JP2013163615A - Whisker crystal of iron-based superconductor and production method of the same - Google Patents

Whisker crystal of iron-based superconductor and production method of the same Download PDF

Info

Publication number
JP2013163615A
JP2013163615A JP2012027737A JP2012027737A JP2013163615A JP 2013163615 A JP2013163615 A JP 2013163615A JP 2012027737 A JP2012027737 A JP 2012027737A JP 2012027737 A JP2012027737 A JP 2012027737A JP 2013163615 A JP2013163615 A JP 2013163615A
Authority
JP
Japan
Prior art keywords
iron
crystal
whisker
reaction vessel
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012027737A
Other languages
Japanese (ja)
Other versions
JP5916009B2 (en
Inventor
Gun Ri
軍 李
Kiyoshi En
潔 袁
Yoriaki To
代明 湯
Meng-Yue Li
夢月 李
yan-feng Guo
ヤンフェン グオ
Yoshihiro Tsujimoto
吉廣 辻本
Takeshi Hatano
毅 波多野
Shunichi Arisawa
俊一 有沢
Golberg Demitry
ゴルバーグ デミトリー
Kahei O
華兵 王
Kazunari Yamaura
一成 山浦
Hideo Hosono
秀雄 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Tokyo Institute of Technology NUC
Original Assignee
National Institute for Materials Science
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Tokyo Institute of Technology NUC filed Critical National Institute for Materials Science
Priority to JP2012027737A priority Critical patent/JP5916009B2/en
Publication of JP2013163615A publication Critical patent/JP2013163615A/en
Application granted granted Critical
Publication of JP5916009B2 publication Critical patent/JP5916009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a whisker crystal of iron-based superconductor which exhibits superconductivity at an absolute temperature of about 30 K, and to provide a production method which is easy to cope with toxicity and can industrially advantageously produce the whisker crystal.SOLUTION: A mixed powder comprising raw materials constituted of a metal arsenide powder and a metal powder and an additive for promoting crystal growth is filled in a capsule-shaped reaction vessel made of metal. Then, a pressure of 240-380 MPa is mechanically applied via two punches arranged oppositely to each other. After depressurizing, the temperature of the reaction vessel is kept within the range of 700-1,000°C for ≥48 h. Successively, the reaction vessel is furnace cooled to 700°C or less at a fixed temperature lowering rate of ≤0.3°C/min.

Description

本発明は、鉄系超電導体ウィスカー結晶とその製造方法に関する。   The present invention relates to an iron-based superconductor whisker crystal and a method for producing the same.

本発明は、より詳しくは、成分組成に鉄とヒ素を含み、更に他の2種類以上の元素を含む棒針状のウィスカー結晶であり、絶対温度30K程度で超電導性を示す鉄系超電導体のウィスカー結晶と、このウィスカー結晶の製造方法に関する。   In more detail, the present invention is a whisker crystal in the form of a needle needle containing iron and arsenic in the composition and further containing two or more other elements, and exhibits superconductivity at an absolute temperature of about 30K. The present invention relates to a crystal and a method for producing the whisker crystal.

鉄系超電導体は、必須元素として鉄とヒ素を含有し、更に他の2種類以上の追加元素を含む場合に超電導転移温度が最も高くなることが知られている(非特許文献1)。このような鉄系超電導体の薄膜状やバルク状の結晶はすでに製造されているが(非特許文献1)、産業上重要なアスペクト比が高いウィスカー状の結晶は製造困難であった。   An iron-based superconductor is known to have the highest superconducting transition temperature when it contains iron and arsenic as essential elements and further contains two or more additional elements (Non-patent Document 1). Although such thin films and bulk crystals of iron-based superconductors have already been produced (Non-patent Document 1), whisker-like crystals having a high aspect ratio which is industrially important have been difficult to produce.

その理由の一つに、必須元素のヒ素の毒性に関する対応がある。一般的なウィスカー結晶の製造方法では、原料元素を気化し、反応ガス又は搬送ガスによって輸送し、気相反応によって基板上で結晶成長させるが、この製造方法では、結晶育成装置の中で原料元素のヒ素が広範に拡散するため、毒性対応が困難であった。   One reason for this is the response to the toxicity of the essential element arsenic. In a general whisker crystal manufacturing method, a raw material element is vaporized, transported by a reaction gas or a carrier gas, and grown on a substrate by a gas phase reaction. In this manufacturing method, the raw material element is contained in a crystal growing apparatus. Because of the widespread diffusion of arsenic, it was difficult to cope with toxicity.

もう一つの理由は、鉄系超電導体の超電導特性が結晶組成に鋭敏なためである。例えば、超電導転移温度が絶対温度で30K以上の鉄系超電導体は、鉄とヒ素を含む4種類以上の元素から構成されている(非特許文献1)。公知の方法では、鉄とヒ素を含む4種類以上の構成元素を任意に制御してウィスカー結晶を合成することが難しく、実際、これまでに鉄系超電導体のウィスカー結晶は製造されていない。   Another reason is that the superconducting properties of the iron-based superconductor are sensitive to the crystal composition. For example, an iron-based superconductor having a superconducting transition temperature of 30 K or higher in absolute temperature is composed of four or more elements including iron and arsenic (Non-Patent Document 1). In the known method, it is difficult to synthesize whisker crystals by arbitrarily controlling four or more kinds of constituent elements including iron and arsenic. Actually, whisker crystals of iron-based superconductors have not been manufactured so far.

特許文献1に鉄を含む針状結晶の製造方法に関する記述がある。この製造方法では、ヒ化鉄を原料物質の一部として使用するが、最終的には鉄とヒ素の両元素を含む針状結晶は製造されていない。更に、この製造方法で得られる結晶の長さと直径のアスペクト比は100以下であるため(特許文献1)、この製造方法を鉄系超電導体のウィスカー結晶の製造に適用することは難しい。   Patent Document 1 describes a method for producing needle-like crystals containing iron. In this manufacturing method, iron arsenide is used as a part of the raw material, but finally needle-like crystals containing both elements of iron and arsenic are not manufactured. Furthermore, since the aspect ratio of the length and the diameter of the crystal obtained by this production method is 100 or less (Patent Document 1), it is difficult to apply this production method to the production of whisker crystals of iron-based superconductors.

毒性を有する元素を含まない銅酸化物超電導体のウィスカー結晶の製造方法は、例えば、非特許文献2に開示されているが、毒性に関する理由のため、非特許文献2に開示された製造方法を原料元素にヒ素を含む鉄系超電導体のウィスカー結晶の製造に適用することは難しい。   Although the manufacturing method of the whisker crystal | crystallization of the copper oxide superconductor which does not contain the element which has toxicity is disclosed by the nonpatent literature 2, for the reason regarding toxicity, the manufacturing method disclosed by the nonpatent literature 2 is used. It is difficult to apply to the manufacture of whisker crystals of iron-based superconductors containing arsenic as a raw material element.

同様に、二ほう化マグネシウム(MgB)超電導体のウィスカー結晶の製造方法は、例えば、非特許文献3に開示されているが、結晶組成の制御に関する理由のため、非特許文献3に開示された製造方法を、原料元素にヒ素を含む鉄系超電導体のウィスカー結晶の製造に適用することは難しい。 Similarly, a method for producing a whisker crystal of a magnesium diboride (MgB 2 ) superconductor is disclosed in Non-Patent Document 3, for example, but is disclosed in Non-Patent Document 3 for reasons relating to control of the crystal composition. It is difficult to apply this manufacturing method to the production of whisker crystals of iron-based superconductors containing arsenic as a raw material element.

特開2001−342014号公報JP 2001-342014 A

前田京剛・今井良宗・高橋英幸、固体物理46 (2011) 453.Maeda Kyogo, Imai Yoshimune, Takahashi Hideyuki, Solid State Physics 46 (2011) 453. Nagao, M.; Sato, M.; Maeda, H.; Kim, S. J.; Yamashita, T. Appl. Phys. Lett. 2001, 79, 16.Nagao, M .; Sato, M .; Maeda, H .; Kim, S. J .; Yamashita, T. Appl. Phys. Lett. 2001, 79, 16. Y. Wang, C. Zhuang, J. Gao, X. Shan, J. Zhang, Z. Liao, H. Xu, D. Yu, and Q. Feng, J. Am. Chem. Soc. 131, 2436 (2009).Y. Wang, C. Zhuang, J. Gao, X. Shan, J. Zhang, Z. Liao, H. Xu, D. Yu, and Q. Feng, J. Am. Chem. Soc. 131, 2436 (2009 ). A. Iandelli, E. Franceschi, Journal of the Less Common Metals, Volume 30, Issue 2, February 1973, Pages 211-216.A. Iandelli, E. Franceschi, Journal of the Less Common Metals, Volume 30, Issue 2, February 1973, Pages 211-216. Satomi KAKIYA, Kazutaka KUDO, Yoshihiro NISHIKUBO, Kenta OKU, Eiji NISHIBORI, Hiroshi SAWA, Takahisa YAMAMOTO, Toshio NOZAKA, and Minoru NOHARA, Journal of the Physical Society of Japan 80 (2011) 093704.Satomi KAKIYA, Kazutaka KUDO, Yoshihiro NISHIKUBO, Kenta OKU, Eiji NISHIBORI, Hiroshi SAWA, Takahisa YAMAMOTO, Toshio NOZAKA, and Minoru NOHARA, Journal of the Physical Society of Japan 80 (2011) 093704. F. Izumi and T. Ikeda, Mater. Sci. Forum 321-324, 198 (2000).F. Izumi and T. Ikeda, Mater. Sci. Forum 321-324, 198 (2000).

