JP2013161678A - Fuel cell storage method - Google Patents

Fuel cell storage method Download PDF

Info

Publication number
JP2013161678A
JP2013161678A JP2012023154A JP2012023154A JP2013161678A JP 2013161678 A JP2013161678 A JP 2013161678A JP 2012023154 A JP2012023154 A JP 2012023154A JP 2012023154 A JP2012023154 A JP 2012023154A JP 2013161678 A JP2013161678 A JP 2013161678A
Authority
JP
Japan
Prior art keywords
water
fuel cell
polymer electrolyte
fuel
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012023154A
Other languages
Japanese (ja)
Other versions
JP5984411B2 (en
Inventor
Akira Matsumoto
明 松本
Osamu Yamazaki
修 山▲崎▼
Hideki Kawai
秀樹 河合
Norihisa Kamiya
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012023154A priority Critical patent/JP5984411B2/en
Publication of JP2013161678A publication Critical patent/JP2013161678A/en
Application granted granted Critical
Publication of JP5984411B2 publication Critical patent/JP5984411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell storage method capable of storing a solid polymer fuel cell after power generation is stopped using a simple device structure.SOLUTION: The method for storing a solid polymer fuel cell FC having plural laminated cells C constituted to nip a solid polymer electrolyte membrane 4 with a fuel electrode 3 and an oxygen electrode 5 after power generation is stopped comprises: a storage period measurement step of measuring a storage duration during which the solid polymer fuel cell FC is stored under a power generation stop state from a start of storing the fuel cell; a determination step of determining whether a length of the storage duration measured in the storage period measurement step reaches a setting period or not; a water supply step for supplying water to the solid polymer electrolyte membrane 4 when the length of the storage duration reaches to the setting period in the determination step; and a storage restarting step of restarting storage of the solid polymer fuel cell FC under the power generation stop state after completion of the power supply step.

Description

本発明は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備える固体高分子形燃料電池を発電停止させた後の保管方法に関する。   The present invention relates to a storage method after stopping power generation of a polymer electrolyte fuel cell comprising a plurality of stacked cells in which a solid polymer electrolyte membrane is sandwiched between a fuel electrode and an oxygen electrode.

固体高分子形燃料電池は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備えて構成される。固体高分子形燃料電池を発電運転させるとき、燃料極には燃料ガス(水素)を供給し、酸素極には酸素含有ガス(酸素(空気))を供給する。固体高分子電解質膜は、燃料極で発生した水素イオンを酸素極まで移動させる役割を担っている。特に、固体高分子形燃料電池で用いられる固体高分子電解質膜は、適度に湿潤した状態では良好な水素イオン伝導性を発揮するが、湿潤状態が低下すると良好な水素イオン伝導性を発揮できない。そのため、固体高分子電解質膜を適度な湿潤状態に維持することが、固体高分子形燃料電池の性能を発揮させる上で重要となる。尚、固体高分子形燃料電池の発電運転中は、酸素極側で生成される水が固体高分子電解質膜に拡散されるため、固体高分子電解質膜の湿潤状態が低下することは抑制されている。   A polymer electrolyte fuel cell is configured by stacking a plurality of cells each having a solid polymer electrolyte membrane sandwiched between a fuel electrode and an oxygen electrode. When the polymer electrolyte fuel cell is operated for power generation, fuel gas (hydrogen) is supplied to the fuel electrode, and oxygen-containing gas (oxygen (air)) is supplied to the oxygen electrode. The solid polymer electrolyte membrane plays a role of moving hydrogen ions generated at the fuel electrode to the oxygen electrode. In particular, a solid polymer electrolyte membrane used in a polymer electrolyte fuel cell exhibits good hydrogen ion conductivity in a moderately wet state, but cannot exhibit good hydrogen ion conductivity when the wet state is lowered. Therefore, it is important to maintain the solid polymer electrolyte membrane in an appropriate wet state in order to exhibit the performance of the solid polymer fuel cell. During the power generation operation of the polymer electrolyte fuel cell, water generated on the oxygen electrode side is diffused into the polymer electrolyte membrane, so that the wet state of the polymer electrolyte membrane is prevented from decreasing. Yes.

このような固体高分子形燃料電池を発電運転した後で停止させる場合、セルを外部から隔離して封止する保管方法が一般的に実施される。従って、発電運転を停止した直後又は停止してから所定期間内であれば、固体高分子電解質膜はある程度の湿潤状態を保っているため、再び発電運転を開始したとしても、固体高分子電解質膜はある程度の水素イオン伝導性を発揮すると考えられる。   When such a polymer electrolyte fuel cell is stopped after the power generation operation, a storage method in which the cell is isolated from the outside and sealed is generally performed. Therefore, since the solid polymer electrolyte membrane is kept in a certain wet state immediately after the power generation operation is stopped or within a predetermined period after it is stopped, even if the power generation operation is started again, the solid polymer electrolyte membrane is maintained. Is considered to exhibit a certain degree of hydrogen ion conductivity.

しかし、発電運転の停止後、保管する期間が長期化すると、セル内の水が蒸発し、徐々に固体高分子電解質膜の湿潤状態が低下するという問題がある。例えば、保管する期間が長期化する例としては、顧客の住戸や施設に固体高分子形燃料電池を設置して試運転を行った後で停止させ、顧客に固体高分子形燃料電池を引き渡した後、顧客の都合(例えば、住戸や施設に未だ入居しない等の都合)によって長期間にわたって運転されないような場合、顧客が長期間にわたって不在になる場合などがある。他にも、建売住宅等に固体高分子形燃料電池を設置及び試運転した上で住宅販売業者等に引き渡した場合であれば、少なくともその建売住宅が売れるまでは固体高分子形燃料電池は停止され、その停止期間が長期化することも想定される。   However, if the storage period is prolonged after the power generation operation is stopped, water in the cell evaporates, and there is a problem that the wet state of the solid polymer electrolyte membrane gradually decreases. For example, the storage period may be extended by installing a polymer electrolyte fuel cell in a customer's dwelling unit or facility, performing a trial run, stopping it, and delivering the polymer electrolyte fuel cell to the customer. In the case where the vehicle is not operated for a long period of time due to the convenience of the customer (for example, the situation where the user has not yet entered a residence or facility), the customer may be absent for a long period of time. In addition, if a polymer electrolyte fuel cell is installed and commissioned in a built-up house and delivered to a home dealer, the polymer electrolyte fuel cell will be stopped at least until the built house is sold. It is also assumed that the suspension period will be prolonged.

特許文献1には、発電休止中においても高分子電解質膜の湿潤状態を維持し、長期間の休止後でも優れた発電特性を維持できる燃料電池を提供することが記載されている。具体的には、特許文献1に記載された燃料電池は、内部に固体高分子電解質膜を湿潤可能な液体を収容し、且つ、その液体を固体高分子電解質膜に供給するリザーバーを備える。そして、発電運転の休止中においても、固体高分子電解質膜はリザーバーに収容された液体と常に接触しているため、液体は接触部分から固体高分子電解質膜へと浸透していき、高分子電解質全体に行き渡る。これにより、固体高分子電解質膜は常に湿潤状態を維持することができるようになっている。   Patent Document 1 describes that a fuel cell that can maintain a wet state of a polymer electrolyte membrane even during a power outage and that can maintain excellent power generation characteristics even after a long time outage is described. Specifically, the fuel cell described in Patent Document 1 includes a reservoir that contains therein a liquid that can wet the solid polymer electrolyte membrane and supplies the liquid to the solid polymer electrolyte membrane. And even during the suspension of power generation operation, the solid polymer electrolyte membrane is always in contact with the liquid stored in the reservoir, so that the liquid permeates from the contact portion into the solid polymer electrolyte membrane, and the polymer electrolyte Go around the whole. Thereby, the solid polymer electrolyte membrane can always maintain a wet state.

特開2011−14256号公報JP 2011-14256 A

しかし、特許文献1に記載の方法では、固体高分子電解質膜とリザーバーに収容された液体とが常に接触するように、セルスタックにリザーバータンクを併設する構成を採用しているため、燃料電池が大型化するという問題がある。
また、特許文献1に記載の方法では、積層される全てのセルの固体高分子電解質膜をリザーバーに接触させるように組立てなければならないため、精度の高い組立て技術が必要となり、生産コストのアップにつながるという問題がある。
However, the method described in Patent Document 1 employs a configuration in which a reservoir tank is provided in the cell stack so that the solid polymer electrolyte membrane and the liquid contained in the reservoir are always in contact with each other. There is a problem of increasing the size.
Further, in the method described in Patent Document 1, since the solid polymer electrolyte membranes of all the cells to be stacked must be assembled so as to contact the reservoir, a highly accurate assembly technique is required, which increases the production cost. There is a problem of being connected.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、発電停止させて保管した後に固体高分子形燃料電池の発電運転を行うとき、固体高分子電解質膜の湿潤状態が良好であることを確保しておくことができる燃料電池の保管方法を提供する点にある。   The present invention has been made in view of the above-mentioned problems, and its purpose is that when the power generation operation of the polymer electrolyte fuel cell is performed after the power generation is stopped and stored, the wet state of the solid polymer electrolyte membrane is good. It is in the point which provides the storage method of the fuel cell which can ensure that it is.

上記目的を達成するための本発明に係る燃料電池の保管方法の特徴構成は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備える固体高分子形燃料電池を発電停止させた後の保管方法であって、前記固体高分子形燃料電池が保管開始から発電停止状態で保管されている保管継続期間を計測する保管期間計測工程と、前記保管期間計測工程で計測される前記保管継続期間の長さが設定期間に到達したか否かを判定する判定工程と、前記判定工程で前記保管継続期間の長さが前記設定期間に到達したと判定したとき、前記固体高分子電解質膜に水を供給する給水工程と、前記給水工程の終了後に再び前記固体高分子形燃料電池の発電停止状態での保管を開始する保管再開工程とを有する点にある。   In order to achieve the above object, the fuel cell storage method according to the present invention is characterized by a solid polymer fuel comprising a plurality of stacked cells each having a solid polymer electrolyte membrane sandwiched between a fuel electrode and an oxygen electrode. A storage method after stopping the power generation of the battery, a storage period measuring step of measuring a storage continuation period in which the polymer electrolyte fuel cell is stored in a power generation stopped state from the start of storage, and the storage period measuring step When determining whether or not the length of the storage continuation period measured in (2) has reached the set period, and when determining that the length of the storage continuation period has reached the set period in the determination step, There is a water supply step of supplying water to the solid polymer electrolyte membrane, and a storage resumption step of starting storage of the solid polymer fuel cell in a power generation stop state again after the water supply step is completed.

上記特徴構成によれば、固体高分子形燃料電池を発電停止状態で保管している間の所定タイミングで上記給水工程を行うことで、固体高分子電解質膜の湿潤状態を高めることができる。また、給水工程を行うタイミングは、保管期間計測工程で計測される保管継続期間の長さが設定期間に到達したか否かを判定される。つまり、保管継続期間が長くなって固体高分子電解質膜の湿潤状態が所定レベル未満に低下したタイミングで、上記給水工程を行って固体高分子電解質膜の湿潤状態を高めることができる。従って、固体高分子形燃料電池が発電停止状態で保管されている保管継続期間の間のどのタイミングで固体高分子形燃料電池の発電運転が再開されたとしても、その時点での固体高分子電解質膜の湿潤状態が所定レベル以上であることを確保できる。
従って、発電停止させて保管した後に固体高分子形燃料電池の発電運転を行うとき、固体高分子電解質膜の湿潤状態が良好であることを確保しておくことができる燃料電池の保管方法を提供できる。
According to the above characteristic configuration, the wet state of the solid polymer electrolyte membrane can be enhanced by performing the water supply step at a predetermined timing while the solid polymer fuel cell is stored in a power generation stopped state. Moreover, the timing which performs a water supply process determines whether the length of the storage continuation period measured by the storage period measurement process reached the set period. That is, the wet state of the solid polymer electrolyte membrane can be increased by performing the above-mentioned water supply step at the timing when the storage continuation period becomes longer and the wet state of the solid polymer electrolyte membrane is reduced below a predetermined level. Therefore, even if the power generation operation of the polymer electrolyte fuel cell is resumed at any timing during the storage continuation period when the polymer electrolyte fuel cell is stored in a power generation stop state, the solid polymer electrolyte at that time It can be ensured that the wet state of the membrane is above a predetermined level.
Accordingly, a fuel cell storage method is provided that can ensure that the solid polymer electrolyte membrane is in a good wet state when the power generation operation of the polymer electrolyte fuel cell is performed after power generation is stopped and stored. it can.

本発明に係る燃料電池の保管方法の別の特徴構成は、前記給水工程において、燃料ガス供給路を介した前記燃料極への水の供給及び酸素含有ガス供給路を介した前記酸素極への水の供給の少なくとも何れか一方を行うことで、前記固体高分子電解質膜への水の供給を行う点にある。   Another feature of the fuel cell storage method according to the present invention is that in the water supply step, water is supplied to the fuel electrode via a fuel gas supply path and to the oxygen electrode via an oxygen-containing gas supply path. By supplying at least one of the water supply, water is supplied to the solid polymer electrolyte membrane.

上記特徴構成によれば、既存の燃料ガス供給路を介した燃料極への水の供給及び既存の酸素含有ガス供給路を介した酸素極への水の供給の少なくとも何れか一方を行うことで、固体高分子電解質膜へ水を供給するための特別な流路を設置する必要がなくなる。その結果、燃料電池の大型化を抑制できる。
加えて、給水工程において燃料極及び酸素極に水を供給した場合、固体高分子電解質膜を加湿できるという効果の他に、燃料極及び酸素極を洗浄できるという効果も得られる。例えば、固体高分子形燃料電池を発電運転した後で停止して保管している間、発電運転中に燃料極及び酸素極のガス拡散層及び触媒層に供給されていた燃料ガス及び酸素含有ガスに含まれていた物質がガス拡散層及び触媒層の表面に滞留又は析出する可能性ある。また、空気中に浮遊していた微生物などがガス拡散層及び触媒層の表面で繁殖する可能性もある。ところが本特徴構成のような給水工程を行えば、ガス拡散層及び触媒層などに滞留又は析出していた物質や生存・繁殖していた微生物を洗い流すことも期待できる。
According to the above characteristic configuration, at least one of water supply to the fuel electrode via the existing fuel gas supply path and water supply to the oxygen electrode via the existing oxygen-containing gas supply path is performed. It is not necessary to install a special flow path for supplying water to the solid polymer electrolyte membrane. As a result, an increase in the size of the fuel cell can be suppressed.
In addition, when water is supplied to the fuel electrode and the oxygen electrode in the water supply step, in addition to the effect that the solid polymer electrolyte membrane can be humidified, the effect that the fuel electrode and the oxygen electrode can be cleaned is also obtained. For example, the fuel gas and the oxygen-containing gas supplied to the gas diffusion layer and the catalyst layer of the fuel electrode and the oxygen electrode during the power generation operation while the polymer electrolyte fuel cell is stopped and stored after the power generation operation. There is a possibility that the substances contained in the catalyst stay or deposit on the surfaces of the gas diffusion layer and the catalyst layer. In addition, microorganisms or the like suspended in the air may propagate on the surfaces of the gas diffusion layer and the catalyst layer. However, if the water supply process as in this characteristic configuration is performed, it can be expected that substances that have stayed or deposited in the gas diffusion layer and the catalyst layer and microorganisms that have survived and propagated will be washed away.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記燃料極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記燃料ガス供給路での燃料ガスの流通方向とは逆方向に水を流し、前記酸素極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記酸素含有ガス供給路での酸素含有ガスの流通方向とは逆方向に水を流す点にある。   Still another characteristic configuration of the fuel cell storage method according to the present invention is that the fuel gas when the solid polymer fuel cell is in a power generation operation when supplying water to the fuel electrode in the water supply step. When supplying water to the oxygen electrode by flowing water in a direction opposite to the flow direction of the fuel gas in the supply path, the oxygen-containing gas supply path when the solid polymer fuel cell is in power generation operation. The point is that water flows in the direction opposite to the flow direction of the oxygen-containing gas.

セルの内部の燃料極及び酸素極の両方とも、発電運転中に燃料ガス及び酸素含有ガスが燃料極及び酸素極に最初に流入してくる上流側部位に異物が滞留又は析出しやすい状況にある。従って、燃料極及び酸素極への水の供給を行うとき、固体高分子形燃料電池を発電運転するときの燃料ガス供給路での燃料ガスの流通方向及び酸素含有ガス供給路での酸素含有ガスの流通方法と同じ方向に水を流すと、洗い流された異物が、その上流側部位から下流側部位へ向かってセル全体に拡散してしまう可能性がある。
ところが本特徴構成によれば、給水工程において燃料極及び酸素極の内部を流れる水は、その異物が滞留又は析出しやすい部位を下流側にして流れるため、洗い流された異物がセル全体に拡散してしまうことはない。
Both the fuel electrode and the oxygen electrode inside the cell are in a situation where foreign substances are likely to stay or deposit in the upstream part where fuel gas and oxygen-containing gas first flow into the fuel electrode and oxygen electrode during power generation operation. . Therefore, when water is supplied to the fuel electrode and the oxygen electrode, the flow direction of the fuel gas in the fuel gas supply path and the oxygen-containing gas in the oxygen-containing gas supply path when the polymer electrolyte fuel cell is operated for power generation If water is flowed in the same direction as the flow method, the washed-out foreign matter may diffuse from the upstream part toward the downstream part throughout the cell.
However, according to this characteristic configuration, the water flowing inside the fuel electrode and the oxygen electrode in the water supply process flows downstream from the part where the foreign substances are likely to stay or precipitate, so that the washed-out foreign substances diffuse throughout the cell. There is no end to it.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記燃料極及び前記酸素極への水の供給を同時に行うとき、前記燃料極へ与えられる水圧と前記酸素極へ与えられる水圧との圧力差を設定圧力差以内に調整する点にある。   Still another characteristic configuration of the fuel cell storage method according to the present invention is that the water pressure applied to the fuel electrode and the oxygen electrode when water is simultaneously supplied to the fuel electrode and the oxygen electrode in the water supply step. The pressure difference with the water pressure given to the point is adjusted within the set pressure difference.

上記特徴構成によれば、燃料極及び酸素極への水の供給を同時に行うと、燃料極及び酸素極に挟まれている固体高分子電解質膜には燃料極側及び酸素極側の両側から水圧が加わることになるが、燃料極へ与えられる水圧と酸素極へ与えられる水圧との圧力差を設定圧力差以内に調整しておけば、燃料極と酸素極との中間部分に存在する固体高分子電解質膜でその両側からの水圧がほぼ釣り合うため、固体高分子電解質膜が水圧により変形するなどの問題も発生しない。   According to the above characteristic configuration, when water is supplied to the fuel electrode and the oxygen electrode at the same time, the solid polymer electrolyte membrane sandwiched between the fuel electrode and the oxygen electrode is subjected to water pressure from both the fuel electrode side and the oxygen electrode side. However, if the pressure difference between the water pressure applied to the fuel electrode and the water pressure applied to the oxygen electrode is adjusted within the set pressure difference, the height of the solid present in the intermediate portion between the fuel electrode and the oxygen electrode Since the water pressure from both sides of the molecular electrolyte membrane is almost balanced, problems such as deformation of the solid polymer electrolyte membrane due to water pressure do not occur.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記固体高分子形燃料電池の発電運転時に前記セルの冷却水として利用するために用意されている水を前記固体高分子電解質膜に供給する点にある。   Still another feature of the fuel cell storage method according to the present invention is that in the water supply step, water prepared for use as cooling water for the cell during power generation operation of the polymer electrolyte fuel cell is It exists in the point supplied to a solid polymer electrolyte membrane.

上記特徴構成によれば、固体高分子電解質膜に供給する水を特別に用意しなくてもよくなる。その結果、燃料電池の大型化を抑制できる。   According to the above characteristic configuration, water to be supplied to the solid polymer electrolyte membrane need not be specially prepared. As a result, an increase in the size of the fuel cell can be suppressed.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記固体高分子形燃料電池から排出される熱を回収して蓄熱すると共に所定温度に昇温して熱利用装置に供給できる排熱回収装置から提供される温水を前記固体高分子電解質膜に供給する点にある。   Still another characteristic configuration of the fuel cell storage method according to the present invention is that, in the water supply step, the heat discharged from the polymer electrolyte fuel cell is collected and stored, and the temperature is raised to a predetermined temperature to use the heat. The hot water provided from the exhaust heat recovery apparatus that can be supplied to the apparatus is supplied to the solid polymer electrolyte membrane.

上記特徴構成によれば、固体高分子電解質膜に供給する水を特別に用意しなくてもよくなる。その結果、燃料電池の大型化を抑制できる。更に、温度の高い温水が燃料極及び酸素極に供給されるので、微生物などがガス拡散層及び触媒層の表面で生存しているとしてもそれらを死滅させる効果が期待できる。   According to the above characteristic configuration, water to be supplied to the solid polymer electrolyte membrane need not be specially prepared. As a result, an increase in the size of the fuel cell can be suppressed. Furthermore, since hot water having a high temperature is supplied to the fuel electrode and the oxygen electrode, even if microorganisms or the like are alive on the surfaces of the gas diffusion layer and the catalyst layer, an effect of killing them can be expected.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、水に含まれているイオン性物質の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する点にある。   Still another characteristic configuration of the fuel cell storage method according to the present invention is to supply, to the solid polymer electrolyte membrane, water subjected to a treatment for reducing the concentration of an ionic substance contained in the water in the water supply step. There is in point to do.

上記特徴構成によれば、固体高分子電解質膜に対してイオン性物質の濃度が低い水を供給できる。従って、固体高分子電解質膜がイオン性物質によって汚染されることを防止できる。   According to the above characteristic configuration, water having a low concentration of the ionic substance can be supplied to the solid polymer electrolyte membrane. Therefore, the solid polymer electrolyte membrane can be prevented from being contaminated by the ionic substance.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、水に含まれている有機物の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する点にある。   Still another characteristic configuration of the fuel cell storage method according to the present invention is to supply the solid polymer electrolyte membrane with water subjected to a treatment for reducing the concentration of organic matter contained in the water in the water supply step. It is in.

上記特徴構成によれば、固体高分子電解質膜に対して有機物の濃度が低い水を供給できる。従って、固体高分子電解質膜が有機物によって汚染されることを防止できる。   According to the above characteristic configuration, water having a low concentration of organic matter can be supplied to the solid polymer electrolyte membrane. Therefore, the solid polymer electrolyte membrane can be prevented from being contaminated by organic substances.

本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記燃料極及び前記酸素極の少なくとも何れか一方に供給する水を、超音波振動発生手段によって振動させる点にある。   Still another characteristic configuration of the fuel cell storage method according to the present invention is that, in the water supply step, water supplied to at least one of the fuel electrode and the oxygen electrode is vibrated by ultrasonic vibration generating means. is there.

上記特徴構成によれば、給水工程において、超音波振動発生手段を動作させれば、燃料極及び酸素極の少なくとも何れか一方に供給する水を振動させることができる。つまり、この超音波振動によって水分子を揺り動かしながら燃料極及び酸素極の少なくとも何れか一方に水を供給することで、燃料極及び酸素極の少なくとも何れか一方を洗浄する効果を高めることができる。   According to the above characteristic configuration, water supplied to at least one of the fuel electrode and the oxygen electrode can be vibrated by operating the ultrasonic vibration generating means in the water supply step. That is, the effect of cleaning at least one of the fuel electrode and the oxygen electrode can be enhanced by supplying water to at least one of the fuel electrode and the oxygen electrode while shaking water molecules by this ultrasonic vibration.

燃料電池システムの構成を説明する図である。It is a figure explaining the structure of a fuel cell system. 燃料電池の保管方法を示すフローチャートである。It is a flowchart which shows the storage method of a fuel cell. 給水工程を行うための給水機構を説明する図である。It is a figure explaining the water supply mechanism for performing a water supply process. 燃料電池の保管方法を実施した場合の効果を説明する図である。It is a figure explaining the effect at the time of implementing the storage method of a fuel cell. 別の燃料電池システムの構成を説明する図である。It is a figure explaining the structure of another fuel cell system. 燃料電池の別実施形態を説明する図である。It is a figure explaining another embodiment of a fuel cell.

<第1実施形態>
以下に図面を参照して本発明に係る燃料電池の保管方法が実施される燃料電池システムの構成について説明する。
図1は、燃料電池システムの構成を説明する図である。燃料電池システムは、固体高分子形燃料電池FC(以下、単に「燃料電池FC」と記載する)を備える。燃料電池FCは固体高分子電解質膜4を燃料極3及び酸素極5で挟んで構成されるセルCを複数積層して備える。尚、図1中では簡略化のため単一のセルCのみを記載している。また、燃料電池FCは、発電時に発生する熱を回収することで燃料電池FCを冷却する冷却部6を備える。本実施形態では水冷式の冷却部6を設けている。具体的には、この冷却部6には後述する回収水循環路19を循環する水(以下、「回収水」と記載する)が供給されて、燃料電池FCの冷却が行われる。冷却部6を通過することで温度が上昇した回収水は、回収水循環路19の途中に設けられた熱交換器8に流入する。詳細は後述するが、この熱交換器8において、回収水は、排熱回収路25を流れる湯水と熱交換して燃料電池FCから回収した排熱をその湯水に渡す。湯水は、貯湯タンク7に貯えられ、そこで蓄熱が行われる。
<First Embodiment>
A configuration of a fuel cell system in which a fuel cell storage method according to the present invention is implemented will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating the configuration of a fuel cell system. The fuel cell system includes a polymer electrolyte fuel cell FC (hereinafter simply referred to as “fuel cell FC”). The fuel cell FC includes a plurality of stacked cells C each having a solid polymer electrolyte membrane 4 sandwiched between a fuel electrode 3 and an oxygen electrode 5. In FIG. 1, only a single cell C is shown for simplicity. The fuel cell FC includes a cooling unit 6 that cools the fuel cell FC by recovering heat generated during power generation. In this embodiment, a water-cooled cooling unit 6 is provided. Specifically, the cooling unit 6 is supplied with water circulating in a recovered water circulation path 19 (to be described later) (hereinafter referred to as “recovered water”) to cool the fuel cell FC. The recovered water whose temperature has increased by passing through the cooling unit 6 flows into the heat exchanger 8 provided in the middle of the recovered water circulation path 19. Although details will be described later, in the heat exchanger 8, the recovered water exchanges heat with hot water flowing through the exhaust heat recovery path 25 and passes the exhaust heat recovered from the fuel cell FC to the hot water. Hot water is stored in the hot water storage tank 7 where heat is stored.

改質器1には、炭化水素を含む原燃料(例えば、メタンを含む都市ガスなど)が供給され、及び、回収水循環路19から分岐した改質用水供給路20を介して水が供給される。改質器1は、併設される燃焼器2から与えられる燃焼熱を利用して、原燃料の水蒸気改質を行う。改質器1での水蒸気改質により得られた水素を主成分とする燃料ガスは、燃料ガス供給路14を介して燃料極3に供給される。   The reformer 1 is supplied with a raw fuel containing hydrocarbons (for example, city gas containing methane), and water is supplied through a reforming water supply path 20 branched from the recovered water circulation path 19. . The reformer 1 performs steam reforming of the raw fuel by using the combustion heat provided from the combustor 2 provided therewith. The fuel gas mainly composed of hydrogen obtained by steam reforming in the reformer 1 is supplied to the fuel electrode 3 through the fuel gas supply path 14.

燃料極3では、供給された全ての燃料ガスが発電反応で消費される訳ではない。そのため、燃料極3から排出される燃料極排ガスの中には水素等の燃料ガスの成分が残存している。そこで、燃焼器2での燃焼用ガスとして、燃料極排ガスを利用している。具体的には、燃料極3から燃焼器2へ、燃料極排ガス路15を介して燃料極排ガスを供給する。燃焼器2で燃焼された後の燃焼排ガスは、燃焼排ガス路16を介して外部に排出される。   In the fuel electrode 3, not all the supplied fuel gas is consumed in the power generation reaction. Therefore, fuel gas components such as hydrogen remain in the fuel electrode exhaust gas discharged from the fuel electrode 3. Therefore, fuel electrode exhaust gas is used as a combustion gas in the combustor 2. Specifically, the fuel electrode exhaust gas is supplied from the fuel electrode 3 to the combustor 2 through the fuel electrode exhaust gas passage 15. The combustion exhaust gas after being combusted in the combustor 2 is discharged to the outside through the combustion exhaust gas passage 16.

燃料極排ガス及び燃焼排ガスには水分が含まれている。そのため、その水分を回収する目的で、燃料極排ガス路15及び燃焼排ガス路16の途中に水回収器21、22を設けている。水回収器21、22は、例えば、凝縮器とドレントラップとを組み合わせて構成される。つまり、燃料極排ガス及び燃焼排ガスに含まれる水分が凝縮器によって凝縮され、その凝縮水がドレントラップによって取り出される。ドレントラップによって取り出された水は水回収タンク10へと回収され、回収水循環路19を循環する水として再利用される。   The fuel electrode exhaust gas and the combustion exhaust gas contain moisture. Therefore, water recovery devices 21 and 22 are provided in the middle of the fuel electrode exhaust gas passage 15 and the combustion exhaust gas passage 16 for the purpose of recovering the moisture. The water recovery units 21 and 22 are configured by combining a condenser and a drain trap, for example. That is, the moisture contained in the fuel electrode exhaust gas and the combustion exhaust gas is condensed by the condenser, and the condensed water is taken out by the drain trap. The water taken out by the drain trap is recovered into the water recovery tank 10 and reused as water circulating in the recovered water circulation path 19.

このように、回収水循環路19を流れる回収水は、燃料極排ガス中に含まれていた水分や、燃焼排ガス中に含まれていた水分が混入しているため、電解質や水に溶解しない不純物などを含んでいることが想定される。そのため、本実施形態の燃料電池システムは、回収水循環路19を流れる回収水が、回収水循環路19の途中に設けられる水処理装置9によって処理されるように構成してある。本実施形態において、水処理装置9は、回収水中に存在している有機物などを吸着可能な吸着材9aと、回収水中に溶存しているイオンを除去可能なイオン交換樹脂9bとを含む。水処理装置9は、これら吸着材9a及びイオン交換樹脂9bの一方のみで構成されてもよく、或いは、これら以外の手段を備えてもよい。例えば逆浸透膜などを併用してもよい。   In this way, the recovered water flowing through the recovered water circulation path 19 contains the moisture contained in the fuel electrode exhaust gas and the moisture contained in the combustion exhaust gas. Is assumed to be included. Therefore, the fuel cell system of the present embodiment is configured such that the recovered water flowing through the recovered water circulation path 19 is processed by the water treatment device 9 provided in the middle of the recovered water circulation path 19. In the present embodiment, the water treatment device 9 includes an adsorbent 9a capable of adsorbing organic substances and the like present in the recovered water, and an ion exchange resin 9b capable of removing ions dissolved in the recovered water. The water treatment device 9 may be composed of only one of the adsorbent 9a and the ion exchange resin 9b, or may include other means. For example, a reverse osmosis membrane may be used in combination.

イオン交換樹脂9bは、回収水に溶存している電解質のイオン(例えば、イオン化して溶存している塩類やアンモニアなど)を例えばH+、OH-と交換することで、回収水に含まれる電解質の濃度を相対的に低くさせる(即ち、電気伝導度を低くさせる)機能を果たす。例えば、水処理装置9よりも下流側の回収水循環路19を流れる回収水の電気伝導度は、1μS/cm〜10μS/cm程度であることが好ましい。 The ion exchange resin 9b replaces electrolyte ions dissolved in the recovered water (for example, salts and ammonia dissolved by ionization) with, for example, H + and OH , so that the electrolyte contained in the recovered water is obtained. It functions to lower the concentration of (i.e., lower electrical conductivity). For example, the electrical conductivity of the recovered water flowing through the recovered water circulation path 19 on the downstream side of the water treatment device 9 is preferably about 1 μS / cm to 10 μS / cm.

吸着材9aは例えば活性炭等を備えて構成され、回収水に含まれる有機物(例えば、シロキサン、無極性又は極性有機分子、微生物や微生物の分泌物、油分等)などの被吸着物を吸着するという機能を発揮する。例えば、水処理装置9よりも下流側の回収水循環路19を流れる回収水の油分濃度は、0.01wtppm〜1wtppm程度であることが好ましい。   The adsorbent 9a is configured to include, for example, activated carbon, and adsorbs adsorbents such as organic substances (eg, siloxane, nonpolar or polar organic molecules, microorganisms, microbial secretions, oil, etc.) contained in the recovered water. Demonstrate the function. For example, the concentration of oil in the recovered water flowing through the recovered water circulation path 19 on the downstream side of the water treatment device 9 is preferably about 0.01 wtppm to 1 wtppm.

上述した熱交換器8において回収水から回収した排熱(即ち、燃料電池FCから回収した排熱)は、排熱回収路25を流れる湯水に与えられ、その湯水は貯湯タンク7に貯えられる。本実施形態において、燃料電池FCの排熱を回収する排熱回収装置12は、貯湯タンク7と補助熱源機11とを備える。具体的には、排熱回収装置12は、貯湯タンク7に貯えている湯水が貯湯タンク7と熱交換器8との間で循環する排熱回収路25を有する。排熱回収路25における湯水の流速はポンプP2によって調整される。また、排熱回収装置12は、貯湯タンク7に蓄えている湯水が補助熱源機11を経由して熱利用装置13に供給される湯水循環路26を有する。湯水循環路26における湯水の流速はポンプP3によって調整される。熱利用装置13が、湯水の熱のみを利用する床暖房装置などの場合、熱利用装置13で熱が利用された後の湯水は湯水循環路26を通って貯湯タンク7に帰還する。或いは、熱利用装置13が、湯水自体を利用する給湯装置などの場合、貯湯タンク7には湯水は帰還しない。補助熱源機11は、熱利用装置13で要求される湯水を所定温度に昇温した上で熱利用装置13に供給する際に使用される。   The exhaust heat recovered from the recovered water in the heat exchanger 8 (that is, the exhaust heat recovered from the fuel cell FC) is given to the hot water flowing through the exhaust heat recovery path 25, and the hot water is stored in the hot water storage tank 7. In the present embodiment, the exhaust heat recovery device 12 that recovers the exhaust heat of the fuel cell FC includes a hot water storage tank 7 and an auxiliary heat source device 11. Specifically, the exhaust heat recovery device 12 has an exhaust heat recovery path 25 through which hot water stored in the hot water storage tank 7 circulates between the hot water storage tank 7 and the heat exchanger 8. The flow rate of hot water in the exhaust heat recovery path 25 is adjusted by the pump P2. The exhaust heat recovery device 12 also has a hot water circulation path 26 through which hot water stored in the hot water storage tank 7 is supplied to the heat utilization device 13 via the auxiliary heat source unit 11. The flow rate of hot water in the hot water circulation path 26 is adjusted by the pump P3. When the heat utilization device 13 is a floor heating device or the like that uses only the heat of hot water, the hot water after the heat is utilized by the heat utilization device 13 returns to the hot water storage tank 7 through the hot water circulation path 26. Alternatively, when the heat utilization device 13 is a hot water supply device that uses hot water itself, the hot water does not return to the hot water storage tank 7. The auxiliary heat source unit 11 is used when hot water required by the heat utilization device 13 is heated to a predetermined temperature and then supplied to the heat utilization device 13.

〔燃料電池の発電運転〕
燃料電池FCが発電運転を行っている間、運転制御装置27は、燃料ガス供給路14の途中に設けている三方弁V6を、改質器1側から燃料極3側に通流させる方向に開弁して改質器1から燃料ガスを燃料極3に供給し、及び、酸素含有ガス供給路17の途中に設けている三方弁V7を、空気供給源側から酸素極5側に通流させる方向に開弁して空気を酸素極5に供給する。その結果、セルCでは発電反応が行われ、電気負荷(図示せず)やインバータ(図示せず)などに対して電力が出力される。
運転制御装置27は、燃料電池FCの発電運転を行っている間、燃料極排ガス路15の途中に設けている三方弁V5を、燃料極3側から燃焼器2側に通流させる方向に開弁して燃料極排ガスを燃焼器2に供給する。その結果、燃焼器2では、燃料極排ガスに残存している水素が燃焼される。
また、運転制御装置27は、燃料電池FCの発電運転を行っている間、酸素極排ガス路18の途中に設けている三方弁V4を、酸素極5側から排出側に通流させる方向に開弁して酸素極排ガスを外部に排出させる。
尚、運転制御装置27は、改質器1で燃料ガスを生成するとき、改質器1に原燃料を供給し、且つ、回収水循環路19に設けているポンプP1を動作させると共に回収水循環路19から分岐した改質用水供給路20に設けている弁V2を開弁して改質器1に改質用水を供給する。改質器1には上述したように燃焼器2で発生される燃焼熱が与えられて、水蒸気改質反応が促進される。
[Fuel cell power generation operation]
While the fuel cell FC is performing the power generation operation, the operation control device 27 causes the three-way valve V6 provided in the middle of the fuel gas supply path 14 to flow from the reformer 1 side to the fuel electrode 3 side. The valve is opened to supply fuel gas from the reformer 1 to the fuel electrode 3, and a three-way valve V7 provided in the middle of the oxygen-containing gas supply path 17 is passed from the air supply source side to the oxygen electrode 5 side. The valve is opened in such a direction that air is supplied to the oxygen electrode 5. As a result, a power generation reaction is performed in the cell C, and electric power is output to an electric load (not shown), an inverter (not shown), and the like.
The operation control device 27 opens the three-way valve V5 provided in the middle of the fuel electrode exhaust gas passage 15 from the fuel electrode 3 side to the combustor 2 side during the power generation operation of the fuel cell FC. The fuel electrode exhaust gas is supplied to the combustor 2. As a result, in the combustor 2, the hydrogen remaining in the fuel electrode exhaust gas is burned.
Further, the operation control device 27 opens the three-way valve V4 provided in the middle of the oxygen electrode exhaust gas passage 18 in a direction to flow from the oxygen electrode 5 side to the discharge side during the power generation operation of the fuel cell FC. The oxygen electrode exhaust gas is discharged to the outside.
The operation control device 27 supplies raw fuel to the reformer 1 when the reformer 1 generates fuel gas, operates the pump P1 provided in the recovered water circulation path 19, and recovers the recovered water circulation path. The reforming water is supplied to the reformer 1 by opening the valve V <b> 2 provided in the reforming water supply path 20 branched from 19. As described above, the reformer 1 is given the combustion heat generated in the combustor 2 to promote the steam reforming reaction.

〔燃料電池の発電運転の停止〕
運転制御装置27は、電気負荷やインバータなどと燃料電池FCのセルCとの電気的な接続を解除して、燃料電池FCでの発電により得られた電力の出力を停止する。例えば、運転制御装置27は、燃料電池FCでの発電により得られた電力の出力を停止する前に、改質器1で生成される燃料ガスの量を減少させることで燃料電池FCへの燃料ガスの供給量を減少させ、及び、燃料電池FCへの空気の供給量を減少させる。その後、運転制御装置27は、燃料電池FCへの燃料ガス及び空気の供給を停止させると共に、電気負荷やインバータなどと燃料電池FCのセルCとの電気的な接続を解除して、燃料電池FCでの発電により得られた電力の出力を停止する。このようにして、運転制御装置27は、燃料電池FCを発電停止状態に移行させる。
加えて、運転制御装置27は、燃料電池FCを発電停止状態に移行させる工程中に、燃料極3の上流側及び下流側、並びに、酸素極5の上流側及び下流側を閉止して、燃料電池FCのセルCを外部から隔離する処理を行なう。例えば、運転制御装置27は、三方弁V6を用いて燃料極3の上流側を閉止し、三方弁V5を用いて燃料極3の下流側を閉止し、三方弁V7を用いて酸素極5の上流側を閉止し、三方弁V4を用いて酸素極5の下流側を閉止することで、燃料電池FCのセルCを外部から隔離することができる。尚、この隔離処理を行なうと共に、燃料電池FCのセルCを不活性ガス、原燃料ガス、水などで封止してもよい。
[Stopping fuel cell power generation]
The operation control device 27 releases the electrical connection between the electric load, the inverter, and the like and the cell C of the fuel cell FC, and stops the output of the electric power obtained by the power generation in the fuel cell FC. For example, the operation control device 27 reduces the amount of fuel gas generated in the reformer 1 before stopping the output of the electric power obtained by the power generation in the fuel cell FC, thereby fuel to the fuel cell FC. The gas supply amount is decreased, and the air supply amount to the fuel cell FC is decreased. Thereafter, the operation control device 27 stops the supply of the fuel gas and air to the fuel cell FC, and also releases the electrical connection between the electric load, the inverter, and the like and the cell C of the fuel cell FC, so that the fuel cell FC The output of electric power obtained by power generation at is stopped. In this way, the operation control device 27 shifts the fuel cell FC to the power generation stop state.
In addition, the operation control device 27 closes the upstream side and the downstream side of the fuel electrode 3 and the upstream side and the downstream side of the oxygen electrode 5 during the step of shifting the fuel cell FC to the power generation stop state. A process of isolating the cell C of the battery FC from the outside is performed. For example, the operation control device 27 closes the upstream side of the fuel electrode 3 using the three-way valve V6, closes the downstream side of the fuel electrode 3 using the three-way valve V5, and closes the oxygen electrode 5 using the three-way valve V7. By closing the upstream side and closing the downstream side of the oxygen electrode 5 using the three-way valve V4, the cell C of the fuel cell FC can be isolated from the outside. In addition, while performing this isolation process, the cell C of the fuel cell FC may be sealed with an inert gas, raw fuel gas, water, or the like.

〔燃料電池の発電運転停止後の保管〕
燃料電池FCは、発電運転停止後、その発電停止状態のままで上述したようにセルCを外部から隔離した状態で保管される。尚、完全な隔離状態を長期間維持し続けることは困難である。従って、燃料電池FCを保管している間にセルCの内部の水分が外部に抜け出すこともある。その場合、発電運転の停止時点でセルCの固体高分子電解質膜4が湿潤していたとしても、その後、セルCの固体高分子電解質膜4から水分が抜け出してその湿潤状態が低下する可能性がある。
[Storage after stopping fuel cell power generation]
After the power generation operation is stopped, the fuel cell FC is stored in a state where the cell C is isolated from the outside as described above while the power generation is stopped. It is difficult to maintain a complete isolation state for a long time. Accordingly, moisture inside the cell C may escape to the outside while the fuel cell FC is stored. In that case, even if the solid polymer electrolyte membrane 4 of the cell C is wet at the time of stopping the power generation operation, moisture may subsequently escape from the solid polymer electrolyte membrane 4 of the cell C and the wet state may be lowered. There is.

