JP2013161743A - Planar light source device - Google Patents

Planar light source device Download PDF

Info

Publication number
JP2013161743A
JP2013161743A JP2012024869A JP2012024869A JP2013161743A JP 2013161743 A JP2013161743 A JP 2013161743A JP 2012024869 A JP2012024869 A JP 2012024869A JP 2012024869 A JP2012024869 A JP 2012024869A JP 2013161743 A JP2013161743 A JP 2013161743A
Authority
JP
Japan
Prior art keywords
light
light source
source device
emitted
full width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012024869A
Other languages
Japanese (ja)
Inventor
Masae Ono
雅江 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012024869A priority Critical patent/JP2013161743A/en
Publication of JP2013161743A publication Critical patent/JP2013161743A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an edge light type planar light source device capable of attaining a balanced light emission distribution and raising use efficiency of light of a primary light source in a wide angle range in the vicinity of a normal direction of a light-emitting surface and raising display performance of a display device.SOLUTION: In a planar light source device, a primary light source 1 are arranged to be respectively opposite to two light-incident end faces 31 made by two opposite side end faces of a light guide 3. A light polarizing element 4 is formed by making a plurality of prism rows, wherein a cross section is formed by symmetrical prism surfaces on a light-incident surface, arranged in parallel with each other. An 80% full width on a luminance distribution of light emitted from a light-emitting surface of the light polarizing element 4 is 20° or more. A difference between a 20% full width and the 80% full width on the luminance distribution of light emitted from the light-emitting surface of the light polarizing element 4 is smaller than 24°.

Description

本発明は、モニター、テレビ等において表示部として使用される液晶表示装置等を構成するエッジライト方式の面光源装置に関するものである。   The present invention relates to an edge light type surface light source device that constitutes a liquid crystal display device used as a display unit in a monitor, a television, or the like.

近年、カラー液晶表示装置は、携帯電話機や携帯情報端末、ノートパソコンやパソコン等のモニターおよびテレビ等の表示部として、種々の分野で広く使用されている。特にモニターやテレビにおいては従来のブラウン管にかわる表示装置として急速に普及してきている。   2. Description of the Related Art In recent years, color liquid crystal display devices have been widely used in various fields as display units for mobile phones, personal digital assistants, monitors for notebook computers and personal computers, and televisions. In particular, monitors and televisions are rapidly spreading as display devices replacing conventional cathode ray tubes.

液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部すなわち面光源装置としては、液晶表示素子部の直下に光源を配置した直下方式のものや導光体の側端面に対向するように光源を配置したエッジライト方式のものがあり、液晶表示装置のコンパクト化の観点からはエッジライト方式が好ましい。エッジライト方式の面光源装置では、板状導光体の側端面に隣接して一次光源が配置され、板状導光体の一主面である光出射面上に光偏向素子が配置され、導光体光出射面から出射した光が光偏向素子の一主面である入光面に入射し他の主面である出光面から出射する。   The liquid crystal display device basically includes a backlight unit and a liquid crystal display element unit. As the backlight unit, that is, the surface light source device, there are a direct light type device in which a light source is disposed directly under a liquid crystal display element unit, and an edge light type device in which a light source is disposed so as to face a side end surface of a light guide. From the viewpoint of making the display device compact, the edge light system is preferable. In the edge light type surface light source device, the primary light source is disposed adjacent to the side end surface of the plate-shaped light guide, and the light deflection element is disposed on the light emitting surface which is one main surface of the plate-shaped light guide. The light emitted from the light guide light exit surface enters the light incident surface that is one main surface of the light deflection element and exits from the light exit surface that is the other main surface.

特開2003−59321号公報(特許文献1)には、光偏向素子として頂角65〜75°のマイクロプリズムを持つプリズムシートを用いる面光源装置が開示されている。この面光源装置は、導光体の一側端面から入射した光を光出射面から出射させ光偏向素子により法線方向に向けるものであり、導光体の両側端面に一次光源を配置することを特に考慮したものではない。   Japanese Laid-Open Patent Publication No. 2003-59321 (Patent Document 1) discloses a surface light source device using a prism sheet having a microprism with an apex angle of 65 to 75 ° as a light deflection element. In this surface light source device, light incident from one side end face of the light guide is emitted from the light exit face and directed in the normal direction by the light deflection element, and primary light sources are disposed on both end faces of the light guide. Is not particularly considered.

ところで、モニターやテレビなどの比較的大型の装置に用いられる液晶表示装置では、光量確保のため、エッジライト方式面光源装置において、導光体の左右両側端面に隣接して一次光源を配置することがある。   By the way, in a liquid crystal display device used for a relatively large device such as a monitor or a television, in order to secure a light amount, in the edge light type surface light source device, a primary light source is disposed adjacent to both left and right end surfaces of the light guide. There is.

特許4544517号公報(特許文献2)には、導光体の左右両側端面に隣接して一次光源を配置した面光源装置が開示されている。   Japanese Patent No. 4544517 (Patent Document 2) discloses a surface light source device in which a primary light source is disposed adjacent to both left and right end faces of a light guide.

特開2003−59321号公報JP 2003-59321 A 特許第4544517号公報Japanese Patent No. 4544517

導光体の互いに反対側の左右両側端面にそれぞれ隣接して一次光源を配置した面光源装置においては、導光体の一側端面に隣接する一次光源のみを点灯させた時に、必ずしも光偏向素子出光面の法線方向に輝度分布のピークがくる必要はない。導光体の一側端面からのみ一次光源光を入射させた時に光偏向素子から出射する光の輝度分布ピーク角度が出光面法線の方向からずれていても、両側端面から一次光源光を入射させた時に光偏向素子から出射する光のバランスが取れていれば良い。ここで、光のバランスが取れているということは、出射光輝度分布において、出光面法線の方向に実質的にピーク角度があって、出光面法線の方向の近傍のできるだけ広い角度範囲が高輝度であることを指す。   In a surface light source device in which a primary light source is disposed adjacent to left and right side end surfaces on opposite sides of a light guide, when only the primary light source adjacent to one side end surface of the light guide is turned on, a light deflection element is not necessarily provided. It is not necessary that the luminance distribution peak in the normal direction of the light exit surface. When primary light source light is incident only from one end face of the light guide, the primary light source light is incident from both end faces even if the luminance distribution peak angle of the light emitted from the light deflection element is deviated from the normal direction of the light exit surface. It is sufficient that the light emitted from the light deflection element is balanced when the light is deflected. Here, the fact that the light is balanced means that in the outgoing light luminance distribution, there is a substantially peak angle in the direction of the light exit surface normal, and the widest possible angular range in the vicinity of the direction of the light exit surface normal. It means high brightness.

特許文献2に記載の面光源装置は、2つ以上の方向から観察するのに適した液晶表示装置のためのものであり、光偏向素子からの出射光輝度分布が2つ以上の方向にピークを持つ。   The surface light source device described in Patent Document 2 is for a liquid crystal display device suitable for observing from two or more directions, and the emitted light luminance distribution from the light deflection element peaks in two or more directions. have.

そこで、本発明の目的は、導光体の両側端面入射のエッジライト方式面光源装置において、バランスが取れた出射光分布を得、これにより出光面法線方向の近傍の広い角度範囲での一次光源光の利用効率を高め表示装置の表示性能を高めることを可能にする、面光源装置を提供することにある。   Accordingly, an object of the present invention is to obtain a balanced distribution of emitted light in an edge light type surface light source device that is incident on both end faces of a light guide, and thereby primary in a wide angular range in the vicinity of the light exit surface normal direction. An object of the present invention is to provide a surface light source device that makes it possible to increase the utilization efficiency of light source light and enhance the display performance of the display device.

すなわち、本発明の面光源装置は、
一次光源と、該一次光源から発せられた光が光入射端面より入射し前記入射した光を導光し光出射面から出射させる導光体と、該導光体の前記光出射面に隣接配置された光偏向素子と、を含んでなる面光源装置であって、
前記一次光源は、前記導光体の互いに対向する2つの側端面からなる2つの前記光入射端面にそれぞれ対向するように配置されており、
前記光偏向素子は、前記導光体からの出射光が入射する入光面に、前記光入射端面及び前記光出射面の双方と直交する断面の形状が左右対称のプリズム面より構成される複数のプリズム列が互いに平行に配列されて形成されており、
前記光偏向素子の前記導光体と反対側に位置する出光面より出射する光の輝度分布におけるピーク輝度値に対する80%以上の輝度値を有する角度範囲である80%全幅が20度以上であり、
前記光偏向素子の前記出光面より出射する光の輝度分布におけるピーク輝度値に対する20%以上の輝度値を有する角度範囲である20%全幅と前記80%全幅との差が24度より小さいことを特徴とする。
That is, the surface light source device of the present invention is
A primary light source, a light guide that allows light emitted from the primary light source to enter from a light incident end surface, guides the incident light, and emits the light from a light exit surface, and is disposed adjacent to the light exit surface of the light guide A surface light source device comprising:
The primary light source is disposed so as to face the two light incident end faces composed of two side end faces facing each other of the light guide,
The light deflection element includes a plurality of prism surfaces whose cross-sectional shapes orthogonal to both the light incident end surface and the light exit surface are symmetric to a light incident surface on which light emitted from the light guide is incident. Are arranged in parallel with each other,
The 80% full width, which is an angular range having a luminance value of 80% or more with respect to the peak luminance value in the luminance distribution of light emitted from the light exiting surface located on the opposite side of the light guide of the light deflection element, is 20 degrees or more. ,
The difference between the 20% full width, which is an angle range having a luminance value of 20% or more with respect to the peak luminance value in the luminance distribution of the light emitted from the light exit surface of the light deflection element, and the 80% full width is smaller than 24 degrees. Features.

本発明の一態様においては、前記一次光源のうちの一方のみを点灯させたときの、前記光偏向素子の前記出光面より出射する光の輝度分布におけるピーク輝度を示す方向が、前記光偏向素子の前記出光面の法線方向に対して5度から10度傾いている。本発明の一態様においては、前記光偏向素子の前記プリズム列の高さをh、該プリズム列のピッチをPとしたとき、h/Pが0.89から0.95の範囲内にある。   In one aspect of the present invention, when only one of the primary light sources is turned on, a direction indicating a peak luminance in a luminance distribution of light emitted from the light exit surface of the light deflection element is the light deflection element. Is inclined 5 to 10 degrees with respect to the normal direction of the light exit surface. In one aspect of the present invention, when the height of the prism row of the light deflection element is h and the pitch of the prism row is P, h / P is in the range of 0.89 to 0.95.

本発明によれば、導光体の2つの光入射端面にそれぞれ対向配置された一次光源より発せられた光が光入射端面に入射し、光偏向素子から出射する光が光偏向素子の出光面の法線方向に実質的に輝度ピークがあって法線方向の近傍の広い角度範囲で高輝度を保ち、当該角度範囲を超えた角度においては急激に輝度が低下するので、出光面法線方向の近傍の広い角度範囲での一次光源光の利用効率を高め表示装置の表示性能を高めることが可能になる。   According to the present invention, the light emitted from the primary light source disposed opposite to the two light incident end faces of the light guide is incident on the light incident end face, and the light emitted from the light deflecting element is the light exit surface of the light deflecting element. Since there is a substantial luminance peak in the normal direction of the light source and high brightness is maintained in a wide angular range in the vicinity of the normal direction, and the luminance is drastically reduced at angles beyond the angular range, the light exit surface normal direction It is possible to increase the use efficiency of the primary light source light in a wide angle range in the vicinity of and to improve the display performance of the display device.

本発明による面光源装置の実施形態を示す模式的斜視図である。It is a typical perspective view which shows embodiment of the surface light source device by this invention. 本発明による面光源装置の光偏向素子の実施形態におけるプリズム列の断面形状の説明図である。It is explanatory drawing of the cross-sectional shape of the prism row | line | column in embodiment of the optical deflection | deviation element of the surface light source device by this invention. 本発明による面光源装置の実施形態における導光体の出射角依存の出射光光度分布を示す図である。It is a figure which shows the outgoing light luminous intensity distribution of the light guide in the embodiment of the surface light source device by this invention depending on the outgoing angle. 本発明の実施例1における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection | deviation element in Example 1 of this invention. 本発明の実施例3における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the optical deflection | deviation element in Example 3 of this invention. 本発明の比較例1における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection | deviation element in the comparative example 1 of this invention. 本発明の比較例2における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection | deviation element in the comparative example 2 of this invention. 本発明の実施例3における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the optical deflection | deviation element in Example 3 of this invention. 本発明による面光源装置の実施形態における導光体の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the light guide in embodiment of the surface light source device by this invention. 出射光分布において、80%全幅、半値全幅、20%全幅を示す図である。It is a figure which shows 80% full width, full width at half maximum, and 20% full width in an emitted light distribution. 本発明の実施例および比較例における導光体の一側端面への一次光源光入射時の出射光分布を示す図である。It is a figure which shows the emitted light distribution at the time of the primary light source light incidence to the one side end surface of the light guide in the Example and comparative example of this invention. 本発明の実施例および比較例における導光体の両側端面への一次光源光入射時の出射光分布を示す図である。It is a figure which shows the emitted light distribution at the time of the primary light source light incidence to the both-sides end surface of the light guide in the Example and comparative example of this invention.

以下、図面を参照しながら、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による面光源装置の一つの実施形態を示す模式的斜視図である。導光体3は、XY面と平行に配置されており、全体として矩形板状をなしている。導光体3は4つの側端面を有しており、そのうちYZ面と平行な1対の側端面を光入射端面31とする。一次光源1は光入射端面31と対向して配置されており、一次光源1から発せられた光は光入射端面31に入射し導光体3内へと導入される。図1では、YZ面と平行な1対の側端面からなる光入射端面31のうちの一方のみが表れており、他方の光入射端面は表れていない。同様に、他方の光入射端面に対向して配置される一次光源は、表れていない。   FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention. The light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end faces, and a pair of side end faces parallel to the YZ plane is a light incident end face 31. The primary light source 1 is disposed so as to face the light incident end face 31, and light emitted from the primary light source 1 enters the light incident end face 31 and is introduced into the light guide 3. In FIG. 1, only one of the light incident end faces 31 formed of a pair of side end faces parallel to the YZ plane appears, and the other light incident end face does not appear. Similarly, the primary light source arranged facing the other light incident end face does not appear.

導光体3の光入射端面31と略直交する一つの表面を光出射面33とし、導光体3の光出射面33上に光偏向素子4および光拡散素子6を配置し、導光体3の光出射面33と反対の側の裏面34に対向して光反射素子5を配置する。   One surface substantially orthogonal to the light incident end face 31 of the light guide 3 is used as a light exit surface 33, the light deflection element 4 and the light diffusion element 6 are disposed on the light exit surface 33 of the light guide 3, and the light guide The light reflecting element 5 is disposed opposite to the back surface 34 on the side opposite to the light emitting surface 33 of FIG.

