JP2013160603A - Method for analyzing rubber material - Google Patents
Method for analyzing rubber material Download PDFInfo
- Publication number
- JP2013160603A JP2013160603A JP2012021939A JP2012021939A JP2013160603A JP 2013160603 A JP2013160603 A JP 2013160603A JP 2012021939 A JP2012021939 A JP 2012021939A JP 2012021939 A JP2012021939 A JP 2012021939A JP 2013160603 A JP2013160603 A JP 2013160603A
- Authority
- JP
- Japan
- Prior art keywords
- resorcin
- rubber
- rubber material
- decomposition temperature
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
本発明は、熱分解GC−MS法によりレゾルシンやレゾルシン誘導体を含有するゴム材料の分析方法に関し、更に詳述すれば、従来は検出が困難であったゴム材料中のレゾルシンを熱分解GC−MS法により良好に検出することができるゴム材料の分析方法に関する。 The present invention relates to a method for analyzing a rubber material containing resorcin or a resorcin derivative by a pyrolysis GC-MS method. More specifically, the resorcin in a rubber material, which has been difficult to detect in the past, is pyrolysis GC-MS. The present invention relates to a method for analyzing a rubber material that can be detected well by a method.
ゴム材料は、タイヤ、ゴムクローラ、コンベアベルト、空気バネ、防振ゴム、免震ゴム、海洋商品、建築資材など様々な分野の製品で使用されており、産業において欠かすことのできないものである。 Rubber materials are used in products of various fields such as tires, rubber crawlers, conveyor belts, air springs, anti-vibration rubbers, seismic isolation rubbers, marine products and building materials, and are indispensable in industry.
これらのゴム製品を製造する際、金属製ワイヤーや有機繊維などの補強材をゴムに接着一体化させることが行なわれる。その場合、補強材とゴムとの接着性を良好ならしめるために、ゴムにレゾルシン樹脂を配合することが行われている。 When manufacturing these rubber products, reinforcing materials such as metal wires and organic fibers are bonded and integrated with the rubber. In that case, in order to improve the adhesion between the reinforcing material and the rubber, a resorcin resin is blended with the rubber.
一方、ゴム製品に限られるものではないが、製品のメンテナンスや検査は、製品の耐久性向上や品質向上に欠かすことのできないことであり、劣化したゴム製品の組成分析は、劣化原因の究明、材料や製造工程の改良、改善のために必要である。特に、上記補強材と接着一体化したゴム製品にあっては補強材との接着性に大きく影響するレゾルシン樹脂の検出・分析は非常に重要である。 On the other hand, it is not limited to rubber products, but product maintenance and inspection are indispensable for improving the durability and quality of products, and composition analysis of deteriorated rubber products investigates the cause of deterioration, Necessary for improving materials and manufacturing processes. In particular, in the rubber product bonded and integrated with the reinforcing material, detection / analysis of resorcin resin that greatly affects the adhesion to the reinforcing material is very important.
従来、ゴム材料中に配合されたレゾルシンを検出・分析する方法としては、分解、洗浄、ろ過、乾燥等の前処理をゴム材料に施した後、過酸化試薬を作用させる方法が知られている。しかしながら、この方法は、前処理に5日もの時間を要し非効率であり、また危険物に指定され取扱に十分な注意が必要なベンゾイルパーオキサイド(BPO)などの過酸化試薬を必要とするので、容易に分析操作を行なうことができず、また環境に対する負荷も大きいものである。 Conventionally, as a method for detecting and analyzing resorcin compounded in a rubber material, a method in which a peroxide reagent is allowed to act after pretreatment such as decomposition, washing, filtration, and drying is performed on the rubber material is known. . However, this method requires 5 days of pretreatment, is inefficient, and requires a peroxide reagent such as benzoyl peroxide (BPO) that is designated as a hazardous material and requires careful handling. Therefore, the analysis operation cannot be easily performed, and the load on the environment is large.
一方、熱分解GC−MS分析装置を用いて、ゴム成分とレゾルシンを熱分解しGC−MS(ガスクロマトグラフ質量分析)法により分析する方法も知られている。この場合、レゾルシンは自身が有する極性基(水酸基)のために検出ピークがブロードに広がってしまい、検出が困難となる。そこで、メチル化試薬を作用させることによりレゾルシンの水酸基をメチル化してシャープな検出ピークが得られるように処理することが提案されている(特許文献1:特開平11−142383号公報)。 On the other hand, a method in which a rubber component and resorcin are pyrolyzed using a pyrolysis GC-MS analyzer and analyzed by a GC-MS (gas chromatograph mass spectrometry) method is also known. In this case, resorcin has a broad detection peak due to its own polar group (hydroxyl group), making detection difficult. Therefore, it has been proposed to treat the hydroxyl group of resorcin to be methylated by the action of a methylating reagent so as to obtain a sharp detection peak (Patent Document 1: Japanese Patent Application Laid-Open No. 11-142383).
しかしながら、レゾルシンをメチル化した場合でも、レゾルシン樹脂の含有量が少量の場合や、ゴム種がジエン系ゴム(例えば、NR、SBR、NBR、IIR等)などの検出ピークが強く出るゴムである場合には、レゾルシン由来のピークが小さく、検出が困難になる。また、レゾルシン以外の添加剤にメチル化試薬が消費されてしまうことで、レゾルシンのメチル化が良好に行なわれないといった問題も発生する。このため、分析法の更なる改善が求められる。 However, even when resorcin is methylated, when the content of resorcin resin is small, or when the rubber type is a rubber with a strong detection peak such as diene rubber (eg, NR, SBR, NBR, IIR, etc.) In this case, the peak derived from resorcin is small and detection is difficult. In addition, the methylation reagent is consumed by additives other than resorcin, which causes a problem that methylation of resorcin is not performed well. For this reason, further improvement of the analytical method is required.
本発明は、上記事情に鑑みなされたもので、レゾルシン樹脂を含有するゴム材料につき、ゴム成分及びレゾルシンを良好に検出・分析することができ、特にレゾルシン樹脂の含有量が少量であったり、検出を妨害する添加剤が存在したり、ゴム種がジエン系ゴムである場合でも正確にゴム成分及びレゾルシン類を検出・分析することができるゴム材料の分析方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can detect and analyze a rubber component and resorcin satisfactorily for a rubber material containing a resorcin resin. In particular, the resorcin resin content is small or detected. It is an object of the present invention to provide a method for analyzing a rubber material that can accurately detect and analyze a rubber component and resorcins even when an additive that interferes with water is present or the rubber type is a diene rubber.
本発明者は、上記目的を達成するため、鋭意検討を重ねた結果、ジエン系ゴムなどのゴム成分とレゾルシンとの耐熱性の差を利用し、異なる熱分解温度により二段階に熱分解してGC−MS法を実施すると共に、一段目と二段目の熱分解の間にレゾルシンの水酸基の水素原子を他の非極性基に置換してレゾルシンの極性を低下させることにより、ジエン系ゴム中に混在する少量のレゾルシン類を良好に検出し得ることを見出した。例えば、後述する実施例のように、ニトリルゴム(NBR)などのジエン系ゴムを分解可能な380〜420℃の温度で熱分解を行い、必要に応じてこれをガスクロマトグラフ質量分析により分析して、これらジエン系ゴムの検出を行い、次いでメチル化試薬を作用させてゴム材料中のレゾルシンの水酸基の水素原子をメチル基に置換するメチル化処理を行なうと共に、レゾルシンを分離抽出可能な620℃以上の温度で熱分解を行なって、ガスクロマトグラフ質量分析により分析することにより、ジエン系ゴムや他の添加剤による検出ピークの影響を可及的に防止すると共に、上記メチル化によりシャープに現れるレゾルシン由来のピークを良好に検出することができ、レゾルシンの含有割合が3PHR以下の少量であってもこれを検出することが可能であることを見出し、本発明を完成したものである。 As a result of intensive studies in order to achieve the above object, the present inventor has made use of the difference in heat resistance between a rubber component such as a diene rubber and resorcin, and pyrolyzed it in two stages at different pyrolysis temperatures. In the diene rubber, the GC-MS method is carried out and the polarity of resorcin is reduced by substituting the hydrogen atom of the hydroxyl group of resorcin with another nonpolar group during the first and second thermal decomposition. It was found that a small amount of resorcins mixed in can be detected well. For example, as in the examples described later, thermal decomposition is performed at a temperature of 380 to 420 ° C. capable of decomposing diene rubber such as nitrile rubber (NBR), and this is analyzed by gas chromatography mass spectrometry as necessary. These diene rubbers are detected, and then a methylation reagent is operated to perform a methylation treatment in which the hydrogen atom of the hydroxyl group of resorcin in the rubber material is replaced with a methyl group, and resorcin can be separated and extracted. By performing thermal decomposition at the temperature of gas and analyzing by gas chromatography mass spectrometry, the influence of detection peak due to diene rubber and other additives is prevented as much as possible, and it is derived from resorcinol that appears sharply by the above methylation Can be detected well, even if the content of resorcin is a small amount of 3 PHR or less. It found that it is possible, and completed the present invention.
従って、本発明は、下記請求項1〜6に記載のゴム材料の分析方法を提供する。
請求項1:
熱分解GC−MS法によりゴム材料中に混在するレゾルシン樹脂を検出するゴム材料の分析方法であって、
任意の第1分解温度で一段目の熱分解を行なった後、レゾルシンの水酸基の水素原子を他の非極性基に置換してレゾルシンの極性を低下させると共に、上記第1分解温度よりも高い第2分解温度で二段目の熱分解を行なって、これをガスクロマトグラフ質量分析により分析し、上記レゾルシンを検出することを特徴とするゴム材料の分析方法。
請求項2:
上記一段目の熱分解を行なった後に、分析対象のゴム材料にメチル化試薬を作用させ、レゾルシンの水酸基の水素原子をメチル基に置換して、レゾルシンをメチル化する請求項1記載のゴム材料の分析方法。
請求項3:
上記第1分解温度で一段目の熱分解を行い、これをガスクロマトグラフ質量分析により分析して、上記第1分解温度で分解されるゴム成分を検出する一段目の分析を行い、次いで分析対象のゴム材料中に残存するレゾルシンに対して上記水酸基の水素原子を非極性基に置換する処理を行なうと共に、上記二段目の熱分解及び分析を行ってレゾルシンの検出を行なう請求項1又は2記載のゴム材料の分析方法。
請求項4:
上記第1分解温度と第2分解温度との差が200℃以上である請求項1〜3のいずれか1項に記載のゴム材料の分析方法。
請求項5:
上記第1分解温度が350〜450℃であり、上記第2分解温度が620℃以上である請求項4記載のゴム材料の分析方法。
請求項6:
分析対象のゴム材料が、ジエン系ゴムを主体とするゴム組成物中にレゾルシン樹脂が配合されたものである請求項1〜5のいずれか1項に記載のゴム材料の分析方法。
Therefore, this invention provides the analysis method of the rubber material of the following Claims 1-6.
Claim 1:
A method for analyzing a rubber material for detecting resorcin resin mixed in the rubber material by a pyrolysis GC-MS method,
After performing the first-stage thermal decomposition at an arbitrary first decomposition temperature, the hydrogen atom of the hydroxyl group of resorcin is replaced with another nonpolar group to reduce the polarity of resorcin, and the first decomposition temperature higher than the first decomposition temperature. A method of analyzing a rubber material, characterized in that the second stage of thermal decomposition is performed at a decomposition temperature, analyzed by gas chromatography mass spectrometry, and the resorcin is detected.
Claim 2:
The rubber material according to
Claim 3:
The first stage thermal decomposition is performed at the first decomposition temperature, and this is analyzed by gas chromatograph mass spectrometry to perform the first stage analysis for detecting the rubber component decomposed at the first decomposition temperature. The resorcin remaining in the rubber material is subjected to a treatment for substituting the hydrogen atom of the hydroxyl group with a nonpolar group, and the resorcin is detected by performing the second stage thermal decomposition and analysis. Of rubber material analysis.
Claim 4:
The method for analyzing a rubber material according to any one of
Claim 5:
The method for analyzing a rubber material according to
Claim 6:
The method for analyzing a rubber material according to any one of
本発明のゴム材料の分析方法によれば、レゾルシン樹脂を含有するゴム材料につき、煩雑な前処理や危険な試薬を要することなく、短時間で容易にゴム成分及びレゾルシンを検出・分析することができ、特にレゾルシン樹脂の含有量が少量であったり、検出を妨害する添加剤が存在したり、ゴム種がジエン系ゴムである場合でも、正確にゴム成分及びレゾルシン類を検出・分析することができるものである。 According to the rubber material analysis method of the present invention, it is possible to easily detect and analyze a rubber component and resorcin in a short time without requiring a complicated pretreatment or a dangerous reagent for a rubber material containing a resorcin resin. In particular, the rubber component and resorcins can be accurately detected and analyzed even when the content of resorcin resin is small, there are additives that interfere with detection, and the rubber type is a diene rubber. It can be done.
本発明は、熱分解GC−MS法によりレゾルシン樹脂を含むゴム材料の組成を分析するゴム材料の分析方法である。その際に本発明では、異なる熱分解温度で二段階に熱分解を行なうものであり、一段目の熱分解後にレゾルシンの水酸基の水素原子を他の非極性基に置換してレゾルシンの極性を低下させると共に二段目の熱分解を行ない、ガスクロマトグラフにより分解生成物を分離して、マススペクトル分析によりゴム成分及びレゾルシンの定性・定量を行なうものである。 The present invention is a rubber material analysis method for analyzing the composition of a rubber material containing a resorcin resin by a pyrolysis GC-MS method. In this case, in the present invention, pyrolysis is performed in two stages at different pyrolysis temperatures. After the first stage of pyrolysis, the hydrogen atom of the hydroxyl group of resorcin is replaced with another nonpolar group to reduce the polarity of resorcin. In addition, the thermal decomposition of the second stage is performed, the decomposition products are separated by gas chromatography, and the rubber component and resorcin are qualitatively and quantitatively analyzed by mass spectrum analysis.
熱分解GC−MS法によるゴム材料の分析は、図1に記載のように、ゴム材料を熱分解部で所定温度で熱分解し、ガスクロマトグラフィー(GC)部で分解生成物を分離し、これをマススペクトル部で電子ビームによりイオン化し検出器で検出してイオンクロマトグラム、マススペクトルを得、得られたイオンクロマトグラムやマススペクトルのピークを分析して定性・定量を行なうことにより、ゴム材料の組成を分析するものである。 As shown in FIG. 1, the analysis of the rubber material by the pyrolysis GC-MS method involves pyrolyzing the rubber material at a predetermined temperature in the pyrolysis section and separating the decomposition products in the gas chromatography (GC) section. This is ionized by an electron beam in the mass spectrum section and detected by a detector to obtain an ion chromatogram and mass spectrum, and the obtained ion chromatogram and mass spectrum peak are analyzed for qualitative and quantitative analysis. The composition of the material is analyzed.
本発明の分析方法では、上記熱分解を二段階に分けて行い、一段目の第1分解温度でゴム材料を熱分解し、必要に応じてこれを上記ガスクロマトグラフ質量分析により分析し、次いでレゾルシンの水酸基の水素原子を他の非極性基に置換してレゾルシンの極性を低下させると共に、より高い第2分解温度で二段目の熱分解を行なって、これをガスクロマトグラフ質量分析により分析し、レゾルシンの検出・分析を行うものである。 In the analysis method of the present invention, the thermal decomposition is performed in two stages, the rubber material is thermally decomposed at the first decomposition temperature in the first stage, and if necessary analyzed by the gas chromatograph mass spectrometry, and then resorcinol The hydrogen atom of the hydroxyl group is replaced with other nonpolar groups to reduce the polarity of resorcin, and the second stage pyrolysis is performed at a higher second decomposition temperature, which is analyzed by gas chromatography mass spectrometry, Resorcin detection and analysis.
この場合、熱処理の各段階における熱処理温度は、検査対象のゴム材料に応じて適宜設定する。この場合、一段目の熱分解により分解生成する物質と二段目の熱分解により分解生成する物質とをできるだけ明確に分けるため、一段目の熱分解温度(第1分解温度)と二段目の熱分解温度(第2分解温度)との差が200℃以上であることが好ましい。例えば、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、ニトリルゴム(NBR)、ブチルゴム(IIR)などのジエン系ゴムにレゾルシン樹脂が混在するゴム材料を分析する場合、第1分解温度は350〜450℃、特に380〜420℃とすることが好ましく、第2分解温度は620℃以上、特に650〜700℃とすることが好ましい。 In this case, the heat treatment temperature in each stage of the heat treatment is appropriately set according to the rubber material to be inspected. In this case, in order to separate the substance decomposed by the first-stage pyrolysis and the substance decomposed by the second-stage pyrolysis as clearly as possible, the first-stage pyrolysis temperature (first decomposition temperature) and the second-stage pyrolysis are separated from each other. The difference from the thermal decomposition temperature (second decomposition temperature) is preferably 200 ° C. or higher. For example, when analyzing a rubber material in which resorcin resin is mixed with diene rubber such as natural rubber (NR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), butyl rubber (IIR), the first decomposition temperature is 350. It is preferable to set it to -450 degreeC, especially 380-420 degreeC, and it is preferable that 2nd decomposition temperature shall be 620 degreeC or more, especially 650-700 degreeC.
また、このように一段目の熱分解を行なった後に二段目の熱分解を行なって分析を行なうが、一段目の熱処理の処理時間は、一段目の熱分解により所定の成分が十分に分解除去され、一段目の熱処理により除去されるべき成分が、二段目の熱分解後に行なわれるGC−MS分析時にレゾルシンの検出を妨害することが無いように、検査対象のゴム材料及び上記第1分解温度に応じて適宜設定される。例えば、上記のようにジエン系ゴムにレゾルシン樹脂が混在したゴム材料に対して上記第1分解温度350〜450℃で一段目の熱処理を行なう場合、一段目の熱処理によりジエン系ゴムに由来する成分を効果的に分解除去して二段目の熱処理後の分析により確実にレゾルシンを検出するため、一段目の熱処理時間を15〜30分、特に18〜22分とすることが好ましい。 In addition, after performing the first stage pyrolysis in this way, the second stage pyrolysis is performed for analysis, but the processing time for the first stage heat treatment is that the predetermined components are sufficiently decomposed by the first stage pyrolysis. The rubber material to be inspected and the first material are removed so that the components to be removed and removed by the first heat treatment do not interfere with the detection of resorcin during the GC-MS analysis performed after the second heat decomposition. It is set as appropriate according to the decomposition temperature. For example, when the first heat treatment is performed at the first decomposition temperature of 350 to 450 ° C. with respect to the rubber material in which the resorcin resin is mixed in the diene rubber as described above, the component derived from the diene rubber by the first heat treatment. In order to effectively detect and remove resorcin by analysis after the second heat treatment, the first heat treatment time is preferably 15 to 30 minutes, particularly 18 to 22 minutes.
この熱分解は、市販の熱分解装置を用いて行なうことができる。この場合、加熱温度を随時変更することができ、生じた熱分解生成物を順次GC部に送ることができるものであれば、一段目の熱分解と二段目以降の熱分解を連続して行なうことができる。また、一段目の熱分解を行なった後に二段目の熱処理を行ってGC−MS分析によりレゾルシンの検出を行うが、一段目の熱分解を行なった後に、必要に応じてその分解生成物につきGC−MS分析を行なって、一段目の熱分解により生じる分解生成物の分析を行い、次いで、上記二段目の熱処理及び分析を行なうこともできる。 This thermal decomposition can be performed using a commercially available thermal decomposition apparatus. In this case, if the heating temperature can be changed at any time and the resulting pyrolysis product can be sent to the GC section sequentially, the first stage pyrolysis and the second and subsequent stage pyrolysis are continuously performed. Can be done. In addition, after the first-stage thermal decomposition, the second-stage heat treatment is performed, and resorcin is detected by GC-MS analysis. After the first-stage thermal decomposition, the decomposition products are obtained as necessary. It is also possible to perform a GC-MS analysis to analyze a decomposition product generated by the first-stage thermal decomposition, and then to perform the second-stage heat treatment and analysis.
本発明の分析方法では、一段目の熱分解を行なった後、試料に適宜な試薬を作用させるなどの操作により、レゾルシンの水酸基の水素原子を他の非極性基に置換してレゾルシンの極性を低下させる処理を行なう。 In the analysis method of the present invention, after the first stage of thermal decomposition, the hydrogen atom of the hydroxyl group of resorcin is replaced with another nonpolar group by an operation such as allowing an appropriate reagent to act on the sample to change the polarity of resorcin. The process to reduce is performed.
このレゾルシンの水酸基の水素原子の置換により極性を低下させる処理として具体的には、アルキル化処理、シリル化処理、アシル化処理などが例示される。より具体的には、例えばアルキル化処理としては水酸化テトラメチルアンモニウム(TMAH)などのメチル化試薬を用いてメチル化する方法が例示される。また、シリル化処理としてはN,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)などのシリル化試薬を用いてシリル化する方法、アシル化処理としては無水トリフルオロ酢酸(TFAA)などのアシル化試薬を用いてアシル化する方法などがそれぞれ例示される。なお、特に制限されるものではないが、これらの処理の中では処理操作の簡便さと得られる生成物の分子量が低いことなどの点からTMAHを用いてメチル化する方法が好ましく採用される。 Specific examples of the treatment for reducing the polarity by substitution of the hydrogen atom of the hydroxyl group of resorcin include alkylation treatment, silylation treatment, acylation treatment and the like. More specifically, for example, as the alkylation treatment, a method of methylation using a methylation reagent such as tetramethylammonium hydroxide (TMAH) is exemplified. In addition, the silylation treatment includes a method of silylation using a silylation reagent such as N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), and the acylation treatment includes acylation such as trifluoroacetic anhydride (TFAA). Examples of the method include acylation using a reagent. In addition, although not particularly limited, a methylation method using TMAH is preferably employed in these treatments from the viewpoint of simplicity of the treatment operation and low molecular weight of the resulting product.
なお、これらの処理は、上記一段目の熱分解後に行なわれるが、その具体的な方法としては、例えば上記熱分解装置で一段目の熱分解を行なった後、熱処理容器内に上記処理試薬を投入して試料に試薬を作用させながら二段目の熱処理を行なって、試薬をレゾルシンに反応させる方法を採用することができる。また、二段目の熱分解とは別に、一旦試薬の反応温度に加熱してメチル化等の置換反応を行なった後、二段目の熱分解を行なってもよい。 These treatments are performed after the first-stage pyrolysis. As a specific method, for example, the first-stage pyrolysis is performed in the pyrolysis apparatus, and then the treatment reagent is placed in a heat treatment container. It is possible to employ a method in which the reagent is reacted with resorcin by performing a second heat treatment while the reagent is applied to the sample and acting on the sample. In addition to the second-stage pyrolysis, the second-stage pyrolysis may be carried out after once carrying out a substitution reaction such as methylation by heating to the reaction temperature of the reagent.
上記GC−MS分析は、市販のGC−MS分析装置を用いることができる。クロマトグラフの固定相は、分析対象のゴム材料及び検出する目的成分に応じて適宜選定される。例えばジエン系ゴムにレゾルシン樹脂が混在したゴム材料についてゴム成分及びレゾルシンを検出・分析する場合には、特に制限されるものではないが、5%フェニル−ポリジメチルシロキサン等の微極性の固定相や100%ポリジメチルシロキサン等の無極性の固定相を用いることができる。また、クロマトグラフを行なう場合のキャリアガスとして、GC−MSではヘリウムガスを、GC(FID)ではヘリウムガス、水素ガス、窒素ガスなどの不活性ガスが用いられる。 A commercially available GC-MS analyzer can be used for the GC-MS analysis. The stationary phase of the chromatograph is appropriately selected according to the rubber material to be analyzed and the target component to be detected. For example, when a rubber component and resorcin are detected and analyzed for a rubber material in which a resorcin resin is mixed in a diene rubber, although it is not particularly limited, a slightly polar stationary phase such as 5% phenyl-polydimethylsiloxane, A nonpolar stationary phase such as 100% polydimethylsiloxane can be used. Further, as a carrier gas for performing chromatography, helium gas is used in GC-MS, and an inert gas such as helium gas, hydrogen gas, nitrogen gas is used in GC (FID).
この熱分解GC−MS法により、トータルイオンクロマトグラム、マススペクトルが得られ、更にデータ処理によりマスクロマトグラムを得ることができ、これらのデータから常法に従って、ゴム成分及びレゾルシンの検出・分析を行うことができる。例えば、ジエン系ゴムにレゾルシン樹脂が配合されたゴム材料について分析を行なう場合には、得られたトータルイオンクロマトグラムからジエン系ゴムに由来するピークを検出することにより、存在するゴム成分のゴム種を確認することができ、またマススペクトル及びマスクロマトグラムからレゾルシンを確実に同定・定量することができるものである。 By this pyrolysis GC-MS method, total ion chromatograms and mass spectra can be obtained, and further mass chromatograms can be obtained by data processing. From these data, rubber components and resorcin can be detected and analyzed according to conventional methods. It can be carried out. For example, when analyzing a rubber material in which a resorcin resin is blended with a diene rubber, the rubber type of the existing rubber component is detected by detecting a peak derived from the diene rubber from the obtained total ion chromatogram. And resorcin can be reliably identified and quantified from the mass spectrum and mass chromatogram.
なお、本発明は、上記のように、ジエン系ゴムにレゾルシン樹脂を添加配合したゴム材料の分析に好適に用いられるが、これに限定されるものではなく、他のゴムにレゾルシン樹脂を配合したゴム材料の分析にも好適に使用し得るものである。 As described above, the present invention is preferably used for analysis of a rubber material in which a resorcin resin is added and blended with a diene rubber, but is not limited thereto, and resorcin resin is blended with another rubber. It can be suitably used for analysis of rubber materials.
以下、実施例を示し、本発明をより具体的に説明する。なお、本発明は下記実施例に制限されるものではない。 EXAMPLES Hereinafter, an Example is shown and this invention is demonstrated more concretely. In addition, this invention is not restrict | limited to the following Example.
天然ゴム(NR)と油展スチレン−ブタジエンゴム(SBR)の混合ゴムにレゾルシン、加硫剤、加硫促進剤、充填材及びその他の各種添加剤を配合して加硫硬化させたゴム材料につき、400℃で熱分解(一段目)を行なった後、熱処理容器内に水酸化テトラメチルアンモニウム(TMAH)を投入し670℃に昇温して熱分解(二段目)を行い、それをGC−MS法により分析して、図2に示したトータルイオンクロマトグラム、マススペクトル及びマスクロマトグラム(質量138、166)を得た。なお、分析に供した試料の量は0.25mgであり、上記TMAHは25%TMAH/メタノール溶液を2μl投入した。また、分析条件は下記の通りとした。
A rubber material obtained by vulcanizing and curing natural rubber (NR) and oil-extended styrene-butadiene rubber (SBR) mixed with resorcin, vulcanizing agent, vulcanization accelerator, filler and other various additives. After pyrolysis at 400 ° C. (first stage), tetramethylammonium hydroxide (TMAH) was charged into the heat treatment container and heated to 670 ° C. for pyrolysis (second stage). Analysis by -MS method gave the total ion chromatogram, mass spectrum and mass chromatogram (
〔分析条件〕
(熱分解)
熱分解装置:フロンティア・ラボ社製「ダブルショットパイロライザー PY−2020iD」
熱分解条件:(一段目)炉温度400℃、加熱時間20分、インターフェース温度320℃ (二段目)炉温度670℃、インターフェース温度320℃
(GC−MS)
GC−MS分析装置:Agilent社製「GC6890」/Agilent社製「MS5973」
分離カラム:フロンティア・ラボ社製「UM+−5 UA5−30M−0.25F(5%フェニル−ジメチルポリシロキサン)」
キャリアガス:ヘリウム
注入口温度:320℃
カラム温度:40℃(1分保持)−10℃/分で昇温−300℃(20分保持)
スプリットモード:50:1
MSスキャン範囲:10〜500amu
〔Analysis conditions〕
(Thermal decomposition)
Thermal decomposition equipment: “Double Shot Pyrolyzer PY-2020iD” manufactured by Frontier Laboratories
Pyrolysis conditions: (first stage) furnace temperature 400 ° C,
(GC-MS)
GC-MS analyzer: “GC6890” manufactured by Agilent / “MS5973” manufactured by Agilent
Separation column: "UM + -5 UA5-30M-0.25F (5% phenyl-dimethylpolysiloxane)" manufactured by Frontier Laboratories
Carrier gas: Helium inlet temperature: 320 ° C
Column temperature: 40 ° C. (1 minute hold) −10 ° C./min.
Split mode: 50: 1
MS scan range: 10-500amu
図2のとおり、マスクロマトグラムによりレゾルシンに由来するレゾルシンのメチル化物(A)及びジメチルレゾルシンのメチル化物(B,C)のピークを明確に検出することができ、本発明の分析方法によれば、煩雑な前処理を必要とすることなく容易、かつ短時間でレゾルシンを検出することができる。 As shown in FIG. 2, peaks of resorcin methylated product (A) and dimethylresorcin methylated product (B, C) derived from resorcin can be clearly detected from the mass chromatogram. According to the analysis method of the present invention, Therefore, resorcin can be detected easily and in a short time without requiring complicated pretreatment.
Claims (6)
任意の第1分解温度で一段目の熱分解を行なった後、レゾルシンの水酸基の水素原子を他の非極性基に置換してレゾルシンの極性を低下させると共に、上記第1分解温度よりも高い第2分解温度で二段目の熱分解を行なって、これをガスクロマトグラフ質量分析により分析し、上記レゾルシンを検出することを特徴とするゴム材料の分析方法。 A method for analyzing a rubber material for detecting resorcin resin mixed in the rubber material by a pyrolysis GC-MS method,
After performing the first-stage thermal decomposition at an arbitrary first decomposition temperature, the hydrogen atom of the hydroxyl group of resorcin is replaced with another nonpolar group to reduce the polarity of resorcin, and the first decomposition temperature higher than the first decomposition temperature. A method of analyzing a rubber material, characterized in that the second stage of thermal decomposition is performed at a decomposition temperature, analyzed by gas chromatography mass spectrometry, and the resorcin is detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012021939A JP5821671B2 (en) | 2012-02-03 | 2012-02-03 | Analysis method of rubber materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012021939A JP5821671B2 (en) | 2012-02-03 | 2012-02-03 | Analysis method of rubber materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013160603A true JP2013160603A (en) | 2013-08-19 |
JP5821671B2 JP5821671B2 (en) | 2015-11-24 |
Family
ID=49172968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012021939A Expired - Fee Related JP5821671B2 (en) | 2012-02-03 | 2012-02-03 | Analysis method of rubber materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5821671B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510470A (en) * | 2015-12-21 | 2016-04-20 | 云南中烟工业有限责任公司 | Method for simultaneously detecting content of five limited components in food additives |
CN110146602A (en) * | 2019-04-09 | 2019-08-20 | 兴化市戴窑镇永生橡胶制品厂 | The analysis method of Rubber Seal Strip for Automobile precipitate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105467032B (en) * | 2015-12-10 | 2018-06-01 | 北京彤程创展科技有限公司 | The quick quantitative analytic method of resorcinol in gum cement R80 |
CN105424837B (en) * | 2015-12-10 | 2017-12-05 | 北京彤程创展科技有限公司 | The analysis method of organic additive in using rubber as the rubber and plastics auxiliaries of carrier |
-
2012
- 2012-02-03 JP JP2012021939A patent/JP5821671B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510470A (en) * | 2015-12-21 | 2016-04-20 | 云南中烟工业有限责任公司 | Method for simultaneously detecting content of five limited components in food additives |
CN110146602A (en) * | 2019-04-09 | 2019-08-20 | 兴化市戴窑镇永生橡胶制品厂 | The analysis method of Rubber Seal Strip for Automobile precipitate |
Also Published As
Publication number | Publication date |
---|---|
JP5821671B2 (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821671B2 (en) | Analysis method of rubber materials | |
Zhao et al. | Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR | |
Gągol et al. | Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber | |
Xu et al. | Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography–mass spectrometry | |
Cervera et al. | Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer | |
Liu et al. | Volatile components changes during thermal aging of nitrile rubber by flash evaporation of Py-GC/MS | |
Klampfl et al. | Advances in the determination of hindered amine light stabilizers–A review | |
BR112012022736A2 (en) | method and apparatus for microwave dissociation from organic compounds | |
Bernardo et al. | Characterization of chars produced in the co-pyrolysis of different wastes: Decontamination study | |
CN106124669A (en) | The authentication method of sulfenamide type accelerators in rubber | |
US10302618B2 (en) | Method for diagnosing oil-filled electrical apparatus | |
Kusch et al. | Application of pyrolysis–gas chromatography/mass spectrometry for the identification of polymeric materials in failure analysis in the automotive industry | |
JP5899982B2 (en) | Rubber material composition analysis method | |
François-Heude et al. | Real-time quantitative analysis of volatile products generated during solid-state polypropylene thermal oxidation | |
Zuber et al. | Characterization of a pyrolysis liquid from a German brown coal by use of negative and positive ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and collision-induced dissociation | |
JP2015184253A5 (en) | ||
Beißmann et al. | Fast screening of stabilizers in polymeric materials by flow injection–tandem mass spectrometry | |
Choi et al. | Characterization of pyrolysis products formed from styrene-1, 2-unit heterosequence of styrene–butadiene copolymer | |
Choi et al. | Analytical method for determination of butadiene and styrene contents of styrene-butadiene rubber vulcanizates without pretreatment using pyrolysis-gas chromatography/mass spectrometry | |
JP2013032958A (en) | Deterioration degree determination method of resin material containing antioxidant, life determination method, life prediction method, life test method, and computer program | |
JP2015141059A (en) | Quantifying method of age resister | |
Kusch | Application of gas chromatography/mass spectrometry (GC/MS) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in failure analysis in the automotive industry | |
Kusch et al. | Application of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and scanning electron microscopy (SEM) in failure analysis for the identification of organic compounds in chemical, rubber, and automotive industry | |
CN106198828B (en) | The identification method of sulfenamide type accelerators in rubber | |
Zhu et al. | Ultra-trace real time VOC measurements by SIFT-MS for VIAQ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5821671 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |