example before and after the time when the vibration start should be recognized. . There is no correction gain as in the present invention.

したがって、微分制御により蒸気圧力偏差(△P)の振動が助長されて振動が拡大している。   Therefore, the vibration of the steam pressure deviation (ΔP) is promoted by the differential control, and the vibration is enlarged.

1:ボイラ・タービン・発電機設備
2:ボイラ
3:ガバナ弁
4:タービン
5:発電機
6:復水器
9:蒸気圧設定値
10:発電量指令
12:燃料量制御部
14:ガバナ制御部
16:蒸気温度制御部
18:蒸気圧力制御部
19:蒸気圧力実績値
21:蒸気圧力偏差
22:燃料量補正量
23:燃料量
28:引出点
29:加算点
50:積分制御部
60:比例制御部
70:微分制御部
71:微分器
72:微分制御修正ゲイン
77:微分制御ゲイン
78:微分制御補正量
1: Boiler / turbine / generator equipment 2: Boiler 3: Governor valve 4: Turbine 5: Generator 6: Condenser 9: Steam pressure set value 10: Power generation amount command 12: Fuel amount control unit 14: Governor control unit 16: Steam temperature control unit 18: Steam pressure control unit 19: Actual steam pressure value 21: Steam pressure deviation 22: Fuel amount correction amount 23: Fuel amount 28: Extraction point 29: Addition point 50: Integration control unit 60: Proportional control Unit 70: derivative control unit 71: differentiator 72: derivative control correction gain 77: derivative control gain 78: derivative control correction amount

Claims (1)

ボイラに燃料を供給して燃焼させた熱を熱交換器で吸収して発生させた蒸気をタービンへ供給して発電するボイラ・タービン・発電機設備の蒸気圧力実績値を一定値に制御すべくボイラに供給する燃料量を補正するにあたり、ボイラ蒸気圧力設定値とボイラ蒸気圧力実績値の差を蒸気圧力偏差(ΔP)とし、蒸気圧力偏差(△P)の微分値に微分ゲインKdを乗じた値を用いて前記燃料量補正量を算出して補正(以下、「微分制御」という。)する方法であって、
前記蒸気圧力偏差(△P)が予め設定した圧力範囲を逸脱し、かつ、前記圧力範囲に突入する現象が2回以上発生した場合であって、前記蒸気圧力偏差(△P)が予め設定した圧力範囲を第1回目に逸脱した時刻(以下、「第1回目の逸脱時刻」という。)から第2回目に前記圧力範囲に突入する時刻(以下、「第2回目の突入時刻」という。)までの時間(以下、「疑似振動周期」という。)(TP)が予め設定した時間(TV)以下であったときの当該第2回目の突入時刻(以下、「開始時刻」という。)に、前記微分制御による補正量に対して、前記蒸気圧力偏差(△P)の区分に応じて前記燃料量補正量を修正ゲインにより修正するステップを有し、
前記蒸気圧力偏差(△P)が零となる値を含む区分においては、前記修正ゲインを零とすることを特徴とする蒸気圧力制御方法。
To control the actual steam pressure of boilers, turbines, and generator equipment that generates electricity by supplying steam generated by supplying fuel to the boiler and absorbing the heat generated by the heat exchanger. In correcting the amount of fuel supplied to the boiler, the difference between the boiler steam pressure setting value and the actual boiler steam pressure value is the steam pressure deviation (ΔP), and the differential value of the steam pressure deviation (ΔP) is multiplied by the differential gain Kd. A method for calculating and correcting the fuel amount correction amount using a value (hereinafter referred to as “differential control”),
The steam pressure deviation (ΔP) deviates from a preset pressure range and the phenomenon of entering the pressure range has occurred twice or more, and the steam pressure deviation (ΔP) is preset. The time of entering the pressure range for the second time from the time when the pressure range deviated for the first time (hereinafter referred to as “first time of departure”) (hereinafter referred to as the “second time of entry”). The second entry time (hereinafter referred to as “start time”) when the time until (hereinafter referred to as “pseudo-vibration period”) (T P ) is equal to or less than a preset time (T V ). And correcting the fuel amount correction amount with a correction gain according to the classification of the steam pressure deviation (ΔP) with respect to the correction amount by the differential control,
A steam pressure control method, wherein the correction gain is set to zero in a section including a value at which the steam pressure deviation (ΔP) is zero.
JP2012027040A 2012-02-10 2012-02-10 Steam pressure control method Active JP5772644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027040A JP5772644B2 (en) 2012-02-10 2012-02-10 Steam pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027040A JP5772644B2 (en) 2012-02-10 2012-02-10 Steam pressure control method

Publications (2)

Publication Number Publication Date
JP2013164195A true JP2013164195A (en) 2013-08-22
JP5772644B2 JP5772644B2 (en) 2015-09-02

Family

ID=49175656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027040A Active JP5772644B2 (en) 2012-02-10 2012-02-10 Steam pressure control method

Country Status (1)

Country Link
JP (1) JP5772644B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205700A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Boiler system
JP2016205699A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Boiler system
JP6278543B1 (en) * 2017-02-17 2018-02-14 三菱日立パワーシステムズインダストリー株式会社 Coordinated control operation device for fluidized bed boiler power generation system
WO2018212224A1 (en) * 2017-05-16 2018-11-22 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2018225481A1 (en) * 2017-06-09 2018-12-13 出光興産株式会社 Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program
CN112947335A (en) * 2021-02-05 2021-06-11 吉林省电力科学研究院有限公司 Method for improving stability of main steam pressure of thermal power generating unit coordinated control system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108305A (en) * 1985-11-06 1987-05-19 Matsushita Seiko Co Ltd Pid control device
JPS6391402A (en) * 1986-10-03 1988-04-22 バブコツク日立株式会社 Boiler controller
JPH0771208A (en) * 1993-08-31 1995-03-14 Toshiba Corp Turbine by-pass valve control device
JPH07281709A (en) * 1994-04-13 1995-10-27 Kawasaki Heavy Ind Ltd Adjusting method for control parameter for controller
JPH0929117A (en) * 1995-07-19 1997-02-04 Babcock Hitachi Kk Pulverizer
JPH09250734A (en) * 1996-03-14 1997-09-22 Babcock Hitachi Kk Automatic controller for boiler
JP2001041403A (en) * 1999-07-30 2001-02-13 Babcock Hitachi Kk Boiler controller
JP2008008522A (en) * 2006-06-27 2008-01-17 Nippon Steel Corp Boiler fuel charging amount deciding method, boiler fuel control device and program
JP2010025491A (en) * 2008-07-23 2010-02-04 Jfe Engineering Corp Fuel supply control device of combustion furnace boiler
JP2010078318A (en) * 2004-12-22 2010-04-08 Nippon Steel Corp Method of determining boiler fuel charge amount

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108305A (en) * 1985-11-06 1987-05-19 Matsushita Seiko Co Ltd Pid control device
JPS6391402A (en) * 1986-10-03 1988-04-22 バブコツク日立株式会社 Boiler controller
JPH0771208A (en) * 1993-08-31 1995-03-14 Toshiba Corp Turbine by-pass valve control device
JPH07281709A (en) * 1994-04-13 1995-10-27 Kawasaki Heavy Ind Ltd Adjusting method for control parameter for controller
JPH0929117A (en) * 1995-07-19 1997-02-04 Babcock Hitachi Kk Pulverizer
JPH09250734A (en) * 1996-03-14 1997-09-22 Babcock Hitachi Kk Automatic controller for boiler
JP2001041403A (en) * 1999-07-30 2001-02-13 Babcock Hitachi Kk Boiler controller
JP2010078318A (en) * 2004-12-22 2010-04-08 Nippon Steel Corp Method of determining boiler fuel charge amount
JP2008008522A (en) * 2006-06-27 2008-01-17 Nippon Steel Corp Boiler fuel charging amount deciding method, boiler fuel control device and program
JP2010025491A (en) * 2008-07-23 2010-02-04 Jfe Engineering Corp Fuel supply control device of combustion furnace boiler

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205699A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Boiler system
JP2016205700A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Boiler system
JP6278543B1 (en) * 2017-02-17 2018-02-14 三菱日立パワーシステムズインダストリー株式会社 Coordinated control operation device for fluidized bed boiler power generation system
JP2018132284A (en) * 2017-02-17 2018-08-23 三菱日立パワーシステムズインダストリー株式会社 Cooperative control driving device for fluidized bed boiler power generation system
JPWO2018212224A1 (en) * 2017-05-16 2020-05-21 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2018212224A1 (en) * 2017-05-16 2018-11-22 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2018211598A1 (en) * 2017-05-16 2018-11-22 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2018225481A1 (en) * 2017-06-09 2018-12-13 出光興産株式会社 Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program
CN110832251A (en) * 2017-06-09 2020-02-21 出光兴产株式会社 Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program
CN110832251B (en) * 2017-06-09 2021-08-31 出光兴产株式会社 Fuel reduction rate output system, fuel reduction rate output method, and storage medium
AU2018280740B2 (en) * 2017-06-09 2023-05-25 Idemitsu Kosan Co.,Ltd. Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program
CN112947335A (en) * 2021-02-05 2021-06-11 吉林省电力科学研究院有限公司 Method for improving stability of main steam pressure of thermal power generating unit coordinated control system
CN112947335B (en) * 2021-02-05 2024-05-07 吉林省电力科学研究院有限公司 Method for improving pressure stability of main steam of coordination control system of thermal power generating unit

Also Published As

Publication number Publication date
JP5772644B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5772644B2 (en) Steam pressure control method
US9709261B2 (en) Condensate flow rate control device and condensate flow rate control method for power plant
CN105180139A (en) Main steam temperature control system and method for boiler
JP5727951B2 (en) Steam supply system and method for controlling steam supply system
CA2868093C (en) Steam temperature control using model-based temperature balancing
JP5970368B2 (en) Boiler control device
US8887747B2 (en) System and method for drum level control
CN103557511A (en) All-process control method for main steam temperature of utility boiler
EP3263985B1 (en) System and method for drum level control with transient compensation
CN103955193A (en) Feed-forward control method for direct energy balance strategy
JP5772629B2 (en) Steam pressure control method
JP2016205678A (en) Boiler system
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JP2015007511A (en) Boiler control device
JP5736330B2 (en) Steam pressure control method
JP2013174223A (en) Speed governing controller for steam turbine, method for controlling the same and steam turbine
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
KR20210021550A (en) How to operate a power plant
JP2012159024A (en) Method for controlling water level of steam turbine condenser
JP6330404B2 (en) Boiler system
KR101818090B1 (en) Method for regulating a brief increase in power of a steam turbine
JP6775070B1 (en) Power plant control device, power plant, and power plant control method
Akbari et al. Robust Tracking Control of Boiler-Turbine Systems
JP4944831B2 (en) Self-sustained operation transition method and apparatus
JP2022156440A (en) boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5772644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350