導光体3の光入射端面31に略直交した2つの主面は、それぞれXY面と略平行に位置しており、いずれか一方の面(図では上面)が光出射面33となる。この光出射面33及びそれと反対の側に位置する裏面34のうちの少なくとも一方の面に粗面からなる指向性光出射機能部や、プリズム列、レンチキュラーレンズ列、V字状溝等の多数のレンズ列を並列形成したレンズ面からなる指向性光出射機能部を付与することによって、光入射端面31に入射した光を導光体3中を導光させながら、光出射面33から光入射端面31および光出射面33の双方に直交する面(XZ面)内の出射光分布において指向性のある光を出射させる。このXZ面内における出射光分布のピークの方向が光出射面33となす角度をaとすると、この角度aは10〜40度とすることが好ましい。   Two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the drawing) serves as the light emitting surface 33. At least one of the light emitting surface 33 and the back surface 34 located on the opposite side thereof has a directional light emitting function portion formed of a rough surface, a prism array, a lenticular lens array, a V-shaped groove, and the like. By providing a directional light emitting function unit composed of lens surfaces in which lens rows are formed in parallel, the light incident on the light incident end surface 31 is guided through the light guide 3 while the light incident end surface 31 is exposed to the light incident end surface. In the outgoing light distribution in the plane (XZ plane) orthogonal to both 31 and the light emitting surface 33, light having directivity is emitted. If the angle formed by the direction of the peak of the emitted light distribution in the XZ plane and the light emitting surface 33 is a, this angle a is preferably 10 to 40 degrees.

なお、本発明では、上記のような光出射面33またはその裏面34に光出射機能部を形成する代わりにあるいはこれと併用して、導光体内部に光拡散性微粒子を混入分散することで指向性光出射機能を付与したものでもよい。また、導光体3としては、図1に示したような大略平行平板状(即ちXZ断面形状が長方形)のものに限定されるものではなく、船型状等の種々のXZ断面形状を持つものが使用できる。   In the present invention, light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the light emitting surface 33 or the back surface 34 as described above. What provided the directional light emission function may be used. Further, the light guide 3 is not limited to a substantially parallel plate shape (that is, the XZ cross-sectional shape is rectangular) as shown in FIG. 1, but has various XZ cross-sectional shapes such as a ship shape. Can be used.

本発明の導光体3は、光透過率の高い合成樹脂から構成することができる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であるものが好ましい。導光体3の粗面の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出成形や射出成形等によって形成してもよい。また、熱あるいは光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂等からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂からなる粗面構造を表面に形成してもよいし、このようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させてもよい。活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリル化合物、ビニル化合物、(メタ)アクリル酸エステル類、アリル化合物、(メタ)アクリル酸の金属塩等を使用することができる。   The light guide 3 of the present invention can be composed of a synthetic resin having a high light transmittance. Examples of such synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and vinyl chloride resins. In particular, methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and molding processability. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more. When the surface structure of the rough surface of the light guide 3 is formed, the transparent synthetic resin plate may be formed by hot pressing using a mold member having a desired surface structure, screen printing, extrusion molding, You may form by injection molding etc. The structural surface can also be formed using heat or a photocurable resin. Furthermore, on a transparent substrate such as a polyester film, acrylic resin, polycarbonate resin, vinyl chloride resin, polymethacrylamide resin, or other transparent substrate or rough surface structure made of an active energy ray curable resin. May be formed on the surface, or such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion. As the active energy ray-curable resin, polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, allyl compounds, (meth) acrylic acid metal salts, and the like can be used.

図2は、光偏向素子4におけるプリズム列の断面形状の説明図である。図2は、図1におけるXZ断面に相当する。光偏向素子4は、主表面のうちの一方を入光面41とし他方を出光面42とする。入光面41には図2の紙面に垂直の方向(Y方向)に延びた多数のプリズム列が並列に配列され、各プリズム列は第1のプリズム面44と第2のプリズム面45との2つのプリズム面から構成されている。第2のプリズム面45は第1のプリズム面44を出光面42の法線方向(Z方向:図2では上下方向)の線を対称線として反転したものであり、各プリズム列は左右対称の形状となっている。モニターやテレビでは、光量確保のため、導光体の左右両側端面に隣接して一次光源を配置することがある。この場合、面光源装置ひいては液晶表示装置から効率よく光を出射するためには、光偏向素子はプリズム列が左右対称形状のものが良い。第1のプリズム面44と第2のプリズム面45とは、略対称である。ここで、略対称とは、完全に左右対称である場合の他に、実質上左右対称と見なされる場合をも含むものとする。ここで、実質上左右対称とは、左右反転させて使用した場合においても反転前のものと実使用上同等と見なし得る程度の光出射変化しか生じない程度の範囲内のものとする。   FIG. 2 is an explanatory diagram of the cross-sectional shape of the prism row in the light deflection element 4. FIG. 2 corresponds to the XZ section in FIG. The light deflection element 4 has one of the main surfaces as a light incident surface 41 and the other as a light output surface 42. A large number of prism rows extending in a direction perpendicular to the paper surface of FIG. 2 (Y direction) are arranged in parallel on the light incident surface 41, and each prism row is composed of a first prism surface 44 and a second prism surface 45. It consists of two prism surfaces. The second prism surface 45 is obtained by inverting the first prism surface 44 with a line in the normal direction (Z direction: vertical direction in FIG. 2) of the light exit surface 42 as a symmetric line. It has a shape. In a monitor or television, a primary light source may be disposed adjacent to the left and right end faces of the light guide to secure the amount of light. In this case, in order to efficiently emit light from the surface light source device and thus the liquid crystal display device, it is preferable that the light deflection element has a symmetrical prism array. The first prism surface 44 and the second prism surface 45 are substantially symmetric. Here, the term “substantially symmetrical” includes not only the case of being completely left-right symmetric but also the case of being considered substantially left-right symmetric. Here, “substantially left-right symmetric” means within a range where only a change in light emission that can be regarded as equivalent to that in actual use occurs even when the left-right inversion is used.

プリズム列の配列ピッチPは、特に制限されないが、10〜100μm程度が好ましい。但し、液晶パネル(液晶表示素子)とのモアレを回避できる値を選ぶとよい。   The arrangement pitch P of the prism rows is not particularly limited, but is preferably about 10 to 100 μm. However, a value that can avoid moiré with the liquid crystal panel (liquid crystal display element) may be selected.

図2に示した実施形態において、第1のプリズム面44および第2のプリズム面45は、XZ断面形状が各々1つの円弧で構成されている。しかし、本発明においては、各プリズム列の2つのプリズム面のそれぞれは、XZ断面形状において唯一の円弧形状である必要はなく、例えば、直線形状でも良いし、円弧以外の曲線形状でも良いし、直線または曲線を2つ以上連結した形状でもよい。   In the embodiment shown in FIG. 2, each of the first prism surface 44 and the second prism surface 45 has an XZ cross-sectional shape formed by one arc. However, in the present invention, each of the two prism surfaces of each prism row need not be the only arc shape in the XZ cross-sectional shape, and may be, for example, a linear shape or a curved shape other than the arc. The shape which connected 2 or more of the straight line or the curve may be sufficient.

出光面42より出射する光の輝度分布におけるピーク輝度値に対する80%以上の輝度値を有する角度範囲(80%全幅:図10参照:図10において角度の単位は「度」である)を20度以上とし、且つ、出光面42より出射する光の輝度分布におけるピーク輝度値に対する20%以上の輝度値を有する角度範囲(20%全幅:図10参照)と80%全幅との差を24度以下とすることで、出光面42の法線の方向及びその付近の広い角度範囲では急激な輝度変化を起こすことなく、法線方向から離れた角度のところで急激に輝度を減少させることができる。これにより、出光面法線方向及びその付近の広い角度範囲において一次光源光の利用効率が高められ、液晶パネルを通して画像を観察したときに広い角度範囲においてコントラストに優れた表示装置を提供できる。   An angle range having a luminance value of 80% or more with respect to the peak luminance value in the luminance distribution of light emitted from the light exit surface 42 (80% full width: see FIG. 10: the unit of angle is “degree” in FIG. 10) is 20 degrees. The difference between the angular range (20% full width: see FIG. 10) having a luminance value of 20% or more with respect to the peak luminance value in the luminance distribution of the light emitted from the light exit surface 42 is 24 degrees or less. Thus, the brightness can be rapidly reduced at an angle away from the normal direction without causing a sharp brightness change in the direction of the normal line of the light exit surface 42 and in a wide angle range in the vicinity thereof. Thereby, the utilization efficiency of the primary light source light is enhanced in the normal direction of the light exit surface and in the wide angular range in the vicinity thereof, and a display device having excellent contrast in the wide angular range when an image is observed through the liquid crystal panel can be provided.

また、出光面42より出射する光の輝度分布における80%全幅を20度以上とし、且つ、20%全幅と80%全幅との差を24度以下とするためには、光偏向素子4において一方の一次光源1のみ点灯させた時、出光面42より出射する光の輝度分布におけるピーク輝度を示す方向が法線方向に対して5度〜10度傾いている(ずれている)ことが好ましい。出光面42より出射する光のピーク輝度方向の法線方向からのずれが5度より小さいと、光が法線方向に集中しすぎ、法線方向付近での輝度変化が大きくなる傾向にあり、80%全幅が20度より小さくなる傾向にある。逆に、出射光ピーク輝度方向の法線方向からのずれが10度より大きいと、法線方向から大きく離隔した方向の輝度に比べ法線方向付近の輝度が下がる傾向にあり、法線方向の輝度が周辺に比べ低くなる傾向にある。   In order to set the 80% full width of the luminance distribution of the light emitted from the light exit surface 42 to 20 degrees or more and the difference between the 20% full width and the 80% full width to 24 degrees or less, When only the primary light source 1 is turned on, it is preferable that the direction indicating the peak luminance in the luminance distribution of the light emitted from the light exit surface 42 is inclined (shifted) by 5 degrees to 10 degrees with respect to the normal direction. If the deviation from the normal direction of the peak luminance direction of the light emitted from the light exit surface 42 is less than 5 degrees, the light tends to be concentrated too much in the normal direction, and the luminance change in the vicinity of the normal direction tends to increase. The 80% full width tends to be smaller than 20 degrees. Conversely, if the deviation from the normal direction of the emitted light peak luminance direction is larger than 10 degrees, the luminance in the vicinity of the normal direction tends to be lower than the luminance in the direction far away from the normal direction. The brightness tends to be lower than the surrounding area.

さらに、光偏向素子4において一方の一次光源1のみ点灯させた時、出光面42より出射する光の輝度分布におけるピーク輝度を示す方向が法線方向に対して5度〜10度傾いているためには、光偏向素子4のプリズム列の高さhとプリズム列の配列ピッチPとの比h/Pは、0.89〜0.95の範囲内にあることが好ましい。比h/Pが0.89より小さいと、一方の一次光源1のみを点灯させたときに出光面42より出射する光の輝度分布におけるピーク輝度方向の法線方向からのずれが5度より小さくなってしまう傾向にある。逆に、比h/Pが0.95より大きいと、一方の一次光源1のみを点灯させたときに出光面42より出射する光の輝度分布におけるピーク輝度方向の法線方向からのずれが10度より大きくなってしまう傾向にある。   Further, when only one of the primary light sources 1 is turned on in the light deflection element 4, the direction showing the peak luminance in the luminance distribution of the light emitted from the light exit surface 42 is inclined 5 to 10 degrees with respect to the normal direction. The ratio h / P of the prism row height h to the prism row arrangement pitch P of the light deflection element 4 is preferably in the range of 0.89 to 0.95. When the ratio h / P is smaller than 0.89, the deviation from the normal direction of the peak luminance direction in the luminance distribution of the light emitted from the light emitting surface 42 when only one of the primary light sources 1 is turned on is smaller than 5 degrees. It tends to become. Conversely, if the ratio h / P is greater than 0.95, the deviation of the peak luminance direction from the normal direction in the luminance distribution of the light emitted from the light emitting surface 42 when only one of the primary light sources 1 is turned on is 10%. It tends to be larger than the degree.

一次光源1としては例えばLED光源、ハロゲンランプ、メタルハライドランプ等のような点状光源や蛍光ランプや冷陰極管などのY方向に延在する線状光源を用いることができる。複数の点状光源をY方向に配列してもよい。必要に応じて、一次光源を取り囲むように光源リフレクタを設置しても良い。これは一次光源から出射した光のうち導光体3に入射できない光を導光体に向けて反射させる。材質としては、例えば表面に金属蒸着反射層を有するプラスチックフィルムを用いることができる。このような光源リフレクタと同様な反射部材を、導光体3の光入射端面とされる側端面31以外の側端面に付することも可能である。   As the primary light source 1, for example, a point light source such as an LED light source, a halogen lamp, or a metal halide lamp, or a linear light source extending in the Y direction such as a fluorescent lamp or a cold cathode tube can be used. A plurality of point light sources may be arranged in the Y direction. If necessary, a light source reflector may be installed so as to surround the primary light source. This reflects light that cannot enter the light guide 3 out of the light emitted from the primary light source toward the light guide. As a material, for example, a plastic film having a metal-deposited reflective layer on the surface can be used. A reflection member similar to such a light source reflector may be attached to a side end face other than the side end face 31 that is the light incident end face of the light guide 3.

光反射素子5は導光体3の光出射面33と反対の側の裏面34に対向して配置される。光反射素子5としては、例えば表面に金属蒸着反射層を有するプラスチックシートを用いることができる。本発明においては、光反射素子5として、反射シートに代えて、導光体3の裏面34に金属蒸着等により形成された光反射層等を用いることも可能である。これにより導光体3より漏れた光を再度導光体内に戻してやることが出来、一次光源から発せられる光量を有効に利用することができる。   The light reflecting element 5 is disposed so as to face the back surface 34 on the side opposite to the light emitting surface 33 of the light guide 3. As the light reflecting element 5, for example, a plastic sheet having a metal vapor deposition reflecting layer on the surface can be used. In the present invention, it is also possible to use a light reflecting layer or the like formed on the back surface 34 of the light guide 3 by metal vapor deposition or the like, instead of the reflecting sheet, as the light reflecting element 5. As a result, the light leaking from the light guide 3 can be returned again into the light guide, and the amount of light emitted from the primary light source can be used effectively.

光拡散素子6は、光偏向素子4の出光面側にて光偏向素子4と一体化させてもよいし、光拡散素子6を個別に光偏向素子4の出光面上に載置しても良い。個別に光拡散素子6を載置する場合には、光拡散素子6の光偏向素子4に隣接する側の面即ち入射面には、光偏向素子4とのスティッキングを防止するため、凹凸構造を付与することが好ましい。同様に、光拡散素子6の出射面においても、その上に配置される液晶表示素子との間でのスティッキングを考慮する必要があり、光出射面にも凹凸構造を付与することが好ましい。この凹凸構造は、スティッキング防止の目的のみに付与する場合には、特開2010−192433号公報の明細書の段落[0019]ないし[0021]に記載されているISO4287/1−1984による平均傾斜角が、0.7度以上となるような構造とすることが好ましく、さらに好ましくは1度以上であり、より好ましくは1.5度以上である。尚、光拡散素子6は省略してもよい。   The light diffusing element 6 may be integrated with the light deflecting element 4 on the light exiting surface side of the light deflecting element 4, or the light diffusing element 6 may be individually placed on the light exiting surface of the light deflecting element 4. good. When the light diffusing element 6 is individually mounted, the surface adjacent to the light deflecting element 4 of the light diffusing element 6, that is, the incident surface is provided with an uneven structure to prevent sticking with the light deflecting element 4. It is preferable to give. Similarly, it is necessary to consider sticking between the light diffusing element 6 and the liquid crystal display element disposed thereon, and it is preferable to provide a concavo-convex structure on the light emitting surface. When this uneven structure is provided only for the purpose of preventing sticking, the average inclination angle according to ISO 4287 / 1-1984 described in paragraphs [0019] to [0021] of the specification of Japanese Patent Application Laid-Open No. 2010-192433. However, it is preferable to set it as a structure which becomes 0.7 degree | times or more, More preferably, it is 1 degree | times or more, More preferably, it is 1.5 degree | times or more. The light diffusing element 6 may be omitted.

以上のような面光源装置の発光面上に、液晶表示素子を配置することにより液晶表示装置が構成される。液晶表示装置は、図1における上方から液晶表示素子を通して観察者により観察される。   A liquid crystal display device is configured by disposing a liquid crystal display element on the light emitting surface of the surface light source device as described above. The liquid crystal display device is observed by an observer through the liquid crystal display element from above in FIG.

以下、実施例及び比較例によって本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

なお、以下の実施例及び比較例において使用した導光体の作製方法および各物性の測定方法を下記に示す。   In addition, the preparation method of the light guide used in the following examples and comparative examples and the measurement method of each physical property are shown below.

[導光体の作製]
加工面が鏡面仕上げされた有効部285mm(Y方向寸法)×480mm(X方向寸法)、厚さ3mmのNiPめっきブロック(成形用型素材)の加工面に、図9に示すようなレンズ列331を転写形成するための転写面が形成されるよう切削加工を行った。レンズ列331は、レンズ列331の延在方向と直交するXZ断面内において、幅50μm(X方向寸法)、高さ18.4μm(Z方向寸法)、先端部分の曲率半径Rが16μmで頂角90度の三角形状とした。ブロックの転写領域は、これに対応する反転形状を有する。
[Production of light guide]
A lens array 331 as shown in FIG. 9 is formed on the processed surface of a NiP plating block (molding die material) having an effective portion of 285 mm (Y-direction dimension) × 480 mm (X-direction dimension) and a thickness of 3 mm. Cutting was performed so as to form a transfer surface for transfer forming. The lens array 331 has a width of 50 μm (dimension in the X direction), a height of 18.4 μm (dimension in the Z direction), a radius of curvature R of the tip portion of 16 μm, and an apex angle in the XZ cross section perpendicular to the extending direction of the lens array 331. It was a 90 degree triangular shape. The transfer area of the block has a corresponding inverted shape.

以上のようにして、第1の転写面形成金型(成形用型部材)を得た。   As described above, a first transfer surface forming mold (molding mold member) was obtained.

加工面が鏡面仕上げされた有効部285mm(Y方向寸法)×480mm(X方向寸法)、厚さ3mmの別のNiPめっきブロック(成形用型素材)の加工面に、図9に示すような凸状構造341を転写形成するための転写領域が形成されるように、XZ断面形状が先端部分の曲率半径R16μmで頂角100度の三角形状のダイヤモンドバイトを用いて、切削加工を行った。凸状構造341は、高さが8.2μm、長さ(Y方向寸法)が170μm、XZ断面形状が先端部分の曲率半径R16μmで頂角100度の三角形状であり、幅(X方向寸法)が21μmであり、Y方向に沿って、高さが漸増し、その後高さが漸減する構成とした。高さが漸増する領域及び漸減する領域の平均傾斜角はどちらも4.57度となるようにした。また、凸状構造341の配列間隔は、Y方向において170μmとし、X方向において40μmとなるようにした。また、光出射面での凸状構造45の面積占有率が39%となるようにした。次いで、第1の転写面形成金型のレンズ列331を転写形成するための転写面の形成と同様にして、レンズ列を転写形成するための転写面を形成した。ブロックの転写領域は、これに対応する反転形状を有する。   The effective surface 285 mm (Y direction dimension) x 480 mm (X direction dimension) and 3 mm thickness of another NiP plating block (molding die material) with a mirror-finished machining surface is projected as shown in FIG. Cutting was performed using a triangular diamond tool having an XZ cross-sectional shape with a radius of curvature R16 μm at the tip portion and an apex angle of 100 degrees so that a transfer region for transferring and forming the structure 341 was formed. The convex structure 341 has a height of 8.2 μm, a length (dimension in the Y direction) of 170 μm, an XZ cross-sectional shape having a radius of curvature R of 16 μm at the tip, and a vertex angle of 100 degrees, and a width (dimension in the X direction). Was 21 μm, and the height gradually increased along the Y direction, and then the height gradually decreased. The average inclination angle of the region where the height gradually increases and the region where the height gradually decreases is 4.57 degrees. The arrangement interval of the convex structures 341 was 170 μm in the Y direction and 40 μm in the X direction. In addition, the area occupancy of the convex structure 45 on the light exit surface was set to 39%. Next, a transfer surface for transferring and forming the lens array was formed in the same manner as the transfer surface for transferring and forming the lens array 331 of the first transfer surface forming mold. The transfer area of the block has a corresponding inverted shape.

以上のようにして、第2の転写面形成金型(成形用型部材)を得た。   As described above, a second transfer surface forming mold (molding mold member) was obtained.

前記第1および第2の転写面形成金型を成形装置に組み込み、プレス成形を行って導光体3を得た。成形材料としてはアクリル樹脂(三菱レイヨン社製、L001)を用いた。   The first and second transfer surface forming molds were incorporated into a molding apparatus, and press molding was performed to obtain a light guide 3. As the molding material, an acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., L001) was used.

導光体の光入射端面31に対向するようにして、その長辺に沿って等間隔で片側54個ずつ、両側で計108個のLED(豊田合成社製E1S62-YWOS7-07)を配置した。また、導光体の裏面34に対向するようにして光反射素子として光散乱反射シート(東レ社製E6SP)を配置した。この導光体の光度分布を測定した結果を図3に示す(角度の単位は「度」であり、光度は相対値で示す。なお、角度0は、導光体の光出射面33の法線方向である)。   A total of 108 LEDs (E1S62-YWOS7-07 manufactured by Toyoda Gosei Co., Ltd.) were arranged on both sides of the light guide so as to face the light incident end face 31 at equal intervals along the long side. . Further, a light scattering reflection sheet (E6SP manufactured by Toray Industries, Inc.) was disposed as a light reflecting element so as to face the back surface 34 of the light guide. The result of measuring the light intensity distribution of the light guide is shown in FIG. 3 (the unit of the angle is “degree”, and the light intensity is indicated by a relative value. Note that the angle 0 is a method of the light emitting surface 33 of the light guide. Line direction).

[導光体出射光の光度分布の測定]
図1に示される構成から光偏向素子4及び光拡散素子6を除去したものにおいて、一次光源1を点灯させ、導光体3の光出射面33に3mmφのピンホールを有する黒色の紙をピンホールが導光体の中央に位置するように固定した。光出射面33の法線方向即ちZ方向を0°として、XZ面内で+85°〜−85°の範囲内で1°間隔で傾けながら、輝度計で出射光の光度分布を測定した。
[Measurement of luminous intensity distribution of light emitted from light guide]
In the configuration in which the light deflecting element 4 and the light diffusing element 6 are removed from the configuration shown in FIG. 1, the primary light source 1 is turned on, and black paper having a 3 mmφ pinhole is pinned on the light emitting surface 33 of the light guide 3. The hole was fixed so as to be located at the center of the light guide. The luminous intensity distribution of the emitted light was measured with a luminance meter while the normal direction of the light emitting surface 33, that is, the Z direction was set to 0 °, and the XZ plane was tilted at 1 ° intervals within a range of + 85 ° to −85 °.

[面光源装置出射光の輝度分布の測定、並びに、それに基づくピーク輝度、ピーク輝度を示す角度、半値全幅、80%全幅及び20%全幅の特定]
図1に示される構成において、両側の全ての一次光源1を点灯させ、輝度計の視野角度を1度にし、面光源装置の中央に測定位置がくるよう調整した。光偏向素子4の出光面42の法線方向即ちZ方向を0度として、+45°〜−45°の範囲内で1°間隔で傾けながら、輝度計で出射光の輝度分布を測定した。それに基づき、ピーク輝度、輝度分布の半値全幅(ピーク輝度値の1/2以上の輝度値の分布の広がり角)、輝度分布の80%全幅(ピーク輝度値の80%以上の輝度値の分布の広がり角)および輝度分布の20%全幅(ピーク輝度値の20%以上の輝度値の分布の広がり角)を求めた。また、同様にして、片側の一次光源のみを点灯させた場合の出射光の輝度分布を測定し、それに基づき、ピーク輝度を示す角度(ピーク角度)を求めた。
[Measurement of luminance distribution of light emitted from surface light source device, and specification of peak luminance, angle indicating peak luminance, full width at half maximum, full width at 80% and full width at 20%]
In the configuration shown in FIG. 1, all the primary light sources 1 on both sides were turned on, the viewing angle of the luminance meter was set to 1 degree, and the measurement position was adjusted to the center of the surface light source device. The luminance distribution of the emitted light was measured with a luminance meter while tilting at an interval of 1 ° within the range of + 45 ° to −45 °, with the normal direction of the light exit surface 42 of the light deflection element 4, that is, the Z direction being 0 degree. Based on this, the peak luminance, the full width at half maximum of the luminance distribution (the spread angle of the distribution of luminance values greater than or equal to 1/2 of the peak luminance value), the full width of 80% of the luminance distribution (the distribution of luminance values greater than 80% of the peak luminance value) (Broadening angle) and 20% full width of the luminance distribution (broadening angle of the luminance value distribution of 20% or more of the peak luminance value). Similarly, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and based on this, the angle (peak angle) indicating the peak luminance was obtained.

実施例1:
図1の実施形態に属する面光源装置(但し、光拡散素子は使用されていない)を、以下のようにして作製した。
Example 1:
A surface light source device (however, no light diffusing element is used) belonging to the embodiment of FIG. 1 was produced as follows.

先ず、図3に示される出射光光度分布(角度の単位は「度」であり、光度は相対値で示す。なお、角度0は、導光体の光出射面33の法線方向である)をもつ導光体3を作製した。この導光体の光出射面33上に、屈折率1.506のアクリル系紫外線硬化性樹脂を用いて作製した光偏向素子4を載置した。光偏向素子4は、入光面に多数のプリズム列が形成されたプリズムシートである。あらかじめ一方の面に中心線平均粗さRa=0.4の微細凹凸が形成された厚さ125μmのポリエステルフィルムの、微細凹凸が形成されていない面にプリズム列を形成しプリズムシートを作製した。各プリズム列の断面形状は、プリズム頂点の座標を原点としたとき中心点の座標を(x、z)=(−248.78、167.66)とする曲率半径r=300μmの円弧の一部と、中心点の座標を(x、z)=(248.78、167.66)とする曲率半径r=300μmの円弧の一部とから構成された対称形状となっており、プリズム列の配列ピッチPは50μm、プリズム列の高さは45μmである(図4参照:図4において長さの数値の単位は「μm」である)。このプリズムシートを、そのプリズム列形成面からなる入光面41が導光体3の光出射面33に向くように載置した。更に、一次光源1、光反射素子5を配置し、面光源装置を得た。   First, the emitted light luminous intensity distribution shown in FIG. 3 (the unit of the angle is “degree”, and the luminous intensity is represented by a relative value. Note that the angle 0 is the normal direction of the light emitting surface 33 of the light guide). The light guide 3 having On the light emitting surface 33 of the light guide, the light deflection element 4 manufactured using an acrylic ultraviolet curable resin having a refractive index of 1.506 was placed. The light deflection element 4 is a prism sheet in which a large number of prism rows are formed on the light incident surface. A prism row was formed on a surface of a polyester film having a thickness of 125 μm in which fine irregularities having a center line average roughness Ra = 0.4 were previously formed on one surface, and no fine irregularities were formed, to prepare a prism sheet. The cross-sectional shape of each prism row is a part of an arc having a radius of curvature r = 300 μm with the coordinates of the center point being (x, z) = (− 248.78, 167.66) when the coordinates of the prism apex are the origin. And a part of an arc having a radius of curvature r = 300 μm with the coordinates of the center point being (x, z) = (248.78, 167.66), and an array of prism rows The pitch P is 50 μm, and the height of the prism row is 45 μm (see FIG. 4: the unit of the numerical value of the length in FIG. 4 is “μm”). This prism sheet was placed so that the light incident surface 41 formed of the prism row forming surface faces the light emitting surface 33 of the light guide 3. Furthermore, the primary light source 1 and the light reflecting element 5 were arranged to obtain a surface light source device.

この面光源装置の両側の全ての一次光源を点灯させた時の出射光輝度分布を測定し、それに基づき、後述の比較例1を基準とした場合のピーク輝度比率、輝度分布の半値全幅、輝度分布の80%全幅、輝度分布の20%全幅を得た。また、片側の一次光源のみを点灯させた時の出射光の輝度分布を測定し、それに基づき、ピーク角度を得た。その結果を図11及び図12(図11及び図12において角度の数値の単位は「度」である)並びに表1に示した。   The luminance distribution of emitted light when all the primary light sources on both sides of the surface light source device are turned on is measured, and based on the measured luminance distribution, the peak luminance ratio, the full width at half maximum of the luminance distribution, and the luminance based on Comparative Example 1 described later are used. An 80% full width of the distribution and a 20% full width of the luminance distribution were obtained. Moreover, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and the peak angle was obtained based on this. The results are shown in FIG. 11 and FIG. 12 (in FIG. 11 and FIG. 12, the unit of the numerical value of the angle is “degree”) and Table 1.

実施例2:
各プリズム列の断面形状が、プリズム頂点の座標を原点としたとき中心点の座標を(x、z)=(−251.32、163.83)とする曲率半径r=300μmの円弧の一部と、中心点の座標を(x、z)=(251.32、163.83)とする曲率半径r=300μmの円弧の一部とから構成された対称形状となっており、プリズム列の高さが47μmであるプリズムシートを用いた以外は、実施例1と同様にして面光源装置を得た。
Example 2:
The cross-sectional shape of each prism row is a part of an arc having a radius of curvature r = 300 μm where the coordinates of the center point are (x, z) = (− 251.32, 163.83) when the coordinates of the prism apex are the origin. And a part of an arc having a radius of curvature r = 300 μm where the coordinates of the center point are (x, z) = (251.32, 163.83), and the height of the prism row A surface light source device was obtained in the same manner as in Example 1 except that a prism sheet having a thickness of 47 μm was used.

実施例1と同様にして、この面光源装置の両側の全ての一次光源を点灯させた時の出射光輝度分布を測定し、それに基づき、後述の比較例1を基準とした場合のピーク輝度比率、輝度分布の半値全幅、輝度分布の80%全幅、輝度分布の20%全幅を得た。また、片側の一次光源のみを点灯させた時の出射光の輝度分布を測定し、それに基づき、ピーク角度を得た。その結果を図11及び図12並びに表1に示した。   In the same manner as in Example 1, the emitted light luminance distribution when all the primary light sources on both sides of the surface light source device are turned on is measured, and based on this, the peak luminance ratio when Comparative Example 1 described later is used as a reference The full width at half maximum of the luminance distribution, the full width of 80% of the luminance distribution, and the full width of 20% of the luminance distribution were obtained. Moreover, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and the peak angle was obtained based on this. The results are shown in FIGS. 11 and 12 and Table 1.

実施例3:
各プリズム列の断面形状が、図5に示したようにプリズム頂点の座標を原点としたとき、ピッチ方向に8μmまでは光出射面42の法線方向とのなす角度が32.56度、ピッチ方向に8μmから16μmまでは光出射面42の法線方向とのなす角度が29.59度、ピッチ方向に16μmから25μmまでは光出射面42の法線方向とのなす角度が26.09度である左右対称形状のものを用いた以外は、実施例1と同様にして面光源装置を得た。図5において長さの数値の単位は「μm」であり、角度の数値の単位は「度」である。
Example 3:
The cross-sectional shape of each prism row is 32.56 degrees with respect to the normal direction of the light emitting surface 42 up to 8 μm in the pitch direction when the coordinate of the prism apex is the origin as shown in FIG. In the direction from 8 μm to 16 μm, the angle formed with the normal direction of the light output surface 42 is 29.59 degrees, and in the pitch direction from 16 μm to 25 μm, the angle formed with the normal direction of the light output surface 42 is 26.09 degrees. A surface light source device was obtained in the same manner as in Example 1 except that the left and right symmetrical shapes were used. In FIG. 5, the unit of the numerical value of the length is “μm”, and the unit of the numerical value of the angle is “degree”.

実施例1と同様にして、この面光源装置の両側の全ての一次光源を点灯させた時の出射光輝度分布を測定し、それに基づき、後述の比較例1を基準とした場合のピーク輝度比率、輝度分布の半値全幅、輝度分布の80%全幅、輝度分布の20%全幅を得た。また、片側の一次光源のみを点灯させた時の出射光の輝度分布を測定し、それに基づき、ピーク角度を得た。その結果を図11及び図12並びに表1に示した。   In the same manner as in Example 1, the emitted light luminance distribution when all the primary light sources on both sides of the surface light source device are turned on is measured, and based on this, the peak luminance ratio when Comparative Example 1 described later is used as a reference The full width at half maximum of the luminance distribution, the full width of 80% of the luminance distribution, and the full width of 20% of the luminance distribution were obtained. Moreover, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and the peak angle was obtained based on this. The results are shown in FIGS. 11 and 12 and Table 1.

比較例1:
各プリズム列の断面形状が、図6に示したように光出射面42の法線方向とのなす角度が32.7度の直線である左右対称形状のものを用いた以外は、実施例1と同様にして面光源装置を得た。図6において長さの数値の単位は「μm」であり、角度の数値の単位は「度」である。
Comparative Example 1:
Example 1 except that the cross-sectional shape of each prism row is a symmetrical shape in which the angle formed with the normal direction of the light exit surface 42 is a straight line of 32.7 degrees as shown in FIG. In the same manner, a surface light source device was obtained. In FIG. 6, the unit of the numerical value of the length is “μm”, and the unit of the numerical value of the angle is “degree”.

実施例1と同様にして、この面光源装置の両側の全ての一次光源を点灯させた時の出射光輝度分布を測定し、それに基づき、得られたピーク輝度を1.000とし、輝度分布の半値全幅、輝度分布の80%全幅、輝度分布の20%全幅を得た。また、片側の一次光源のみを点灯させた時の出射光の輝度分布を測定し、それに基づき、ピーク角度を得た。その結果を図11及び図12並びに表1に示した。   In the same manner as in Example 1, the emitted light luminance distribution when all the primary light sources on both sides of the surface light source device are turned on is measured. Based on the measured luminance distribution, the obtained peak luminance is set to 1.000. The full width at half maximum, 80% full width of the luminance distribution, and 20% full width of the luminance distribution were obtained. Moreover, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and the peak angle was obtained based on this. The results are shown in FIGS. 11 and 12 and Table 1.

比較例2:
各プリズム列の断面形状が、プリズム頂点の座標を原点としたとき中心点の座標を(x、z)=(−247.41、169.67)とする曲率半径r=300μmの円弧の一部と、中心点の座標を(x、z)=(247.41、169.67)とする曲率半径r=300μmの円弧の一部から構成された対称形状となっており、プリズム列の高さが44μm(図7参照:図7において長さの数値の単位は「μm」である)であった以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 2:
The cross-sectional shape of each prism row is a part of an arc having a radius of curvature r = 300 μm with the coordinates of the center point being (x, z) = (− 247.41, 169.67) when the coordinates of the prism vertex are the origin. And the coordinate of the center point is (x, z) = (247.41, 169.67), and has a symmetrical shape composed of a part of an arc having a radius of curvature r = 300 μm, and the height of the prism row Was 44 μm (see FIG. 7: the unit of the numerical value of length in FIG. 7 is “μm”), a surface light source device was obtained in the same manner as in Example 1.

実施例1と同様にして、この面光源装置の両側の全ての一次光源を点灯させた時の出射光輝度分布を測定し、それに基づき、比較例1を基準とした場合のピーク輝度比率、輝度分布の半値全幅、輝度分布の80%全幅、輝度分布の20%全幅を得た。また、片側の一次光源のみを点灯させた時の出射光の輝度分布を測定し、それに基づき、ピーク角度を得た。その結果を図11及び図12並びに表1に示した。   In the same manner as in Example 1, the luminance distribution of emitted light when all the primary light sources on both sides of the surface light source device were turned on was measured, and based on this, the peak luminance ratio and luminance when Comparative Example 1 was used as a reference The full width at half maximum of the distribution, the full width of 80% of the luminance distribution, and the full width of 20% of the luminance distribution were obtained. Moreover, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and the peak angle was obtained based on this. The results are shown in FIGS. 11 and 12 and Table 1.

比較例3:
各プリズム列の断面形状が、プリズム頂点の座標を原点としたとき中心点の座標を(x、z)=(−254.66、158.58)とする曲率半径r=300μmの円弧の一部と、中心点の座標を(x、z)=(254.66、158.58)とする曲率半径r=300μmの円弧の一部とから構成された対称形状となっており、プリズム列の高さが50μm(図8参照:図8において長さの数値の単位は「μm」である)であるプリズムシートを用いた以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 3:
The cross-sectional shape of each prism row is a part of an arc having a radius of curvature r = 300 μm with the coordinates of the center point being (x, z) = (− 254.66, 158.58) when the coordinates of the prism apex are the origin. And a part of an arc having a radius of curvature r = 300 μm where the coordinates of the center point are (x, z) = (254.66, 158.58), and the height of the prism row A surface light source device was obtained in the same manner as in Example 1 except that a prism sheet having a thickness of 50 μm (see FIG. 8: the unit of the numerical value of length in FIG. 8 is “μm”) was used.

実施例1と同様にして、この面光源装置の両側の全ての一次光源を点灯させた時の出射光輝度分布を測定し、それに基づき、比較例1を基準とした場合のピーク輝度比率、輝度分布の半値全幅、輝度分布の80%全幅、輝度分布の20%全幅を得た。また、片側の一次光源のみを点灯させた時の出射光の輝度分布を測定し、それに基づき、ピーク角度を得た。その結果を図11及び図12並びに表1に示した。   In the same manner as in Example 1, the luminance distribution of emitted light when all the primary light sources on both sides of the surface light source device were turned on was measured, and based on this, the peak luminance ratio and luminance when Comparative Example 1 was used as a reference The full width at half maximum of the distribution, the full width of 80% of the luminance distribution, and the full width of 20% of the luminance distribution were obtained. Moreover, the luminance distribution of the emitted light when only the primary light source on one side was turned on was measured, and the peak angle was obtained based on this. The results are shown in FIGS. 11 and 12 and Table 1.

1 一次光源
3 導光体
4 光偏向素子
5 光反射素子
6 光拡散素子
31 光入射端面
33 光出射面
331 レンズ列
34 裏面
341 凸状構造
41 入光面
42 出光面
44 第1のプリズム面
45 第2のプリズム面
DESCRIPTION OF SYMBOLS 1 Primary light source 3 Light guide 4 Light deflection element 5 Light reflection element 6 Light diffusion element 31 Light incident end surface
33 Light exit surface 331 Lens array 34 Back surface 341 Convex structure 41 Light incident surface 42 Light exit surface 44 First prism surface 45 Second prism surface

Claims (3)

一次光源と、該一次光源から発せられた光が光入射端面より入射し前記入射した光を導光し光出射面から出射させる導光体と、該導光体の前記光出射面に隣接配置された光偏向素子と、を含んでなる面光源装置であって、
前記一次光源は、前記導光体の互いに対向する2つの側端面からなる2つの前記光入射端面にそれぞれ対向するように配置されており、
前記光偏向素子は、前記導光体からの出射光が入射する入光面に、前記光入射端面及び前記光出射面の双方と直交する断面の形状が左右対称のプリズム面より構成される複数のプリズム列が互いに平行に配列されて形成されており、
前記光偏向素子の前記導光体と反対側に位置する出光面より出射する光の輝度分布におけるピーク輝度値に対する80%以上の輝度値を有する角度範囲である80%全幅が20度以上であり、
前記光偏向素子の前記出光面より出射する光の輝度分布におけるピーク輝度値に対する20%以上の輝度値を有する角度範囲である20%全幅と前記80%全幅との差が24度より小さいことを特徴とする面光源装置。
A primary light source, a light guide that allows light emitted from the primary light source to enter from a light incident end surface, guides the incident light, and emits the light from a light exit surface, and is disposed adjacent to the light exit surface of the light guide A surface light source device comprising:
The primary light source is disposed so as to face the two light incident end faces composed of two side end faces facing each other of the light guide,
The light deflection element includes a plurality of prism surfaces whose cross-sectional shapes orthogonal to both the light incident end surface and the light exit surface are symmetric to a light incident surface on which light emitted from the light guide is incident. Are arranged in parallel with each other,
The 80% full width, which is an angular range having a luminance value of 80% or more with respect to the peak luminance value in the luminance distribution of light emitted from the light exiting surface located on the opposite side of the light guide of the light deflection element, is 20 degrees or more. ,
The difference between the 20% full width, which is an angle range having a luminance value of 20% or more with respect to the peak luminance value in the luminance distribution of the light emitted from the light exit surface of the light deflection element, and the 80% full width is smaller than 24 degrees. A characteristic surface light source device.
請求項1に記載の面光源装置において、
前記一次光源のうちの一方のみを点灯させたときの、前記光偏向素子の前記出光面より出射する光の輝度分布におけるピーク輝度を示す方向が、前記光偏向素子の前記出光面の法線方向に対して5度から10度傾いていることを特徴とする面光源装置。
The surface light source device according to claim 1,
When only one of the primary light sources is turned on, the direction indicating the peak luminance in the luminance distribution of light emitted from the light exit surface of the light deflection element is the normal direction of the light exit surface of the light deflection element A surface light source device that is inclined by 5 to 10 degrees with respect to the surface.
前記光偏向素子の前記プリズム列の高さをh、該プリズム列のピッチをPとしたとき、h/Pが0.89から0.95の範囲内にあることを特徴とする、請求項1又は2に記載の面光源装置。   2. The height of the prism row of the light deflection element is h, and the pitch of the prism row is P, h / P is in the range of 0.89 to 0.95. Or the surface light source device of 2.
JP2012024869A 2012-02-08 2012-02-08 Planar light source device Pending JP2013161743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024869A JP2013161743A (en) 2012-02-08 2012-02-08 Planar light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024869A JP2013161743A (en) 2012-02-08 2012-02-08 Planar light source device

Publications (1)

Publication Number Publication Date
JP2013161743A true JP2013161743A (en) 2013-08-19

Family

ID=49173819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024869A Pending JP2013161743A (en) 2012-02-08 2012-02-08 Planar light source device

Country Status (1)

Country Link
JP (1) JP2013161743A (en)

Similar Documents

Publication Publication Date Title
JP2008209928A (en) Light source device and light deflector for use therein
WO2011043466A1 (en) Image display device
JP2012164583A (en) Light guide plate, surface light source device, and transmission type display device
JP5424901B2 (en) Surface light source device and light guide used therefor
JP2004046076A (en) Optical deflecting element and surface light source unit
JP2008218418A (en) Surface light source and light guide used for same
JP5377121B2 (en) Surface light source device and light guide used therefor
JP2002245824A (en) Light source device and light polarization element used for it
JP2010044921A (en) Plane light source element and light control member used for this as well as image display using this
JP4400845B2 (en) Light diffusing sheet, video display element using the same, and surface light source device
JP5527711B2 (en) Surface light source device and light guide used therefor
JP4400867B2 (en) Light deflection element and light source device
JP5593653B2 (en) Light guide plate, backlight unit and display device
JP2006108032A (en) Light guide body for surface light source, its manufacturing method as well as surface light source device
JP2012042502A (en) Optical deflection element and surface light source device
JP5699550B2 (en) LIGHTING UNIT, LIGHTING DEVICE, AND DISPLAY DEVICE HAVING HIDDEN STRUCTURE
JP2010040429A (en) Surface light source device, and light guide body used for it
JP5371125B2 (en) Surface light source device and light guide used therefor
JP2009158468A (en) Backlight
JP4553596B2 (en) Light guide for surface light source device, method for manufacturing the same, and surface light source device
JP2013161743A (en) Planar light source device
JP5495585B2 (en) Light deflection element and light source device
JP2012203081A (en) Light deflecting element and surface light source device using the same
JP4730873B2 (en) Optical deflection element and surface light source device using the same
JP2014082095A (en) Light guide body and surface light source device