JP2013163719A - Low thermally-expandable resin composition, prepreg, laminate, and wiring board - Google Patents

Low thermally-expandable resin composition, prepreg, laminate, and wiring board Download PDF

Info

Publication number
JP2013163719A
JP2013163719A JP2012026519A JP2012026519A JP2013163719A JP 2013163719 A JP2013163719 A JP 2013163719A JP 2012026519 A JP2012026519 A JP 2012026519A JP 2012026519 A JP2012026519 A JP 2012026519A JP 2013163719 A JP2013163719 A JP 2013163719A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
thermal expansion
resin
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026519A
Other languages
Japanese (ja)
Other versions
JP6111518B2 (en
Inventor
Koji Morita
高示 森田
Akira Murai
曜 村井
Shin Takanezawa
伸 高根沢
Yasuo Inoue
康雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012026519A priority Critical patent/JP6111518B2/en
Publication of JP2013163719A publication Critical patent/JP2013163719A/en
Application granted granted Critical
Publication of JP6111518B2 publication Critical patent/JP6111518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for a printed wiring board especially excellent in low thermal expansion without the need of high filling of an inorganic filler or enhanced crosslink density of the resin composition; and a prepreg, a laminate, and a wiring board using the same.SOLUTION: A low thermally-expandable resin composition includes an epoxy resin (A) having polycyclic structure, a phosphorus compound (B) represented by chemical formula (I), and dicyandiamide (C), wherein an epoxy resin (E1), which is obtained when 0.005-0.05 mol of the phosphorus compound (B) represented by chemical formula (I) is blended or preliminary reacted with 1 mol of an epoxy group of the epoxy resin (A) having polycyclic structure, is contained.

Description

本発明は、電子機器に用いられるプリント配線板用樹脂組成物に関し、特に低熱膨張性に優れる樹脂組成物、プリプレグ、積層板及び配線板に関する。   The present invention relates to a resin composition for a printed wiring board used for an electronic device, and particularly relates to a resin composition, a prepreg, a laminated board and a wiring board that are excellent in low thermal expansion.

プリント配線板は電子機器の小型化・高性能化に伴い配線ピッチが狭小化してきている。高密度配線に対応する半導体の実装方法としては、従来のワイヤボンディング方式に代わりフリップチップ接続方式が広く用いられている。フリップチップ接続は、はんだボールで配線板と半導体を実装する方法であり、はんだリフロー時に300℃近い熱が配線板にかかり、一般的な樹脂組成物を材料とする配線板では樹脂の熱膨張により接続界面に大きな応力が発生し、接続不良を起こすことがある。このような状況を背景として、低熱膨張性の積層板が求められている。   Printed wiring boards are becoming narrower in pitch with the downsizing and higher performance of electronic equipment. As a semiconductor mounting method for high-density wiring, a flip chip connection method is widely used instead of the conventional wire bonding method. Flip chip connection is a method in which a wiring board and a semiconductor are mounted with solder balls, and heat close to 300 ° C. is applied to the wiring board at the time of solder reflow, and in a wiring board made of a general resin composition, due to thermal expansion of the resin. Large stress is generated at the connection interface, which may cause connection failure. Against this background, a low thermal expansion laminate is demanded.

通常の積層板は、エポキシ樹脂を主剤とした樹脂組成物とガラス織布とを硬化・一体成形したものが一般的である。エポキシ樹脂は絶縁性や耐熱性、コストなどのバランスが優れるが、熱膨張率が大きい。このためシリカなどの無機充填材を添加して熱膨張を抑制するのが一般的である(例えば、特許文献1参照)。
エポキシ樹脂を主剤とした樹脂組成物に無機充填材を高充填することでさらなる低熱膨張化も可能であるが、充填量を増やすことは吸湿による絶縁信頼性の低下や樹脂と配線層との密着不足を招くため、多層配線板用途では限界がある。
また、芳香環を有するエポキシ樹脂を用いる低熱膨張性加圧成形用樹脂組成物としては、2官能のナフタレン骨格、あるいはビフェニル骨格を有するエポキシ樹脂を用いたものがある(例えば、特許文献2参照)。しかし、特許文献2では、溶融シリカ粉末からなる充填剤を80〜92.5容量%配合しており、配線板用材料として用いることができない。
A typical laminate is generally obtained by curing and integrally molding a resin composition mainly composed of an epoxy resin and a glass woven fabric. Epoxy resins have an excellent balance of insulation, heat resistance, cost, etc., but have a large coefficient of thermal expansion. For this reason, it is common to add inorganic fillers, such as a silica, and to suppress thermal expansion (for example, refer patent document 1).
It is possible to further reduce the thermal expansion by filling the resin composition mainly composed of epoxy resin with an inorganic filler, but increasing the filling amount reduces the insulation reliability due to moisture absorption and the adhesion between the resin and the wiring layer. There is a limit in the use of multilayer wiring boards because of insufficiency.
Moreover, as a low thermal expansion pressure molding resin composition using an epoxy resin having an aromatic ring, there is one using an epoxy resin having a bifunctional naphthalene skeleton or a biphenyl skeleton (see, for example, Patent Document 2). . However, in patent document 2, the filler which consists of fused silica powder is mix | blended 80-92.5 volume%, and cannot be used as a wiring board material.

また、従来、配線板用の樹脂組成物の低熱膨張率化は架橋密度を高めて、ガラス転移温度を高くして熱膨脹率を低減する手法が一般的である(例えば、特許文献3及び4参照)。しかしながら、架橋密度を高めることは官能基間の分子鎖を短くすることであり、一定以上分子鎖を短くすることは反応性や樹脂強度を低下させることになる。一方、架橋密度を適正化して熱膨脹率を下げる手法も検討されている(例えば、特許文献5参照)。   Conventionally, a method for reducing the coefficient of thermal expansion of a resin composition for a wiring board is generally a technique of increasing the crosslink density and increasing the glass transition temperature to reduce the coefficient of thermal expansion (see, for example, Patent Documents 3 and 4). ). However, increasing the crosslinking density means shortening the molecular chain between the functional groups, and shortening the molecular chain more than a certain level lowers the reactivity and the resin strength. On the other hand, a technique for optimizing the crosslinking density to lower the thermal expansion coefficient has also been studied (see, for example, Patent Document 5).

特開2004−182851号公報JP 2004-182851 A 特開平05−148343号公報JP 05-148343 A 特開2000−243864号公報JP 2000-243864 A 特開2000−114727号公報JP 2000-114727 A 特開2007−314782号公報JP 2007-314782 A

本発明の目的は、こうした現状に鑑み、無機充填材の高充填化や樹脂組成物の架橋密度を高めること無しに、特に低熱膨張性に優れたプリント配線板用樹脂組成物、並びにこれを用いたプリプレグ、積層板及び配線板を提供することを目的とするものである。   In view of the current situation, the object of the present invention is to provide a resin composition for a printed wiring board that is particularly excellent in low thermal expansion without increasing the filling of the inorganic filler and increasing the cross-linking density of the resin composition, and the use thereof. An object of the present invention is to provide a prepreg, a laminated board and a wiring board.

本発明は、上記の課題を解決するために鋭意研究した結果、多環式構造を有するエポキシ樹脂と特定のリン化合物、ジシアンジアミドを配合又は予備反応したエポキシ樹脂を含有させることで、特に熱膨張率の小さい多層配線板用材料を低コストで得ることができること見出し、本発明を完成するに至った。本発明は、かかる知見に基づいて完成したものである。   As a result of earnest research to solve the above-mentioned problems, the present invention contains an epoxy resin having a polycyclic structure and a specific phosphorus compound or dicyandiamide, or contains an epoxy resin that has been pre-reacted, in particular, a coefficient of thermal expansion. It has been found that a material for a multilayer wiring board having a small size can be obtained at low cost, and the present invention has been completed. The present invention has been completed based on such findings.

すなわち、本発明は、以下の低熱膨張性樹脂組成物、プリプレグ、積層板及び配線板を提供するものである。   That is, the present invention provides the following low thermal expansion resin composition, prepreg, laminate and wiring board.

1.多環式構造を有するエポキシ樹脂(A)、化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)を含有し、多環式構造を有するエポキシ樹脂(A)のエポキシ基1モルに対して、化学式(I)で示されるリン化合物(B)が0.005〜0.05モルで配合又は予備反応したエポキシ樹脂(E1)を含有することを特徴とする低熱膨張性樹脂組成物。 1. The epoxy resin (A) having a polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I), and dicyandiamide (C) are contained in 1 mol of an epoxy group of the epoxy resin (A) having a polycyclic structure. On the other hand, the low thermal expansion resin composition characterized by containing the epoxy resin (E1) which the phosphorus compound (B) shown by Chemical formula (I) mix | blended or pre-reacted by 0.005-0.05 mol.

Figure 2013163719
Figure 2013163719

2.多環式構造を有するエポキシ樹脂(A)が、ビフェニル構造、ナフタレン構造、アントラセン構造、ジヒドロアントラセン構造から選ばれる少なくとも1種の構造を有するエポキシ樹脂である上記1の低熱膨張性樹脂組成物。
3.多環式構造を有するエポキシ樹脂(A)が、下記の一般式(II)で表されるビフェニルノボラック型エポキシ樹脂、一般式(III)で表されるアントラセン型エポキシ樹脂、一般式(IV)で表されるジヒドロアントラセン型エポキシ樹脂から選ばれる少なくとも1種を含むものである上記2の低熱膨張性樹脂組成物。
2. The low thermal expansion resin composition according to 1 above, wherein the epoxy resin (A) having a polycyclic structure is an epoxy resin having at least one structure selected from a biphenyl structure, a naphthalene structure, an anthracene structure, and a dihydroanthracene structure.
3. An epoxy resin (A) having a polycyclic structure is a biphenyl novolac type epoxy resin represented by the following general formula (II), an anthracene type epoxy resin represented by the general formula (III), or a general formula (IV) 2. The low thermal expansion resin composition as described in 2 above, which comprises at least one selected from dihydroanthracene type epoxy resins.

Figure 2013163719
(式中、R1〜R4は独立に水素原子又は炭素数1〜5のアルキル基を表し、nは1以上の整数である。)
Figure 2013163719
(In the formula, R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n is an integer of 1 or more.)

Figure 2013163719
(式中、R1〜R4は独立に水素原子又は炭素数1〜5のアルキル基を表す。)
Figure 2013163719
(Wherein R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.)

Figure 2013163719
(式中、R1およびR2は独立に水素原子又は炭素数1〜5のアルキル基を表す。mは0〜6の整数、nは0〜4の整数である。)
Figure 2013163719
(In the formula, R 1 and R 2 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. M is an integer of 0 to 6, and n is an integer of 0 to 4.)

4.多環式構造を有するエポキシ樹脂(A)が、前記の一般式(II)で表されるビフェニルノボラック型エポキシ樹脂及び一般式(IV)で表されるジヒドロアントラセン型エポキシ樹脂を含むものである上記3の低熱膨張性樹脂組成物。
5.上記1〜4のいずれかの低熱膨張性樹脂組成物がシート状補強基材中に含侵又は塗工した後、Bステージ化したものであることを特徴とするプリプレグ。
6.シート状補強基材が、ガラス織布、ガラス不織布、アラミド不織布から選ばれる少なくとも1種である上記5のプリプレグ。
7.上記1〜4のいずれかの樹脂組成物又は上記5又は6のプリプレグを用いて形成された絶縁樹脂層を有することを特徴とする積層板。
8.上記7の積層板における絶縁樹脂層の片面又は両面に配置された金属箔を回路加工して得られたものであることを特徴とする配線板。
4). 3. The epoxy resin (A) having a polycyclic structure comprises the biphenyl novolac type epoxy resin represented by the general formula (II) and the dihydroanthracene type epoxy resin represented by the general formula (IV). Low thermal expansion resin composition.
5. A prepreg characterized in that the low thermal expansion resin composition of any one of (1) to (4) is impregnated or coated in a sheet-like reinforcing base material and then B-staged.
6). The prepreg according to 5 above, wherein the sheet-like reinforcing base material is at least one selected from a glass woven fabric, a glass nonwoven fabric, and an aramid nonwoven fabric.
7). A laminate having an insulating resin layer formed using the resin composition of any one of 1 to 4 or the prepreg of 5 or 6 above.
8). 8. A wiring board obtained by subjecting a metal foil disposed on one or both sides of an insulating resin layer in the laminated board of 7 to circuit processing.

本発明の低熱膨張性樹脂組成物では、無機充填材の高充填化や樹脂組成物の架橋密度を高めること無しに、容易に熱膨張率を低コストで低減することができ、配線板の絶縁樹脂層に用いることにより高密度配線が達成される。   In the low thermal expansion resin composition of the present invention, the thermal expansion coefficient can be easily reduced at low cost without increasing the filling of the inorganic filler and increasing the crosslinking density of the resin composition. High-density wiring is achieved by using the resin layer.

本発明の低熱膨張性樹脂組成物は、多環式構造を有するエポキシ樹脂(A)、一般式(I)で示されるリン化合物(B)及びジシアンジアミド(C)を含有し、多環式構造を有するエポキシ樹脂(A)のエポキシ基1モルに対して、化学式(I)で示されるリン化合物(B)が0.005〜0.05モルで配合又は予備反応したエポキシ樹脂(E1)を含有することを特徴とするものである。
次に、本発明の低熱膨張性樹脂組成物(以下、単に「樹脂組成物」とも云う)の各成分について説明する。
The low thermal expansion resin composition of the present invention contains an epoxy resin (A) having a polycyclic structure, a phosphorus compound (B) represented by the general formula (I) and dicyandiamide (C), and has a polycyclic structure. The phosphorus compound (B) represented by the chemical formula (I) contains the epoxy resin (E1) blended or pre-reacted at 0.005 to 0.05 mol with respect to 1 mol of the epoxy group of the epoxy resin (A) having It is characterized by this.
Next, each component of the low thermal expansion resin composition of the present invention (hereinafter also simply referred to as “resin composition”) will be described.

先ず、本発明の低熱膨張性樹脂組成物に含有させるエポキシ樹脂(E1)における(A)成分の多環式構造を有するエポキシ樹脂は、分子内に2個以上のエポキシ基と多環式構造を有する化合物であり、例えば、ナフタレン型エポキシ樹脂、ナフタレンノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂などが挙げられる。これらの化合物の分子量は特に制限されず、2種以上を併用することもできる。   First, the epoxy resin having a polycyclic structure as the component (A) in the epoxy resin (E1) to be contained in the low thermal expansion resin composition of the present invention has two or more epoxy groups and a polycyclic structure in the molecule. Examples thereof include naphthalene type epoxy resins, naphthalene novolac type epoxy resins, anthracene type epoxy resins, dihydroanthracene type epoxy resins, biphenyl type epoxy resins, and biphenyl novolac type epoxy resins. The molecular weight of these compounds is not particularly limited, and two or more kinds can be used in combination.

また、(A)成分は、上記の多環式構造を有するエポキシ樹脂の中、ビフェニル構造、ナフタレン構造、アントラセン構造、ジヒドロアントラセン構造から選ばれる少なくとも1種を有するエポキシ樹脂であることが好ましい。
また、(A)成分は、下記の一般式(II)で表されるビフェニルノボラック型エポキシ樹脂、一般式(III)で表されるアントラセン型エポキシ樹脂、一般式(IV)で表されるジヒドロアントラセン型エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂を含むものであることがより好ましい。
さらに、(A)成分は、一般式(II)で表されるビフェニルノボラック型エポキシ樹脂及び一般式(IV)で表されるジヒドロアントラセン型エポキシ樹脂を含むものであることが特に好ましい。
Moreover, it is preferable that (A) component is an epoxy resin which has at least 1 sort (s) chosen from the biphenyl structure, the naphthalene structure, the anthracene structure, and the dihydroanthracene structure among the epoxy resins which have said polycyclic structure.
The component (A) includes a biphenyl novolac type epoxy resin represented by the following general formula (II), an anthracene type epoxy resin represented by the general formula (III), and a dihydroanthracene represented by the general formula (IV) It is more preferable that it contains at least one epoxy resin selected from type epoxy resins.
Further, the component (A) particularly preferably contains a biphenyl novolac type epoxy resin represented by the general formula (II) and a dihydroanthracene type epoxy resin represented by the general formula (IV).

Figure 2013163719
(式中、R1〜R4は独立に水素原子又は炭素数1〜6のアルキル基を表し、nは1以上の整数である。)
Figure 2013163719
(Wherein R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 or more.)

Figure 2013163719
(式中、R1〜R4は独立に水素原子又は炭素数1〜6のアルキル基を表す。)
Figure 2013163719
(In the formula, R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)

Figure 2013163719
(式中、R1およびR2は独立に水素原子又は炭素数1〜6のアルキル基を表す。mは0〜6の整数、nは0〜4の整数である。)
Figure 2013163719
(In the formula, R 1 and R 2 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. M is an integer of 0 to 6, and n is an integer of 0 to 4.)

次に、本発明の樹脂組成物に含有させるエポキシ樹脂(E1)における(B)成分には、化学式(I)で表されるリン化合物〔10−(2,5−ジヒドロキシフェニル)−10−H−9−オキサ−10−ホスファフェナンスレン―10−オキサイド〕を用いる。この化学式(I)で表されるリン化合物は三光(株)から商品名「HCA−HQ」で販売されているものである。   Next, the component (B) in the epoxy resin (E1) contained in the resin composition of the present invention includes a phosphorus compound [10- (2,5-dihydroxyphenyl) -10-H represented by the chemical formula (I). -9-oxa-10-phosphaphenanthrene-10-oxide]. The phosphorus compound represented by the chemical formula (I) is sold by Sanko Co., Ltd. under the trade name “HCA-HQ”.

Figure 2013163719
Figure 2013163719

本発明の樹脂組成物に含有させるエポキシ樹脂(E1)は、更に(C)成分としてジシアンジアミドを配合するものである。
なお、本発明の樹脂組成物に含有させるエポキシ樹脂(E1)には、一般式(I)で示されるリン化合物(B)及びジシアンジアミド(C)以外の硬化剤(D)や硬化促進剤(E)を含有させても良い。
硬化剤(D)は、分子内に2個以上のエポキシ基との反応性を有する官能基を有していればどのようなものでも良く、酸無水物、アミン系化合物、フェノール系化合物などが上げられる。アミン系化合物としては、例えばグアナミン樹脂、メラミン樹脂、トリエチレンテトラミン、アミノトリアジンノボラック樹脂などが挙げられる。フェノール系化合物としては、例えばナフタレンジオール、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、アミノトリアジンノボラック樹脂、ビスマレイミド含有アミノトリアジンノボラック樹脂、ビスフェノールA、ビスフェノールFなどが挙げられる。これらの化合物の分子量はどのようなものでも良く、何種類かを併用することもできる。
硬化促進剤(E)としては、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。
The epoxy resin (E1) contained in the resin composition of the present invention further contains dicyandiamide as the component (C).
The epoxy resin (E1) contained in the resin composition of the present invention includes a curing agent (D) and a curing accelerator (E) other than the phosphorus compound (B) and dicyandiamide (C) represented by the general formula (I). ) May be included.
The curing agent (D) may be any one as long as it has a functional group having reactivity with two or more epoxy groups in the molecule, such as an acid anhydride, an amine compound, a phenol compound, and the like. Raised. Examples of amine compounds include guanamine resins, melamine resins, triethylenetetramine, aminotriazine novolac resins, and the like. Examples of the phenolic compound include naphthalene diol, phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, aminotriazine novolak resin, bismaleimide-containing aminotriazine novolak resin, bisphenol A, and bisphenol F. These compounds may have any molecular weight, and several types may be used in combination.
Examples of the curing accelerator (E) include imidazoles and derivatives thereof, tertiary amines and quaternary ammonium salts.

一般式(I)で示されるリン化合物(B)の配合量は多環式構造を有するエポキシ樹脂(A)1モルに対して0.005〜0.05モルであり、0.0075〜0.05モルがより好ましく、0.01〜0.05が特に好ましい。化学式(I)で示されるリン化合物(B)の配合量が0.005モルより少ないと熱膨張率の低減効果が発現せず、同様に0.05モルより多い場合も熱膨張率の低減効果が発現しない。
リン化合物(B)、ジシアンジアミド(C)および硬化剤(D)の配合量は、多環式構造を有するエポキシ樹脂(A)1モルに対して(B)〜(D)成分の合計量が0.01〜20モルとすることが好ましく、0.1〜10モルとすることがより好ましい。0.01モル以上とすることによりリン化合物(B)、ジシアンジアミド(C)および硬化剤(D)とエポキシ樹脂との反応性が向上する。
The compounding quantity of the phosphorus compound (B) shown by general formula (I) is 0.005-0.05 mol with respect to 1 mol of epoxy resin (A) which has a polycyclic structure, and is 0.0075-0. 05 mol is more preferable, and 0.01 to 0.05 is particularly preferable. When the compounding amount of the phosphorus compound (B) represented by the chemical formula (I) is less than 0.005 mol, the effect of reducing the thermal expansion coefficient does not appear, and also when the amount is more than 0.05 mol, the effect of reducing the thermal expansion coefficient Does not develop.
The compounding amount of the phosphorus compound (B), dicyandiamide (C) and curing agent (D) is such that the total amount of the components (B) to (D) is 0 with respect to 1 mol of the epoxy resin (A) having a polycyclic structure. It is preferable to set it as 0.01-20 mol, and it is more preferable to set it as 0.1-10 mol. By setting it as 0.01 mol or more, the reactivity of a phosphorus compound (B), dicyandiamide (C), a hardening | curing agent (D), and an epoxy resin improves.

本発明の樹脂組成物におけるエポキシ樹脂(E1)は、上記の多環式構造を有するエポキシ樹脂(A)、化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)を含有するエポキシ樹脂であり、(A)〜(C)を単に配合したものでも良いが、予備反応を行うことにより結晶化せずに保存安定性が良くなるので、取扱性の観点から予備反応して用いることが好ましい。
予備反応を行う場合、ジシアンジアミド(C)は予備反応で全量を投入しても良く、一部を予備反応後に添加しても良い。また、予備反応で化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)と共に、それ以外の硬化剤(D)を加えても良い。この際、化学式(I)で示されるリン化合物(B)、ジシアンジアミド(C)、それ以外の硬化剤(D)の合計配合量は、多環式構造を有するエポキシ樹脂(A)の当量に対し、0.05〜20当量が好ましく、0.1〜10当量がより好ましい。多環式構造を有するエポキシ樹脂の当量に対し0.05〜20当量とすることにより、多環式構造を有するエポキシ樹脂の溶解性が不十分となることがない。また、リン化合物(B)と硬化剤(D)に対し、ジシアンジアミド(C)の当量は、0.01〜100当量が好ましく、0.03〜30当量がより好ましく、0.05〜20当量がさらに好ましい。0.01〜100当量とすることによって、エポキシ樹脂(A)の溶解性を向上することが可能である。
なお、予備反応において、多環式構造を有するエポキシ樹脂(A)の共に他のエポキシ樹脂を併用することができ、化学式(I)で示されるリン化合物(B)、ジシアンジアミド(C)、それ以外の硬化剤(D)の当量の合計が、多環式構造を有するエポキシ樹脂(A)とさらに併用されるエポキシ樹脂の当量の合計に対して0.8〜1.2倍になるようにエポキシ樹脂と硬化剤の配合比を調整することが好ましい。
The epoxy resin (E1) in the resin composition of the present invention is an epoxy resin containing the epoxy resin (A) having the above polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I), and dicyandiamide (C). It may be a simple blend of (A) to (C), but storage stability is improved without performing crystallization by carrying out a preliminary reaction. preferable.
When the preliminary reaction is performed, the dicyandiamide (C) may be added in its entirety in the preliminary reaction, or a part thereof may be added after the preliminary reaction. Moreover, you may add other hardening | curing agents (D) with the phosphorus compound (B) and dicyandiamide (C) shown by chemical formula (I) by preliminary reaction. At this time, the total amount of the phosphorus compound (B) represented by the chemical formula (I), dicyandiamide (C), and the other curing agent (D) is based on the equivalent of the epoxy resin (A) having a polycyclic structure. 0.05 to 20 equivalents, preferably 0.1 to 10 equivalents. By setting it as 0.05-20 equivalent with respect to the equivalent of the epoxy resin which has a polycyclic structure, the solubility of the epoxy resin which has a polycyclic structure does not become inadequate. Moreover, 0.01-100 equivalent is preferable with respect to phosphorus compound (B) and hardening | curing agent (D), 0.01-100 equivalent is more preferable, 0.03-30 equivalent is more preferable, 0.05-20 equivalent is 0.05-20 equivalent. Further preferred. By setting it as 0.01-100 equivalent, it is possible to improve the solubility of an epoxy resin (A).
In the preliminary reaction, the epoxy resin (A) having a polycyclic structure can be used in combination with another epoxy resin, and the phosphorus compound (B), dicyandiamide (C) represented by the chemical formula (I), and others The total of the equivalents of the curing agent (D) of the epoxy is 0.8 to 1.2 times the total of the equivalents of the epoxy resin further used in combination with the epoxy resin (A) having a polycyclic structure. It is preferable to adjust the compounding ratio of the resin and the curing agent.

多環式構造を有するエポキシ樹脂(A)と化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)を予備反応させる場合には溶剤を加えることが好ましい。
溶剤は、多環式構造を有するエポキシ樹脂(A)と化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)が予備反応の温度で溶解でき、予備反応終了後室温に戻してもワニスから樹脂が析出しなければどのようなものでもよいが、特にアセトン、メチルエチルケトン、メチルブチルケトン、トルエン、キシレン、酢酸エチル、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、エタノール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が溶解性に優れるので好適である。これらの溶剤は、組み合わせて用いても構わない。
溶剤の配合量は、多環式構造を有するエポキシ樹脂(A)と化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)を予備反応させた樹脂組成物が溶解できればどのような量でもよいが、予備反応させた樹脂組成物の総量100質量部に対して、5〜300質量部の範囲が好ましく、30〜200質量部の範囲がさらに好ましい。
予備反応の温度は80〜250℃とすることが好ましく、より好ましくは、88〜245℃、さらに好ましくは、90〜240℃である。反応時間は10分〜30時間とすることが好ましく、より好ましくは30分〜20時間、さらに好ましくは1時間〜15時間である。予備反応及び反応時間をこのような範囲とすることで、予備反応が十分に進み、エポキシ樹脂の析出が生じにくく、樹脂組成物の取り扱いが容易となる。
When the epoxy resin (A) having a polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I) and the dicyandiamide (C) are pre-reacted, it is preferable to add a solvent.
As the solvent, the epoxy resin (A) having a polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I) and the dicyandiamide (C) can be dissolved at the temperature of the preliminary reaction, and even after the preliminary reaction is completed, the solvent can be returned to room temperature. Any resin may be used as long as the resin does not precipitate from the varnish, but in particular acetone, methyl ethyl ketone, methyl butyl ketone, toluene, xylene, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, ethanol, ethylene glycol Monomethyl ether, propylene glycol monomethyl ether acetate, and the like are preferable because of excellent solubility. These solvents may be used in combination.
The blending amount of the solvent is any amount as long as the resin composition in which the epoxy compound (A) having a polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I) and the dicyandiamide (C) are pre-reacted can be dissolved. However, the range of 5 to 300 parts by mass is preferable with respect to 100 parts by mass of the total amount of the pre-reacted resin composition, and the range of 30 to 200 parts by mass is more preferable.
The temperature of the preliminary reaction is preferably 80 to 250 ° C, more preferably 88 to 245 ° C, and still more preferably 90 to 240 ° C. The reaction time is preferably 10 minutes to 30 hours, more preferably 30 minutes to 20 hours, and even more preferably 1 hour to 15 hours. By setting the preliminary reaction and the reaction time in such a range, the preliminary reaction proceeds sufficiently, the precipitation of the epoxy resin hardly occurs, and the handling of the resin composition becomes easy.

本発明の低熱膨張性樹脂組成物には、無機充填剤を配合することができる。無機充填剤としては、シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム、クレイ、タルク、窒化珪素、窒化ホウ素、酸化チタン、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウム等を使用することができる。
無機充填剤の配合量は、本発明の樹脂組成物が多層配線板用材料として均一でかつ良好な取扱性を得るために、樹脂成分総量100質量部に対して、300質量部以下とすることが好ましく、200質量部以下にすることがより好ましい。
An inorganic filler can be blended in the low thermal expansion resin composition of the present invention. As the inorganic filler, silica, alumina, aluminum hydroxide, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, lead titanate, strontium titanate and the like can be used.
The blending amount of the inorganic filler should be 300 parts by mass or less with respect to 100 parts by mass of the total resin component in order that the resin composition of the present invention can obtain a uniform and good handling property as a multilayer wiring board material. Is preferable, and it is more preferable to make it 200 mass parts or less.

また、本発明の低熱膨張性樹脂組成物には、添加剤を添加してもかまわない。添加剤としては、各種シランカップリング剤、硬化促進剤、消泡剤等を使用できる。
添加剤の配合量は、樹脂組成物の特性を維持する上で、樹脂成分総量100質量部に対して、5質量部以下とすることが好ましく、3重量部以下にすることがより好ましい。
無機充填剤や添加剤を均一に分散させるため、らいかい機、ホモジナイザー等を用いることが有効である。
Moreover, you may add an additive to the low thermal expansion resin composition of this invention. As the additive, various silane coupling agents, curing accelerators, antifoaming agents and the like can be used.
In order to maintain the characteristics of the resin composition, the amount of the additive is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, with respect to 100 parts by mass of the total resin component.
In order to disperse the inorganic filler and additives uniformly, it is effective to use a raking machine, a homogenizer, or the like.

本発明のプリプレグは、本発明の低熱膨張性樹脂組成物を、シート状補強基材に含浸又は塗工した後、Bステージ化したものである。
プリプレグのシート状補強基材として、各種の電気絶縁材料用積層板に用いられている周知のものが使用できるが、ガラス織布やガラス不織布、アラミド不織布が好適に用いられる。シート状補強基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて、本発明のプリプレグを得ることができる。
The prepreg of the present invention is obtained by impregnating or coating the low thermal expansion resin composition of the present invention on a sheet-like reinforcing base material and then forming a B stage.
As the prepreg sheet-like reinforcing substrate, known materials used in various laminated sheets for electrical insulating materials can be used, and glass woven fabric, glass nonwoven fabric, and aramid nonwoven fabric are preferably used. The thickness of the sheet-like reinforcing base material is not particularly limited, and for example, about 0.03 to 0.5 mm can be used, and the amount of the resin composition attached to the base material is the resin of the prepreg after drying. After impregnating or coating the base material so that the content is 20 to 90% by mass, it is usually heat-dried at a temperature of 100 to 200 ° C. for 1 to 30 minutes and semi-cured (B stage). The prepreg of the present invention can be obtained.

本発明の積層板は、前述の低熱膨張性樹脂組成物又はプリプレグを用いて積層成形して得られた絶縁樹脂層を有するものである。積層板の具体例としては、例えば、プリプレグを1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
成形条件は、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。
また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。
本発明の配線板は、積層板における絶縁樹脂層の片面又は両面に配置された金属箔を回路加工して得られたものであり、上述の積層板に一般的な回路加工を施して得ることができる。
The laminated board of this invention has the insulating resin layer obtained by carrying out lamination molding using the above-mentioned low thermal expansion resin composition or prepreg. As a specific example of a laminated board, it can manufacture by laminating | molding by the structure which piled 1-20 sheets of prepregs, and has arrange | positioned metal foil, such as copper and aluminum, on the single side | surface or both surfaces, for example. The metal foil is not particularly limited as long as it is used for electrical insulating material applications.
The molding conditions can be applied to a laminate for an electrical insulating material and a multilayer board, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc., at a temperature of 100 to 250 ° C., a pressure of 0.2 to It can be molded in a range of 10 MPa and a heating time of 0.1 to 5 hours.
Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.
The wiring board of the present invention is obtained by subjecting a metal foil disposed on one or both sides of an insulating resin layer in a laminate to circuit processing, and is obtained by subjecting the above-mentioned laminate to general circuit processing. Can do.

次に、実施例により本発明を更に詳しく説明するが、本発明はこれらの記載に限定されるものではない。なお、各実施例及び比較例で得られた銅張積層板の性能は、以下の方法によりガラス転移温度(Tg)および熱膨張率(α1、α2)を測定・評価した。 EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited to these description. In addition, the performance of the copper clad laminated board obtained by each Example and the comparative example measured and evaluated the glass transition temperature (Tg) and the thermal expansion coefficient ((alpha) 1 , (alpha) 2 ) with the following method.

すなわち、銅張積層板を過硫酸アンモニウム150g/リットルの水溶液に40℃で20分間浸漬して銅箔をエッチング除去した。その後、4×20mmにサンプルを切り出し、TMA試験装置(デュポン社製、TMA2940)を用い、引張法(荷重5g)により、一次加熱を昇温速度:10℃/min、測定温度範囲:室温〜220℃で、二次加熱を温速度:10℃/min、測定温度範囲:室温〜260℃の範囲で測定し、二次加熱時における変曲点をガラス転移温度(Tg)とし、50〜120℃の熱膨張率の平均から熱膨張率(α1)を、200〜250℃の熱膨張率の平均から熱膨張率(α2)を測定した。 That is, the copper clad laminate was immersed in an aqueous solution of 150 g / liter ammonium persulfate at 40 ° C. for 20 minutes to remove the copper foil by etching. Thereafter, a sample was cut out to 4 × 20 mm, and the primary heating was performed at a heating rate of 10 ° C./min and a measurement temperature range: room temperature to 220 by a tensile method (load 5 g) using a TMA test apparatus (manufactured by DuPont, TMA2940). Secondary heating is measured at a temperature rate of 10 ° C./min and a measurement temperature range: room temperature to 260 ° C., and the inflection point at the time of secondary heating is the glass transition temperature (Tg), and 50 to 120 ° C. The thermal expansion coefficient (α 1 ) was measured from the average of the thermal expansion coefficients, and the thermal expansion coefficient (α 2 ) was measured from the average of the thermal expansion coefficients of 200 to 250 ° C.

実施例1
温度計、冷却管、攪拌装置を備えた4つ口セパラブルフラスコに、(A)成分としてジヒドロアントラセン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名YX−8800)200gとビフェニルノボラック型エポキシ樹脂(日本化薬株式会社、商品名NC−3000−H)165g、(B)成分として化学式(I)のリン化合物(三光株式会社、商品名HCA−HQ)5.5g、(C)成分としてジシアンジアミド(関東化学株式会社製)3.4g、(D)成分としてクレゾールノボラック樹脂(大日本インキ化学工業株式会社製、商品名KA−1165)37.4g、溶剤としてプロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)161gを投入し、140℃で3時間予備反応させた。
予備反応の後、クレゾールノボラック樹脂(大日本インキ化学工業株式会社製、商品名KA−1165)132g、プロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)133gを加え、100℃で30分間加熱溶解した。溶解後、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(四国化成工業製、商品名2PZ−CN)0.4g、シリカ(株式会社アドマテックス製、商品名SO−G1)170g、水酸化アルミニウム(昭和電工株式会社製、商品名HP−350)562g、メチルイソブチルケトン(関東化学株式会社製)253gを加え、室温で1時間撹拌してワニスを作製した。(B)成分の化学式(I)で示されるリン化合物の配合量は(A)成分の多環式構造を有するエポキシ樹脂のエポキシ基1モルに対して:0.01モルである。
次に、得られたワニスを厚みが0.1mmのガラス織布(坪量105g/m2)に含浸し、160℃で5分間加熱して半硬化(Bステージ状態)のプリプレグを得た。このプリプレグを2枚重ね、その両側に18μmの銅箔(古河電工製、商品名F2−WS、Rz:2.0μm、Ra:0.3μm)を重ね、185℃、90分、3.0MPaのプレス条件で両面銅張積層板を作製した。得られた銅張積層板の性能測定・評価結果を第1表に示す。
Example 1
In a four-neck separable flask equipped with a thermometer, a condenser, and a stirrer, 200 g of dihydroanthracene type epoxy resin (trade name YX-8800, manufactured by Japan Epoxy Resin Co., Ltd.) and biphenyl novolac type epoxy resin as component (A) (Nippon Kayaku Co., Ltd., trade name NC-3000-H) 165 g, (B) component phosphorus compound of formula (I) (Sanko Co., Ltd., trade name HCA-HQ) 5.5 g, (C) component dicyandiamide 3.4 g (manufactured by Kanto Chemical Co., Ltd.), 37.4 g of cresol novolak resin (Dainippon Ink Chemical Co., Ltd., trade name KA-1165) as component (D), propylene glycol monomethyl ether acetate (Kanto Chemical Co., Ltd.) as solvent 161 g) was added and pre-reacted at 140 ° C. for 3 hours.
After the preliminary reaction, 132 g of cresol novolac resin (Dainippon Ink Chemical Co., Ltd., trade name KA-1165) and 133 g of propylene glycol monomethyl ether acetate (manufactured by Kanto Chemical Co., Ltd.) were added and dissolved by heating at 100 ° C. for 30 minutes. . After dissolution, 0.4 g of 1-cyanoethyl-2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name 2PZ-CN), 170 g of silica (manufactured by Admatechs Co., Ltd., trade name SO-G1) as an accelerator, aluminum hydroxide 562 g (manufactured by Showa Denko KK, trade name HP-350) and 253 g of methyl isobutyl ketone (manufactured by Kanto Chemical Co., Inc.) were added and stirred at room temperature for 1 hour to prepare a varnish. The blending amount of the phosphorus compound represented by the chemical formula (I) of the component (B) is 0.01 mol with respect to 1 mol of the epoxy group of the epoxy resin having a polycyclic structure of the component (A).
Next, the obtained varnish was impregnated into a glass woven fabric having a thickness of 0.1 mm (basis weight 105 g / m 2 ) and heated at 160 ° C. for 5 minutes to obtain a semi-cured (B stage state) prepreg. Two sheets of this prepreg are stacked, and 18 μm copper foil (made by Furukawa Electric, trade name F2-WS, Rz: 2.0 μm, Ra: 0.3 μm) is stacked on both sides thereof, 185 ° C., 90 minutes, 3.0 MPa. A double-sided copper-clad laminate was produced under pressing conditions. The performance measurement and evaluation results of the obtained copper-clad laminate are shown in Table 1.

実施例2
(B)成分として化学式(I)のリン化合物(HCA−HQ)13.8g、(D)成分としてクレゾールノボラック樹脂(KA−1165)31.4g、溶剤としてプロピレングリコールモノメチルエーテルアセテート156gを用いて予備反応を行い、予備反応後に加えるクレゾールノボラック樹脂(KA−1165)131g、プロピレングリコールモノメチルエーテルアセテート140g、シリカ(SO−G1)171g、水酸化アルミニウム(HP−350)564g、メチルイソブチルケトン253gに変えた以外は実施例1と同様にして行ってワニスを作製し、両面銅張積層板を作製した。(C)成分の化学式(I)で示されるリン化合物の配合量は(A)成分の多環式構造を有するエポキシ樹脂のエポキシ基1モルに対して:0.025モルである。得られた銅張積層板の性能測定・評価結果を第1表に示す。
Example 2
Preliminary using 13.8 g of phosphorus compound (HCA-HQ) of chemical formula (I) as component (B), 31.4 g of cresol novolac resin (KA-1165) as component (D), and 156 g of propylene glycol monomethyl ether acetate as solvent. The reaction was carried out, and 131 g of cresol novolak resin (KA-1165), 140 g of propylene glycol monomethyl ether acetate, 171 g of silica (SO-G1), 564 g of aluminum hydroxide (HP-350) and 253 g of methyl isobutyl ketone were added after the preliminary reaction. A varnish was produced in the same manner as in Example 1 except that a double-sided copper-clad laminate was produced. The compounding amount of the phosphorus compound represented by the chemical formula (I) of the component (C) is 0.025 mol with respect to 1 mol of the epoxy group of the epoxy resin having a polycyclic structure of the component (A). The performance measurement and evaluation results of the obtained copper-clad laminate are shown in Table 1.

実施例3
(B)成分として化学式(I)のリン化合物(HCA−HQ)27.0g、(D)成分としてクレゾールノボラック樹脂(KA−1165)21.6g、溶剤としてプロピレングリコールモノメチルエーテルアセテート150gを用いて予備反応を行い、、予備反応後に加えるクレゾールノボラック樹脂(KA−1165)131g、プロピレングリコールモノメチルエーテルアセテート151g、シリカ(SO−G1)172g、水酸化アルミニウム(HP−350)568g、メチルイソブチルケトン252gに変えた以外は実施例1と同様にして行ってワニスを作製し、両面銅張積層板を作製した。(B)成分の化学式(I)で示されるリン化合物の配合量は(A)成分の多環式構造を有するエポキシ樹脂のエポキシ基1モルに対して:0.049モルである。得られた銅張積層板の性能測定・評価結果を第1表に示す。
Example 3
(B) 27.0 g of the phosphorus compound of formula (I) (HCA-HQ) as component, 21.6 g of cresol novolac resin (KA-1165) as component (D), and 150 g of propylene glycol monomethyl ether acetate as solvent The reaction is performed and changed to 131 g of cresol novolak resin (KA-1165), propylene glycol monomethyl ether acetate 151 g, silica (SO-G1) 172 g, aluminum hydroxide (HP-350) 568 g, and methyl isobutyl ketone 252 g. A varnish was prepared in the same manner as in Example 1 except that a double-sided copper-clad laminate was prepared. (B) The compounding quantity of the phosphorus compound shown by chemical formula (I) is 0.049 mol with respect to 1 mol of epoxy groups of the epoxy resin having a polycyclic structure of component (A). The performance measurement and evaluation results of the obtained copper-clad laminate are shown in Table 1.

比較例1
温度計、冷却管、攪拌装置を備えた4つ口セパラブルフラスコに、ジヒドロアントラセン型エポキシ樹脂(YX−8800)200g、ビフェニルノボラック型エポキシ樹脂(NC−3000−H)165g、硬化剤としてジシアンジアミド3.4gとクレゾールノボラック樹脂(KA−1165)41.5g、溶剤としてプロピレングリコールモノメチルエーテルアセテート163gを投入し、140℃で3時間予備反応させた。
その後、クレゾールノボラック樹脂(KA−1165)131g、プロピレングリコールモノメチルエーテルアセテート161gを加え、100℃で30分間加熱溶解した。溶解後、硬化促進剤として2PZ−CN:0.4g、シリカ(SO−G1)170g、水酸化アルミニウム(HP−350)561g、メチルイソブチルケトン254gを加え、室温で1時間撹拌してワニスを作製した。実施例1と同様にして両面銅張積層板を作製し、得られた銅張積層板の性能測定・評価結果を第1表に示す。
Comparative Example 1
In a four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 200 g of dihydroanthracene type epoxy resin (YX-8800), 165 g of biphenyl novolac type epoxy resin (NC-3000-H), dicyandiamide 3 as a curing agent 4 g, 41.5 g of cresol novolak resin (KA-1165) and 163 g of propylene glycol monomethyl ether acetate as a solvent were added and pre-reacted at 140 ° C. for 3 hours.
Thereafter, 131 g of cresol novolac resin (KA-1165) and 161 g of propylene glycol monomethyl ether acetate were added and dissolved by heating at 100 ° C. for 30 minutes. After dissolution, 2PZ-CN: 0.4 g, silica (SO-G1) 170 g, aluminum hydroxide (HP-350) 561 g, and methyl isobutyl ketone 254 g are added as curing accelerators, and stirred at room temperature for 1 hour to produce a varnish. did. A double-sided copper-clad laminate was prepared in the same manner as in Example 1, and the performance measurement / evaluation results of the obtained copper-clad laminate are shown in Table 1.

比較例2
硬化剤として化学式(I)のリン化合物(HCA−HQ)41.3g、クレゾールノボラック樹脂(KA−1165)26.3g、溶剤としてプロピレングリコールモノメチルエーテルアセテート144gを用いて予備反応を行い、予備反応後に加えるクレゾールノボラック樹脂(KA−1165)131g、プロピレングリコールモノメチルエーテルアセテート151g、シリカ(SO−G1)173g、水酸化アルミニウム(HP−350)572g、メチルイソブチルケトン248gとした以外は実施例1と同様にして行ってワニスを作製し、両面銅張積層板を作製した。(B)成分の化学式(I)で示されるリン化合物の配合量は(A)成分の多環式構造を有するエポキシ樹脂のエポキシ基1モルに対して:0.075モルである。得られた銅張積層板の性能測定・評価結果を第1表に示す。
Comparative Example 2
Preliminary reaction is carried out using 41.3 g of the phosphorus compound of formula (I) (HCA-HQ) as a curing agent, 26.3 g of cresol novolak resin (KA-1165), and 144 g of propylene glycol monomethyl ether acetate as a solvent. Example 1 was repeated except that 131 g of cresol novolak resin (KA-1165), 151 g of propylene glycol monomethyl ether acetate, 173 g of silica (SO-G1), 572 g of aluminum hydroxide (HP-350), and 248 g of methyl isobutyl ketone were used. To prepare a varnish and a double-sided copper-clad laminate. The blending amount of the phosphorus compound represented by the chemical formula (I) of the component (B) is 0.075 mol with respect to 1 mol of the epoxy group of the epoxy resin having a polycyclic structure of the component (A). The performance measurement and evaluation results of the obtained copper-clad laminate are shown in Table 1.

比較例3
硬化剤としてジシアンジアミドを使用せず、化学式(I)のリン化合物(HCA−HQ)27g、クレゾールノボラック樹脂(KA−1165)40.9g、溶剤としてプロピレングリコールモノメチルエーテルアセテート142gを用いて予備反応を行い、予備反応後に加えるクレゾールノボラック樹脂(KA−1165)161g、プロピレングリコールモノメチルエーテルアセテート158g、シリカ(SO−G1)173g、水酸化アルミニウム(HP−350)572g、メチルイソブチルケトン275gとした以外は比較例1と同様にして行ったが、樹脂が析出し銅張積層板を作製できなかった。
Comparative Example 3
Preliminary reaction is performed without using dicyandiamide as a curing agent, using 27 g of phosphorus compound of formula (I) (HCA-HQ), 40.9 g of cresol novolac resin (KA-1165), and 142 g of propylene glycol monomethyl ether acetate as a solvent. Comparative Example, except that 161 g of cresol novolak resin (KA-1165), 158 g of propylene glycol monomethyl ether acetate, 173 g of silica (SO-G1), 572 g of aluminum hydroxide (HP-350), 275 g of methyl isobutyl ketone were added after the preliminary reaction. The procedure was the same as in Example 1, but the resin was deposited and a copper clad laminate could not be produced.

比較例4
硬化促進剤の2PZ−CNを、予備反応時に0.2g加え、予備反応後も0.2g加えた以外は全て比較例3と同様にして行いワニスを作製した。実施例1と同様にして両面銅張積層板を作製し、得られた銅張積層板の性能測定・評価結果を第1表に示す。
Comparative Example 4
A varnish was prepared in the same manner as in Comparative Example 3 except that 0.2 g of the curing accelerator 2PZ-CN was added during the preliminary reaction and 0.2 g was added after the preliminary reaction. A double-sided copper-clad laminate was prepared in the same manner as in Example 1, and the performance measurement / evaluation results of the obtained copper-clad laminate are shown in Table 1.

比較例5
フラスコに、フェノールノボラック型エポキシ樹脂(DIC株式会社製、商品名N−770)200g、ジシアンジアミド2.2gとクレゾールノボラック樹脂(KA−1165)113g、溶剤としてプロピレングリコールモノメチルエーテルアセテート170g、メチルイソブチルケトン156gを投入し、室温で2時間撹拌溶解した。その後、硬化促進剤として2PZ−CN 0.2g、シリカ(SO−G1)101g、水酸化アルミニウム(HP−350)343g加え、室温1時間撹拌してワニスを作製した。実施例1と同様にして両面銅張積層板を作製し、銅張積層板の性能測定・評価結果を第1表に示す。
Comparative Example 5
In a flask, phenol novolac type epoxy resin (DIC Corporation, trade name N-770) 200 g, dicyandiamide 2.2 g and cresol novolac resin (KA-1165) 113 g, propylene glycol monomethyl ether acetate 170 g, methyl isobutyl ketone 156 g as a solvent. Was stirred and dissolved at room temperature for 2 hours. Thereafter, 0.2 g of 2PZ-CN, 101 g of silica (SO-G1), and 343 g of aluminum hydroxide (HP-350) were added as curing accelerators, and stirred at room temperature for 1 hour to prepare a varnish. A double-sided copper-clad laminate was produced in the same manner as in Example 1, and the performance measurement / evaluation results of the copper-clad laminate are shown in Table 1.

比較例6
エポキシ樹脂としてフェノールノボラック型エポキシ樹脂(N−770)200g、硬化剤として化学式(I)のリン化合物(HCA−HQ)16.8g、クレゾールノボラック樹脂(KA−1165)12.8g、溶剤としてプロピレングリコールモノメチルエーテルアセテート143gを用いて予備反応を行い、予備反応後に加えるクレゾールノボラック樹脂(KA−1165)88g、プロピレングリコールモノメチルエーテルアセテート29g、シリカ(SO−G1)104g、水酸化アルミニウム(HP−350)365g、メチルイソブチルケトン166gに変えた以外は全て比較例1と同様にして行い、ワニスを作製した。実施例1と同様にして両面銅張積層板を作製し、銅張積層板の性能測定・評価結果を第1表に示す。
Comparative Example 6
200 g of phenol novolac type epoxy resin (N-770) as an epoxy resin, 16.8 g of phosphorus compound of formula (I) (HCA-HQ) as a curing agent, 12.8 g of cresol novolak resin (KA-1165), and propylene glycol as a solvent Preliminary reaction is performed using 143 g of monomethyl ether acetate, and 88 g of cresol novolac resin (KA-1165) added after the preliminary reaction, 29 g of propylene glycol monomethyl ether acetate, 104 g of silica (SO-G1), 365 g of aluminum hydroxide (HP-350) A varnish was prepared in the same manner as in Comparative Example 1 except that 166 g of methyl isobutyl ketone was used. A double-sided copper-clad laminate was produced in the same manner as in Example 1, and the performance measurement / evaluation results of the copper-clad laminate are shown in Table 1.

Figure 2013163719
Figure 2013163719

第1表より、実施例1〜3の熱膨張率α1が12ppm/K以下であるのに対し、比較例1〜6の熱膨張率α1は13ppm/K以上と高く、また、熱膨張率α2も実施例1〜3では比較例より低いことから、本発明の樹脂組成物は優れた低熱膨張性を有することが分かる。
比較例3はジシアンジアミドを含有しないものであり、樹脂が析出しサンプルを作製できなかったものである。従って、本発明の樹脂組成物には、多環式構造を有するエポキシ樹脂(A)、化学式(I)で示されるリン化合物(B)、ジシアンジアミド(C)が必須であり、1つでも欠けるとその機能が発現しないことが分かる。
また、本発明の実施例における樹脂組成物における無機充填材は70質量%未満であり、ガラス転移温度が200℃未満であるので、本発明の低熱膨張性樹脂組成物は無機充填材の高充填化や樹脂組成物の架橋密度を高めたものではないことが分かる。
From Table 1, the thermal expansion coefficient α 1 of Examples 1 to 3 is 12 ppm / K or less, whereas the thermal expansion coefficient α 1 of Comparative Examples 1 to 6 is as high as 13 ppm / K or more. Since the rate α 2 is also lower in Examples 1 to 3 than in the comparative example, it can be seen that the resin composition of the present invention has excellent low thermal expansion.
Comparative Example 3 does not contain dicyandiamide, and the sample was not able to be produced because the resin was precipitated. Therefore, the epoxy resin (A) having a polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I), and dicyandiamide (C) are essential for the resin composition of the present invention, and even one is missing. It turns out that the function does not express.
Moreover, since the inorganic filler in the resin composition in the Example of this invention is less than 70 mass%, and the glass transition temperature is less than 200 degreeC, the low thermal expansion resin composition of this invention is the high filling of an inorganic filler. It turns out that it is not what increased the crosslink density of the resin composition or the resin composition.

本発明によれば、無機充填材の高充填化や樹脂組成物の架橋密度を高めること無しに、熱膨張率を低コストで低減することができ、配線板の高密度が達成されて、電子機器などの小型化が容易となる。   According to the present invention, it is possible to reduce the thermal expansion coefficient at low cost without increasing the filling of the inorganic filler and increasing the crosslinking density of the resin composition, and the high density of the wiring board is achieved. It is easy to downsize equipment.

Claims (8)

多環式構造を有するエポキシ樹脂(A)、化学式(I)で示されるリン化合物(B)及びジシアンジアミド(C)を含有し、多環式構造を有するエポキシ樹脂(A)のエポキシ基1モルに対して、化学式(I)で示されるリン化合物(B)が0.005〜0.05モルで配合又は予備反応したエポキシ樹脂(E1)を含有することを特徴とする低熱膨張性樹脂組成物。
Figure 2013163719
The epoxy resin (A) having a polycyclic structure, the phosphorus compound (B) represented by the chemical formula (I), and dicyandiamide (C) are contained in 1 mol of an epoxy group of the epoxy resin (A) having a polycyclic structure. On the other hand, the low thermal expansion resin composition characterized by containing the epoxy resin (E1) which the phosphorus compound (B) shown by Chemical formula (I) mix | blended or pre-reacted by 0.005-0.05 mol.
Figure 2013163719
多環式構造を有するエポキシ樹脂(A)が、ビフェニル構造、ナフタレン構造、アントラセン構造、ジヒドロアントラセン構造から選ばれる少なくとも1種の構造を有するエポキシ樹脂である請求項1に記載の低熱膨張性樹脂組成物。   The low thermal expansion resin composition according to claim 1, wherein the epoxy resin (A) having a polycyclic structure is an epoxy resin having at least one structure selected from a biphenyl structure, a naphthalene structure, an anthracene structure, and a dihydroanthracene structure. object. 多環式構造を有するエポキシ樹脂(A)が、下記の一般式(II)で表されるビフェニルノボラック型エポキシ樹脂、一般式(III)で表されるアントラセン型エポキシ樹脂、一般式(IV)で表されるジヒドロアントラセン型エポキシ樹脂から選ばれる少なくとも1種を含むものである請求項2に記載の低熱膨張性樹脂組成物。
Figure 2013163719
(式中、R1〜R4は独立に水素原子又は炭素数1〜5のアルキル基を表し、nは1以上の整数である。)
Figure 2013163719
(式中、R1〜R4は独立に水素原子又は炭素数1〜5のアルキル基を表す。)
Figure 2013163719
(式中、R1およびR2は独立に水素原子又は炭素数1〜5のアルキル基を表す。mは0〜6の整数、nは0〜4の整数である。)
An epoxy resin (A) having a polycyclic structure is a biphenyl novolac type epoxy resin represented by the following general formula (II), an anthracene type epoxy resin represented by the general formula (III), or a general formula (IV) The low thermal expansion resin composition according to claim 2, comprising at least one selected from dihydroanthracene-type epoxy resins.
Figure 2013163719
(In the formula, R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n is an integer of 1 or more.)
Figure 2013163719
(Wherein R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.)
Figure 2013163719
(In the formula, R 1 and R 2 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. M is an integer of 0 to 6, and n is an integer of 0 to 4.)
多環式構造を有するエポキシ樹脂(A)が、前記の一般式(II)で表されるビフェニルノボラック型エポキシ樹脂及び一般式(IV)で表されるジヒドロアントラセン型エポキシ樹脂を含むものである請求項3に記載の低熱膨張性樹脂組成物。   The epoxy resin (A) having a polycyclic structure contains a biphenyl novolac type epoxy resin represented by the general formula (II) and a dihydroanthracene type epoxy resin represented by the general formula (IV). 2. A low thermal expansion resin composition as described in 1. above. 請求項1〜4のいずれかに記載の低熱膨張性樹脂組成物がシート状補強基材中に含侵又は塗工した後、Bステージ化したものであることを特徴とするプリプレグ。   A prepreg characterized in that the low thermal expansion resin composition according to any one of claims 1 to 4 is impregnated or coated in a sheet-like reinforcing base material and then B-staged. シート状補強基材が、ガラス織布、ガラス不織布、アラミド不織布から選ばれる少なくとも1種である請求項5に記載のプリプレグ。   The prepreg according to claim 5, wherein the sheet-like reinforcing base material is at least one selected from a glass woven fabric, a glass nonwoven fabric, and an aramid nonwoven fabric. 請求項1〜4のいずれかに記載の低熱膨張性樹脂組成物又は請求項5又は6に記載のプリプレグを用いて形成された絶縁樹脂層を有することを特徴とする積層板。   A laminated board comprising an insulating resin layer formed using the low thermal expansion resin composition according to any one of claims 1 to 4 or the prepreg according to claim 5 or 6. 請求項7に記載の積層板における絶縁樹脂層の片面又は両面に配置された金属箔を回路加工して得られたものであることを特徴とする配線板。   The wiring board obtained by carrying out circuit processing of the metal foil arrange | positioned at the single side | surface or both surfaces of the insulating resin layer in the laminated board of Claim 7.
JP2012026519A 2012-02-09 2012-02-09 Low thermal expansion resin composition, prepreg, laminate and wiring board Active JP6111518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026519A JP6111518B2 (en) 2012-02-09 2012-02-09 Low thermal expansion resin composition, prepreg, laminate and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026519A JP6111518B2 (en) 2012-02-09 2012-02-09 Low thermal expansion resin composition, prepreg, laminate and wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016197214A Division JP6299834B2 (en) 2016-10-05 2016-10-05 Low thermal expansion resin composition, prepreg, laminate and wiring board

Publications (2)

Publication Number Publication Date
JP2013163719A true JP2013163719A (en) 2013-08-22
JP6111518B2 JP6111518B2 (en) 2017-04-12

Family

ID=49175294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026519A Active JP6111518B2 (en) 2012-02-09 2012-02-09 Low thermal expansion resin composition, prepreg, laminate and wiring board

Country Status (1)

Country Link
JP (1) JP6111518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041049A (en) * 2018-09-10 2020-03-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411662A (en) * 1990-05-01 1992-01-16 Toto Kasei Kk Flame-retardant thermosetting resin composition
JP2010248473A (en) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411662A (en) * 1990-05-01 1992-01-16 Toto Kasei Kk Flame-retardant thermosetting resin composition
JP2010248473A (en) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041049A (en) * 2018-09-10 2020-03-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
JP7243093B2 (en) 2018-09-10 2023-03-22 株式会社レゾナック Epoxy resins, epoxy resin compositions, cured epoxy resins and composite materials

Also Published As

Publication number Publication date
JP6111518B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5338187B2 (en) Inorganic filler-containing resin composition, prepreg, laminate and wiring board
JP4926811B2 (en) Resin composition, prepreg, laminate and wiring board
JP2012052110A (en) Thermosetting resin composition, and prepreg using the same, laminate
KR102325101B1 (en) Maleimide resin composition, prepreg, laminate and printed circuit board
JP7276400B2 (en) Metal clad laminates, printed wiring boards and semiconductor packages
KR101516068B1 (en) Resin composition for printed circuit board, build-up film, prepreg and printed circuit board
KR20140127039A (en) Insulating resin composition having low CTE and high thermal stability for PCB and prepreg, CCL and PCB using the same
JP6299834B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board
JP6428638B2 (en) Metal-clad laminate, circuit board, and electronic device
US20140187679A1 (en) Resin composition with good workability, insulating film, and prepreg
JP4317380B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
US20020197479A1 (en) Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP6111518B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board
JP4676739B2 (en) Resin composition and prepreg and laminate using the same
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2005209489A (en) Insulation sheet
JP2005048036A (en) Prepreg and metal foil-clad laminate board using the same
JP2005154739A (en) Resin composition, and prepreg and laminate using the composition
JP2016060840A (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
KR101513350B1 (en) Insulating film for printed circuit board and products having the same
JP2014062249A (en) Epoxy resin composition for insulation, insulating film, prepreg and printed circuit board
JP6478088B2 (en) Prepreg with primer layer for plating process and method for producing multilayer printed wiring board using the same
JPH09255802A (en) Frefreg for laminated board
JP2015120890A (en) Thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6111518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350