JP2013160142A - Impeller structure of axial flow fan - Google Patents

Impeller structure of axial flow fan Download PDF

Info

Publication number
JP2013160142A
JP2013160142A JP2012022954A JP2012022954A JP2013160142A JP 2013160142 A JP2013160142 A JP 2013160142A JP 2012022954 A JP2012022954 A JP 2012022954A JP 2012022954 A JP2012022954 A JP 2012022954A JP 2013160142 A JP2013160142 A JP 2013160142A
Authority
JP
Japan
Prior art keywords
impeller
pressure surface
roughness
pressure
axial fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012022954A
Other languages
Japanese (ja)
Other versions
JP6132380B2 (en
Inventor
Eiji Fujimoto
英司 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2012022954A priority Critical patent/JP6132380B2/en
Publication of JP2013160142A publication Critical patent/JP2013160142A/en
Application granted granted Critical
Publication of JP6132380B2 publication Critical patent/JP6132380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an axial flow fan in which surface coarseness of an impeller is controlled individually on a positive pressure surface and a negative pressure surface, and thereby reducing generation of noise, improving P-Q (static pressure-air volume) characteristics and further reducing power consumption.SOLUTION: An axial flow fan 1 comprises a motor driving part 2 and an impeller 3 which is rotated by the motor driving part 2, and surface coarseness on a positive pressure surface 5 of the impeller 3 is increased more than surface coarseness on a negative pressure surface 4 of the impeller 3. The positive pressure surface 5 of the impeller 3 and the negative pressure surface 4 of the impeller 3 have a round coarse shape that can be specified by a curvature radius in a microscopic manner.

Description

本発明は軸流ファンに関し、特にインペラの表面形状に関する。   The present invention relates to an axial fan, and more particularly to a surface shape of an impeller.

ファンモータの基本構造は、インペラを有するモータと、このモータを支持するハウジング(ケーシング)からなり、インペラは樹脂成形によって形成されるものが多い。成形品の表面の状態は軸流ファンの風量、騒音などの特性に大きな影響を及ぼす。例えば、インペラの回転によって生じる空気流がブレード面より離脱してしまい、その離脱領域には渦状の気流が起き、これにより騒音を増加させ、騒音レベル、トルク、風量―静圧特性ならびに静圧効率特性の悪化を招く問題がある。これに対し、インペラ表面またはハウジング内周面を通過する空気流の状態に着目し、インペラ又はハウジングの表面凹凸の高低差を小さくし、表面を滑らかにすることにより特性を向上させる方法が開示されている(例えば、特許文献1参照)。   The basic structure of a fan motor consists of a motor having an impeller and a housing (casing) that supports the motor, and the impeller is often formed by resin molding. The surface condition of the molded product has a great influence on the characteristics of the axial flow fan, such as air flow and noise. For example, the air flow generated by the rotation of the impeller is detached from the blade surface, and a vortex-like air current is generated in the separation region, thereby increasing noise, noise level, torque, air volume-static pressure characteristics, and static pressure efficiency. There is a problem that causes deterioration of characteristics. On the other hand, paying attention to the state of the air flow passing through the impeller surface or the inner peripheral surface of the housing, a method for improving the characteristics by reducing the level difference of the surface unevenness of the impeller or the housing and smoothing the surface is disclosed. (For example, refer to Patent Document 1).

また、複数枚の羽根を放射状に設けて形成されるプロペラフアンにおいて、羽根の負圧面全体を表面粗さ100S以上1000S以下の粗面とすることにより、騒音を低下できることが開示されている(例えば、特許文献2参照)。 Further, it is disclosed that in a propeller fan formed by providing a plurality of blades radially, noise can be reduced by making the entire suction surface of the blades a rough surface having a surface roughness of 100S to 1000S (for example, , See Patent Document 2).

特開2005−113753号公報JP 2005-113753 A 特開平10−89290号公報Japanese Patent Laid-Open No. 10-89290

軸流ファンにおいては、インペラの正圧面と負圧面で空気流の状態が異なる。このため、騒音を低減したり、送風効率を高めるためには、インペラの正圧面と負圧面の表面形状を、それぞれの空気流に応じて別個に制御する必要がある。   In the axial fan, the airflow state differs between the pressure surface and the suction surface of the impeller. For this reason, in order to reduce noise or increase the blowing efficiency, it is necessary to control the surface shapes of the pressure surface and the suction surface of the impeller separately according to the respective air flows.