広く開示されているウィスカー結晶の製造方法では、反応ガスや原料物質の気化又は蒸発を利用して原料元素を輸送するため、元素が合成装置内部で広範に拡散してしまう。このため、この製造方法では、ヒ素を含む鉄系超電導体を製造する場合、製造工程の安全性を確保するために、装置構成や工程が複雑化し、様々な制約条件の下で製造しなければならない。更に、30K以上の高い超電導転移温度を有する、鉄とヒ素を含む4種類以上の構成元素からなる鉄系超電導体の結晶を所望の成分組成に調節して製造することは難しい。また、長さ(L)と直径(d)のアスペクト比(L/d)が200以上である高アスペクト比のウィスカー結晶を製造することは難しい。本発明は、毒性対応が容易であり、30K程度の超電導転移温度を有する鉄系超電導体のウィスカー結晶と、このウィスカー結晶を工業的に有利に製造することのできる製造方法を提供することを課題としている。   In the widely disclosed method for producing whisker crystals, the raw material element is transported by utilizing the vaporization or evaporation of the reaction gas and the raw material material, so that the element diffuses extensively inside the synthesis apparatus. For this reason, in this manufacturing method, when manufacturing an iron-based superconductor containing arsenic, in order to ensure the safety of the manufacturing process, the apparatus configuration and the process become complicated, and it must be manufactured under various constraints. Don't be. Furthermore, it is difficult to manufacture an iron-based superconductor crystal having a high superconducting transition temperature of 30 K or higher and comprising four or more constituent elements including iron and arsenic to a desired component composition. Moreover, it is difficult to produce a high aspect ratio whisker crystal having an aspect ratio (L / d) of 200 or more in length (L) and diameter (d). It is an object of the present invention to provide a whisker crystal of an iron-based superconductor having a superconducting transition temperature of about 30 K, which is easily toxic and a manufacturing method capable of industrially manufacturing the whisker crystal. It is said.

本発明者らは、上記の現状を鑑みて、検討を重ねた結果、原料物質に結晶育成を促進する添加剤を混ぜ、この混合粉末をカプセル状の金属製反応容器に充填し、機械的に適切な圧力を加えて混合粉末の最適な高密度化を図った後、除圧し、適切な熱処理を施すことによって、鉄系超電導体のウィスカー結晶を製造することに成功した。   As a result of repeated investigations in view of the above-mentioned present situation, the present inventors have mixed an additive that promotes crystal growth into the raw material, filled this mixed powder into a capsule-shaped metal reaction vessel, and mechanically We succeeded in producing whisker crystals of iron-based superconductors by applying an appropriate pressure to optimize the density of the mixed powder and then releasing the pressure and applying an appropriate heat treatment.

更に、本発明者らは、こうして得られた鉄系超電導体のウィスカー結晶が絶対温度33Kで超電導状態に転移することを確認した。   Furthermore, the present inventors confirmed that the whisker crystal of the iron-based superconductor thus obtained transitions to a superconducting state at an absolute temperature of 33K.

また、ウィスカー結晶は、棒針状であり、SrZnSb型結晶構造を有し、長さ(L)と直径(d)のアスペクト比(L/d)が200〜10000であり、直径(d)が1×10-3 mm以下のサイズであることも確認した。 In addition, the whisker crystal has a needle-like shape, has a SrZnSb 2 type crystal structure, an aspect ratio (L / d) of length (L) to diameter (d) is 200 to 10,000, and diameter (d) is It was also confirmed that the size was 1 × 10 −3 mm or less.

本発明は、これらの新知見に基づき、更に検討を加えて完成されたものである。すなわち、本発明は、以下の鉄系超電導体のウィスカー結晶とその製造方法を提供するものである。   The present invention has been completed based on these new findings and further studies. That is, the present invention provides the following iron-based superconductor whisker crystals and a method for producing the same.

本発明の鉄系超電導体のウィスカー結晶は、M1(マグネシウム、カルシウム、ストロンチウムまたはバリウムから選ばれた1種以上の元素)、Fe(鉄)、M2(白金族元素から選ばれた1種以上の元素)及びAs(ヒ素)の4群よりなり、各群の元素のモル比が、
M1:Fe:M2:As=10:(10−5x):(4+5x):18(0.1≦x≦0.36)
であり、SrZnSb型結晶構造を有することを特徴としている。
The whisker crystal of the iron-based superconductor of the present invention includes M1 (one or more elements selected from magnesium, calcium, strontium or barium), Fe (iron), M2 (one or more elements selected from platinum group elements). Element) and As (arsenic), and the molar ratio of the elements in each group is
M1: Fe: M2: As = 10: (10-5x) :( 4 + 5x): 18 (0.1 ≦ x ≦ 0.36)
It is characterized by having a SrZnSb 2 type crystal structure.

本発明の鉄系超電導体のウィスカー結晶では、棒針状の結晶の長さ(L)と直径(d)のアスペクト比(L/d)が200以上であり、かつ直径(d)が1×10−3mm以下であることが好ましい。 In the iron-based superconductor whisker crystal of the present invention, the aspect ratio (L / d) of the length (L) and the diameter (d) of the needle-like crystal is 200 or more, and the diameter (d) is 1 × 10. It is preferably −3 mm or less.

本発明の鉄系超電導ウィスカー結晶の製造方法は、金属ヒ化物粉末及び金属粉末から構成され、構成元素が、M1(マグネシウム、カルシウム、ストロンチウムまたはバリウムから選ばれた1種以上の元素)、Fe(鉄)、M2(白金族元素から選ばれた1種以上の元素)及びAs(ヒ素)の4群よりなり、各群の元素のモル比が、M1:Fe:M2:As=10:(10−5x):(4+5x):18(0.1≦x≦0.36)である原料物質と、結晶育成を促進する粉末添加剤との混合粉末をカプセル状の金属製反応容器内に充填し、この反応容器をダイスに装填し、対向して配置された2つのポンチを介して機械的に240〜380MPaの圧力を印加し、除圧後、反応容器を700〜1000℃の温度範囲で48時間以上保持し、引き続いて反応容器を0.3℃/分以下の一定の降温速度で700℃以下まで炉冷することを特徴としている。   The method for producing an iron-based superconducting whisker crystal of the present invention comprises metal arsenide powder and metal powder, and the constituent elements are M1 (one or more elements selected from magnesium, calcium, strontium or barium), Fe ( Iron), M2 (one or more elements selected from platinum group elements) and As (arsenic), and the molar ratio of the elements in each group is M1: Fe: M2: As = 10: (10 −5x): (4 + 5x): 18 (0.1 ≦ x ≦ 0.36) A mixed powder of a raw material and a powder additive that promotes crystal growth is filled into a capsule-shaped metal reaction vessel. The reaction vessel is charged into a die, and a pressure of 240 to 380 MPa is mechanically applied through two punches arranged opposite to each other. After depressurization, the reaction vessel is placed in a temperature range of 700 to 1000 ° C. for 48 hours. Hold for more than an hour and then react Vessels and is characterized in that the furnace cooled to 700 ° C. or less at a constant cooling rate of 0.3 ° C. / min or less.

本発明の鉄系超電導ウィスカー結晶の製造方法では、粉末添加剤が金属ヒ化物又は金属ハロゲン化物から選ばれる1種以上であることが好ましい。   In the method for producing an iron-based superconducting whisker crystal of the present invention, the powder additive is preferably at least one selected from metal arsenide or metal halide.

本発明の鉄系超電導ウィスカー結晶の製造方法では、金属製反応容器内に内容器を設置し、混合粉末と金属製反応容器を分離することが好ましい。   In the method for producing an iron-based superconducting whisker crystal of the present invention, it is preferable to install an inner container in a metal reaction vessel and separate the mixed powder and the metal reaction vessel.

本発明の鉄系超電導体のウィスカー結晶は、従来のバルク結晶や薄膜結晶と比較すると、結晶の形状に著しい異方性がある。例えば、長さは2mmに達する一方で、直径は1×10−3mm以下である。また、本発明の鉄系超電導体のウィスカー結晶は、絶対温度30Kを超える温度でも超電導性を示す。このため、デバイス用の鉄系超電導線材や鉄系超電導接合素子材として適用可能である。 The whisker crystal of the iron-based superconductor of the present invention has significant anisotropy in the crystal shape as compared with the conventional bulk crystal and thin film crystal. For example, the length reaches 2 mm, while the diameter is 1 × 10 −3 mm or less. Further, the whisker crystal of the iron-based superconductor of the present invention exhibits superconductivity even at a temperature exceeding the absolute temperature of 30K. For this reason, it can be applied as an iron-based superconducting wire for a device or an iron-based superconducting junction element material.

銅酸化物超電導体でも超電導転移温度が30Kを超えるウィスカー結晶が製造されているが、銅酸化物超電導体は、セラミックス固有の脆さのため、用途が限られている。これに対し、鉄系超電導体は、セラミックスよりも合金にその性質が近いため、銅酸化物超電導体ほど脆くなく、適用可能な用途の拡大を図ることができる。   Whisker crystals having a superconducting transition temperature exceeding 30 K have been produced even with copper oxide superconductors, but copper oxide superconductors have limited applications due to the inherent brittleness of ceramics. On the other hand, iron-based superconductors are closer to alloys than ceramics, and thus are not as brittle as copper oxide superconductors, and can be used for a wider range of applications.

本発明の鉄系超電導体のウィスカー結晶の製造方法では、カプセル状の金属製反応容器中に原料物質と添加剤の混合粉末を充填して固相反応によって結晶育成を行うため、結晶組成や結晶構造を制御しやすい。また、反応ガスや蒸発によって元素を輸送する機器を使用しないため、簡便かつ簡素であり、毒性を有する物質を含むにもかかわらず、安全性が保たれる。このような観点から、本発明の鉄系超電導体のウィスカー結晶の製造方法は、産業応用上有用であると考えられる。   In the method for producing a whisker crystal of an iron-based superconductor according to the present invention, a mixed powder of a raw material and an additive is filled in a capsule-like metal reaction vessel, and crystal growth is performed by a solid phase reaction. Easy to control the structure. In addition, since a device that transports elements by reaction gas or evaporation is not used, it is simple and simple, and safety is maintained despite including toxic substances. From such a viewpoint, it is considered that the method for producing a whisker crystal of an iron-based superconductor according to the present invention is useful for industrial application.

鉄系超電導体のウィスカー結晶の製造に使用する、密閉前のカプセル状の金属製反応容器の外観とその断面を示した図である。It is the figure which showed the external appearance and its cross section of the capsule-shaped metal reaction container before sealing used for manufacture of the whisker crystal | crystallization of an iron-type superconductor. 鉄系超電導体のウィスカー結晶の製造に使用する、カプセル状の金属製反応容器の密閉用ポンチとダイスを示した図である。It is the figure which showed the punch and die for sealing of a capsule-shaped metal reaction container used for manufacture of the whisker crystal | crystallization of an iron-type superconductor. 鉄系超電導体のウィスカー結晶の製造に使用する、密閉後のカプセル状の金属製反応容器の断面を示した図である。It is the figure which showed the cross section of the capsule-shaped metal reaction container after sealing used for manufacture of the whisker crystal | crystallization of an iron-type superconductor. 鉄系超電導体のウィスカー結晶の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a whisker crystal of an iron-based superconductor. 鉄系超電導体のウィスカー結晶の走査型電子顕微鏡写真(高倍率)である。It is a scanning electron micrograph (high magnification) of a whisker crystal of an iron-based superconductor. 鉄系超電導体のウィスカー結晶の磁化率の温度依存性を示した図である。It is the figure which showed the temperature dependence of the magnetic susceptibility of the whisker crystal of an iron-type superconductor. 鉄系超電導体のウィスカー結晶の電気抵抗率の、温度と結晶サイズ(直径)の依存性を示した図である。It is the figure which showed the dependence of the electrical resistivity of the whisker crystal | crystallization of an iron-type superconductor on temperature and crystal | crystallization size (diameter). 鉄系超電導体のウィスカー結晶の粉末X線回折チャートである。3 is a powder X-ray diffraction chart of a whisker crystal of an iron-based superconductor. 鉄系超電導体のウィスカー結晶の透過型電子顕微鏡による高分解能像と、この高分解能像に対応する電子線回折パターンである。It is the high-resolution image by the transmission electron microscope of the whisker crystal of an iron-type superconductor, and the electron beam diffraction pattern corresponding to this high-resolution image.

本発明の鉄系超電導ウィスカー結晶の製造方法では、金属ヒ化物粉末及び金属粉末で構成される原料物質と結晶育成を促進する粉末添加剤との混合粉末をカプセル状の金属製反応容器に充填し、最終的に鉄系超電導体のウィスカー結晶を得る。   In the method for producing an iron-based superconducting whisker crystal according to the present invention, a capsule-shaped metal reaction vessel is filled with a mixed powder of a metal arsenide powder and a raw material composed of the metal powder and a powder additive for promoting crystal growth. Finally, a whisker crystal of an iron-based superconductor is obtained.

鉄系超電導体のウィスカー結晶は、構成元素として、鉄とヒ素、そして、マグネシウム、カルシウム、ストロンチウム又はバリウムから選ばれた1種以上の元素であるM1及び白金族元素から選ばれた1種以上の元素であるM2の4つの群を含む。各群の元素のモル比は、M1:Fe:M2:As=10:(10−5x):(4+5x):18(0.1≦x≦0.36)である。M1として代表的にはカルシウムが例示されるが、カルシウムは、周期表の第2族に属し、2価の陽イオンになりやすく、イオン半径や共有結合半径がカルシウムに近いマグネシウム、ストロンチウム又はバリウムの1種以上でその一部又は全部を置き換えることが可能である。M2として代表的には白金が例示されるが、白金は、他の白金族元素、すなわち、ルテニウム、ロジウム、パラジウム、オスミウム又はイリジウムと原子半径や電子分布が類似しているため、白金の一部又は全部を他の白金族元素の1種以上で置き換えることが可能である。なお、鉄は構成元素の一つであるが、非特許文献1に記載されているように、その一部は、結晶中のイオン半径や磁気的性質が類似する他の鉄族元素、すなわち、コバルトやニッケルで置き換えることが可能である。   The whisker crystal of an iron-based superconductor is composed of iron and arsenic as constituent elements, and at least one element selected from M1 and a platinum group element selected from magnesium, calcium, strontium, or barium. It contains four groups of element M2. The molar ratio of the elements in each group is M1: Fe: M2: As = 10: (10-5x) :( 4 + 5x): 18 (0.1 ≦ x ≦ 0.36). A typical example of M1 is calcium. However, calcium belongs to the second group of the periodic table and is likely to be a divalent cation, and the ionic radius and covalent bond radius of magnesium, strontium, or barium are close to calcium. It is possible to replace some or all of them with one or more. Platinum is typically exemplified as M2, but platinum has a similar atomic radius and electron distribution to other platinum group elements, that is, ruthenium, rhodium, palladium, osmium, or iridium, and therefore a part of platinum. Or it is possible to replace the whole with one or more of other platinum group elements. In addition, although iron is one of the constituent elements, as described in Non-Patent Document 1, some of them are other iron group elements having similar ionic radii and magnetic properties in the crystal, that is, It can be replaced with cobalt or nickel.

鉄系超電導体のウィスカー結晶の育成を促進するために、密閉された金属製反応容器内で、1000℃以下、好ましくは700〜1000℃、より好ましくは800〜900℃の温度範囲で融解又は分解する添加剤を使用する。上記温度条件の範囲外や添加剤を未添加の場合、ウィスカー結晶は育成しない。   In order to promote the growth of whisker crystals of iron-based superconductors, melting or decomposition in a sealed metal reaction vessel at a temperature of 1000 ° C. or less, preferably 700 to 1000 ° C., more preferably 800 to 900 ° C. Use the additive. Whisker crystals are not grown when the temperature is out of the range or the additive is not added.

このような添加剤には、ウィスカー結晶への不純物の混入を最小限に抑えるために、例えば、ヒ化カルシウムなどの金属ヒ化物を使用することができる。ヒ化カルシウムは、非特許文献4に記載されているように、組成がCaAsの場合、900℃未満で分解するので、添加剤として好ましく使用される。金属ヒ化物の他に、金属ハロゲン化物が結晶育成を促進する添加剤として汎用されている。金属ハロゲン化物も、鉄系超電導体のウィスカー結晶の育成に適用可能である。   For such an additive, for example, a metal arsenide such as calcium arsenide can be used in order to minimize mixing of impurities into the whisker crystal. As described in Non-Patent Document 4, calcium arsenide is preferably used as an additive because it decomposes at less than 900 ° C. when the composition is CaAs. In addition to metal arsenides, metal halides are widely used as additives for promoting crystal growth. Metal halides can also be used to grow whisker crystals of iron-based superconductors.

鉄系超電導体のウィスカー結晶の構成元素の中で、カルシウムは、水と接触した場合、激しく反応して水素を発生する危険物であり、粉末状態では空気中で酸化が進みやすい。このため、カルシウムを含む混合粉末は、真空中又は不活性ガス中で保存する必要があり、原料物質としての取扱いが困難である。   Among the constituent elements of whisker crystals of iron-based superconductors, calcium is a dangerous substance that reacts violently when it comes into contact with water to generate hydrogen. In the powder state, oxidation easily proceeds in the air. For this reason, the mixed powder containing calcium needs to be stored in a vacuum or in an inert gas, and is difficult to handle as a raw material.

このような取扱困難なカルシウムを原料物質として使用することを避けるため、ヒ化カルシウムを事前に合成し、合成したヒ化カルシウムを原料物質として使用する。更に、ヒ化カルシウムを結晶育成に必要な量より過剰に使用すると、CaSeは、上記のとおり、900℃未満で熱分解するため、過剰分のヒ化カルシウムは添加剤として機能する。   In order to avoid using such difficult-to-handle calcium as a raw material, calcium arsenide is synthesized in advance, and the synthesized calcium arsenide is used as a raw material. Further, when calcium arsenide is used in excess of the amount necessary for crystal growth, CaSe thermally decomposes at less than 900 ° C. as described above, so that the excess calcium arsenide functions as an additive.

ヒ素(融点は630℃)を原料物質として使用すると、他の原料物質より200℃以上融点が低いため、熱処理中に他の原料と均一に反応せず、所望の結晶が育成しない。この問題を回避するため、代替となる原料物質を使用する。例えば、構成元素の金属ヒ化物の中で、融点又は分解温度がヒ素の融点より高いヒ化カルシウム、ヒ化鉄、ヒ化白金などから1種以上を使用する。   When arsenic (melting point is 630 ° C.) is used as a raw material, the melting point is 200 ° C. or more lower than that of other raw materials. To avoid this problem, use alternative source materials. For example, among the metal arsenides of the constituent elements, one or more of calcium arsenide, iron arsenide, platinum arsenide and the like whose melting point or decomposition temperature is higher than that of arsenic is used.

ヒ化カルシウムは、ヒ素とカルシウムを直接反応させることによって予備合成する。それぞれの原料物質をアルゴンガス中で定比組成になるように秤量し、石英管中に真空封入する。この石英管をマッフル炉などの電気炉に入れ、一定の昇温速度で昇温し、500℃に達したらその温度を保つ。昇温速度は、一般的には0.1〜10℃/分が望ましく、好ましくは0.1〜1℃/分、より好ましくは0.1〜0.4℃/分である。昇温速度が10℃/分を超えると、均一な反応が得られない。保持時間は、十分に反応を促進させるために、48時間以上が望ましい。保持終了後、石英管を電気炉から取り出して空気中で室温になるまで急冷する。冷却終了後、予備合成したヒ化カルシウムを石英管から取り出し、乳鉢などを用いて粉砕、混合し、再度石英管中に真空封入する。同様な熱処理を、保持温度を変更し、その他の条件は同じにして繰り返し行い、最終的にヒ化カルシウムを得る。最終の保持温度は、好ましくは700〜800℃、より好ましくは800℃である。ヒ化鉄やヒ化白金の合成も、上記のとおりのヒ化カルシウムの合成と同じようにして行うことができる。   Calcium arsenide is pre-synthesized by direct reaction of arsenic and calcium. Each raw material is weighed in argon gas so as to have a stoichiometric composition, and is vacuum-sealed in a quartz tube. This quartz tube is put into an electric furnace such as a muffle furnace, and heated at a constant heating rate. When the temperature reaches 500 ° C., the temperature is maintained. In general, the rate of temperature rise is desirably 0.1 to 10 ° C./min, preferably 0.1 to 1 ° C./min, and more preferably 0.1 to 0.4 ° C./min. When the rate of temperature rise exceeds 10 ° C./min, a uniform reaction cannot be obtained. The holding time is desirably 48 hours or longer in order to sufficiently promote the reaction. After completion of the holding, the quartz tube is taken out from the electric furnace and rapidly cooled in air to room temperature. After the cooling is completed, the pre-synthesized calcium arsenide is taken out from the quartz tube, pulverized and mixed using a mortar or the like, and vacuum sealed again in the quartz tube. The same heat treatment is repeated with the holding temperature changed and the other conditions being the same, and finally calcium arsenide is obtained. The final holding temperature is preferably 700 to 800 ° C, more preferably 800 ° C. The synthesis of iron arsenide and platinum arsenide can also be performed in the same manner as the synthesis of calcium arsenide as described above.

非特許文献5によると、バルク状の鉄系超電導体は、構成元素のモル比がCa:Fe:Pt:As=10:(10−5x):(4+5x):18であり、x=0.36の場合、SrZnSb型構造に結晶化し、超電導性を示す。この結果を参照し、ウィスカー結晶の製造の際にも、原料元素のモル比がCa:Fe:Pt:As=10:(10−5x):(4+5x):18(xは0.1以上0.36以下の任意の値)となるように原料物質を秤量して混合することができる。原料物質には、例えば、ヒ化鉄、ヒ化カルシウム、純鉄及び白金の粉末を選ぶことができる。 According to Non-Patent Document 5, the bulk iron-based superconductor has a constituent element molar ratio of Ca: Fe: Pt: As = 10: (10-5x) :( 4 + 5x): 18, and x = 0. In the case of 36, it crystallizes into a SrZnSb 2 type structure and exhibits superconductivity. Referring to this result, even in the production of whisker crystals, the molar ratio of the raw material elements is Ca: Fe: Pt: As = 10: (10-5x) :( 4 + 5x): 18 (x is 0.1 or more and 0) The raw material can be weighed and mixed so as to have an arbitrary value of .36 or less. As the raw material, for example, iron arsenide, calcium arsenide, pure iron, and platinum powders can be selected.

原料物質の混合粉末に、質量比で、一般には1〜20%、好ましくは5〜10%、より好ましくは10%の添加剤を加え、全体が均一になるまで混合する。   In general, 1 to 20%, preferably 5 to 10%, and more preferably 10% of an additive by mass ratio is added to the raw material mixed powder and mixed until the whole becomes uniform.

混合粉末の粒度は、小さすぎると、一部の粒子の融点が低下して反応が均一に進まなくなり、大きすぎると、均一な反応が進まないため、なるべく適切な範囲に分布していることが望ましい。適切な粒度範囲は、一般には0.5×10−3mm〜10×10−3mm、好ましくは1×10−3mm〜7×10−3mm、より好ましくは2×10−3mm〜5×10−3mmである。 If the particle size of the mixed powder is too small, the melting point of some of the particles will decrease and the reaction will not proceed uniformly.If it is too large, the uniform reaction will not proceed, so it may be distributed in an appropriate range. desirable. Suitable particle size range is generally 0.5 × 10 -3 mm~10 × 10 -3 mm, preferably 1 × 10 -3 mm~7 × 10 -3 mm, and more preferably 2 × 10 -3 mm to 5 × 10 −3 mm.

混合粉末の純度は、一般には99.9%以上、好ましくは99.99%以上である。純度が低すぎると、不純物が混入し、超電導特性に悪影響を及ぼす。   The purity of the mixed powder is generally 99.9% or higher, preferably 99.99% or higher. If the purity is too low, impurities are mixed in and the superconducting properties are adversely affected.

混合粉末をカプセル状の金属製反応容器に充填し、この反応容器をダイスに装填し、上下などに対向して配置されたポンチを介して機械的に240〜380MPaの圧力を印加し、除圧後、反応容器を適切に熱処理する。反応容器は金属製とする。ガラス製やセラミック製のものは、耐熱性や化学的安定性に優れているが、圧力を加える工程で破損しやすい。反応容器を形成する金属材料としては、化学的安定性が高く、高融点の貴金属やタンタル、ニオブなどが好ましく、より好ましくはタンタル又はニオブであり、さらに好ましくはタンタルである。   The mixed powder is filled into a capsule-shaped metal reaction vessel, this reaction vessel is loaded into a die, and a pressure of 240 to 380 MPa is mechanically applied through a punch arranged facing the top and bottom, etc. Thereafter, the reaction vessel is appropriately heat-treated. The reaction vessel is made of metal. Those made of glass or ceramic are excellent in heat resistance and chemical stability, but are easily damaged in the process of applying pressure. The metal material forming the reaction vessel is preferably a high melting point noble metal, tantalum, niobium, etc., more preferably tantalum or niobium, and even more preferably tantalum.

混合粉末と金属製反応容器が直接接触すると、熱処理中に反応容器が破損する可能性があるため、内容器を使用して接触を避けることが好ましい。図1に示したように、まず、原料物質と添加剤の混合粉末13を有底円筒形状の内容器14に詰め、次いで金属製で、有底円筒形状の反応容器15に詰める。この後、混合粉末13に内容器14と同じ材質の蓋12を被せ、更に反応容器15の金属製の蓋11を被せ、蓋11から上にはみ出した反応容器11の端部を内側に折り曲げ、反応容器11をカプセル状にする。なお、内容器14には、混合粉末13より融点が高く、反応容器15や混合粉末13と熱処理中に反応しにくい、例えば、窒化ホウ素、窒化シリコンから形成されたものを使用することができる。   If the mixed powder and the metal reaction vessel are in direct contact with each other, the reaction vessel may be damaged during the heat treatment. Therefore, it is preferable to avoid contact using the inner vessel. As shown in FIG. 1, first, a mixed powder 13 of a raw material and an additive is packed in a bottomed cylindrical inner container 14, and then packed in a bottomed cylindrical reaction container 15 made of metal. Thereafter, the mixed powder 13 is covered with a lid 12 made of the same material as that of the inner vessel 14, and further covered with a metal lid 11 of the reaction vessel 15, and the end of the reaction vessel 11 protruding from the lid 11 is bent inward. The reaction vessel 11 is made into a capsule. The inner container 14 may be made of, for example, boron nitride or silicon nitride, which has a higher melting point than the mixed powder 13 and hardly reacts with the reaction container 15 or the mixed powder 13 during heat treatment.

次いで、図2に示したように、カプセル状の反応容器22に、ダイス23と、上下に対向して配置されたポンチ21、24とを使用して一軸荷重(筒軸方向)をかけ、反応容器22の端部に位置する折り曲げ部を圧着させる。また、反応容器22に適切な圧力を印加して混合粉末13の高密度化を図った後、除圧する。印加圧力が低すぎると、反応容器22の折り曲げ部の圧着が不十分となり、熱処理中に内容物が漏出しやすく、また、合成反応が十分に進行せず、ウィスカー結晶が育成しない。逆に、印加圧力が高すぎると、ウィスカー結晶が成長する空間が減少し、ウィスカー結晶の育成が阻害される。このため、反応容器22に印加する圧力は240MPa以上380MPa以下とする。好ましくは300MPa以上380MPa以下であり、より好ましくは380MPaである。   Next, as shown in FIG. 2, a uniaxial load (in the cylinder axis direction) is applied to the capsule-shaped reaction vessel 22 using the dice 23 and the punches 21 and 24 disposed so as to face each other vertically. The bent portion located at the end of the container 22 is crimped. Further, after applying an appropriate pressure to the reaction vessel 22 to increase the density of the mixed powder 13, the pressure is released. If the applied pressure is too low, the crimping of the bent portion of the reaction vessel 22 becomes insufficient, the contents are likely to leak during the heat treatment, the synthesis reaction does not proceed sufficiently, and whisker crystals do not grow. On the other hand, if the applied pressure is too high, the space in which the whisker crystal grows decreases, and the growth of the whisker crystal is hindered. For this reason, the pressure applied to the reaction vessel 22 is set to 240 MPa or more and 380 MPa or less. Preferably it is 300 MPa or more and 380 MPa or less, More preferably, it is 380 MPa.

そして、図3に示したように、密閉したカプセル状の反応容器33を透明石英管又は耐熱金属管などの真空容器32に封入し、マッフル炉などの加熱装置を使用して真空31中で加熱する。昇温速度は、一般的には0.1〜10℃/分が望ましく、好ましくは0.1〜1℃/分、より好ましくは0.1〜0.4℃/分である。あまり速すぎると、均一な反応が得られない。熱処理は、温度保持と冷却の二段階が必須であり、温度保持時と冷却時に以下の条件から外れると、ウィスカー結晶の育成を適切に行うことができない。熱処理の第1段階である温度保持では、700〜1000℃の範囲で一定の温度を保持する。保持温度は、好ましくは900〜1000℃の範囲であり、より好ましくは1000℃である。また、温度保持では、保持時間が短すぎると、反応が十分に進行しないため、48時間以上が必要である。72時間保持すれば、反応はより十分に進行する。   Then, as shown in FIG. 3, a sealed capsule-like reaction vessel 33 is sealed in a vacuum vessel 32 such as a transparent quartz tube or a refractory metal tube and heated in a vacuum 31 using a heating device such as a muffle furnace. To do. In general, the rate of temperature rise is desirably 0.1 to 10 ° C./min, preferably 0.1 to 1 ° C./min, and more preferably 0.1 to 0.4 ° C./min. If it is too fast, a uniform reaction cannot be obtained. The heat treatment requires two steps of temperature holding and cooling, and whisker crystals cannot be grown properly if the following conditions are not met during temperature holding and cooling. In the temperature maintenance, which is the first stage of the heat treatment, a constant temperature is maintained in the range of 700 to 1000 ° C. The holding temperature is preferably in the range of 900 to 1000 ° C, more preferably 1000 ° C. In addition, in the temperature holding, if the holding time is too short, the reaction does not proceed sufficiently, so that 48 hours or more are necessary. If kept for 72 hours, the reaction proceeds more fully.

熱処理の第2段階である冷却は、温度保持後の炉冷により行う。炉冷速度が速すぎると、ウィスカー結晶が育成しないため、炉冷速度は0.3℃/分以下とし、好ましくは0.1℃/分以下である。炉冷は、ウィスカー結晶の育成が止まる温度以下、すなわち、700℃以下に冷却すれば十分である。好ましくは、500℃以下に炉冷する。炉冷後、反応容器33を空気中に取り出して室温に戻す。反応容器33中から取り出した試料の表面部に棒針状のウィスカー結晶が生成している。上記のとおりの二段階の熱処理によって、原料物質の反応と焼結が進み、カプセル状の反応容器33の内部にバルク状の結晶又は焼結体が生成する。バルク状の結晶又は焼結体の生成にともない、バルク状の結晶又は焼結体と反応容器33の内壁との間には隙間が生じる。この隙間に位置する、バルク状の結晶又は焼結体の表面部にウィスカー結晶が生成する。このようなウィスカー結晶には、長さ(L)と直径(d)のアスペクト比(L/d)が200以上であり、かつ直径(d)が1×10−3mm以下のものが得られる。また、ウィスカー結晶の結晶構造は、SrZnSb型結晶構造である。 Cooling, which is the second stage of the heat treatment, is performed by furnace cooling after maintaining the temperature. If the furnace cooling rate is too fast, whisker crystals will not grow, so the furnace cooling rate is 0.3 ° C./min or less, preferably 0.1 ° C./min or less. It is sufficient that the furnace is cooled to a temperature below the temperature at which whisker crystal growth stops, that is, 700 ° C. or below. Preferably, the furnace is cooled to 500 ° C. or lower. After the furnace cooling, the reaction vessel 33 is taken out into the air and returned to room temperature. Stick needle-like whisker crystals are formed on the surface of the sample taken out from the reaction vessel 33. By the two-stage heat treatment as described above, the reaction and sintering of the raw material proceed, and a bulk crystal or sintered body is generated inside the capsule-like reaction vessel 33. With the generation of the bulk crystal or sintered body, a gap is generated between the bulk crystal or sintered body and the inner wall of the reaction vessel 33. Whisker crystals are formed on the surface of the bulk crystal or sintered body located in the gap. As such a whisker crystal, an aspect ratio (L / d) of length (L) and diameter (d) is 200 or more and diameter (d) is 1 × 10 −3 mm or less. . The crystal structure of the whisker crystal is a SrZnSb 2 type crystal structure.

<実施例1>
ヒ素(純度99.9%)とカルシウム(純度99.9%)をアルゴンガス中でモル比が1:1になるように秤量し、混合し、石英管中に真空封入した。この石英管を電気マッフル炉に入れ、昇温速度0.2℃/分で500℃まで加熱した。この温度で48時間保持した。温度保持終了後、石英管を電気マッフル炉から取り出して空気中で室温になるまで冷却した。冷却終了後、石英管から試料を取り出し、乳鉢を用いて粉砕混合し、石英管中に詰め、再度真空封入した。同様の熱処理を保持温度800℃で行い、最終的にヒ化カルシウム(CaAs)を得た。
<Example 1>
Arsenic (purity 99.9%) and calcium (purity 99.9%) were weighed in an argon gas so that the molar ratio was 1: 1, mixed, and vacuum-sealed in a quartz tube. This quartz tube was put into an electric muffle furnace and heated to 500 ° C. at a temperature rising rate of 0.2 ° C./min. This temperature was maintained for 48 hours. After completion of the temperature holding, the quartz tube was taken out from the electric muffle furnace and cooled in air to room temperature. After cooling, the sample was taken out from the quartz tube, pulverized and mixed using a mortar, packed in the quartz tube, and vacuum-sealed again. A similar heat treatment was performed at a holding temperature of 800 ° C. to finally obtain calcium arsenide (CaAs).

ヒ素と鉄(純度99.9%)をモル比が1:1になるように秤量し、混合し、石英管中に真空封入した。この石英管を電気マッフル炉に入れ、昇温速さ0.2℃/分で500℃まで昇温した。この温度で48時間保持した。温度保持終了後、石英管を電気マッフル炉から取り出して空気中で室温になるまで冷却した。冷却終了後、石英管から試料を取り出し、乳鉢を用いて粉砕混合し、石英管中に詰め、再度真空封入した。同様の熱処理を保持温度800℃で熱処理を行い、最終的にヒ化鉄(FeAs)を得た。   Arsenic and iron (purity 99.9%) were weighed so as to have a molar ratio of 1: 1, mixed, and vacuum-sealed in a quartz tube. This quartz tube was put in an electric muffle furnace and heated to 500 ° C. at a temperature rising rate of 0.2 ° C./min. This temperature was maintained for 48 hours. After completion of the temperature holding, the quartz tube was taken out from the electric muffle furnace and cooled in air to room temperature. After cooling, the sample was taken out from the quartz tube, pulverized and mixed using a mortar, packed in the quartz tube, and vacuum-sealed again. A similar heat treatment was performed at a holding temperature of 800 ° C. to finally obtain iron arsenide (FeAs).

原料物質として、合成したヒ化カルシウム(CaAs)、合成したヒ化鉄(FeAs)、鉄及び白金(純度99.9%)をモル比がCaAs:FeAs:Fe:Pt=12.81:8:1:5となるように秤量し、乳鉢を使ってそれらが均一になるまで混合した。混合粉末の粒度範囲は1×10−3mm〜10×10−3mmであった。なお、ヒ化カルシウムの秤量分には10質量%相当の添加剤を含んでいる。 As raw materials, synthesized calcium arsenide (CaAs), synthesized iron arsenide (FeAs), iron and platinum (purity 99.9%) in a molar ratio of CaAs: FeAs: Fe: Pt = 12.81: 8: Weighed to 1: 5 and mixed using a mortar until they were uniform. Particle size range of the mixed powder was 1 × 10 -3 mm~10 × 10 -3 mm. In addition, the amount of calcium arsenide contains an additive equivalent to 10% by mass.

この混合粉末を、有底円筒形状を有し、窒化ホウ素製の内容器(外径6.4mm×内径5mm×高さ6mm)に詰め、窒化ホウ素製の蓋(径4.9mm×厚さ1mm)を被せ、有底円筒形状を有し、タンタル製の反応容器(外径6.8mm×内径6.4mm×高さ6.5mm)に詰めた。更にタンタル製の蓋(径6.3mm×厚さ0.2mm)を被せ、蓋から上にはみ出した反応容器の端部を内側に折り曲げ、ダイスと上下に対向して配置されたポンチとを使って380MPaの圧力に達するまで一軸荷重をかけ、折り曲げ部を圧着させた。このカプセル状の反応容器を透明石英管に真空封入した。   This mixed powder has a bottomed cylindrical shape and is packed in a boron nitride inner container (outer diameter 6.4 mm × inner diameter 5 mm × height 6 mm), and a boron nitride lid (diameter 4.9 mm × thickness 1 mm). ) And was packed in a tantalum reaction vessel (outer diameter 6.8 mm × inner diameter 6.4 mm × height 6.5 mm). Further, a tantalum lid (diameter: 6.3 mm x thickness: 0.2 mm) is put on, the end of the reaction vessel protruding from the lid is folded inward, and a die and a punch placed vertically are used. A uniaxial load was applied until a pressure of 380 MPa was reached, and the bent portion was crimped. The capsule-like reaction vessel was vacuum sealed in a transparent quartz tube.

真空封入した石英管を電気マッフル炉に入れ、昇温した。昇温速度は0.8℃/分とした。炉内の温度が1000℃に達した後、炉内温度を一定にし、その温度に72時間保持した。引き続き、700℃まで48時間かけて一定の冷却速度(0.1℃/分)で炉冷し、700℃に到達後、反応容器が真空封入された石英管を炉から空気中に取り出して室温まで冷却した。熱処理終了後、反応容器中から試料を取り出すと、図4に示したように、試料の表面部にウィスカー結晶が生成していた。   The quartz tube sealed in a vacuum was placed in an electric muffle furnace and heated. The heating rate was 0.8 ° C./min. After the furnace temperature reached 1000 ° C., the furnace temperature was kept constant and held at that temperature for 72 hours. Subsequently, the furnace was cooled down to 700 ° C. at a constant cooling rate (0.1 ° C./min) over 48 hours. After reaching 700 ° C., the quartz tube in which the reaction vessel was vacuum-sealed was taken out of the furnace into the air and room temperature was reached. Until cooled. When the sample was taken out from the reaction container after the heat treatment, whisker crystals were formed on the surface of the sample as shown in FIG.

生成したウィスカー結晶を走査型電子顕微鏡で観測した結果、図5に示したように、ウィスカー結晶は細長い棒針状であり、長さ(L)が0.1〜2mm、直径(d)が0.2×10−3mm〜5×10−3 mmの範囲に分布していた。アスペクト比(L/d)は、200〜10000であった。 As a result of observing the produced whisker crystal with a scanning electron microscope, as shown in FIG. 5, the whisker crystal has a long and narrow needle shape, the length (L) is 0.1 to 2 mm, and the diameter (d) is 0.1. It was distributed in the range of 2 × 10 −3 mm to 5 × 10 −3 mm. The aspect ratio (L / d) was 200 to 10,000.

生成したウィスカー結晶を寄せ集めところ、総重量は2mgであった。ウィスカー結晶について磁化率の温度変化を測定した。図6に示したように、明瞭な反磁性転移を絶対温度33Kで確認した。次に、ウィスカー結晶を1本取り出して、4端子法で電気抵抗率の温度変化を測定した。図7に示したように、絶対温度33Kで急激な抵抗率の減少を確認した。更に、10K以下で電気抵抗がゼロになることが観測された。以上から、33Kでの転移は超電導転移と考えられる。   The produced whisker crystals were collected and the total weight was 2 mg. The temperature change of magnetic susceptibility was measured for whisker crystals. As shown in FIG. 6, a clear diamagnetic transition was confirmed at an absolute temperature of 33K. Next, one whisker crystal was taken out and the temperature change of the electrical resistivity was measured by a four-terminal method. As shown in FIG. 7, a rapid decrease in resistivity was confirmed at an absolute temperature of 33K. Furthermore, it was observed that the electric resistance becomes zero at 10K or less. From the above, the transition at 33K is considered a superconducting transition.

また、ウィスカー結晶を集めて乳鉢でよく粉砕して混合し、その粉末を室温においてX線回折法による構造解析を行った。図8に回折チャートをリートベルト法で解析した結果を示す。すでに非特許文献5で公表されているバルク試料の結晶構造解析結果を参考にして解析したところ、ウィスカー結晶の結晶構造は、SrZnSb型結晶構造(正方晶)として良好に解析できた。なお、図8の最下段のカーブが実測値と計算値の差を示している。また、チャートの下には、SrZnSb型結晶構造相と不純物に起因する回折ピークの位置を示している。不純物は、結晶を集める際に、結晶以外の部分を完全に分離できなかったために混入したと推定される。リートベルト法による解析結果から、ウィスカー結晶は、公知のバルク結晶と同一の結晶構造を有していると考えられる。また、リートベルト法による組成分析(非特許文献6参照)の結果は、Ca:Fe:Pt:As=10:9:5:18であった。この分析結果は、添加剤分を除く原料元素の配合組成であるCa:Fe:Pt:As=10:9:5:18に対応している。 In addition, whisker crystals were collected and well pulverized and mixed in a mortar, and the powder was subjected to structural analysis by X-ray diffraction at room temperature. FIG. 8 shows the result of analyzing the diffraction chart by the Rietveld method. As a result of analysis with reference to the crystal structure analysis result of the bulk sample already published in Non-Patent Document 5, the crystal structure of the whisker crystal was successfully analyzed as an SrZnSb type 2 crystal structure (tetragonal crystal). Note that the lowermost curve in FIG. 8 shows the difference between the actually measured value and the calculated value. Also, the position of the diffraction peak due to the SrZnSb 2 type crystal structure phase and impurities is shown below the chart. It is presumed that the impurities were mixed because the portion other than the crystals could not be completely separated when collecting the crystals. From the analysis result by the Rietveld method, it is considered that the whisker crystal has the same crystal structure as a known bulk crystal. Moreover, the result of the composition analysis by Rietveld method (refer nonpatent literature 6) was Ca: Fe: Pt: As = 10: 9: 5: 18. This analysis result corresponds to Ca: Fe: Pt: As = 10: 9: 5: 18, which is the composition of the raw material elements excluding the additive.

図9に生成したウィスカー結晶の透過型電子顕微鏡による高分解能像と、この高分解能像に対応する電子線回折パターンを示す。明瞭なストライプ型のコントラストが、1nm周期で繰り返しているのが観測された。このコントラストの周期は、SrZnSb型結晶構造のc軸方向の積層周期と一致している。更に、同じ入射軸で撮影した電子線回折パターンの回折スポットの分布から、積層方向はa軸方向に垂直であると考えられる。ウィスカー結晶の長軸方向は積層方向に垂直であるので、生成したウィスカー結晶はSrZnSb型結晶構造のa軸方向に成長したと考えられる。 FIG. 9 shows a high-resolution image of the whisker crystal generated by a transmission electron microscope and an electron beam diffraction pattern corresponding to the high-resolution image. It was observed that clear stripe-type contrast was repeated with a period of 1 nm. This contrast period coincides with the stacking period in the c-axis direction of the SrZnSb 2 type crystal structure. Furthermore, the stacking direction is considered to be perpendicular to the a-axis direction from the distribution of diffraction spots of the electron diffraction pattern taken with the same incident axis. Since the major axis direction of the whisker crystal is perpendicular to the stacking direction, the generated whisker crystal is considered to have grown in the a-axis direction of the SrZnSb 2- type crystal structure.

図7に電気抵抗率の温度と直径の依存性を示す。ウィスカー結晶の直径が細くなるほど、超電導転移温度が低下することが分かる。直径が1×10 nm以上である場合、超電導転移温度は33Kであり、直径が0.45×10 nmまで小さくなると、超電導転移温度は25Kに低下する。 FIG. 7 shows the dependence of electrical resistivity on temperature and diameter. It can be seen that the superconducting transition temperature decreases as the diameter of the whisker crystal decreases. When the diameter is 1 × 10 3 nm or more, the superconducting transition temperature is 33K, and when the diameter is reduced to 0.45 × 10 3 nm, the superconducting transition temperature is lowered to 25K.

<実施例2>
添加剤分を含めない原料元素のモル比をCa:Fe:Pt:As=10:(10−5x):(4+5x):18とし、xを0,0.1,0.2,0.3,0.36と変化させ、実施例1と同様にウィスカー結晶の製造を試みた。ウィスカー結晶の生成を確認できたのはx≧0.1のときであった。x=0.2のとき、最も密にウィスカー結晶が生成した。x=0.36のときには、ウィスカー結晶のサイズが最も大きくなったが、超電導転移温度は25Kであった。
<Example 2>
The molar ratio of the raw material elements not including the additive component is Ca: Fe: Pt: As = 10: (10-5x) :( 4 + 5x): 18, and x is 0,0.1,0.2,0.3. , 0.36, and production of whisker crystals was attempted in the same manner as in Example 1. The formation of whisker crystals was confirmed when x ≧ 0.1. When x = 0.2, whisker crystals were formed most densely. When x = 0.36, the size of the whisker crystal was the largest, but the superconducting transition temperature was 25K.

<比較例1>
10質量%のヒ化カルシウムを添加しない以外は実施例1と同じ条件でウィスカー結晶の製造を試みた。しかしながら、ウィスカー結晶は生成しなかった。
<Comparative Example 1>
An attempt was made to produce whisker crystals under the same conditions as in Example 1 except that 10% by mass of calcium arsenide was not added. However, whisker crystals were not formed.

<比較例2>
1000℃で72時間保持した後、700℃まで48時間かけて一定の冷却速度で炉冷する熱処理を省略し、直ちに空気中で急冷した以外は実施例1と同じ条件でウィスカー結晶の製造を試みた。しかしながら、ウィスカー結晶は生成しなかった。
<Comparative Example 2>
Attempt to produce whisker crystals under the same conditions as in Example 1 except that the heat treatment of holding at 1000 ° C. for 72 hours and furnace cooling to 700 ° C. over 48 hours at a constant cooling rate is omitted and immediately quenched in air. It was. However, whisker crystals were not formed.

<比較例3>
熱処理前にカプセル状の金属製反応容器に印加した圧力を420MPaとした以外は実施例1と同じ条件でウィスカー結晶の製造を試みた。しかしながら、ウィスカー結晶は生成しなかった。
<Comparative Example 3>
An attempt was made to produce whisker crystals under the same conditions as in Example 1 except that the pressure applied to the capsule-shaped metal reaction vessel before the heat treatment was 420 MPa. However, whisker crystals were not formed.

本発明によれば、毒性対応が容易であり、鉄とヒ素を含む4種類以上の元素からなる結晶組成の制御が容易でもある。更にウィスカー結晶の長さ(L)と直径(d)のアスペクト比(L/d)が200以上であり、かつ直径が1×10−3mm以下である高アスペクト比のウィスカー結晶を製造することができる。得られるウィスカー結晶は、絶対温度30K程度で超電導性を示し、更に公知の銅酸化物超電導体のウィスカー結晶ほど脆くない。このため、適用可能な用途の拡大を図ることができ、工業的に有用である。特に、デバイス用の超電導線材や超電導接合素子材などの新規な産業技術材料に適用できる可能性がある。 According to the present invention, it is easy to cope with toxicity, and it is easy to control the crystal composition of four or more elements including iron and arsenic. Furthermore, a whisker crystal having a high aspect ratio in which the aspect ratio (L / d) of the length (L) and the diameter (d) of the whisker crystal is 200 or more and the diameter is 1 × 10 −3 mm or less. Can do. The resulting whisker crystal exhibits superconductivity at an absolute temperature of about 30K, and is not as brittle as a whisker crystal of a known copper oxide superconductor. For this reason, the use which can be applied can be expanded and it is industrially useful. In particular, it may be applicable to new industrial technical materials such as superconducting wires for devices and superconducting junction element materials.

11 反応容器の蓋
12 内容器の蓋
13 原料物質と添加剤の混合粉末
14 内容器
15 反応容器
21 ポンチ(上部)
22 カプセル状の金属製反応容器(圧着前)
23 ダイス
24 ポンチ(下部)
31 真空
32 真空容器
33 カプセル状の金属製反応容器(圧着後)
11 Lid of reaction vessel 12 Lid of inner vessel 13 Mixed powder of raw material and additive 14 Inner vessel 15 Reaction vessel 21 Punch (upper part)
22 Capsule-shaped metal reaction container (before crimping)
23 Dice 24 Punch (Bottom)
31 Vacuum 32 Vacuum container 33 Capsule-shaped metal reaction container (after crimping)

Claims (5)

鉄系超電導体のウィスカー結晶であって、M1(マグネシウム、カルシウム、ストロンチウムまたはバリウムから選ばれた1種以上の元素)、Fe(鉄)、M2(白金族元素から選ばれた1種以上の元素)及びAs(ヒ素)の4群よりなり、各群の元素のモル比が、
M1:Fe:M2:As=10:(10−5x):(4+5x):18(0.1≦x≦0.36)
であり、SrZnSb型結晶構造を有することを特徴とする鉄系超電導体のウィスカー結晶。
A whisker crystal of an iron-based superconductor, M1 (one or more elements selected from magnesium, calcium, strontium or barium), Fe (iron), M2 (one or more elements selected from platinum group elements) ) And As (arsenic), and the molar ratio of the elements in each group is
M1: Fe: M2: As = 10: (10-5x) :( 4 + 5x): 18 (0.1 ≦ x ≦ 0.36)
A whisker crystal of an iron-based superconductor characterized by having a SrZnSb type 2 crystal structure.
請求項1に記載の鉄系超電導体のウィスカー結晶において、棒針状の結晶の長さ(L)と直径(d)のアスペクト比(L/d)が200以上であり、かつ直径(d)が1×10−3mm以下であることを特徴とする鉄系超電導体のウィスカー結晶。 The whisker crystal of the iron-based superconductor according to claim 1, wherein the aspect ratio (L / d) of the length (L) and the diameter (d) of the needle-like crystal is 200 or more, and the diameter (d) is A whisker crystal of an iron-based superconductor characterized by being 1 × 10 −3 mm or less. 請求項1又は2に記載の鉄系超電導体のウィスカー結晶の製造方法であって、金属ヒ化物粉末及び金属粉末から構成され、構成元素が、M1(マグネシウム、カルシウム、ストロンチウムまたはバリウムから選ばれた1種以上の元素)、Fe(鉄)、M2(白金族元素から選ばれた1種以上の元素)及びAs(ヒ素)の4群よりなり、各群の元素のモル比が、M1:Fe:M2:As=10:(10−5x):(4+5x):18(0.1≦x≦0.36)である原料物質と、原料物質と結晶育成を促進する粉末添加剤との混合粉末をカプセル状の金属製反応容器内に充填し、この反応容器をダイスに装填し、対向して配置された2つのポンチを介して機械的に240〜380MPaの圧力を印加し、除圧後、前記反応容器を700〜1000℃の温度範囲で48時間以上保持し、引き続いて前記反応容器を0.3℃/分以下の一定の降温速度で700℃以下まで炉冷することを特徴とする鉄系超電導体のウィスカー結晶の製造方法。   The method for producing a whisker crystal of an iron-based superconductor according to claim 1 or 2, comprising a metal arsenide powder and a metal powder, wherein the constituent element is selected from M1 (magnesium, calcium, strontium or barium). It consists of four groups of one or more elements), Fe (iron), M2 (one or more elements selected from platinum group elements) and As (arsenic), and the molar ratio of the elements in each group is M1: Fe : M2: As = 10: (10-5x) :( 4 + 5x): 18 (0.1 ≦ x ≦ 0.36) mixed powder of raw material and powder additive that promotes crystal growth In a capsule-shaped metal reaction vessel, this reaction vessel is loaded into a die, mechanically applied with a pressure of 240 to 380 MPa through two opposed punches, and after depressurization, The reaction vessel is kept at a temperature range of 700 to 1000 ° C. In and held for 48 hours or more, followed method for producing whisker crystals of iron-based superconductors, characterized by furnace cooling to 700 ° C. or less at a constant cooling rate of 0.3 ° C. / min or less the reaction vessel. 請求項3に記載の鉄系超電導体のウィスカー結晶の製造方法において、前記粉末添加剤が金属ヒ化物又は金属ハロゲン化物から選ばれる1種以上であることを特徴とする鉄系超電導体のウィスカー結晶の製造方法。   The whisker crystal of the iron-based superconductor according to claim 3, wherein the powder additive is at least one selected from metal arsenide or metal halide. Manufacturing method. 請求項3又は4に記載の鉄系超電導体のウィスカー結晶の製造方法において、前記金属製反応容器内に内容器を設置し、前記混合粉末と前記金属製反応容器を分離することを特徴とする鉄系超電導体のウィスカー結晶の製造方法。   The method for producing a whisker crystal of an iron-based superconductor according to claim 3 or 4, wherein an inner container is installed in the metal reaction vessel, and the mixed powder and the metal reaction vessel are separated. A method for producing whisker crystals of iron-based superconductors.
JP2012027737A 2012-02-10 2012-02-10 Whisker crystal of iron-based superconductor and manufacturing method thereof Expired - Fee Related JP5916009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027737A JP5916009B2 (en) 2012-02-10 2012-02-10 Whisker crystal of iron-based superconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027737A JP5916009B2 (en) 2012-02-10 2012-02-10 Whisker crystal of iron-based superconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013163615A true JP2013163615A (en) 2013-08-22
JP5916009B2 JP5916009B2 (en) 2016-05-11

Family

ID=49175234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027737A Expired - Fee Related JP5916009B2 (en) 2012-02-10 2012-02-10 Whisker crystal of iron-based superconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5916009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822976A (en) * 2022-04-28 2022-07-29 中南大学 Preparation method of iron-arsenic compound and iron-based superconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279305A (en) * 2000-03-30 2001-10-10 Osaka Gas Co Ltd Iron-based nanometer scale acicular body and its production method
JP2001342014A (en) * 2000-03-31 2001-12-11 Osaka Gas Co Ltd Method of preparing nano-scale acicular materials
JP2006045028A (en) * 2004-08-06 2006-02-16 National Institute For Materials Science Needle-like crystal of oxide superconductor and method of producing the same
JP2009196852A (en) * 2008-02-21 2009-09-03 National Institute For Materials Science Oxide superconductor and method for producing the same
JP2011044460A (en) * 2009-08-19 2011-03-03 National Institute Of Advanced Industrial Science & Technology Multiband superconductor and superconductive device using the same, and fabricating method for the superconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279305A (en) * 2000-03-30 2001-10-10 Osaka Gas Co Ltd Iron-based nanometer scale acicular body and its production method
JP2001342014A (en) * 2000-03-31 2001-12-11 Osaka Gas Co Ltd Method of preparing nano-scale acicular materials
JP2006045028A (en) * 2004-08-06 2006-02-16 National Institute For Materials Science Needle-like crystal of oxide superconductor and method of producing the same
JP2009196852A (en) * 2008-02-21 2009-09-03 National Institute For Materials Science Oxide superconductor and method for producing the same
JP2011044460A (en) * 2009-08-19 2011-03-03 National Institute Of Advanced Industrial Science & Technology Multiband superconductor and superconductive device using the same, and fabricating method for the superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822976A (en) * 2022-04-28 2022-07-29 中南大学 Preparation method of iron-arsenic compound and iron-based superconductor

Also Published As

Publication number Publication date
JP5916009B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
US11542204B2 (en) Method for producing non-oxide ceramic powders
Rodewald et al. Rare earth–transition metal–magnesium compounds—An overview
CN114180970B (en) Nitrogen-containing medium-entropy or high-entropy MAX phase material and preparation method and application thereof
CN114180969B (en) Preparation method and application of nitrogen-containing high-entropy MAX phase material and two-dimensional material
US9865791B2 (en) Nanostructured copper-selenide with high thermoelectric figure-of-merit and process for the preparation thereof
CN112938976B (en) MAX phase layered material containing selenium at A position, preparation method and application thereof
Liu et al. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures
Muralidhar et al. Review on high-performance bulk MgB2 superconductors
Hoffmann et al. Structure and properties of Sr2Au3In4 and Eu2Au3In4
EP1394112B1 (en) Mgb2 based superconductor having high critical current density and method for preparation thereof
JP5916009B2 (en) Whisker crystal of iron-based superconductor and manufacturing method thereof
CN111304492B (en) Low-temperature n-type thermoelectric material and preparation method thereof
WO2022254455A1 (en) Max phases by reactive flash sintering and a method for ultrafast synthesis thereof
Zhao et al. A new route for the synthesis of boron-rich rare-earth boride NdB6 under high pressure and high temperature
Turquier et al. Formation and stability of single-phase Al-Cu-Fe quasicrystals under pressure
Yuan et al. Titanium nitride nanopowders produced via sodium reductionin liquid ammonia
TW201813926A (en) Method of producing carbide raw material
JP2003095642A (en) Magnesium borate and its manufacturing method
JP2003095650A (en) MgB2-BASED SUPERCONDUCTOR HAVING HIGH CRITICAL CURRENT DENSITY AND METHOD FOR MANUFACTURING THE SAME
Zaremba et al. Transition Metal Centered Trigonal Prisms as Building Units in Various Rare Earth–Transition Metal-Indides
WO2023047739A1 (en) Superconducting bulk body, and production method for superconducting bulk body
Ju et al. A structural study of the hole-doped superconductors Pr1− xSrxFeAsO
CN113149642B (en) Intermetallic oxide superconducting material and preparation method and application thereof
JP2023023027A (en) Silicon carbide porous body and production method thereof
Kuznetsova et al. Effect of Thermomechanical Treatment Conditions on the Structure and Properties of MgB 2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5916009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees