JP2013159880A - Nonwoven fabric - Google Patents

Nonwoven fabric Download PDF

Info

Publication number
JP2013159880A
JP2013159880A JP2012023233A JP2012023233A JP2013159880A JP 2013159880 A JP2013159880 A JP 2013159880A JP 2012023233 A JP2012023233 A JP 2012023233A JP 2012023233 A JP2012023233 A JP 2012023233A JP 2013159880 A JP2013159880 A JP 2013159880A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
layer
cellulose
cellulosic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012023233A
Other languages
Japanese (ja)
Inventor
Eiji Shioda
英治 塩田
Kyoko Machioka
経子 町岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2012023233A priority Critical patent/JP2013159880A/en
Publication of JP2013159880A publication Critical patent/JP2013159880A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric material that has high liquid-absorbing properties and liquid-retaining properties, has superior dimensional stability in a wet state, and is inexpensive.SOLUTION: The cellulosic fiber nonwoven fabric comprises a plurality of layers formed of fibers having a different fiber diameter, has at least one layer formed of a fiber having a fiber diameter of 0.1-8 μm, and has a surface layer formed of a fiber having a fiber diameter of at least 10-20 μm, at one side.

Description

本発明は、形態安定性、保液性および通液性に優れるセルロース系繊維不織布に関する。   The present invention relates to a cellulosic fiber nonwoven fabric excellent in form stability, liquid retention and liquid permeability.

従来、オムツ用トップシートをはじめとしたサニタリー用途およびバリア性を要求されるセパレータ用途等に、内層が極細繊維からなるいわゆるS(スパンボンド)M(メルトブローン)S(スパンボンド)構造からなる不織布が広く用いられている。これらの不織布は、融点の低さや極細繊維の製造技術の面から、表層にはポリプロピレン・エチレンランダム共重合体からなるポリオレフィン系のスパンボンド不織布が、内層にはポリプロピレン系のメルトブローン不織布が用いられている(下記特許文献1参照)。   Conventional non-woven fabrics with S (spunbond) M (melt blown) S (spunbond) structure, whose inner layer is made of ultrafine fibers, for sanitary uses such as diaper topsheets and separators that require barrier properties. Widely used. These nonwoven fabrics are made of polyolefin-based spunbond nonwoven fabric made of polypropylene / ethylene random copolymer for the surface layer and polypropylene-based meltblown nonwoven fabric for the inner layer from the viewpoint of low melting point and ultrafine fiber manufacturing technology. (See Patent Document 1 below).

一方、医療用途においては、その安全性や吸液性からセルロース不織布が広く用いられているが、無漂白でも白色度が高く、滅菌処理を施しても白色度の低下が極めて少ないことから、セルロースの極細繊維を用いた不織布が利用されている(下記特許文献2参照)。また、化粧品やスキンケア用途には、保液性やウェット時の寸法安定性に優れることから、繊維径の異なるセルロース繊維で構成された不織布も開発されている(下記特許文献3参照)。   On the other hand, in medical applications, cellulose nonwoven fabrics are widely used due to their safety and liquid absorbency. However, the whiteness is high even without bleaching, and the decrease in whiteness is extremely small even after sterilization. Nonwoven fabrics using ultrafine fibers are used (see Patent Document 2 below). Further, for cosmetics and skin care applications, nonwoven fabrics composed of cellulose fibers having different fiber diameters have been developed because of excellent liquid retention and wet dimensional stability (see Patent Document 3 below).

しかしながら、上記不織布の内、合繊SMS不織布では、紡糸工程では繊維の交絡が殆ど達成できないため、熱エンボス等による接着工程が必須である。また、保液性を確保するために親水剤を付与することも行われている。そのため、コスト面や安全性の問題がある。また、シートが平滑化されることによるボリュームおよび柔軟性の喪失、通液性の悪化などが問題となっていた。   However, among the above nonwoven fabrics, synthetic fiber SMS nonwoven fabrics can hardly achieve fiber entanglement in the spinning process, and therefore an adhesion process by hot embossing or the like is essential. Moreover, in order to ensure liquid retention, a hydrophilic agent is also given. Therefore, there are cost and safety issues. Further, there have been problems such as loss of volume and flexibility due to smoothing of the sheet, deterioration of liquid permeability, and the like.

一方のセルロース繊維からなる極細不織布においては、吸液性に優れる反面、ウェット時の横方向の伸びが大きく使用時に伸びきってしまうこと、伸びやすいが、形状が回復しないこと、広げて使用することが困難であることなど、主に形態安定性に起因する問題が残っていた。また、特許文献3においては表面層に繊維径3.2μmの極細セルロース繊維が配置された構造の不織布が提案されているが、液拡散性はよくなるものの、表面に極細繊維が配置されることにより、細かな繊維が脱落しやすく、伸長回復率が低く、形態安定性に難があるなどの問題が残っていた。   On the other hand, in the ultra-thin nonwoven fabric made of cellulose fiber, it has excellent liquid absorbency, but it has a large lateral elongation when wet, and it stretches easily when used. However, there were still problems due to morphological stability. Further, Patent Document 3 proposes a nonwoven fabric having a structure in which ultrafine cellulose fibers having a fiber diameter of 3.2 μm are arranged on the surface layer, but the liquid diffusibility is improved, but the ultrafine fibers are arranged on the surface. However, there still remain problems such as fine fibers being easily dropped, low elongation recovery rate, and difficulty in form stability.

特開2000−328420号公報JP 2000-328420 A 特開2003−306860号公報JP 2003-306860 A 特開2005−248365号公報JP 2005-248365 A

本発明が解決しようとする課題は、上記問題点を解決し、吸液性および保液性が高く、ウェット時の形態安定性に優れた安価な不織布材料を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, and to provide an inexpensive non-woven material that has high liquid absorption and liquid retention and is excellent in form stability when wet.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、繊維径が異なる複数の層からなるセルロース系繊維不織布であって、繊維径が0.1〜8μmの層を少なくとも1層以上有し、少なくとも片側表面層の繊維径が10〜20μmであるセルロース系繊維不織布は、吸液性および保液性が高く、また、この不織布は、柔軟性が高く、かつ形態安定性および形状回復性に優れることを見出し、本発明を完成させるに至った。
即ち、本発明は以下の発明を提供する。
As a result of intensive studies in order to solve the above problems, the present inventor is a cellulose-based non-woven fabric composed of a plurality of layers having different fiber diameters, and at least one layer having a fiber diameter of 0.1 to 8 μm. The cellulosic fiber nonwoven fabric having at least one side surface layer having a fiber diameter of 10 to 20 μm has high liquid absorbency and liquid retention, and the nonwoven fabric has high flexibility and shape stability and shape. The present inventors have found that it is excellent in recoverability and have completed the present invention.
That is, the present invention provides the following inventions.

(1)繊維径が異なる複数の層からなるセルロース系繊維不織布であって、繊維径が0.1〜8μmの層を少なくとも1層以上有し、少なくとも片側表面層の繊維径が10〜20μmであることを特徴とするセルロース系繊維不織布。
(2)ウェット時の100gf/cm荷重後の伸長回復率が縦方向(MD方向)で45%以上、横方向で35%以上であり、ウェット時の100gf/cm荷重時の伸び率の縦横比(縦/横)が0.5以上である上記1項に記載のセルロース系繊維不織布。
(3)吸水倍率が不織布重量に対して7〜20倍、かつ吸水速度がJIS−L1907準拠のバイレック試験に基づいて75mm以上である上記1又は2項に記載のセルロース系繊維不織布。
(4)内層部に繊維径0.1〜8μmの層が配置され、外層部に繊維径10〜20μmの層が配置された少なくとも3層からなる上記1〜3項のいずれか一項に記載のセルロース系繊維不織布。
(5)セルロース系繊維を少なくとも50%含んだ上記4項に記載のセルロース系繊維不織布。
(6)セルロース系繊維が再生セルロース系繊維からなる上記4または5項に記載のセルロース系繊維不織布。
(7)セルロース系繊維が連続長繊維からなる上記6項に記載のセルロース系繊維不織布。
(1) Cellulosic fiber nonwoven fabric composed of a plurality of layers having different fiber diameters, having at least one layer having a fiber diameter of 0.1 to 8 μm, and at least one side surface layer having a fiber diameter of 10 to 20 μm A cellulose-based fiber nonwoven fabric characterized by being.
(2) The elongation recovery rate after loading at 100 gf / cm when wet is 45% or more in the machine direction (MD direction) and 35% or more in the transverse direction. 2. The cellulose fiber nonwoven fabric according to 1 above, wherein (length / width) is 0.5 or more.
(3) The cellulose fiber nonwoven fabric according to 1 or 2 above, wherein the water absorption ratio is 7 to 20 times the weight of the nonwoven fabric, and the water absorption speed is 75 mm or more based on a birec test in accordance with JIS-L1907.
(4) The structure according to any one of the above items 1 to 3, which comprises at least three layers in which a layer having a fiber diameter of 0.1 to 8 μm is disposed in the inner layer portion and a layer having a fiber diameter of 10 to 20 μm is disposed in the outer layer portion. Cellulosic fiber nonwoven fabric.
(5) The cellulose fiber nonwoven fabric according to the above item 4, which contains at least 50% cellulosic fibers.
(6) The cellulose fiber nonwoven fabric according to 4 or 5 above, wherein the cellulose fiber is a regenerated cellulose fiber.
(7) The cellulosic fiber nonwoven fabric according to the above item 6, wherein the cellulosic fiber comprises continuous long fibers.

本発明のセルロース系繊維不織布は、吸液性および保液性が高く、ウェット時の形態安定性に優れた安価な不織布材料である。   The cellulosic fiber nonwoven fabric of the present invention is an inexpensive nonwoven fabric material that has high liquid absorbability and liquid retention and is excellent in form stability when wet.

以下、本発明について具体的に説明する。
本発明のセルロース系繊維不織布は、繊維径が異なる複数の層からなる多層構造の不織布である。この多層構造不織布は繊維径が0.1〜8μmの細い繊維径の層を少なくとも1層有し、かつ繊維径が10〜20μmの太い繊維径の層を少なくとも1層有する。
Hereinafter, the present invention will be specifically described.
The cellulose fiber nonwoven fabric of the present invention is a multilayered nonwoven fabric composed of a plurality of layers having different fiber diameters. This multilayer nonwoven fabric has at least one thin fiber diameter layer having a fiber diameter of 0.1 to 8 μm and at least one thick fiber diameter layer having a fiber diameter of 10 to 20 μm.

本発明における繊維径とは、不織布の繊維集合体の表面を、走査型電子顕微鏡(日本電子製JSM−6380)を用いて10,000倍の倍率で観察し、任意の50本を選び、1本につき任意の1箇所を選んで測定し、その平均値を繊維径(μm)と言う。本発明の繊維径が異なる複数の層からなる多層構造不織布においては、繊維径が0.1〜8μmの層を少なくとも1層有し、かつ繊維径が10〜20μmの太い繊維径の層を少なくとも1層有する。好ましくは、表面層に10〜20μmの太い繊維径の層を有する。   The fiber diameter in the present invention refers to the surface of the non-woven fiber aggregate, which is observed at a magnification of 10,000 times using a scanning electron microscope (JSM-6380, manufactured by JEOL), select any 50 fibers, One arbitrary point per book is selected and measured, and the average value is referred to as the fiber diameter (μm). In the multilayered nonwoven fabric composed of a plurality of layers having different fiber diameters according to the present invention, at least one layer having a fiber diameter of 0.1 to 8 μm and at least a thick fiber diameter layer having a fiber diameter of 10 to 20 μm is provided. It has one layer. Preferably, the surface layer has a thick fiber diameter layer of 10 to 20 μm.

細い繊維径の層を構成する繊維の径は0.1〜8μm、好ましくは0.5〜6μm、より好ましくは1.0〜5μmである。0.1μmより細い繊維では不織布の生産性が悪くなり、8μmを超える繊維径では、太い繊維径の層との繊維径の差が殆どなくなることから、寸法安定性への効果が薄れてしまう。   The diameter of the fibers constituting the thin fiber diameter layer is 0.1 to 8 μm, preferably 0.5 to 6 μm, and more preferably 1.0 to 5 μm. When the fiber is thinner than 0.1 μm, the productivity of the nonwoven fabric is deteriorated. When the fiber diameter exceeds 8 μm, there is almost no difference in fiber diameter from the thick fiber diameter layer, and the effect on dimensional stability is diminished.

本発明の不織布は繊維径が0.1〜8μmの層を全体に対して15〜85wt%有し、かつ繊維径が10〜20μmの層を全体に対して15〜85wt%有することが好ましい。繊維径0.1〜8μmの層が全体に対して15wt%未満であると、繊維径10〜20μmの層のシート物性が支配的となり、後述するウェット時の伸び率の縦横比が大きくなり、ウェット時の伸長回復率も低くなることから、形態安定性が悪くなり、液拡散性も低下するなどの点から好ましくない。また、85wt%を超えると、繊維径0.1〜8μmの層の構成比率が高くなることで、繊維の交絡点及び接着点が多くなり、その結果、荷重を受けた際の伸長により接着点の剥離が起こりやすく、伸長が不可逆的になり、伸長回復率が低下する傾向にあり、好ましくない。   It is preferable that the nonwoven fabric of this invention has 15-85 wt% of layers with a fiber diameter of 0.1-8 micrometers with respect to the whole, and has 15-85 wt% of layers with a fiber diameter of 10-20 micrometers with respect to the whole. When the layer having a fiber diameter of 0.1 to 8 μm is less than 15 wt% with respect to the whole, the sheet physical properties of the layer having a fiber diameter of 10 to 20 μm are dominant, and the aspect ratio of the elongation rate when wet described later is increased. Since the elongation recovery rate when wet is also low, it is not preferable from the viewpoint that the form stability is deteriorated and the liquid diffusibility is also lowered. Moreover, when it exceeds 85 wt%, the composition ratio of the layer having a fiber diameter of 0.1 to 8 μm increases, so that the entanglement points and adhesion points of the fibers increase. Peeling is likely to occur, the elongation becomes irreversible, and the elongation recovery rate tends to decrease, which is not preferable.

また、本発明の多層構造不織布の目付は、10〜150g/mであることが好ましい。さらに好ましくは15〜100g/m、特に好ましくは25〜80g/mである。目付が10g/mを下回ると多層構造の維持が困難であり、150g/mを超えると紡糸及びシート形成が困難になることがある。本発明における不織布の目付とは、0.05m2以上の面積の不織布を105℃で一定質量になるまで乾燥後、20℃、65%RHの恒温室に16時間以上放置してその質量を測定した不織布のm2当たりの質量(g)を言う。 Moreover, it is preferable that the fabric weight of the multilayer structure nonwoven fabric of this invention is 10-150 g / m < 2 >. More preferably 15 to 100 / m 2, particularly preferably 25~80g / m 2. If the basis weight is less than 10 g / m 2 , it is difficult to maintain a multilayer structure, and if it exceeds 150 g / m 2 , spinning and sheet formation may be difficult. The basis weight of the nonwoven fabric in the present invention means that a nonwoven fabric having an area of 0.05 m 2 or more is dried at 105 ° C. until it reaches a constant mass and then left in a constant temperature room at 20 ° C. and 65% RH for 16 hours or more to measure the mass. The mass (g) per m 2 of the nonwoven fabric.

本発明の不織布の繊維密度は0.07〜0.45g/cm3であることが好ましく、さらに好ましくは0.08〜0.40g/cm3であり、特に好ましくは0.08〜0.30g/cm3の範囲である。繊維密度が0.07g/cm3未満の場合、不織布としての強度が低く、また保液性も低下してしまう。一方、繊維密度が0.45g/cm3を超える場合、柔軟性が損なわれ、また液拡散性も低下してしまう。
本発明における繊維密度とは、不織布の厚みA(mm)と目付B(g/m2)から下記式で算出される値(g/cm3)である。
繊維密度 = ( B / A ) / 1000
Preferably the fiber density of the nonwoven fabric of the present invention is 0.07~0.45g / cm 3, more preferably from 0.08~0.40g / cm 3, particularly preferably 0.08~0.30g / Cm 3 range. When the fiber density is less than 0.07 g / cm 3 , the strength as a non-woven fabric is low and the liquid retention is also lowered. On the other hand, when the fiber density exceeds 0.45 g / cm 3 , the flexibility is impaired and the liquid diffusibility is also lowered.
The fiber density in the present invention is a value (g / cm 3 ) calculated by the following formula from the thickness A (mm) and the basis weight B (g / m 2 ) of the nonwoven fabric.
Fiber density = (B / A) / 1000

本発明における不織布の厚みとは、JIS−L1096準拠の厚み試験にて荷重を1.96kPaとして測定した際の厚みを言う。本発明の多層構造不織布の厚みは25〜1,000μmであることが好ましく、さらに好ましくは70〜800μmであり、特に好ましくは100〜700μmである。厚みが1,000μmを超えると、実使用時に硬すぎて使いにくかったり、加工し難くなったりする場合がある。厚みが25μmより薄いと強度が極端に低くなり、取り扱い性が悪く、容易に破れが発生してしまう場合がある。   The thickness of the nonwoven fabric in this invention means the thickness at the time of measuring a load as 1.96kPa in the thickness test based on JIS-L1096. The thickness of the multilayer structure nonwoven fabric of the present invention is preferably 25 to 1,000 μm, more preferably 70 to 800 μm, and particularly preferably 100 to 700 μm. If the thickness exceeds 1,000 μm, it may be too hard to use or difficult to process in actual use. If the thickness is less than 25 μm, the strength becomes extremely low, the handleability is poor, and tearing may occur easily.

また、本発明の不織布の吸水速度は75mm以上であることが好ましい。さらに好ましくは90mm以上であり、特に好ましくは130m〜250mmである。吸水速度が75mm未満の場合、吸液性や保液性が低下しセルロース系繊維不織布としての機能が低下する。
本発明における吸水速度とは、JIS−L1907準拠のバイレック試験にて得られる値である。即ち、幅方向に長さ250mmの試験片を25mm幅で採取し、試験片下端10mmを水中に10分浸漬させた後の、水面からの浸水高さを吸水速度とする。
Moreover, it is preferable that the water absorption rate of the nonwoven fabric of this invention is 75 mm or more. More preferably, it is 90 mm or more, Most preferably, it is 130 m-250 mm. When the water absorption speed is less than 75 mm, the liquid absorbability and the liquid retention are lowered, and the function as the cellulose fiber nonwoven fabric is lowered.
The water absorption rate in the present invention is a value obtained by a birec test in accordance with JIS-L1907. That is, a test piece having a length of 250 mm in the width direction was sampled with a width of 25 mm, and the immersion height from the water surface after the bottom 10 mm of the test piece was immersed in water for 10 minutes is defined as the water absorption speed.

本発明において、発明者は、セルロース不織布の長所である吸液性を損なうことなく、従来の弱点であるウェット時の形態安定性や取り扱い性を大きく改善することが出来たが、形態安定性の指標として、ウェット時の「伸び率の縦横比」と縦横それぞれの「伸長回復率」の評価を行った。なお、本発明において、縦方向とはMD方向を言う。   In the present invention, the inventor was able to greatly improve the wet form stability and handleability, which is a conventional weak point, without impairing the liquid absorbency which is an advantage of the cellulose nonwoven fabric. As an index, the “elongation ratio of elongation” when wet and the “elongation recovery rate” of each aspect were evaluated. In the present invention, the vertical direction refers to the MD direction.

セルロースに限らず、不織布はその製法上MD方向に構成繊維が配向するため、横方向伸び率が高い傾向にあり、ウェット時の伸び率の縦横比(縦/横)は小さくなる傾向にある。セルロース系繊維不織布において特に吸水時にはこの傾向が大となる。ウェット時の伸び率の縦横比が小さくなると、ウェット時に丸く萎んだ形状になったり、たとえば、ウェットでのワイピング時や手術中の吸血時などに団子状の形状になったりすることが知られており、ウェット状態で使用されることの多い下記用途では好ましくない欠点であるといえる。発明者は、ウェット時の伸び率の縦横比が0.5を超えると、この傾向が大きく改善することを見出した。この縦横比は好ましくは0.5以上0.8以下、さらに好ましくは0.5以上0.7以下である。ウェット時の伸び率の縦横比が大きくなるほど形態安定性はよくなるが、0.8を超えると実質的に殆ど伸縮性を示さず、加工が困難であったり、使用時に取り出したり、引き伸ばすことが困難になることがある。   Nonwoven fabrics are not limited to cellulose, and the constituent fibers are oriented in the MD direction due to the manufacturing method thereof, and therefore, the elongation rate in the transverse direction tends to be high, and the aspect ratio (length / width) of the elongation rate when wet tends to be small. This tendency becomes large especially in the case of cellulose fiber nonwoven fabrics when absorbing water. It is known that when the aspect ratio of the elongation rate when wet is reduced, it becomes a round and deflated shape when wet, for example, it becomes a dumpling shape when wiping wet or sucking blood during surgery, etc. Therefore, it can be said that this is an unfavorable defect in the following applications that are often used in a wet state. The inventor has found that this tendency is greatly improved when the aspect ratio of the elongation percentage when wet exceeds 0.5. This aspect ratio is preferably 0.5 or more and 0.8 or less, and more preferably 0.5 or more and 0.7 or less. As the aspect ratio of the elongation ratio when wet increases, the shape stability improves. However, when it exceeds 0.8, it exhibits virtually no elasticity, making it difficult to process, taking out and stretching during use. May be.

ウェット時に吸収液重量や、外力により引き伸ばされることが多い後述の用途においては、伸長回復率も形態安定性に寄与することがわかった。後述する測定法による伸長回復率においては、縦方向45%以上かつ横方向35%以上の伸長回復率を示すセルロース系繊維不織布は形態安定性が良好で、使用時の取り扱い性に優れる。好ましくは縦方向45〜80%かつ横方向35〜75%、さらに好ましくは縦方向48〜75%かつ横方向38〜65%である。縦方向80%かつ横方向75%を越えると、強いストレッチバック性により、スキンケア用途、サニタリー用途、創傷被覆用途等で圧迫感を感じることがある。   It was found that the elongation recovery rate also contributes to the morphological stability in applications described later, which are often stretched by the weight of the absorbing solution or external force when wet. In the elongation recovery rate according to the measurement method described later, a cellulose fiber nonwoven fabric exhibiting an elongation recovery rate of 45% or more in the machine direction and 35% or more in the transverse direction has good form stability and excellent handleability during use. It is preferably 45 to 80% in the vertical direction and 35 to 75% in the horizontal direction, more preferably 48 to 75% in the vertical direction and 38 to 65% in the horizontal direction. If it exceeds 80% in the vertical direction and 75% in the horizontal direction, a strong stretch back property may cause a feeling of pressure in skin care applications, sanitary applications, wound covering applications, and the like.

本発明のセルロース系繊維不織布は、繊維径が異なる複数の層からなる多層構造により、ウェット状態で高い吸液性と寸法安定性を両立しているが、該不織布の吸水倍率は不織布重量に対して7〜20倍であることが好ましい。さらに好ましくは8〜17倍、特に好ましくは8〜15倍である。7倍を下回ると、保液性や対象物との親和性・密着性等に不足が生じるため好ましくない。   The cellulosic fiber nonwoven fabric of the present invention has both a high liquid absorbency and dimensional stability in a wet state by a multilayer structure composed of a plurality of layers having different fiber diameters. It is preferably 7 to 20 times. More preferably, it is 8 to 17 times, and particularly preferably 8 to 15 times. If it is less than 7 times, liquid retention, affinity with the object, adhesion, etc. are insufficient, which is not preferable.

本発明で用いるセルロース系繊維としては、銅アンモニアレーヨン、ビスコースレーヨン、コットン、パルプ、ポリノジック、テンセル(リヨセル)等の繊維が挙げられ、好ましくは銅アンモニアレーヨンおよびビスコースレーヨンなどの再生セルロース繊維である。これらの繊維としては、連続長繊維でも短繊維でも構わないが、連続長繊維は、短繊維よりもリントフリー性に優れ、吸液性にも優れているので好ましい。また、バインダーや界面活性剤を付与したセルロース系繊維不織布では、吸水性の低下や、成分の溶出が懸念されるため、ノーバインダーのセルロース系繊維不織布が好ましい。   Examples of the cellulosic fibers used in the present invention include copper ammonia rayon, viscose rayon, cotton, pulp, polynosic, tencel (lyocell) and the like, preferably regenerated cellulose fibers such as copper ammonia rayon and viscose rayon. is there. These fibers may be continuous long fibers or short fibers, but continuous long fibers are preferable because they are superior in lint-free properties and liquid absorption properties to short fibers. Moreover, in the cellulose fiber nonwoven fabric which provided the binder and surfactant, since there is a concern about a water-absorption fall and elution of a component, the cellulose fiber nonwoven fabric of a binder is preferable.

後述する用途のワイパーに好適に用いるセルロース系繊維不織布の好ましい態様は、再生セルロース連続長繊維不織布であるが、例えば旭化成せんい株式会社製のキュプラ不織布「ベンリーゼ(登録商標)」がこれに相当する。下記にキュプラ不織布の製造方法の一例を述べる。   A preferred embodiment of the cellulose-based non-woven fabric that is suitably used for a wiper for the use described below is a regenerated cellulose continuous long-fiber non-woven fabric. For example, a cupra non-woven fabric “Benlyse (registered trademark)” manufactured by Asahi Kasei Fibers Corporation corresponds to this. An example of the manufacturing method of a cupra nonwoven fabric is described below.

キュプラ不織布の製造方法は、異物を除去し、重合度を調整したコットンリンターを銅アンモニウム溶液に溶解させた原液を細孔(原液吐出孔)を有した紡糸口金(紡口)から押し出し、水と共に漏斗内を落下させ、脱アンモニアさせることにより原液を凝固させつつ、延伸を行い、ネット上へ振り落としウェブ形成させる。この際、ネットを進行させながら進行方向と垂直方向へ振動させることにより、ネットへ振り落とされる繊維はサインカーブを描くことになる。紡糸時の延伸は100〜500倍が可能であり、紡糸漏斗の形状と、その中を流下させる紡糸水量を変えることにより、延伸倍率の調整が任意に可能である。延伸倍率を変えることにより、単繊度や不織布の強度を変えることが可能である。また、紡糸水量や温度を変化させることに原液内に微量残留する低分子量セルロース、いわゆるヘミセルロースをコントロールすることも可能である。また、ネットの進行速度、振動幅を制御することにより、繊維配列方向を制御し、不織布としての強度や伸度等をコントロールすることが可能である。   A method for producing a cupra nonwoven fabric is to remove a foreign material and extrude a cotton linter whose degree of polymerization is adjusted in a copper ammonium solution from a spinneret (spinner) having pores (stock solution discharge holes), together with water. While dropping the inside of the funnel and deammonia, the stock solution is solidified and stretched, and shaken onto a net to form a web. At this time, the fiber shaken down to the net draws a sine curve by vibrating the net in a direction perpendicular to the traveling direction. Stretching at the time of spinning can be 100 to 500 times, and the stretching ratio can be arbitrarily adjusted by changing the shape of the spinning funnel and the amount of spinning water flowing down. By changing the draw ratio, the single fineness and the strength of the nonwoven fabric can be changed. It is also possible to control low-molecular weight cellulose, so-called hemicellulose, remaining in a small amount in the stock solution by changing the amount of spinning water and temperature. Further, by controlling the traveling speed and vibration width of the net, it is possible to control the fiber arrangement direction and control the strength, elongation and the like of the nonwoven fabric.

紡糸漏斗の形状としては、矩形型が好ましく、流下させる紡糸漏斗の長さは100〜400mm、流下出口のスリット幅は2〜5mmが好ましい。本発明に用いる紡口の原液吐出孔の直径は0.1〜0.5mmが好ましく、形状は丸型が好ましい。また、不織布の均一性を確保する意味から、ウェブを積層して不織布化することが好ましく、その積層枚数は3〜10枚が好ましい。この積層ウェブの中間層を上記0.1〜8μmの繊維径にコントロールすることで、本発明の不織布を好適に得ることが出来る。得られた不織布は乾燥、巻き取り品として得ることができる。この製造方法であれば、紡糸工程ですでに単糸の自己接着により強度を発現しているため、バインダーや高圧柱状流、熱エンボス等で交絡を補う必要がない場合が多い。意匠性を付与するために中低圧の水流処理を行うことも可能である。紡糸から巻き取りまでが一連の工程で成されるため繊維が切断されずに連続的に繋がっているので連続長繊維不織布という。また、N−メチルモルフォリンオキサイドにパルプを溶解させ紡糸を行うリヨセル等においてもメルトブローン法による不織布製造方法が提案されており、同様の形態を好適に達成することができる。   The shape of the spinning funnel is preferably a rectangular shape, and the length of the spinning funnel to be flowed down is preferably 100 to 400 mm, and the slit width of the flowing down outlet is preferably 2 to 5 mm. The diameter of the stock solution discharge hole of the spinning nozzle used in the present invention is preferably 0.1 to 0.5 mm, and the shape is preferably a round shape. Moreover, it is preferable to laminate | stack a web from the meaning which ensures the uniformity of a nonwoven fabric, and the number of lamination | stacking is preferable 3-10 sheets. The nonwoven fabric of this invention can be suitably obtained by controlling the intermediate | middle layer of this laminated web to the said fiber diameter of 0.1-8 micrometers. The obtained nonwoven fabric can be obtained as a dried or wound product. In this production method, since the strength is already expressed by the self-adhesion of the single yarn in the spinning process, it is often unnecessary to supplement the entanglement with a binder, a high-pressure columnar flow, hot embossing, or the like. In order to impart design properties, it is also possible to perform a medium-low pressure water flow treatment. Since the process from spinning to winding is performed in a series of steps, the fibers are connected continuously without being cut. In addition, a lyocell or the like in which pulp is dissolved in N-methylmorpholine oxide for spinning has been proposed, and a nonwoven fabric production method using a melt blown method can be suitably achieved.

本発明のセルロース系繊維不織布には、本発明の目的を害さない範囲でセルロース繊維以外の繊維、たとえばポリエステル繊維、ポリプロピレン繊維、ナイロン繊維などの合成繊維が含まれていても良い。該合成繊維は連続長繊維でも短繊維でもよい。合成繊維とセルロース繊維との複合形態は、不織布の形態での積層、またはスライバー複合でもよい。本発明のセルロース系繊維不織布において、セルロース系繊維の含有率が50〜100wt%であることが好ましく、さらに好ましくは70〜100wt%、特に好ましくは80〜100wt%である。   The cellulose-based fiber nonwoven fabric of the present invention may contain fibers other than cellulose fibers, for example, synthetic fibers such as polyester fibers, polypropylene fibers, and nylon fibers, as long as the object of the present invention is not impaired. The synthetic fiber may be continuous long fiber or short fiber. The composite form of the synthetic fiber and the cellulose fiber may be a laminate in the form of a nonwoven fabric or a sliver composite. In the cellulose fiber nonwoven fabric of the present invention, the cellulose fiber content is preferably 50 to 100 wt%, more preferably 70 to 100 wt%, and particularly preferably 80 to 100 wt%.

合成繊維の混合率は0〜50%、好ましくは0〜30%、さらに好ましくは0〜20%である。合成繊維の含有率が50%を超えると吸水性や耐溶剤性といったセルロース繊維特有の性能が著しく低下するので好ましくない。   The mixing ratio of the synthetic fiber is 0 to 50%, preferably 0 to 30%, more preferably 0 to 20%. If the content of the synthetic fiber exceeds 50%, performances specific to cellulose fibers such as water absorption and solvent resistance are remarkably deteriorated, which is not preferable.

さらに、本発明の不織布において、吸液性や生体適合性をさらに向上させるために、セルロース繊維の水酸基を各種の官能基で置換する誘導体化も有用である。主な誘導体化はエーテル化やエステル化、酸化などであり、たとえば特開2001−170104号公報に記載の手法でCM化セルロース繊維を得ることが出来る。また、湿潤時の寸法安定性を得るために、従来公知の架橋剤を用いることもできる。   Furthermore, in the nonwoven fabric of the present invention, in order to further improve the liquid absorbency and biocompatibility, derivatization in which the hydroxyl group of cellulose fiber is substituted with various functional groups is also useful. The main derivatization is etherification, esterification, oxidation, etc. For example, CM-modified cellulose fibers can be obtained by the method described in JP-A-2001-170104. In order to obtain dimensional stability when wet, a conventionally known crosslinking agent can also be used.

本発明のセルロース系繊維不織布が好ましく用いられる用途としては、特に限定はされないが、以下のような用途があげられる。工業用ワイパー、病院用ガーゼ、手術用ガーゼ、創傷被覆材、癒着防止材、水処理用途、食品用途をはじめとした各種フィルタリング用途、食品包材、種苗植え付け用のシーダーテープ、産廃処理場における飛散防止シート、法面保護や芝生等の養生シート、コンデンサセパレータ、フェイスマスクをはじめとしたスキンケア用途、院内感染予防や家庭用除菌ワイパー、オムツや生理用品等のサニタリー用途、紅茶や日本茶のパック等食品用途など幅広く用いることが出来る。   The use in which the cellulose fiber nonwoven fabric of the present invention is preferably used is not particularly limited, but includes the following uses. Industrial wipers, hospital gauze, surgical gauze, wound dressings, anti-adhesion materials, water treatment applications, various filtering applications including food applications, food packaging materials, seeder planting seeder tape, scattering at industrial waste treatment plants Prevention sheet, Slope protection and lawn protection sheet, Capacitor separator, Face mask and other skin care applications, Hospital infection prevention and household sanitizer wiper, Sanitary applications such as diapers and sanitary products, tea and Japanese tea packs It can be used widely for food applications.

以下、本発明を実施例などにより更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。本発明における測定方法を以下に示す。
(1)繊維径(μm)
不織布サンプルを、走査型電子顕微鏡(日本電子製JSM−6380)を用いて10000倍の倍率で観察し、任意の50本を選び測定し、それらの平均値を繊維径とした。
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further in detail, this invention is not limited only to these Examples. The measurement method in the present invention is shown below.
(1) Fiber diameter (μm)
Nonwoven fabric samples were observed at a magnification of 10,000 times using a scanning electron microscope (JSM-6380, manufactured by JEOL), arbitrarily selected 50 were measured, and the average value thereof was taken as the fiber diameter.

(2)繊維密度(g/cm3
不織布サンプルの厚みと目付をそれぞれ10回測定し、その平均値となる厚みA(mm)と目付B(g/m2)を用いて次式により繊維密度を算出した。
繊維密度 = ( B / A ) / 1000
(2) Fiber density (g / cm 3 )
The thickness and basis weight of each nonwoven fabric sample were measured 10 times, and the fiber density was calculated by the following formula using the average thickness A (mm) and basis weight B (g / m 2 ).
Fiber density = (B / A) / 1000

(3)伸長回復率(%)
JIS L1096「一般織物試験」に準拠し、以下のように測定を行った。
試料(幅20cm×把握長5cm)を水中に浸漬させ、軽く水を切った後、KES引っ張り試験機にセットする。100gf/cmまで伸長させた後、回復過程に入り、測定開始位置(負荷=0)に戻す。このときの残留歪みの長さをLmmとする。伸長回復率は次式により算出した。
伸長回復率(%)=(1−(L/100gf荷重時の伸度))×100
(3) Growth recovery rate (%)
In accordance with JIS L1096 “General Textile Test”, the measurement was performed as follows.
A sample (width 20 cm × gripping length 5 cm) is immersed in water, lightly drained, and then set on a KES tensile tester. After extending to 100 gf / cm, it enters a recovery process and returns to the measurement start position (load = 0). The length of the residual strain at this time is Lmm. The elongation recovery rate was calculated by the following formula.
Elongation recovery rate (%) = (1− (elongation at L / 100 gf load)) × 100

(4)吸水(液)倍率(倍)
吸水(液)倍率は次のようにして測定した。すなわち、標準状態下の不織布から10cm×10cmの試料を切り取り、重量を正確に測定する。該試料をメッシュ(10メッシュ、線径0.5mm)の上に載せ、これをバットに入れた水または水溶液の中に入れて30秒間浸漬する。その後、メッシュを引き上げて10分間放置した後、過剰な水、水溶液を濾紙等でふき取り、試料の重さを測定し、次式により吸水(液)倍率を算出する。
吸水(液)倍率(倍)=[(吸水(液)後の試料の重さg)−(試料の重さg)] /(試料の重さg)
(4) Water absorption (liquid) magnification (times)
The water absorption (liquid) magnification was measured as follows. That is, a 10 cm × 10 cm sample is cut from the nonwoven fabric under standard conditions, and the weight is accurately measured. The sample is placed on a mesh (10 mesh, wire diameter 0.5 mm), and this is placed in water or an aqueous solution in a vat and immersed for 30 seconds. Thereafter, the mesh is pulled up and allowed to stand for 10 minutes, and then excess water and an aqueous solution are wiped off with a filter paper or the like, the weight of the sample is measured, and the water absorption (liquid) magnification is calculated by the following formula.
Water absorption (liquid) magnification (times) = [(weight of sample after water absorption (liquid) g) − (weight of sample g)] / (weight of sample g)

(5)吸水速度(mm)
不織布サンプルから、幅方向に長さ250mmの試片を25mm幅で採取し、JIS−L1907準拠のバイレック試験にて、10分後の水面からの浸水高さを読み、吸水速度を測定した。
(5) Water absorption speed (mm)
A specimen having a length of 250 mm in the width direction was collected from the nonwoven fabric sample in a width of 25 mm, and the water immersion speed from the water surface after 10 minutes was read in a birec test in accordance with JIS-L1907, and the water absorption rate was measured.

(6)厚み(μm)
不織布サンプルを、JIS−L1096準拠の厚み試験にて荷重を1.96kPaとして測定した。
(6) Thickness (μm)
The nonwoven fabric sample was measured at a load of 1.96 kPa in a thickness test in accordance with JIS-L1096.

(7)目付(g/m2
0.05m2以上の面積の不織布サンプルを、105℃で一定質量になるまで乾燥後、20℃、65%RHの恒温室に16時間以上放置した後、その質量を測定し、不織布のm2当たりの質量(g)を求めた。
(7) Weight per unit (g / m 2 )
The nonwoven samples of 0.05 m 2 or more areas, after drying to constant weight at 105 ° C., 20 ° C., allowed to stand in a thermostatic chamber of RH 65% 16 hours or more, and measuring the mass of the nonwoven fabric m 2 The hit mass (g) was determined.

(8)ウェット時の伸び率の縦横比
ウェット時の伸び率とは、20cm×20cmの不織布をKES引張試験機にてウェット下で100gf/cm荷重時の伸び(%)を5回測定したその平均値を言う。ウェット時の伸び率の縦横比は、縦方向(MD方向)のウェット時の伸び率をC(%)、横方向のウェット時の伸び率をD(%)としたときに下記式より算出される。
ウェット時の伸び率の縦横比 = C/D
(8) Aspect ratio of elongation rate when wet The elongation rate when wet is measured by measuring the elongation (%) of a 20 cm × 20 cm nonwoven fabric under wet conditions with a KES tensile tester 5 times under a load of 100 gf / cm. Say the average value. The aspect ratio of the wet stretch ratio is calculated from the following formula when the wet stretch ratio in the longitudinal direction (MD direction) is C (%) and the wet stretch ratio in the horizontal direction is D (%). The
Aspect ratio of elongation when wet = C / D

[実施例1]
コットンリンター(重合度900〜1000)を銅アンモニア溶液で溶解し(コットンリンター10wt%、アンモニア7wt%、銅3wt%)、積層するシートの1層目と5層目は直径0.6mmの原液吐出孔が45.3個/cm2である紡口を用い、吐出量1ホールあたり0.11mL/min.で、2〜4層目は直径0.3mmの原液吐出孔が180.9個/cm2である紡口を用い、吐出量1ホールあたり0.03mL/min.で、流下緊張下で連続してネット上に5層重ねで紡糸してシートを形成させ、中圧の水流によりシートに貫通孔及び凹部を形成させた後、乾燥させた。得られた5層構造の多層不織布の繊維密度は0.090g/cm3、吸水倍率は14.4、吸水速度は174mmであり、繊維径は1層目と5層目が13.2μm、2〜4層目が3.7μmであった。
[Example 1]
Cotton linter (degree of polymerization 900-1000) is dissolved with copper ammonia solution (cotton linter 10wt%, ammonia 7wt%, copper 3wt%), and the first and fifth layers of the laminated sheets are discharged with a 0.6mm diameter stock solution Using a spinning nozzle having 45.3 holes / cm 2 , the discharge rate was 0.11 mL / min. Per hole. In the second to fourth layers, a spinneret having a diameter of 0.3 mm of a stock solution discharge hole of 180.9 holes / cm 2 is used, and a discharge amount of 0.03 mL / min. Then, a sheet was formed by spinning five layers on the net continuously under the downward tension, and through holes and recesses were formed in the sheet by a medium pressure water flow, and then dried. The resulting multilayer nonwoven fabric having a five-layer structure has a fiber density of 0.090 g / cm 3 , a water absorption ratio of 14.4, a water absorption speed of 174 mm, and a fiber diameter of 13.2 μm for the first and fifth layers. The fourth layer was 3.7 μm.

[実施例2]
実施例1において、多層不織布の繊維密度が0.120g/cm3となるように、紡糸されたシートを積層するネットのスピードを変えた以外は実施例1と同様の方法で繊維径が異なる複数の層からなる多層構造の不織布を得た。得られた5層構造の多層不織布は吸水倍率が15.2、吸水速度が147mmであった。
[Example 2]
In Example 1, a plurality of fiber diameters are different in the same manner as in Example 1 except that the speed of the net for laminating the spun sheets is changed so that the fiber density of the multilayer nonwoven fabric is 0.120 g / cm 3. A non-woven fabric having a multilayer structure consisting of these layers was obtained. The obtained multilayer nonwoven fabric having a five-layer structure had a water absorption ratio of 15.2 and a water absorption speed of 147 mm.

[実施例3]
実施例1において、多層不織布の繊維密度が0.103g/cm3となるように、紡糸されたシートを積層するネットのスピードを変えた以外は実施例1と同様の方法で繊維径が異なる複数の層からなる多層構造の不織布を得た。得られた5層構造の多層不織布は吸水倍率が14.3、吸水速度が184mmであった。
[Example 3]
In Example 1, a plurality of fiber diameters differing in the same manner as in Example 1 except that the speed of the net for laminating the spun sheets was changed so that the fiber density of the multilayer nonwoven fabric was 0.103 g / cm 3. A non-woven fabric having a multilayer structure consisting of these layers was obtained. The obtained multilayer nonwoven fabric having a five-layer structure had a water absorption ratio of 14.3 and a water absorption speed of 184 mm.

[比較例1]
コットンリンター(重合度900〜1000)を銅アンモニア溶液で溶解し(コットンリンター10wt%、アンモニア7wt%、銅3wt%)、直径0.3mmの原液吐出孔が180.9個/cm2である紡口を用い、吐出量1ホールあたり0.03mL/min.で、流下緊張下で連続してネット上に5層重ねで紡糸してシートを形成させ、中圧水流によりシートに貫通孔及び凹部を形成させた後、乾燥させた。得られた再生セルロース連続長繊維不織布の繊維密度は0.109g/cm3、吸水倍率は12.6、吸水速度は170mmであった。また、繊維径は3.7μmであった。
[Comparative Example 1]
Cotton linters (polymerization degree 900 to 1,000) was dissolved in cuprammonium solution (cotton linters 10 wt%, ammonia 7 wt%, copper 3 wt%), stock solution discharge hole with a diameter of 0.3mm is 180.9 pieces / cm 2 Boseki The mouth is used and the discharge rate is 0.03 mL / min. Per hole. Then, a sheet was formed by spinning five layers on the net continuously under flow tension, and through holes and recesses were formed in the sheet by a medium pressure water flow, and then dried. The obtained regenerated cellulose continuous long-fiber nonwoven fabric had a fiber density of 0.109 g / cm 3 , a water absorption ratio of 12.6, and a water absorption speed of 170 mm. The fiber diameter was 3.7 μm.

[比較例2]
天然セルロース繊維不織布(コットン製不織布)を用いた(スズラン株式会社製)。繊維密度は0.132g/cm3、吸水倍率は9.5、吸水速度は52mmであった。
[Comparative Example 2]
A natural cellulose fiber nonwoven fabric (cotton nonwoven fabric) was used (manufactured by lily of the valley). The fiber density was 0.132 g / cm 3 , the water absorption ratio was 9.5, and the water absorption speed was 52 mm.

[比較例3]
コットンリンター(重合度900〜1000)を銅アンモニア溶液で溶解し(コットンリンター10wt%、アンモニア7wt%、銅3wt%)、積層するシートの1層目から5層目まで直径0.6mmの原液吐出孔が45.3個/cm2である紡口を用い、吐出量1ホールあたり0.13mL/min.で、流下緊張下で連続してネット上に5層重ねで紡糸してシートを形成させ、中圧の水流によりシートに貫通孔及び凹部を形成させた後、乾燥させた。得られた再生セルロース連続長繊維不織布の繊維密度は0.06g/cm3、吸水倍率は13.6、吸水速度は65mmであった。また、繊維径は13.2μmであった。
[Comparative Example 3]
Cotton linter (degree of polymerization 900-1000) is dissolved with copper ammonia solution (cotton linter 10wt%, ammonia 7wt%, copper 3wt%), and the stock solution discharge 0.6mm in diameter from the first layer to the fifth layer of the laminated sheets Using a spinning nozzle with 45.3 holes / cm 2 , the discharge rate was 0.13 mL / min. Per hole. Then, a sheet was formed by spinning five layers on the net continuously under the downward tension, and through holes and recesses were formed in the sheet by a medium pressure water flow, and then dried. The obtained regenerated cellulose continuous long-fiber nonwoven fabric had a fiber density of 0.06 g / cm 3 , a water absorption ratio of 13.6, and a water absorption speed of 65 mm. The fiber diameter was 13.2 μm.

実施例1〜3、比較例1〜3で得られたセルロース系繊維不織布の繊維径、繊維密度、吸水倍率、吸水速度、厚み、目付けを表1に示す。本発明のセルロース系繊維不織布は優れた吸水倍率、吸水速度を示している。   Table 1 shows the fiber diameter, fiber density, water absorption rate, water absorption rate, thickness, and basis weight of the cellulosic fiber nonwoven fabrics obtained in Examples 1 to 3 and Comparative Examples 1 to 3. The cellulosic fiber nonwoven fabric of the present invention exhibits excellent water absorption capacity and water absorption speed.

Figure 2013159880
Figure 2013159880

実施例1〜3、比較例1〜3で得られたセルロース系繊維不織布のウェット時の伸び率の縦横比を表2に示す。表2に示したとおり、本発明のセルロース系不織布のウェット時の伸び率の縦横比は0.5以上であり、優れたウェット時の形態安定性を示している。   Table 2 shows the aspect ratios of the elongation ratios of the cellulosic fiber nonwoven fabrics obtained in Examples 1 to 3 and Comparative Examples 1 to 3 when wet. As shown in Table 2, the aspect ratio of the elongation ratio when wet of the cellulose-based nonwoven fabric of the present invention is 0.5 or more, indicating excellent form stability when wet.

Figure 2013159880
Figure 2013159880

実施例1〜3、比較例1〜3で得られたセルロース系繊維不織布の伸長回復率を表3に示す。表3に示したとおり、本発明のセルロース系繊維不織布の伸長回復率は上述のさらに好ましい範囲に入っており、優れた形状回復性及び形態安定性を示している。   Table 3 shows the elongation recovery rates of the cellulosic fiber nonwoven fabrics obtained in Examples 1 to 3 and Comparative Examples 1 to 3. As shown in Table 3, the elongation recovery rate of the cellulosic fiber nonwoven fabric of the present invention falls within the above-described more preferable range, and exhibits excellent shape recovery and shape stability.

Figure 2013159880
Figure 2013159880

本発明のセルロース系繊維不織布は、吸液性および保液性が高く、ウェット時の形態安定性に優れており、工業用ワイパー、病院用ガーゼ、手術用ガーゼ、創傷被覆材、癒着防止材、水処理用途、食品用途をはじめとした各種フィルタリング用途、食品包材、種苗植え付け用のシーダーテープ、産廃処理場における飛散防止シート、法面保護や芝生等の養生シート、コンデンサセパレータ、フェイスマスクをはじめとしたスキンケア用途、院内感染予防や家庭用除菌ワイパー、オムツや生理用品等のサニタリー用途、紅茶や日本茶のパック等食品用途など幅広く用いることが出来る。   Cellulosic fiber nonwoven fabric of the present invention has high liquid absorbency and liquid retention, is excellent in form stability when wet, industrial wiper, hospital gauze, surgical gauze, wound dressing, adhesion prevention material, Water treatment applications, various filtering applications including food applications, food packaging materials, seeder tapes for seedling planting, scattering prevention sheets at industrial waste treatment plants, protection sheets for slope protection and lawns, capacitor separators, face masks, etc. It can be used in a wide variety of applications such as skin care applications, hospital infection prevention, household sanitization wipers, sanitary applications such as diapers and sanitary products, and food applications such as tea and Japanese tea packs.

Claims (7)

繊維径が異なる複数の層からなるセルロース系繊維不織布であって、繊維径が0.1〜8μmの層を少なくとも1層有し、少なくとも片側表面層の繊維径が10〜20μmであることを特徴とするセルロース系繊維不織布。   A cellulose-based nonwoven fabric composed of a plurality of layers having different fiber diameters, having at least one layer having a fiber diameter of 0.1 to 8 μm, and having a fiber diameter of at least one side surface layer of 10 to 20 μm Cellulosic fiber nonwoven fabric. ウェット時の100gf/cm荷重後の伸長回復率が縦方向(MD方向)で45%以上、横方向で35%以上であり、ウェット時の100gf/cm荷重時の伸び率の縦横比(縦/横)が0.5以上である請求項1に記載のセルロース系繊維不織布。   The elongation recovery rate after loading with 100 gf / cm when wet is 45% or more in the machine direction (MD direction) and 35% or more in the transverse direction. The cellulosic fiber nonwoven fabric according to claim 1, wherein the width) is 0.5 or more. 吸水倍率が不織布重量に対して7〜20倍、かつ吸水速度がJIS−L1907準拠のバイレック試験に基づいて75mm以上である請求項1又は2に記載のセルロース系繊維不織布。   The cellulose fiber nonwoven fabric according to claim 1 or 2, wherein the water absorption ratio is 7 to 20 times the weight of the nonwoven fabric, and the water absorption speed is 75 mm or more based on a birec test in accordance with JIS-L1907. 内層部に繊維径0.1〜8μmの層が配置され、外層部に繊維径10〜20μmの層が配置された少なくとも3層からなる請求項1〜3いずれか一項に記載のセルロース系繊維不織布。   The cellulosic fiber according to any one of claims 1 to 3, comprising at least three layers in which a layer having a fiber diameter of 0.1 to 8 µm is disposed in the inner layer portion and a layer having a fiber diameter of 10 to 20 µm is disposed in the outer layer portion. Non-woven fabric. セルロース系繊維を少なくとも50%含んだ請求項4に記載のセルロース系繊維不織布。   The cellulosic fiber nonwoven fabric according to claim 4, comprising at least 50% cellulosic fibers. セルロース系繊維が再生セルロース系繊維からなる請求項4または5に記載のセルロース系繊維不織布。   The cellulosic fiber nonwoven fabric according to claim 4 or 5, wherein the cellulosic fiber comprises a regenerated cellulosic fiber. セルロース系繊維が連続長繊維からなる請求項6に記載のセルロース系繊維不織布。   The cellulosic fiber nonwoven fabric according to claim 6, wherein the cellulosic fiber comprises continuous long fibers.
JP2012023233A 2012-02-06 2012-02-06 Nonwoven fabric Pending JP2013159880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023233A JP2013159880A (en) 2012-02-06 2012-02-06 Nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023233A JP2013159880A (en) 2012-02-06 2012-02-06 Nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2013159880A true JP2013159880A (en) 2013-08-19

Family

ID=49172386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023233A Pending JP2013159880A (en) 2012-02-06 2012-02-06 Nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2013159880A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108691096A (en) * 2018-05-02 2018-10-23 阳光卫生医疗新材料江阴有限公司 A kind of preparation method, non-woven fabrics and the application of water conservation non-woven cloth
JP2020513070A (en) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber fabric with improved oil absorption capacity
JP2020513071A (en) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト Optically transparent wet non-woven cellulose fiber fabric
JP2020513073A (en) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber cloth in which fibers are uniformly combined
JP2020515737A (en) * 2017-04-03 2020-05-28 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber cloth with liquid wicking capacity according to the situation
JP2020515736A (en) * 2017-04-03 2020-05-28 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber cloth with high water retention capacity and low basis weight

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280153A (en) * 1993-09-13 1994-10-04 Asahi Chem Ind Co Ltd Production of nonwoven fabric of ultrafine yarn
JPH11217756A (en) * 1998-01-28 1999-08-10 Kanebo Ltd Laminated absorber
JP2007007062A (en) * 2005-06-29 2007-01-18 Daiwabo Co Ltd Skin-covering sheet for impregnation with liquid, manufacturing method thereof, and face mask using the sheet
JP2009228147A (en) * 2008-03-19 2009-10-08 Chisso Corp Sheet to be attached to skin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280153A (en) * 1993-09-13 1994-10-04 Asahi Chem Ind Co Ltd Production of nonwoven fabric of ultrafine yarn
JPH11217756A (en) * 1998-01-28 1999-08-10 Kanebo Ltd Laminated absorber
JP2007007062A (en) * 2005-06-29 2007-01-18 Daiwabo Co Ltd Skin-covering sheet for impregnation with liquid, manufacturing method thereof, and face mask using the sheet
JP2009228147A (en) * 2008-03-19 2009-10-08 Chisso Corp Sheet to be attached to skin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513070A (en) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber fabric with improved oil absorption capacity
JP2020513071A (en) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト Optically transparent wet non-woven cellulose fiber fabric
JP2020513073A (en) * 2017-04-03 2020-04-30 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber cloth in which fibers are uniformly combined
JP2020515737A (en) * 2017-04-03 2020-05-28 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber cloth with liquid wicking capacity according to the situation
JP2020515736A (en) * 2017-04-03 2020-05-28 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber cloth with high water retention capacity and low basis weight
JP7005740B2 (en) 2017-04-03 2022-01-24 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber fabrics, methods, equipment, and products or complexes with improved oil absorption capacity
JP7019928B2 (en) 2017-04-03 2022-02-16 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber fabrics, methods, equipment, and products or complexes with improved oil absorption capacity
JP7019929B2 (en) 2017-04-03 2022-02-16 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber fabrics, methods, equipment, and products or complexes with improved oil absorption capacity
US11326283B2 (en) 2017-04-03 2022-05-10 Lenzing Aktiengesellschaft Nonwoven cellulose fiber fabric with homogeneously merged fibers
JP7136181B2 (en) 2017-04-03 2022-09-13 レンツィング アクツィエンゲゼルシャフト Non-woven cellulose fiber fabric with uniformly merged fibers
CN108691096A (en) * 2018-05-02 2018-10-23 阳光卫生医疗新材料江阴有限公司 A kind of preparation method, non-woven fabrics and the application of water conservation non-woven cloth

Similar Documents

Publication Publication Date Title
US20230228003A1 (en) Fibrous Elements and Fibrous Structures Employing Same
EP2167005B1 (en) Fibrous structures and methods for making same
JP4834659B2 (en) Fibers, nonwovens and articles containing nanofibers made from high glass transition temperature polymers
EP2167006B1 (en) Fibrous structures and methods for making same
EP2167712B1 (en) Process for making fibrous structures
JP5325842B2 (en) Fibers, nonwovens and articles containing nanofibers made from broad molecular weight distribution polymers
US7291300B2 (en) Coated nanofiber webs
CA2779110C (en) Polypropylene fibrous elements and processes for making same
JP2013159880A (en) Nonwoven fabric
US9440001B2 (en) Absorbent materials
JP6005977B2 (en) Sheet for makeup
EP3424475A1 (en) Absorbent body and sanitary article
JP2013124435A (en) Cosmetic sheet
JP4471620B2 (en) Cellulose fiber nonwoven fabric and nonwoven fabric product using the same
WO2015015331A1 (en) Solution spinning of fibers
JP2012092466A (en) Wet-laid nonwoven fabric and textile product
JP6818038B2 (en) Low-eluting polyethylene fiber and non-woven fabric using it
JP2013227689A (en) Sanitary material
JP2018127744A (en) Cellulosic fiber nonwoven fabric for face mask
JP2005245752A (en) Wiping cloth
JP3983088B2 (en) Cellulose extra-fine long fiber nonwoven fabric
JP2021023677A (en) Absorbent article
JP2022061310A (en) Nonwoven fabric
KR20100024121A (en) Facial tissue for removing sebum and manufacturing method
JP2005192864A (en) Nonwoven fabric gauze and wound protecting material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906