尚、固体高分子電解質膜4の湿潤状態が低下した状態で燃料電池FCの運転が再び開始された場合、固体高分子電解質膜4のイオン伝導性が低いため、出力される電圧が低下するという問題が生じる。
そこで、本発明に係る燃料電池FCの保管方法では、燃料電池FCを発電停止させた後の保管中、適切なタイミングで固体高分子電解質膜4に水を給水することで、固体高分子電解質膜4の湿潤状態を高める処理を行なう。
図2は、本発明に係る燃料電池FCの保管方法を示すフローチャートである。本実施形態では、運転制御装置27は、燃料電池FCを発電停止させた後、この保管処理制御を開始する。例えば、この保管処理制御の開始タイミングは、燃料電池FCでの発電により得られた電力の出力が停止され、且つ、燃料電池FCのセルCが外部から隔離されたタイミングである。
In addition, when the operation of the fuel cell FC is restarted in a state where the wet state of the solid polymer electrolyte membrane 4 is lowered, the ionic conductivity of the solid polymer electrolyte membrane 4 is low, so that the output voltage is reduced. Problems arise.
Therefore, in the storage method of the fuel cell FC according to the present invention, water is supplied to the solid polymer electrolyte membrane 4 at an appropriate timing during storage after the power generation of the fuel cell FC is stopped, so that the solid polymer electrolyte membrane 4 is supplied. 4 to increase the wet state.
FIG. 2 is a flowchart showing a storage method of the fuel cell FC according to the present invention. In the present embodiment, the operation control device 27 starts the storage process control after stopping the power generation of the fuel cell FC. For example, the start timing of the storage process control is a timing at which the output of the power obtained by the power generation in the fuel cell FC is stopped and the cell C of the fuel cell FC is isolated from the outside.

工程#1において運転制御装置27は、燃料電池FCの保管開始から発電停止状態で保管されている保管継続期間を計測する保管期間計測工程を行う。本実施形態では、保管継続期間は、燃料電池FCでの発電により得られた電力の出力が停止され、且つ、燃料電池FCのセルCが外部から隔離されたタイミングから開始される。この保管継続期間が長くなるほど、上述したようにセルCの固体高分子電解質膜4から水分が抜け出してその湿潤状態が低下している可能性が高くなる。   In step # 1, the operation control device 27 performs a storage period measuring step of measuring a storage continuation period in which the fuel cell FC is stored in a power generation stop state from the start of storage. In the present embodiment, the storage continuation period is started from the timing when the output of the power obtained by the power generation in the fuel cell FC is stopped and the cell C of the fuel cell FC is isolated from the outside. The longer the storage duration period, the higher the possibility that the moisture is released from the solid polymer electrolyte membrane 4 of the cell C and the wet state is lowered as described above.

次に、運転制御装置27は、上記保管期間計測工程で計測される保管継続期間の長さが設定期間に到達したか否かを判定する判定工程を行い(工程#2)、その判定工程で保管継続期間の長さが設定期間に到達したと判定したとき、固体高分子電解質膜4に水を供給する給水工程を行う(工程#3)。これら判定工程及び給水工程は、保管継続期間が長くなれば固体高分子電解質膜4の湿潤状態が低下することを考慮して、即ち、保管継続期間が設定期間に到達して以後に燃料電池FCの運転が再び開始された場合、固体高分子電解質膜4のイオン伝導性が低いため出力される電圧が低下するという課題に鑑みて行われる。従って、判定工程において判定基準とされる「設定期間」は、保管継続期間中にセルCの固体高分子電解質膜4から水分が抜け出して固体高分子電解質膜4の湿潤状態が低下しても、固体高分子電解質膜4のイオン伝導性が燃料電池FCの出力電圧の大きな減衰が生じない程度以上には保たれる期間に対応する。この「設定期間」は燃料電池FC毎に適宜設定可能であり、更に、気温が高く乾燥が促進されるような場合には設定期間を短くするなど、気候等の環境に応じて適宜変更してもよい。   Next, the operation control device 27 performs a determination process for determining whether or not the length of the storage continuation period measured in the storage period measurement process has reached the set period (process # 2). When it is determined that the length of the storage continuation period has reached the set period, a water supply step of supplying water to the solid polymer electrolyte membrane 4 is performed (step # 3). These determination process and water supply process take into consideration that the wet state of the solid polymer electrolyte membrane 4 decreases if the storage continuation period becomes long, that is, the fuel cell FC after the storage continuation period reaches the set period. When the above operation is started again, it is performed in view of the problem that the output voltage decreases because the ionic conductivity of the solid polymer electrolyte membrane 4 is low. Therefore, the “setting period” used as a determination criterion in the determination process is such that even if moisture escapes from the solid polymer electrolyte membrane 4 of the cell C during the storage continuation period and the wet state of the solid polymer electrolyte membrane 4 decreases, This corresponds to a period in which the ionic conductivity of the solid polymer electrolyte membrane 4 is maintained at a level where the output voltage of the fuel cell FC is not greatly attenuated. This “setting period” can be set as appropriate for each fuel cell FC. Further, when the temperature is high and drying is promoted, the setting period is shortened. Also good.

図3は、給水工程を行うための給水機構を説明する図である。本実施形態では、給水工程において、燃料電池FCの発電運転時にセルCの冷却水として利用するために用意されている水を固体高分子電解質膜4に供給する給水機構を採用している。具体的には、給水工程において、運転制御装置27は、回収水循環路19に設けているポンプP1を動作させ、弁V1を開弁し且つ弁V2を閉弁すると共に、冷却部6の下流側に設けている三方弁V3を水供給路23側に通流させる方向に開弁して回収水(冷却水)を水供給路23に流す。加えて、運転制御装置27は、三方弁V5を水供給路23側から燃料極3側に通流させる方向に開弁して回収水を燃料極3に供給させ、三方弁V4を水供給路23側から酸素極5側に通流させる方向に開弁して回収水を酸素極5に供給させる。また、運転制御装置27は、三方弁V6を燃料極3側から水排出路24側に通流させる方向に開弁して、燃料極3に流入した回収水が三方弁V6を経由して水排出路24へと排出される流路を形成し、及び、三方弁V7を酸素極5側から水排出路24側に通流させる方向に開弁して、酸素極5に流入した回収水が三方弁V7を経由して水排出路24へと排出される流路を形成する。更に、運転制御装置27は、熱交換器8と水回収水タンクとの間の回収水循環路19の途中に設けている三方弁V8を水排出路24側から水回収タンク10側に通流させる方向に開弁して、水排出路24へと排出された回収水を回収水循環路19に戻す。   Drawing 3 is a figure explaining the water supply mechanism for performing a water supply process. In the present embodiment, in the water supply process, a water supply mechanism that supplies water, which is prepared for use as cooling water of the cell C during the power generation operation of the fuel cell FC, to the solid polymer electrolyte membrane 4 is employed. Specifically, in the water supply process, the operation control device 27 operates the pump P1 provided in the recovered water circulation path 19 to open the valve V1 and close the valve V2, and to the downstream side of the cooling unit 6 The three-way valve V <b> 3 provided in the valve is opened in a direction to flow the water supply passage 23, and the recovered water (cooling water) flows through the water supply passage 23. In addition, the operation control device 27 opens the three-way valve V5 in a direction to flow from the water supply path 23 side to the fuel electrode 3 side, supplies the recovered water to the fuel electrode 3, and sets the three-way valve V4 to the water supply path. The recovered water is supplied to the oxygen electrode 5 by opening the valve in the direction of flowing from the 23 side to the oxygen electrode 5 side. In addition, the operation control device 27 opens the three-way valve V6 in a direction that allows the three-way valve V6 to flow from the fuel electrode 3 side to the water discharge passage 24 side, and the recovered water that has flowed into the fuel electrode 3 passes through the three-way valve V6. A flow path to be discharged to the discharge path 24 is formed, and the three-way valve V7 is opened in a direction in which the three-way valve V7 flows from the oxygen electrode 5 side to the water discharge path 24 side. A flow path that is discharged to the water discharge path 24 via the three-way valve V7 is formed. Further, the operation control device 27 causes the three-way valve V8 provided in the middle of the recovered water circulation path 19 between the heat exchanger 8 and the water recovery water tank to flow from the water discharge path 24 side to the water recovery tank 10 side. The recovered water discharged to the water discharge passage 24 is returned to the recovered water circulation passage 19.

このように、給水工程では、燃料ガス供給路14を介した燃料極3への水の供給及び酸素含有ガス供給路17を介した酸素極5への水の供給が行われる。図示は省略するが、燃料極3及び酸素極5のそれぞれはガス拡散層及び触媒層を有して構成され、供給された回収水はそれらガス拡散層及び触媒層を通過して固体高分子電解質膜4まで到達可能である。従って、燃料ガス供給路14を介した燃料極3への水の供給及び酸素含有ガス供給路17を介した酸素極5への水の供給を行うことで、固体高分子電解質膜4への水の供給を行うことができる。その結果、固体高分子電解質膜4の湿潤状態を高めることができる。尚、給水工程でどれだけの量の水を供給するのかは適宜設定可能である。   Thus, in the water supply process, water is supplied to the fuel electrode 3 via the fuel gas supply path 14 and water is supplied to the oxygen electrode 5 via the oxygen-containing gas supply path 17. Although not shown, each of the fuel electrode 3 and the oxygen electrode 5 includes a gas diffusion layer and a catalyst layer, and the supplied recovered water passes through the gas diffusion layer and the catalyst layer to pass through the solid polymer electrolyte. The film 4 can be reached. Accordingly, by supplying water to the fuel electrode 3 via the fuel gas supply path 14 and supplying water to the oxygen electrode 5 via the oxygen-containing gas supply path 17, water to the solid polymer electrolyte membrane 4 is obtained. Can be supplied. As a result, the wet state of the solid polymer electrolyte membrane 4 can be increased. Note that how much water is supplied in the water supply process can be set as appropriate.

上述のように燃料極3及び酸素極5への水の供給を同時に行うとき、燃料極3へ与えられる水圧と酸素極5へ与えられる水圧との圧力差を設定圧力差以内に調整することが好ましい。例えば、三方弁V3から燃料極3に至る間の圧損と、三方弁V3から酸素極5に至る間の圧損とを調整した装置設計を行うことで、燃料極3へ与えられる水圧と酸素極5へ与えられる水圧との圧力差を設定圧力差以内に調整できる。本実施形態のように燃料極3及び酸素極5への水の供給を同時に行うと、燃料極3及び酸素極5に挟まれている固体高分子電解質膜4には燃料極3側及び酸素極5側の両側から水圧が加わることになる。但し、燃料極3へ与えられる水圧と酸素極5へ与えられる水圧との圧力差を設定圧力差以内に調整しておけば、燃料極3と酸素極5との中間部分に存在する固体高分子電解質膜4でその両側からの水圧がほぼ釣り合うため、固体高分子電解質膜4が水圧により変形するなどの問題も発生しない。このような設定圧力差は、発電運転時に燃料極3へ与えられるガス圧と酸素極5へ与えられるガス圧との間で許容される圧力差と同様である。   As described above, when water is supplied to the fuel electrode 3 and the oxygen electrode 5 at the same time, the pressure difference between the water pressure applied to the fuel electrode 3 and the water pressure applied to the oxygen electrode 5 can be adjusted within a set pressure difference. preferable. For example, the water pressure applied to the fuel electrode 3 and the oxygen electrode 5 are adjusted by designing the apparatus in which the pressure loss between the three-way valve V3 and the fuel electrode 3 and the pressure loss between the three-way valve V3 and the oxygen electrode 5 are adjusted. The pressure difference with the water pressure given to can be adjusted within the set pressure difference. When water is supplied to the fuel electrode 3 and the oxygen electrode 5 simultaneously as in the present embodiment, the solid polymer electrolyte membrane 4 sandwiched between the fuel electrode 3 and the oxygen electrode 5 has a fuel electrode 3 side and an oxygen electrode. Water pressure is applied from both sides of the 5 side. However, if the pressure difference between the water pressure applied to the fuel electrode 3 and the water pressure applied to the oxygen electrode 5 is adjusted within the set pressure difference, the solid polymer present in the intermediate portion between the fuel electrode 3 and the oxygen electrode 5 Since the water pressure from both sides of the electrolyte membrane 4 is almost balanced, there is no problem that the solid polymer electrolyte membrane 4 is deformed by the water pressure. Such a set pressure difference is the same as the allowable pressure difference between the gas pressure applied to the fuel electrode 3 and the gas pressure applied to the oxygen electrode 5 during the power generation operation.

給水工程において燃料極3及び酸素極5に水を供給した場合、固体高分子電解質膜4を加湿できるという効果の他に、燃料極3及び酸素極5を洗浄できるという効果も得られる。例えば、燃料電池FCを発電運転した後で停止して保管している間、発電運転中に燃料極3及び酸素極5のガス拡散層及び触媒層に供給されていた燃料ガス及び酸素含有ガスに含まれていた物質(例えば、燃料ガス及び酸素含有ガスを加湿した上で燃料極3及び酸素極5に供給する場合には、その加湿水に含まれていたフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、硫酸イオン、ナトリウムイオン、カリウムイオン、アンモニウムイオン、カルシウム、マグネシウムなど)がガス拡散層及び触媒層の表面に滞留又は析出する可能性がある。また、空気中に浮遊していた微生物などがガス拡散層及び触媒層の表面で繁殖する可能性もある。ところが本実施形態のような給水工程を行えば、ガス拡散層及び触媒層などに滞留又は析出していた物質や生存・繁殖していた微生物を洗い流すことも期待できる。   When water is supplied to the fuel electrode 3 and the oxygen electrode 5 in the water supply step, in addition to the effect that the solid polymer electrolyte membrane 4 can be humidified, the effect that the fuel electrode 3 and the oxygen electrode 5 can be cleaned is also obtained. For example, while the fuel cell FC is stopped after power generation operation and stored, the fuel gas and the oxygen-containing gas supplied to the gas diffusion layer and the catalyst layer of the fuel electrode 3 and the oxygen electrode 5 during the power generation operation. Substances contained (for example, when the fuel gas and the oxygen-containing gas are humidified and then supplied to the fuel electrode 3 and the oxygen electrode 5, fluoride ions, chloride ions, sub-oxides contained in the humidified water) Nitrate ions, nitrate ions, phosphate ions, sulfate ions, sodium ions, potassium ions, ammonium ions, calcium, magnesium, etc.) may stay or deposit on the surfaces of the gas diffusion layer and the catalyst layer. In addition, microorganisms or the like suspended in the air may propagate on the surfaces of the gas diffusion layer and the catalyst layer. However, if the water supply process as in the present embodiment is performed, it can be expected that substances that have stayed or deposited in the gas diffusion layer and the catalyst layer and microorganisms that have survived and propagated will be washed away.

特に、本実施形態では、燃料極3への水の供給を行うとき、固体高分子形燃料電池FCを発電運転するときの燃料ガス供給路14での燃料ガスの流通方向とは逆方向に水を流し、酸素極5への水の供給を行うとき、固体高分子形燃料電池FCを発電運転するときの酸素含有ガス供給路17での酸素含有ガスの流通方向とは逆方向に水を流している。
セルCの内部の燃料極3及び酸素極5の両方とも、発電運転中に燃料ガス及び酸素含有ガスが燃料極3及び酸素極5に最初に流入してくる上流側部位に異物が滞留又は析出しやすい状況にある。従って、燃料極3及び酸素極5への水の供給を行うとき、燃料電池FCを発電運転するときの燃料ガス供給路14での燃料ガスの流通方向及び酸素含有ガス供給路17での酸素含有ガスの流通方法と同じ方向に水を流すと、洗い流された異物が、その上流側部位から下流側部位へ向かってセルCの全体に拡散してしまう可能性がある。
ところが本実施形態では、給水工程においてセルCの内部の燃料極3及び酸素極5を流れる水は、その異物が滞留又は析出しやすい部位を下流側にして流れるため、洗い流された異物がセルCの全体に拡散してしまうことなく、水排出路24へと排出される。
In particular, in the present embodiment, when water is supplied to the fuel electrode 3, the water flows in the direction opposite to the direction in which the fuel gas flows through the fuel gas supply path 14 when the polymer electrolyte fuel cell FC is in a power generation operation. When the water is supplied to the oxygen electrode 5, the water is supplied in a direction opposite to the flow direction of the oxygen-containing gas in the oxygen-containing gas supply passage 17 when the polymer electrolyte fuel cell FC is operated for power generation. ing.
In both the fuel electrode 3 and the oxygen electrode 5 inside the cell C, foreign matter stays or deposits in the upstream portion where the fuel gas and the oxygen-containing gas first flow into the fuel electrode 3 and the oxygen electrode 5 during the power generation operation. It is easy to do. Therefore, when water is supplied to the fuel electrode 3 and the oxygen electrode 5, the flow direction of the fuel gas in the fuel gas supply path 14 when the fuel cell FC is in a power generation operation and the oxygen content in the oxygen-containing gas supply path 17. If water is flowed in the same direction as the gas flow method, the washed-out foreign matter may diffuse from the upstream portion toward the downstream portion throughout the cell C.
However, in the present embodiment, the water flowing through the fuel electrode 3 and the oxygen electrode 5 inside the cell C in the water supply process flows downstream from the portion where the foreign matters are likely to stay or precipitate. It is discharged to the water discharge path 24 without being diffused throughout.

更に、給水工程で燃料極3及び酸素極5に供給される回収水は、水処理装置9のイオン交換樹脂9bによってイオン性物質の濃度を低減させる処理を施した水であり、水処理装置9の吸着材9aによって有機物の濃度を低減させる処理を施した水である。従って、燃料電池FCの燃料極3及び酸素極5に対して不純物(イオン性物質や有機物など)の濃度が低い水を供給できる。   Further, the recovered water supplied to the fuel electrode 3 and the oxygen electrode 5 in the water supply process is water that has been subjected to a treatment for reducing the concentration of the ionic substance by the ion exchange resin 9b of the water treatment device 9, and the water treatment device 9 It is the water which performed the process which reduces the density | concentration of organic substance with the adsorbent 9a. Therefore, water with a low concentration of impurities (ionic substances, organic substances, etc.) can be supplied to the fuel electrode 3 and the oxygen electrode 5 of the fuel cell FC.

以上のような給水工程が終了すると、運転制御装置27は、その給水工程の終了後に再び固体高分子形燃料電池FCの発電停止状態での保管を開始する保管再開工程を行う(工程#4)。具体的には、運転制御装置27は、三方弁V6を用いて燃料極3の上流側を閉止し、三方弁V5を用いて燃料極3の下流側を閉止し、三方弁V7を用いて酸素極5の上流側を閉止し、三方弁V4を用いて酸素極5の下流側を閉止することで、燃料電池FCのセルCを外部から隔離して、その状態(即ち、発電停止状態)を維持する。   When the water supply process as described above is completed, the operation control device 27 performs a storage resumption process for starting storage of the polymer electrolyte fuel cell FC in the power generation stop state again after the completion of the water supply process (process # 4). . Specifically, the operation control device 27 closes the upstream side of the fuel electrode 3 by using the three-way valve V6, closes the downstream side of the fuel electrode 3 by using the three-way valve V5, and oxygen by using the three-way valve V7. By closing the upstream side of the electrode 5 and closing the downstream side of the oxygen electrode 5 using the three-way valve V4, the cell C of the fuel cell FC is isolated from the outside, and its state (that is, the power generation stopped state) maintain.

図4は、本発明に係る燃料電池FCの保管方法を実施した場合の効果を説明する図である。具体的には、図4に示すのは、燃料電池FCの運転継続中に出力される平均セル電圧である。尚、図4中で黒丸印で示すのは、燃料電池FCを試運転した直後に運転開始してからの平均セル電圧の推移である。図4中で黒三角印で示すのは、燃料電池FCを試運転した後、燃料電池FCを発電停止状態のまま30日間保管し、その後で運転開始してからの平均セル電圧の推移である。図4中で白四角印で示すのは、燃料電池FCを試運転した後、燃料電池FCを発電停止状態のまま30日間保管し、その後で上記給水工程を行った上で運転開始した場合の平均セル電圧の推移である。この「30日間」という期間は、先に説明した「設定期間」の一例である。
図4に示す3種類のデータで、本発明に係る燃料電池FCの保管方法に類似するのは白四角印に示す例である。
FIG. 4 is a diagram for explaining the effect when the storage method of the fuel cell FC according to the present invention is carried out. Specifically, FIG. 4 shows the average cell voltage output while the fuel cell FC is in operation. Note that the black circles in FIG. 4 indicate the transition of the average cell voltage since the start of operation immediately after the trial operation of the fuel cell FC. In FIG. 4, black triangles indicate the transition of the average cell voltage after the fuel cell FC is trial run, stored for 30 days with the power generation stopped, and then started. The white square marks in FIG. 4 indicate the average when the fuel cell FC is stored for 30 days with the power generation stopped after the test operation of the fuel cell FC, and then the water supply process is performed and then the operation is started. It is the transition of the cell voltage. This period of “30 days” is an example of the “set period” described above.
The three types of data shown in FIG. 4 are similar to the method for storing the fuel cell FC according to the present invention, as shown by the white square marks.

図4に示したように、燃料電池FCを試運転した直後に運転開始してからの平均セル電圧(初期:黒丸印)は、運転初期から非常に高い数値を維持し続けている。
これに対して、燃料電池FCを発電停止状態のまま30日間保管した後で運転開始してからの平均セル電圧(黒三角印)は、運転初期から非常に低い数値を示し、運転を30時間経過した後であっても平均セル電圧は低いままである。これは、燃料電池FCを発電停止状態のまま長期間保管したことで、その間に固体高分子電解質膜4の湿潤状態が低下したためであると考えられる。尚、黒三角印で示しているように、運転継続期間が長くなるにつれて平均セル電圧は僅かに上昇傾向にあるが、これは燃料電池FCを発電運転することでセルC内部に発生した水分や燃料ガスと共にセルC内部に供給された水分などで固体高分子電解質膜4の湿潤状態が高くなったことによる効果であると考えられる。
As shown in FIG. 4, the average cell voltage (initial value: black circle) from the start of operation immediately after the test operation of the fuel cell FC has been maintained at a very high value from the initial operation.
On the other hand, the average cell voltage (black triangle mark) after starting the operation after storing the fuel cell FC in the power generation stop state for 30 days shows a very low value from the initial operation, and the operation is performed for 30 hours. Even after the time has elapsed, the average cell voltage remains low. This is considered to be because the wet state of the solid polymer electrolyte membrane 4 was lowered during the long-term storage of the fuel cell FC while the power generation was stopped. As shown by the black triangles, the average cell voltage tends to increase slightly as the operation duration increases. This is because moisture generated in the cell C due to the power generation operation of the fuel cell FC is reduced. This is considered to be due to the fact that the wet state of the solid polymer electrolyte membrane 4 is increased by the moisture supplied into the cell C together with the fuel gas.

本発明に係る燃料電池FCの保管方法に類似する白四角印に示すデータでは、燃料電池FCの運転初期から比較的高い平均セル電圧を示すことができている。この運転初期の平均セル電圧は、黒三角印で示した30時間運転後の平均セル電圧よりも遥かに高い値である。つまり、本発明のような固体高分子電解質膜4への給水処理を行なうことで得られる効果は、単に燃料電池FCを長時間運転しただけでは得ることができない効果である。   In the data indicated by white squares similar to the storage method of the fuel cell FC according to the present invention, a relatively high average cell voltage can be indicated from the initial operation of the fuel cell FC. The average cell voltage at the initial stage of operation is a value much higher than the average cell voltage after 30 hours of operation indicated by black triangles. That is, the effect obtained by performing the water supply treatment to the solid polymer electrolyte membrane 4 as in the present invention is an effect that cannot be obtained simply by operating the fuel cell FC for a long time.

<第2実施形態>
上記実施形態では、燃料電池FCの発電運転時にセルCの冷却水として利用するために用意されている水を固体高分子電解質膜4に供給する例を説明したが、他の水を固体高分子電解質膜4に供給してもよい。図2は、第1実施形態とは別の燃料電池システムの構成を説明する図である。
Second Embodiment
In the above embodiment, the example in which water prepared for use as the cooling water of the cell C during the power generation operation of the fuel cell FC is supplied to the solid polymer electrolyte membrane 4 has been described. It may be supplied to the electrolyte membrane 4. FIG. 2 is a diagram illustrating a configuration of a fuel cell system different from the first embodiment.

図2に示す燃料電池システムでは、固体高分子電解質膜4に水を供給するための水供給路23が、湯水循環路26から分岐するように構成されている。具体的には、湯水循環路26の貯湯タンク7と補助熱源機11との間に三方弁V9を設け、貯湯タンク7に貯えている湯水を補助熱源機11側又は水供給路23の何れかに流すことができるように構成してある。この水供給路23は、燃料極排ガス路15の途中に設けられる三方弁V5、及び、酸素極排ガス路18の途中に設けられる三方弁V4に接続されている。   In the fuel cell system shown in FIG. 2, a water supply path 23 for supplying water to the solid polymer electrolyte membrane 4 is configured to branch from a hot water circulation path 26. Specifically, a three-way valve V9 is provided between the hot water storage tank 7 and the auxiliary heat source machine 11 in the hot water circulation path 26, and hot water stored in the hot water storage tank 7 is either the auxiliary heat source machine 11 side or the water supply path 23. It is configured to be able to flow through. The water supply path 23 is connected to a three-way valve V5 provided in the middle of the fuel electrode exhaust gas path 15 and a three-way valve V4 provided in the middle of the oxygen electrode exhaust gas path 18.

給水工程において運転制御装置27は、湯水循環路26に設けているポンプP3を動作させると共に、三方弁V9を水供給路23側に通流させる方向に開弁して湯水を水供給路23に流す。加えて、運転制御装置27は、三方弁V5を水供給路23側から燃料極3側に通流させる方向に開弁して湯水を燃料極3に供給させ、三方弁V4を水供給路23側から酸素極5側に通流させる方向に開弁して湯水を酸素極5に供給させる。このようにして、給水工程において固体高分子電解質膜4に対して水(湯水)を供給して、固体高分子電解質膜4の湿潤状態を高めることができる。更に、本実施形態では、貯湯タンク7に貯えている比較的温度の高い(例えば、45℃以上)の湯水が燃料極3及び酸素極5に供給されるので、微生物などが燃料極3及び酸素極5のガス拡散層及び触媒層の表面で生存しているとしてもそれらを死滅させる効果が期待できる。   In the water supply process, the operation control device 27 operates the pump P3 provided in the hot water circulation path 26 and opens the three-way valve V9 in the direction of flowing the water supply path 23 to supply hot water to the water supply path 23. Shed. In addition, the operation control device 27 opens the three-way valve V5 in a direction to flow from the water supply path 23 side to the fuel electrode 3 side to supply hot water to the fuel electrode 3, and the three-way valve V4 is connected to the water supply path 23. The valve is opened in such a direction as to flow from the side to the oxygen electrode 5 side, and hot water is supplied to the oxygen electrode 5. Thus, the wet state of the solid polymer electrolyte membrane 4 can be enhanced by supplying water (hot water) to the solid polymer electrolyte membrane 4 in the water supply step. Furthermore, in the present embodiment, hot water stored in the hot water storage tank 7 having a relatively high temperature (for example, 45 ° C. or more) is supplied to the fuel electrode 3 and the oxygen electrode 5, so Even if it is alive on the surface of the gas diffusion layer and the catalyst layer of the pole 5, the effect of killing them can be expected.

<別実施形態>
<1>
上記実施形態では、給水工程において燃料極3及び酸素極5の両方に同時に流す例を説明したが、燃料極3及び酸素極5のうちの片方のみに流してもよい。
また、上記実施形態とは異なり、給水工程において、固体高分子形燃料電池FCを発電運転するときの燃料ガス供給路14での燃料ガスの流通方向と同方向に水を流し、酸素極5への水の供給を行うとき、固体高分子形燃料電池FCを発電運転するときの酸素含有ガス供給路17での酸素含有ガスの流通方向と同方向に水を流してもよい。この場合、水供給路23を燃料電池FCのセルCの上流側(即ち、発電運転時に燃料ガスが流入する側)に接続し、水排出路24を燃料電池FCのセルCの下流側(即ち、発電運転時に酸素含有ガスが流入する側)に接続すればよい。
<Another embodiment>
<1>
In the above embodiment, the example in which the fuel electrode 3 and the oxygen electrode 5 are simultaneously flown in the water supply process has been described, but the fuel electrode 3 and the oxygen electrode 5 may be flowed to only one of them.
Further, unlike the above embodiment, in the water supply process, water is flowed in the same direction as the flow direction of the fuel gas in the fuel gas supply path 14 when the polymer electrolyte fuel cell FC is in the power generation operation, and then to the oxygen electrode 5. When water is supplied, water may flow in the same direction as the flow direction of the oxygen-containing gas in the oxygen-containing gas supply path 17 when the polymer electrolyte fuel cell FC is in a power generation operation. In this case, the water supply path 23 is connected to the upstream side of the cell C of the fuel cell FC (that is, the side into which the fuel gas flows during power generation operation), and the water discharge path 24 is connected to the downstream side of the cell C of the fuel cell FC (that is, the side). And the oxygen-containing gas inflow side during power generation operation.

<2>
上記実施形態では、燃料電池システムの構成を具体例を挙げて説明したが、それらの構成は適宜変更可能である。例えば、燃料電池FCから回収した水を改質用水及び冷却水として再利用するようなシステム構成を示したが、必ずしもそのようなシステム構成が必須になる訳ではない。また、図5では、貯湯タンク7に貯えられている湯水が、水供給路23に供給される構成を例示したが、補助熱源機11で昇温された湯水が水供給路23に供給されるように構成してもよい。
<2>
In the above embodiment, the configuration of the fuel cell system has been described with a specific example, but the configuration can be appropriately changed. For example, although a system configuration in which water collected from the fuel cell FC is reused as reforming water and cooling water has been shown, such a system configuration is not necessarily essential. 5 exemplifies a configuration in which hot water stored in the hot water storage tank 7 is supplied to the water supply path 23, hot water heated by the auxiliary heat source unit 11 is supplied to the water supply path 23. You may comprise as follows.

また、図6に示すように燃料電池FCのセルCを収容している筐体28に超音波振動発生器29(超音波振動発生手段の一例)を装着した構成を採用してもよい。この場合、運転制御装置27が、上記給水工程において、超音波振動発生器29を動作させれば、燃料極3及び酸素極5の少なくとも何れか一方に供給する水を振動させることができる。つまり、この超音波振動によって水分子を揺り動かしながら燃料極3及び酸素極5の少なくとも何れか一方に水を供給することで、燃料極3及び酸素極5の少なくとも何れか一方を洗浄する効果を高めることができる。   Further, as shown in FIG. 6, a configuration in which an ultrasonic vibration generator 29 (an example of ultrasonic vibration generating means) is mounted on a housing 28 that accommodates the cell C of the fuel cell FC may be employed. In this case, if the operation control device 27 operates the ultrasonic vibration generator 29 in the water supply step, the water supplied to at least one of the fuel electrode 3 and the oxygen electrode 5 can be vibrated. That is, by supplying water to at least one of the fuel electrode 3 and the oxygen electrode 5 while shaking water molecules by this ultrasonic vibration, the effect of cleaning at least one of the fuel electrode 3 and the oxygen electrode 5 is enhanced. be able to.

<3>
上記実施形態において、セルCの冷却水として利用するために用意されている水(即ち、回収水)の凍結を予防するための運転を行ってもよい。例えば、外気温や冷却水の温度を検出可能な温度センサを設け、運転制御装置27が、温度センサの検出温度が設定温度以下になったと判定した場合に、回収水循環路19に設けているポンプP1を動作させて回収水を流動させることで、その回収水の凍結を予防できる。更に、この凍結予防の運転時に、上記給水工程と同様の流路で回収水を流通させれば(即ち、回収水(冷却水)が水供給路23を経由してセルCに供給されるように流通させれば)、セルCの内部(燃料極3、固体高分子電解質膜4及び酸素極5)に残存する水の凍結を予防する効果も得られる。
<3>
In the embodiment described above, an operation for preventing freezing of water (that is, recovered water) prepared for use as the cooling water of the cell C may be performed. For example, a temperature sensor capable of detecting the outside air temperature and the temperature of the cooling water is provided, and the pump provided in the recovered water circulation path 19 when the operation control device 27 determines that the temperature detected by the temperature sensor is equal to or lower than the set temperature. By operating P1 and flowing the recovered water, freezing of the recovered water can be prevented. Furthermore, during this freeze prevention operation, if the recovered water is circulated through the same flow path as the water supply step (that is, the recovered water (cooling water) is supplied to the cell C via the water supply path 23). ), The effect of preventing the water remaining in the cell C (the fuel electrode 3, the solid polymer electrolyte membrane 4 and the oxygen electrode 5) from freezing can be obtained.

本発明は、固体高分子形燃料電池を発電停止させた後の保管を、簡単な装置構成を用いて実施可能な燃料電池の保管方法に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a storage method of a fuel cell that can be stored after stopping the power generation of the polymer electrolyte fuel cell using a simple device configuration.

3 燃料極(セル C)
4 固体高分子電解質膜(セル C)
5 酸素極(セル C)
13 熱利用装置
14 燃料ガス供給路
17 酸素含有ガス供給路
29 超音波振動発生器(超音波振動発生手段)
FC 固体高分子形燃料電池
3 Fuel electrode (cell C)
4 Solid polymer electrolyte membrane (cell C)
5 Oxygen electrode (cell C)
13 Heat Utilization Device 14 Fuel Gas Supply Path 17 Oxygen-Containing Gas Supply Path 29 Ultrasonic Vibration Generator (Ultrasonic Vibration Generation Means)
FC polymer electrolyte fuel cell

Claims (9)

固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備える固体高分子形燃料電池を発電停止させた後の保管方法であって、
前記固体高分子形燃料電池が保管開始から発電停止状態で保管されている保管継続期間を計測する保管期間計測工程と、
前記保管期間計測工程で計測される前記保管継続期間の長さが設定期間に到達したか否かを判定する判定工程と、
前記判定工程で前記保管継続期間の長さが前記設定期間に到達したと判定したとき、前記固体高分子電解質膜に水を供給する給水工程と、
前記給水工程の終了後に再び前記固体高分子形燃料電池の発電停止状態での保管を開始する保管再開工程とを有する燃料電池の保管方法。
A storage method after stopping the power generation of a polymer electrolyte fuel cell comprising a plurality of cells configured by sandwiching a polymer electrolyte membrane between a fuel electrode and an oxygen electrode,
A storage period measuring step of measuring a storage duration in which the polymer electrolyte fuel cell is stored in a power generation stop state from the start of storage; and
A determination step of determining whether or not the length of the storage continuation period measured in the storage period measurement step has reached a set period;
When it is determined that the length of the storage continuation period has reached the set period in the determination step, a water supply step of supplying water to the solid polymer electrolyte membrane,
A fuel cell storage method comprising: a storage restarting step of starting storage of the polymer electrolyte fuel cell again in a power generation stop state after completion of the water supply step.
前記給水工程において、燃料ガス供給路を介した前記燃料極への水の供給及び酸素含有ガス供給路を介した前記酸素極への水の供給の少なくとも何れか一方を行うことで、前記固体高分子電解質膜への水の供給を行う請求項1に記載の燃料電池の保管方法。   In the water supply step, by performing at least one of water supply to the fuel electrode via a fuel gas supply path and water supply to the oxygen electrode via an oxygen-containing gas supply path, The fuel cell storage method according to claim 1, wherein water is supplied to the molecular electrolyte membrane. 前記給水工程において、
前記燃料極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記燃料ガス供給路での燃料ガスの流通方向とは逆方向に水を流し、
前記酸素極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記酸素含有ガス供給路での酸素含有ガスの流通方向とは逆方向に水を流す請求項2に記載の燃料電池の保管方法。
In the water supply step,
When supplying water to the fuel electrode, water flows in a direction opposite to the flow direction of the fuel gas in the fuel gas supply path when the solid polymer fuel cell is in a power generation operation,
3. When supplying water to the oxygen electrode, water flows in a direction opposite to the flow direction of the oxygen-containing gas in the oxygen-containing gas supply path when the polymer electrolyte fuel cell is in a power generation operation. The fuel cell storage method as described in 1.
前記給水工程において、前記燃料極及び前記酸素極への水の供給を同時に行うとき、前記燃料極へ与えられる水圧と前記酸素極へ与えられる水圧との圧力差を設定圧力差以内に調整する請求項2又は3に記載の燃料電池の保管方法。   In the water supply step, when water is simultaneously supplied to the fuel electrode and the oxygen electrode, a pressure difference between a water pressure applied to the fuel electrode and a water pressure applied to the oxygen electrode is adjusted within a set pressure difference. Item 4. A fuel cell storage method according to Item 2 or 3. 前記給水工程において、前記固体高分子形燃料電池の発電運転時に前記セルの冷却水として利用するために用意されている水を前記固体高分子電解質膜に供給する請求項1〜4の何れか一項に記載の燃料電池の保管方法。   5. The water supply step supplies water, which is prepared for use as cooling water for the cells during power generation operation of the polymer electrolyte fuel cell, to the polymer electrolyte membrane. The method for storing a fuel cell according to Item. 前記給水工程において、前記固体高分子形燃料電池から排出される熱を回収して蓄熱すると共に所定温度に昇温して熱利用装置に供給できる排熱回収装置から提供される温水を前記固体高分子電解質膜に供給する請求項1〜4の何れか一項に記載の燃料電池の保管方法。   In the water supply step, heat discharged from the polymer electrolyte fuel cell is recovered and stored, and hot water provided from an exhaust heat recovery device that can be heated to a predetermined temperature and supplied to a heat utilization device is supplied to the solid high fuel cell. The storage method of the fuel cell as described in any one of Claims 1-4 supplied to a molecular electrolyte membrane. 前記給水工程において、水に含まれているイオン性物質の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する請求項1〜6の何れか一項に記載の燃料電池の保管方法。   The fuel cell according to any one of claims 1 to 6, wherein in the water supply step, water subjected to a treatment for reducing the concentration of an ionic substance contained in water is supplied to the solid polymer electrolyte membrane. Storage method. 前記給水工程において、水に含まれている有機物の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する請求項1〜7の何れか一項に記載の燃料電池の保管方法。   The method for storing a fuel cell according to any one of claims 1 to 7, wherein in the water supply step, water subjected to a treatment for reducing a concentration of an organic substance contained in water is supplied to the solid polymer electrolyte membrane. . 前記給水工程において、前記燃料極及び前記酸素極の少なくとも何れか一方に供給する水を、超音波振動発生手段によって振動させる請求項1〜8の何れか一項に記載の燃料電池の保管方法。   The fuel cell storage method according to any one of claims 1 to 8, wherein in the water supply step, water supplied to at least one of the fuel electrode and the oxygen electrode is vibrated by an ultrasonic vibration generating unit.
JP2012023154A 2012-02-06 2012-02-06 Fuel cell storage method Active JP5984411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023154A JP5984411B2 (en) 2012-02-06 2012-02-06 Fuel cell storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023154A JP5984411B2 (en) 2012-02-06 2012-02-06 Fuel cell storage method

Publications (2)

Publication Number Publication Date
JP2013161678A true JP2013161678A (en) 2013-08-19
JP5984411B2 JP5984411B2 (en) 2016-09-06

Family

ID=49173764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023154A Active JP5984411B2 (en) 2012-02-06 2012-02-06 Fuel cell storage method

Country Status (1)

Country Link
JP (1) JP5984411B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204666U (en) * 1981-06-23 1982-12-27
JPH0927334A (en) * 1995-07-10 1997-01-28 Honda Motor Co Ltd Solid polymer electrolyte film fuel cell and manufacture thereof
JP2001325974A (en) * 2000-05-15 2001-11-22 Sanyo Electric Co Ltd Fuel cell power generation system
JP2002093448A (en) * 2000-09-11 2002-03-29 Osaka Gas Co Ltd Stopping method and stopping-retaining method for fuel cell
JP2002367642A (en) * 2001-06-05 2002-12-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003142132A (en) * 2001-11-06 2003-05-16 Daikin Ind Ltd Fuel cell system
JP2003317771A (en) * 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd Fuel cell power generation system and operating method for the system
JP2005122921A (en) * 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd Fuel cell
JP2006059734A (en) * 2004-08-23 2006-03-02 Toshiba Fuel Cell Power Systems Corp Fuel cell system and its starting/shutdown method
JP2007149360A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Fuel cell power generation system
JP2008097832A (en) * 2006-10-05 2008-04-24 Nissan Motor Co Ltd Interior drying preventing device of fuel cell
JP2008310970A (en) * 2007-06-12 2008-12-25 Toshiba Corp Washing method and cleaning device of polymer electrolyte fuel cell stack
JP2009099276A (en) * 2007-10-12 2009-05-07 Toshiba Corp Cleaning method and cleaning device of fuel cell
JP2011009130A (en) * 2009-06-29 2011-01-13 Panasonic Corp Fuel cell system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204666U (en) * 1981-06-23 1982-12-27
JPH0927334A (en) * 1995-07-10 1997-01-28 Honda Motor Co Ltd Solid polymer electrolyte film fuel cell and manufacture thereof
JP2001325974A (en) * 2000-05-15 2001-11-22 Sanyo Electric Co Ltd Fuel cell power generation system
JP2002093448A (en) * 2000-09-11 2002-03-29 Osaka Gas Co Ltd Stopping method and stopping-retaining method for fuel cell
JP2002367642A (en) * 2001-06-05 2002-12-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003142132A (en) * 2001-11-06 2003-05-16 Daikin Ind Ltd Fuel cell system
JP2003317771A (en) * 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd Fuel cell power generation system and operating method for the system
JP2005122921A (en) * 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd Fuel cell
JP2006059734A (en) * 2004-08-23 2006-03-02 Toshiba Fuel Cell Power Systems Corp Fuel cell system and its starting/shutdown method
JP2007149360A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Fuel cell power generation system
JP2008097832A (en) * 2006-10-05 2008-04-24 Nissan Motor Co Ltd Interior drying preventing device of fuel cell
JP2008310970A (en) * 2007-06-12 2008-12-25 Toshiba Corp Washing method and cleaning device of polymer electrolyte fuel cell stack
JP2009099276A (en) * 2007-10-12 2009-05-07 Toshiba Corp Cleaning method and cleaning device of fuel cell
JP2011009130A (en) * 2009-06-29 2011-01-13 Panasonic Corp Fuel cell system

Also Published As

Publication number Publication date
JP5984411B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP2014207061A (en) Fuel cell system and control method therefor
JP2008171803A (en) Improvement of water removal, freeze durability, purge energy efficiency and voltage degradation due to shutdown/startup cycling
JP5057295B2 (en) Fuel cell device
WO2002015315A1 (en) Fuel cell system
JP2009104814A (en) Fuel cell power generation system
JP5984411B2 (en) Fuel cell storage method
JP6501562B2 (en) Method of operating a polymer electrolyte fuel cell
JP5231752B2 (en) Fuel cell power generation system and control method thereof
CN103329324A (en) Method for operating solid polymer fuel cell system, and solid polymer fuel cell system
JP3918999B2 (en) Direct methanol fuel cell system and its operation method
JP2008276948A (en) Fuel cell device
JP2006338984A (en) Fuel cell system
JP5618525B2 (en) Fuel cell device
JP2019091658A (en) Fuel cell system
JP4926298B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2010153195A (en) Fuel cell power generation system of fuel cell and its operation method
JP2005259663A (en) Fuel cell power generation method and fuel cell power generation system
JP7361560B2 (en) fuel cell device
JP5534775B2 (en) Fuel cell cogeneration system
JP2011070981A (en) Fuel-cell cogeneration system
JP5132144B2 (en) Fuel cell device and operation method thereof
JP2010009752A (en) Fuel cell device
JP2008243590A (en) Fuel cell device
JP2013206657A (en) Fuel cell power generation system
JP2005190843A (en) Reactant gas feeder of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150