特許文献1に開示されている方法では、インペラ表面の表面凹凸高低差を3μm未満としているが、インペラの正圧面と負圧面で区別はしておらず一様の表面粗さとしているため、効果が不十分であるという問題があった。また、特許文献2に開示されている方法では、羽根の負圧面のみを表面粗さ100S以上1000S以下の粗面としており、正圧面の表面粗さについては考慮していないので、やはり効果が不十分であるという問題があった。さらに、表面粗さの定義のみでは様々な表面形状が存在するため、効果的な形状を一義的に規定することができず、特性が得られないばかりか騒音が増大する、効果のバラツキが大きく再現性にも乏しい、騒音低減の効果は得られても風量低下や消費電力増大などの特性劣化を伴う等、問題があった。   In the method disclosed in Patent Document 1, the surface unevenness height difference of the impeller surface is set to less than 3 μm. However, since the pressure surface and the suction surface of the impeller are not distinguished from each other, the surface roughness is uniform. There was a problem that was insufficient. In addition, in the method disclosed in Patent Document 2, only the suction surface of the blade is a rough surface having a surface roughness of 100S or more and 1000S or less, and the surface roughness of the pressure surface is not taken into consideration, so that the effect is still ineffective. There was a problem that it was enough. Furthermore, since there are various surface shapes only by the definition of the surface roughness, the effective shape cannot be uniquely defined, and not only the characteristics cannot be obtained, but also the noise increases, and the effect varies greatly. There are problems such as poor reproducibility, noise reduction effect, and characteristic deterioration such as air volume reduction and power consumption increase.

本発明は、上記の問題に鑑みなされたもので、インペラの表面粗さを正圧面と負圧面で個々に制御することにより、騒音の発生を低減し、P−Q(静圧−風量)特性を改善し、さらに消費電力を低減した軸流ファンを提供することを目的とする。   The present invention has been made in view of the above problems, and by controlling the surface roughness of the impeller individually on the pressure surface and the suction surface, the generation of noise is reduced, and the PQ (static pressure-air volume) characteristics. An object of the present invention is to provide an axial fan with improved power consumption and reduced power consumption.

上記課題を解決するために、本発明の軸流ファンの特徴は、モータと、そのモータによって回転するインペラとを備え、そのインペラの正圧面の表面粗さをそのインペラの負圧面4の表面粗さより大きくすることを要旨とする。   In order to solve the above-mentioned problems, the axial fan according to the present invention includes a motor and an impeller that is rotated by the motor, and the surface roughness of the pressure surface of the impeller is set to the surface roughness of the suction surface 4 of the impeller. The main point is to make it larger.

本発明の軸流ファンにおいては、インペラの正圧面及びインペラの負圧面が、ミクロ的には曲率半径で規定できる丸みを帯びた粗さ形状を有し、インペラの正圧面の算術平均粗さRaが1〜100μmの範囲に、曲率半径RadCrvが1,000〜10,000μmの範囲にあるとともに、インペラの負圧面の算術平均粗さRa<0.5μm、曲率半径RadCrv>10,000μmであることが好ましい。   In the axial fan of the present invention, the pressure surface of the impeller and the suction surface of the impeller have a rounded roughness shape that can be microscopically defined by the radius of curvature, and the arithmetic average roughness Ra of the pressure surface of the impeller. Is in the range of 1 to 100 μm, the radius of curvature RadCrv is in the range of 1,000 to 10,000 μm, the arithmetic mean roughness Ra <0.5 μm of the impeller suction surface, and the radius of curvature RadCrv> 10,000 μm. Is preferred.

インペラの正圧面及びインペラの負圧面の粗さ形状は、カッター等の鋭利な刃物で形成される矩形をなした粗面ではなく、紙やすり等の研磨材が塗布された布紙で形成される丸みを帯びた粗面であるのが好ましい。   The roughness of the pressure surface of the impeller and the suction surface of the impeller is not a rectangular rough surface formed by a sharp blade such as a cutter, but is formed of cloth paper coated with an abrasive such as sandpaper. It is preferably a rounded rough surface.

さらに、本発明の軸流ファンにおいては、インペラの正圧面及び前記インペラの負圧面は、蒸着、塗装又はメッキのいずれかによって形成された被膜を有する構成でもよい。   Furthermore, in the axial fan of the present invention, the pressure surface of the impeller and the negative pressure surface of the impeller may have a coating formed by any one of vapor deposition, painting, or plating.

本発明によれば、インペラの表面粗さを正圧面と負圧面で個々に制御することにより、騒音の発生を低減し、P−Q(静圧−風量)特性を改善し、さらに消費電力を低減した軸流ファンを提供することができる。 According to the present invention, the surface roughness of the impeller is individually controlled on the pressure surface and the suction surface, thereby reducing noise generation, improving the PQ (static pressure-air volume) characteristics, and further reducing power consumption. A reduced axial fan can be provided.

本発明の実施形態に係るインペラを有する軸流ファンの外観図である。1 is an external view of an axial fan having an impeller according to an embodiment of the present invention. 算術平均粗さ1Raに対応する表面状態を示す図である。 (a)矩形粗面 (b)丸みを帯びた粗面 (c)鋸歯状粗面It is a figure which shows the surface state corresponding to arithmetic mean roughness 1Ra. (A) Rectangle rough surface (b) Rounded rough surface (c) Sawtooth rough surface 曲率半径を説明する図である。It is a figure explaining a curvature radius. 粗さ形状に対応する表面の、顕微鏡及び表面形状測定器による外観写真である。 (a)滑らかな面 (b)丸みを帯びた粗面 (c)矩形粗面It is the external appearance photograph by the microscope and the surface shape measuring device of the surface corresponding to roughness shape. (A) Smooth surface (b) Rounded rough surface (c) Rectangular rough surface 本発明を説明する概念図である。 (a)滑らかな面の負圧面 (b)丸みを帯びた粗面の正圧面It is a conceptual diagram explaining this invention. (A) Suction surface of smooth surface (b) Pressure surface of rounded rough surface 本発明の実施形態に係る軸流ファンにおける、インペラの負圧面表面形状/正圧面表面形状の組合せに対する、騒音量と最大風量の関係を示す図である。It is a figure which shows the relationship between the noise amount and the maximum air volume with respect to the combination of the suction surface surface shape / pressure surface surface shape of an impeller in the axial fan which concerns on embodiment of this invention. 本発明の実施形態に係る軸流ファンにおける、インペラの負圧面表面形状/正圧面表面形状の組合せに対する、消費電力と最大風量の関係を示す図である。It is a figure which shows the relationship between power consumption with respect to the combination of the suction surface surface shape / pressure surface surface shape of an impeller, and the maximum airflow in the axial fan which concerns on embodiment of this invention. 本発明の実施形態に係る軸流ファンにおける、インペラの負圧面表面形状/正圧面表面形状の組合せに対する、静圧と風量の関係を示す図である。It is a figure which shows the relationship between a static pressure and an air volume with respect to the combination of the suction surface surface shape / pressure surface surface shape of an impeller in the axial fan which concerns on embodiment of this invention.

以下、添付図面を参照して、本発明を実施するための形態(以下、実施形態という。)について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施形態に係る軸流ファンの外観図である。 FIG. 1 is an external view of an axial fan according to an embodiment of the present invention.

本発明の実施形態に係る軸流ファン1は、モータ駆動部2の周囲に中心対称に複数枚のインペラ3を備えており、軸流ファン1が矢印の方向に回転するとインペラ3の紙面の表側が負圧面4となり、インペラ3の紙面の裏側が正圧面5(図示せず)となる。インペラ3の枚数は、特に限定しない。軸流ファン1は、内部に空気流路を設けたハウジング(図示せず)に収納することができる。   An axial fan 1 according to an embodiment of the present invention includes a plurality of impellers 3 symmetrically about a motor drive unit 2. When the axial fan 1 rotates in the direction of an arrow, the front side of the surface of the impeller 3 is illustrated. Becomes the negative pressure surface 4, and the back side of the paper surface of the impeller 3 becomes the positive pressure surface 5 (not shown). The number of impellers 3 is not particularly limited. The axial fan 1 can be housed in a housing (not shown) having an air flow path therein.

モータ駆動部2とインペラ3を含む軸流ファン1は、樹脂を用いて射出成形等により一体成形することができるが、モータ駆動部2とインペラ3をそれぞれ樹脂又は金属で個別に製作して軸流ファン1に組み立ててもよい。   The axial fan 1 including the motor drive unit 2 and the impeller 3 can be integrally formed by injection molding or the like using resin. However, the motor drive unit 2 and the impeller 3 are individually manufactured from resin or metal, respectively. You may assemble to the flow fan 1.

インペラ3の表面は、成形した樹脂のままでもよく、耐摩耗性等の観点から蒸着、塗装又はメッキ等による被膜を形成してもよい。樹脂の成形金型の表面は研磨面である。本実施形態においては、樹脂の成形によって製作したインペラ3をそのまま用いて、インペラ3の正圧面5と負圧面4に別々に所定の表面形状を形成し、これを複数枚モータ駆動部2に取り付けて軸流ファン1を構成した。   The surface of the impeller 3 may be a molded resin or may be formed with a film by vapor deposition, painting, plating, or the like from the viewpoint of wear resistance. The surface of the resin mold is a polished surface. In the present embodiment, the impeller 3 manufactured by resin molding is used as it is, and a predetermined surface shape is separately formed on the positive pressure surface 5 and the negative pressure surface 4 of the impeller 3, and this is attached to the plurality of motor drive units 2. Thus, an axial fan 1 was constructed.

表面形状は、表面粗さ(算術平均粗さRa)、形状、曲率半径RadCrvで規定した。   The surface shape was defined by the surface roughness (arithmetic mean roughness Ra), shape, and radius of curvature RadCrv.

表面粗さは、JISB0601−2001で規定される算術平均粗さRaを用いた。   As the surface roughness, arithmetic average roughness Ra defined by JISB0601-2001 was used.

JISB0601−2001の規定によれば、算術平均粗さRaが同じであっても、表面の粗面形状により粗面の凸凹の高低差は異なってくる。算術平均粗さを1Raとすると、図2(a)に示したように、表面が矩形粗面の場合、粗面の高低差は2Raに相当する。同様に、図2(b)に示したように、表面が丸みを帯びた粗面の場合、粗面の高低差は2.5Raに相当する。同様に、図2(c)に示したように、表面が鋸歯状粗面の場合、粗面の高低差は4Raに相当する。   According to the provisions of JIS B0601-2001, even if the arithmetic average roughness Ra is the same, the level difference of the roughness of the rough surface varies depending on the rough surface shape. Assuming that the arithmetic average roughness is 1 Ra, as shown in FIG. 2A, when the surface is a rectangular rough surface, the height difference of the rough surface corresponds to 2 Ra. Similarly, as shown in FIG. 2B, when the surface is a rounded rough surface, the difference in height of the rough surface corresponds to 2.5 Ra. Similarly, as shown in FIG. 2C, when the surface is a serrated rough surface, the height difference of the rough surface corresponds to 4Ra.

曲率半径は、図3に示したRadCrvで定義した。図に示した三角形に関するピタゴラスの定理(1)式から、粗面の凹部の曲率半径RadCrvは、(2)式で表される。
(RadCrv−s)+(2/d)=RadCrv (1)
RadCrv=(s+(d/2))/2s
(2)
The radius of curvature was defined by RadCrv shown in FIG. From the Pythagorean theorem (1) relating to the triangle shown in the figure, the curvature radius RadCrv of the concave portion of the rough surface is expressed by the following equation (2).
(RadCrv−s) 2 + (2 / d) 2 = RadCrv 2 (1)
RadCrv = (s 2 + (d / 2) 2 ) / 2s
(2)

本発明の実施例においては、樹脂の成形によって製作したインペラ3の正圧面5と負圧面4に、以下の(A)、(B)、(C)の3種類の表面形状を形成してから複数枚のインペラ3をモータ駆動部2に取り付けて軸流ファン1を構成した。この軸流ファン1を駆動して、騒音値(dBA)、消費電力(W)、静圧(Pa)を測定し、インペラ3の正圧面5の表面形状と負圧面4の表面形状の組合せによる比較を行った。   In the embodiment of the present invention, the following three types of surface shapes (A), (B), and (C) are formed on the pressure surface 5 and the suction surface 4 of the impeller 3 manufactured by resin molding. A plurality of impellers 3 were attached to the motor drive unit 2 to constitute the axial fan 1. The axial fan 1 is driven to measure the noise value (dBA), power consumption (W), and static pressure (Pa), and the combination of the surface shape of the pressure surface 5 and the surface shape of the suction surface 4 of the impeller 3. A comparison was made.

(A)#15,000のラッピングテープによる研磨面
(B)#60の紙やすりによる丸みを帯びた粗面
(C)カッターによる矩形粗面
(A) Polished surface by lapping tape of # 15,000 (B) Rounded rough surface by sandpaper of # 60 (C) Rectangular rough surface by cutter

図4は、上記(A)、(B)、(C)の形状を有するインペラ3の表面の、顕微鏡写真と、表面形状測定器による算術平均粗さRa、曲率半径RadCrvを示したものである。図4(a)は、(A)#15,000のラッピングテープによる研磨面を示したものであり、算術平均粗さRa=0.26μm、曲率半径RadCrv=74,000μmである。図4(b)は、(B)#60の紙やすりによる丸みを帯びた粗面を示したものであり、算術平均粗さRa=7.3μm、曲率半径RadCrv=3,200μmである。図4(c)は、(C)カッターによる矩形粗面を示したものであり、算術平均粗さRa=8.2μm、曲率半径RadCrv=780μmである。   FIG. 4 shows a micrograph of the surface of the impeller 3 having the shapes (A), (B), and (C), and the arithmetic average roughness Ra and the radius of curvature RadCrv measured by a surface shape measuring instrument. . FIG. 4 (a) shows the polished surface of the wrapping tape of (A) # 15,000, with arithmetic average roughness Ra = 0.26 μm and curvature radius RadCrv = 74,000 μm. FIG. 4B shows a rounded rough surface by sandpaper of (B) # 60, with arithmetic average roughness Ra = 7.3 μm and curvature radius RadCrv = 3,200 μm. FIG. 4C shows a rectangular rough surface by a cutter (C), where the arithmetic average roughness Ra = 8.2 μm and the radius of curvature RadCrv = 780 μm.

図5は、本実施例における軸流ファン1のインペラ3の表面形状を模式的に説明する図である。例えば、図5(a)は、複数枚のインペラ3の負圧面4に上記(A)の研磨面を形成したこと表し、図5(b)は複数枚のインペラ3の正圧面5に上記(B)又は(C)の粗面を形成したこと表す。   FIG. 5 is a diagram schematically illustrating the surface shape of the impeller 3 of the axial fan 1 in the present embodiment. For example, FIG. 5A shows that the polishing surface (A) is formed on the suction surfaces 4 of the plurality of impellers 3, and FIG. 5B shows the above ( It represents that the rough surface of B) or (C) was formed.

図6は、インペラ3の(負圧面4の表面形状)/(正圧面5の表面形状)の組合せの異なる軸流ファン1の騒音量(dBA)の最大風量(m/min)依存性を示したものである。図中、(A)、(B)、(C)は、上記表面形状を表す。現行品は、負圧面4の表面形状、正圧面5の表面形状とも、同じ滑らかな表面形状となっている。 FIG. 6 shows the maximum air volume (m 3 / min) dependence of the noise amount (dBA) of the axial fan 1 with different combinations of (surface shape of the suction surface 4) / (surface shape of the pressure surface 5) of the impeller 3. It is shown. In the figure, (A), (B), and (C) represent the surface shape. In the current product, the surface shape of the suction surface 4 and the surface shape of the pressure surface 5 are the same smooth surface shape.

表1は、図6の結果を騒音量が低い順に並べたものである。   Table 1 arranges the results of FIG. 6 in ascending order of noise level.

図6、表1から、騒音値に関しては、正圧面を粗面化、すなわち正圧面を荒らした方が良好であることがわかる。軸流ファン1の騒音量(dBA)は、(B)/(B)の組合せで最も少なく、(A)/(B)の組合せがこれに近くなっており、これらは、現行品の騒音量(dBA)よりも顕著に少なくなっている。   From FIG. 6 and Table 1, it can be seen that regarding the noise value, it is better to roughen the pressure surface, that is, to roughen the pressure surface. The noise amount (dBA) of the axial fan 1 is the smallest in the combination of (B) / (B), and the combination of (A) / (B) is close to this, which is the noise amount of the current product. It is significantly less than (dBA).

図7は、インペラ3の(負圧面4の表面形状)/(正圧面5の表面形状)の組合せの異なる軸流ファン1の電力量(W)の最大風量(m/min)依存性を示したものである。図中、(A)、(B)、(C)は、上記表面形状を表す。現行品は、負圧面4の表面形状、正圧面5の表面形状とも、同じ滑らかな表面形状となっている。 FIG. 7 shows the maximum air volume (m 3 / min) dependence of the electric energy (W) of the axial fan 1 with different combinations of (surface shape of the suction surface 4) / (surface shape of the pressure surface 5) of the impeller 3. It is shown. In the figure, (A), (B), and (C) represent the surface shape. In the current product, the surface shape of the suction surface 4 and the surface shape of the pressure surface 5 are the same smooth surface shape.

表2は、図7の結果を消費電力が低い順に並べたものである。   Table 2 lists the results of FIG. 7 in order of increasing power consumption.

図7、表2から、消費電力に関しては、負圧面を研磨面にした方が良好であることがわかる。軸流ファン1の電力量(W)は、(A)/(B)の組合せで最も小さく、これは、現行品の電力量(W)よりも顕著に小さくなっている。 From FIG. 7 and Table 2, it can be seen that the power consumption is better when the negative pressure surface is a polished surface. The electric energy (W) of the axial fan 1 is the smallest in the combination (A) / (B), which is significantly smaller than the electric energy (W) of the current product.

図6、表1、図7、表2に示した結果から、(A)/(B)の組合せ、すなわち、インペラ3の負圧面4の表面形状を(A)研磨面とし、正圧面5の表面形状を(B)丸みを帯びた粗面とした場合に、騒音、電力量とも顕著に低減された軸流ファン1が得られることが明らかとなった。ここで、上記のように、(A)研磨面は算術平均粗さRa=0.26μm、曲率半径RadCrv=74,000μmを有し、(B)丸みを帯びた粗面は算術平均粗さRa=7.3μm、曲率半径RadCrv=3,200μmを有する。 From the results shown in FIGS. 6, 1, 7, and 2, the combination of (A) / (B), that is, the surface shape of the suction surface 4 of the impeller 3 is (A) the polished surface, and the pressure surface 5 When the surface shape is (B) a rounded rough surface, it has been clarified that the axial fan 1 with significantly reduced noise and electric power can be obtained. Here, as described above, (A) the polished surface has an arithmetic average roughness Ra = 0.26 μm and a radius of curvature RadCrv = 74,000 μm, and (B) the rounded rough surface has an arithmetic average roughness Ra. = 7.3 μm, radius of curvature RadCrv = 3,200 μm.

図8は、インペラ3の(負圧面4の表面形状)/(正圧面5の表面形状)の組合せの異なる軸流ファン1のP−Q特性、すなわち静圧(Pa)と風量(Q)の関係を示したものである。図中、(A)、(B)、(C)は、上記表面形状を表す。現行品は、負圧面4の表面形状、正圧面5の表面形状とも、同じ滑らかな表面形状となっている。   FIG. 8 shows the PQ characteristics of the axial fan 1 having different combinations of (surface shape of the suction surface 4) / (surface shape of the pressure surface 5) of the impeller 3, that is, static pressure (Pa) and air flow (Q). It shows the relationship. In the figure, (A), (B), and (C) represent the surface shape. In the current product, the surface shape of the suction surface 4 and the surface shape of the pressure surface 5 are the same smooth surface shape.

図8から、(A)/(B)の組合せで、現行品よりも顕著に高い風量が得られることがわかる   From FIG. 8, it can be seen that the combination of (A) / (B) provides a significantly higher air volume than the current product.

以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。また、その他、本発明はその要旨を逸脱しない範囲で種々変形して実施可能である。   As mentioned above, although this invention was demonstrated using embodiment, it cannot be overemphasized that the technical scope of this invention is not limited to the range as described in the said embodiment. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

1 軸流ファン
2 モータ駆動部
3 インペラ
4 負圧面
5 正圧面
DESCRIPTION OF SYMBOLS 1 Axial fan 2 Motor drive part 3 Impeller 4 Negative pressure surface 5 Positive pressure surface

Claims (5)

モータと、当該モータによって回転するインペラとを備えた軸流ファンにおいて、
前記インペラの正圧面の表面粗さを前記インペラの負圧面の表面粗さより大きくすることを特徴とするインペラ。
In an axial fan including a motor and an impeller rotated by the motor,
The impeller characterized in that the surface roughness of the pressure surface of the impeller is larger than the surface roughness of the suction surface of the impeller.
前記インペラの正圧面及び前記インペラの負圧面が、ミクロ的には曲率半径で規定できる丸みを帯びた粗さ形状を有し、
前記インペラの正圧面の算術平均粗さRaが1〜100μmの範囲に、曲率半径RadCrvが1,000〜10,000μmの範囲にあるとともに、
前記インペラの負圧面の算術平均粗さRa<0.5μm、曲率半径RadCrv>10,000μmであることを特徴とする請求項1に記載のインペラ。
The pressure surface of the impeller and the suction surface of the impeller have a rounded roughness shape that can be microscopically defined by a curvature radius,
The arithmetic mean roughness Ra of the pressure surface of the impeller is in the range of 1 to 100 μm, the radius of curvature RadCrv is in the range of 1,000 to 10,000 μm,
2. The impeller according to claim 1, wherein an arithmetic mean roughness Ra <0.5 μm and a curvature radius RadCrv> 10,000 μm of the suction surface of the impeller.
前記インペラの正圧面及び前記インペラの負圧面は、一体的に樹脂成形された
ことを特徴とする請求項1又は2に記載のインペラ。
The impeller according to claim 1 or 2, wherein the pressure surface of the impeller and the suction surface of the impeller are integrally molded with resin.
前記インペラの正圧面及び前記インペラの負圧面は、蒸着、塗装又はメッキのいずれかによって形成された被膜を有することを特徴とする請求項1〜3のいずれか1項に記載のインペラ。   The impeller according to any one of claims 1 to 3, wherein the pressure surface of the impeller and the suction surface of the impeller have a film formed by any one of vapor deposition, painting, or plating. 請求項2記載の正圧面及び負圧面の表面粗さに設定された金型により一体成形されたインペラ及びそれを用いた軸流ファン。   An impeller integrally formed by a mold set to have a surface roughness of a pressure surface and a suction surface according to claim 2, and an axial fan using the impeller.
JP2012022954A 2012-02-06 2012-02-06 Impeller structure of axial fan Expired - Fee Related JP6132380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022954A JP6132380B2 (en) 2012-02-06 2012-02-06 Impeller structure of axial fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022954A JP6132380B2 (en) 2012-02-06 2012-02-06 Impeller structure of axial fan

Publications (2)

Publication Number Publication Date
JP2013160142A true JP2013160142A (en) 2013-08-19
JP6132380B2 JP6132380B2 (en) 2017-05-24

Family

ID=49172602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022954A Expired - Fee Related JP6132380B2 (en) 2012-02-06 2012-02-06 Impeller structure of axial fan

Country Status (1)

Country Link
JP (1) JP6132380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218517A (en) * 2002-12-09 2014-11-20 アブラクシスバイオサイエンス リミテッド ライアビリティー カンパニー Amine derivative compounds for treatment of eye diseases and disorders
JP2019206958A (en) * 2018-05-30 2019-12-05 三菱重工サーマルシステムズ株式会社 Propeller fan and outdoor unit for air conditioner including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215098A (en) * 1992-02-05 1993-08-24 Matsushita Electric Ind Co Ltd Impeller for blower
JPH06137297A (en) * 1992-10-21 1994-05-17 Toshiba Corp Vane structure for fan
JPH07279893A (en) * 1994-04-15 1995-10-27 Mitsubishi Heavy Ind Ltd Fan
JPH08288440A (en) * 1995-04-14 1996-11-01 Nec Corp Fan
JP2000110788A (en) * 1998-09-30 2000-04-18 Sanyo Electric Co Ltd Axial-flow fan
JP2000120591A (en) * 1998-10-16 2000-04-25 Sanyo Electric Co Ltd Axial-flow fan
JP2000120592A (en) * 1998-10-16 2000-04-25 Sanyo Electric Co Ltd Axial-flow fan
JP2000199498A (en) * 1998-12-28 2000-07-18 Kurita Denki Seisakusho:Kk Blower
JP2000257592A (en) * 1999-03-08 2000-09-19 Matsushita Electric Ind Co Ltd Impeller for air blower and manufacture thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215098A (en) * 1992-02-05 1993-08-24 Matsushita Electric Ind Co Ltd Impeller for blower
JPH06137297A (en) * 1992-10-21 1994-05-17 Toshiba Corp Vane structure for fan
JPH07279893A (en) * 1994-04-15 1995-10-27 Mitsubishi Heavy Ind Ltd Fan
JPH08288440A (en) * 1995-04-14 1996-11-01 Nec Corp Fan
JP2000110788A (en) * 1998-09-30 2000-04-18 Sanyo Electric Co Ltd Axial-flow fan
JP2000120591A (en) * 1998-10-16 2000-04-25 Sanyo Electric Co Ltd Axial-flow fan
JP2000120592A (en) * 1998-10-16 2000-04-25 Sanyo Electric Co Ltd Axial-flow fan
JP2000199498A (en) * 1998-12-28 2000-07-18 Kurita Denki Seisakusho:Kk Blower
JP2000257592A (en) * 1999-03-08 2000-09-19 Matsushita Electric Ind Co Ltd Impeller for air blower and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218517A (en) * 2002-12-09 2014-11-20 アブラクシスバイオサイエンス リミテッド ライアビリティー カンパニー Amine derivative compounds for treatment of eye diseases and disorders
JP2019206958A (en) * 2018-05-30 2019-12-05 三菱重工サーマルシステムズ株式会社 Propeller fan and outdoor unit for air conditioner including the same
WO2019230582A1 (en) * 2018-05-30 2019-12-05 三菱重工サーマルシステムズ株式会社 Propeller fan and air conditioner outdoor unit provided with propeller fan
JP7150480B2 (en) 2018-05-30 2022-10-11 三菱重工サーマルシステムズ株式会社 Propeller fan and outdoor unit for air conditioner provided with the same

Also Published As

Publication number Publication date
JP6132380B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
CN207795681U (en) Axial flow fan leaf, axial flow fan blade component, axial flow blower ducting assembly
JP6428833B2 (en) Propeller fan
JP4798640B2 (en) Propeller fan, molding die and fluid feeder
JP2010196706A (en) Diffuser
CN104196761A (en) Double-air-inlet centrifugal fan
CN1249408A (en) Axial blower
TWI631283B (en) Axial flow fan
JP2015086721A (en) Centrifugal fan
CN106837871B (en) Axial flow wind wheel, axial flow fan and air conditioner
JP6132380B2 (en) Impeller structure of axial fan
US10415584B2 (en) Impeller and fan using the same
JP6951428B2 (en) Centrifugal fan, molding mold and fluid feeder
JP4727425B2 (en) Centrifugal impeller and clean system equipped with it
JP2012072675A (en) Cross flow fan
JP5899394B2 (en) Centrifugal blower
CN214404094U (en) Wind wheel and fan
CN104154035A (en) Centrifugal fan and air conditioner with same
CN204371718U (en) Heat radiation fan
CN209469602U (en) A kind of centrifugal blower with reverse inclination blade angle
JP6048024B2 (en) Propeller fan
JP6802270B2 (en) Impeller and axial fan equipped with the impeller
CN108825553A (en) The blade structure of aerofoil fan
TW202113236A (en) Axial flow fan
CN214945147U (en) Be applied to silence fan structure of heat dissipation occasion
TWI507609B (en) Fluid transportation module with axial flux permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6132380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees