JP2013159828A - Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment - Google Patents

Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment Download PDF

Info

Publication number
JP2013159828A
JP2013159828A JP2012023240A JP2012023240A JP2013159828A JP 2013159828 A JP2013159828 A JP 2013159828A JP 2012023240 A JP2012023240 A JP 2012023240A JP 2012023240 A JP2012023240 A JP 2012023240A JP 2013159828 A JP2013159828 A JP 2013159828A
Authority
JP
Japan
Prior art keywords
surface treatment
electrode
discharge surface
discharge
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012023240A
Other languages
Japanese (ja)
Inventor
Masao Oka
昌男 岡
Haruhiro Osada
晴裕 長田
Yoshio Osawa
芳夫 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2012023240A priority Critical patent/JP2013159828A/en
Publication of JP2013159828A publication Critical patent/JP2013159828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode or the like for electric discharge surface treatment having many options for material particles and capable of performing stable electric discharge.SOLUTION: An electrode for electric discharge surface treatment generates electric discharge between a treated material (18) and the electrode to form a film (20) on the surface of the treated material by the energy, and has: a material particle part (30) including material particles (14) to become a material for the film; and a conductive path part (32) continuously formed from one end part (10a), which supplies electric power, to the other end part (10b), which is to be a starting point of the electric discharge, wherein the volume resistance rate of the conductive path part is lower than that of the material particles part.

Description

本発明は、放電表面処理に用いられる放電表面処理用電極及び当該放電表面処理用電極の製造方法に関する。   The present invention relates to a discharge surface treatment electrode used for discharge surface treatment and a method for producing the discharge surface treatment electrode.

油液中に設置した被処理材料と電極の間に放電を発生させ、当該放電のエネルギーを利用する技術として、放電加工と放電表面処理が開発されている。放電加工に用いられる電極が、放電による加工を実現できれば足りるのに対して、放電表面処理には、被処理材料に形成する被膜の材料となる材料粒子を圧縮成形した、内部に空隙を有する電極が用いられ、このような電極には、放電加工に用いられる電極とは異なる性質・機能が求められる。すなわち、放電表面処理用電極は、その構成材料の少なくとも一部が、放電エネルギーによって被処理材料表面に移動する必要があり、構成材料、強度(壊れやすさ)、導電性などが、放電加工用の電極とは大きく異なる。   Electrical discharge machining and electrical discharge surface treatment have been developed as techniques for generating electrical discharge between a material to be processed and an electrode installed in an oil liquid and using the energy of the electrical discharge. Whereas it is sufficient that the electrode used for electric discharge machining can realize electric discharge machining, the electric discharge surface treatment is performed by compression-molding material particles that form a film to be formed on the material to be processed, and an electrode having voids inside. Such electrodes are required to have properties and functions different from those of electrodes used for electric discharge machining. That is, at least a part of the constituent material of the discharge surface treatment electrode needs to move to the surface of the material to be treated by the discharge energy, and the constituent material, strength (easy to break), conductivity, etc. are for electric discharge machining. This is very different from the electrode.

このような放電表面処理用電極に関する従来技術としては、例えば金属粉末あるいは金属化合物粉末を加圧成形した圧粉体を用いた電極が開示されている(特許文献1等参照)。従来技術に係る放電表面処理用電極は、金属粉末あるいは金属化合物粉末に、必要に応じてAg等の軟性金属粉末等を混入させて加圧成形することにより、要求される強度や導電性を確保しようとするものである。   As a conventional technique related to such an electrode for discharge surface treatment, for example, an electrode using a green compact obtained by press-molding a metal powder or a metal compound powder is disclosed (see Patent Document 1, etc.). The electrode for discharge surface treatment according to the prior art ensures the required strength and conductivity by pressing and molding metal powder or metal compound powder with soft metal powder such as Ag as required. It is something to try.

また、放電表面処理用電極に関する他の従来技術として、炭素あるいは黒鉛を混入した放電表面処理用電極も提案されている(特許文献2等参照)。しかし、このような放電表面処理用電極は、被処理材料に形成される硬質被膜の硬度をより高くするために、電極に含まれる炭素量を増やす目的で炭素粉末を混入させたものにすぎず、炭素粉末を導電材料として用いる旨の示唆はなく、また、開示された炭素粉末は、分散性が悪く、電気伝導率が低い電極となるおそれがあり、導電材料として好適に機能できる態様ではなく、また、用いる材料粒子が不導体の場合、電気伝導率が低すぎて、電極として用いられないおそれがあった。   In addition, as another conventional technique related to a discharge surface treatment electrode, a discharge surface treatment electrode mixed with carbon or graphite has also been proposed (see Patent Document 2, etc.). However, such an electrode for discharge surface treatment is merely a mixture of carbon powder for the purpose of increasing the amount of carbon contained in the electrode in order to increase the hardness of the hard coating formed on the material to be treated. There is no suggestion that carbon powder is used as a conductive material, and the disclosed carbon powder has poor dispersibility and may be an electrode with low electrical conductivity, and is not an aspect that can function suitably as a conductive material. In addition, when the material particles used are non-conductive, the electrical conductivity is too low, and there is a possibility that the material particles cannot be used as an electrode.

さらに、放電表面処理用電極の評価方法として、四短針法による電気抵抗の測定により、電極の崩れやすさ及び材料粒子同士の密着性が適切であるか否かを判断する手法が提案されている(特許文献3等参照)。   Furthermore, as a method for evaluating an electrode for discharge surface treatment, there has been proposed a method for determining whether or not the electrode is easily collapsed and the adhesion between the material particles is appropriate by measuring the electrical resistance by a four-short needle method. (Refer to patent document 3 etc.).

再公表WO99/46423Republished WO99 / 46423 再公表WO99/47730Republished WO99 / 47730 特開2009−102747JP 2009-102747 A

従来技術に係る放電表面処理用電極の強度及び導電率は、材料となる粉体粒子自体の性質に大きく依存するため、使用可能な粉体粒子が限定され、たとえ被処理材料表面に移動させたい材料であっても、放電表面処理用電極に用いる材料粒子として採用することが難しい場合があった。また、電極に含まれる炭素粉末、材料粒子及び空隙が電極中に均一に分散していないために、放電が不安定になり、被処理材料表面に形成される膜厚も不均一になる場合があった。   The strength and conductivity of the discharge surface treatment electrode according to the prior art largely depend on the properties of the powder particles themselves, so that the usable powder particles are limited, and it is desired to move them to the surface of the material to be treated. Even if it is a material, it may be difficult to employ | adopt as a material particle used for the electrode for discharge surface treatment. In addition, since the carbon powder, material particles, and voids contained in the electrode are not uniformly dispersed in the electrode, the discharge becomes unstable and the film thickness formed on the surface of the material to be processed may become non-uniform. there were.

また、電気抵抗の測定による放電表面処理用電極の評価も、良品と不良品の判別には有効であるものの、製造工程における不良品の発生を直接的に低減するものではない。したがって、従来技術に係る放電表面処理用電極は、導電性の劣る材料粒子を採用することが難しく、また、安定した放電を得ることが難しいという問題を有している。   In addition, evaluation of the electrode for discharge surface treatment by measuring electric resistance is effective for discriminating between good products and defective products, but does not directly reduce the occurrence of defective products in the manufacturing process. Therefore, the discharge surface treatment electrode according to the prior art has a problem that it is difficult to adopt material particles having poor conductivity and it is difficult to obtain a stable discharge.

本発明は、このような課題に鑑みてなされ、その目的は、材料粒子の選択枝が多く、安定した放電を行うことができる放電表面処理用電極及び当該放電表面処理用電極の製造方法を提供することである。   The present invention has been made in view of such problems, and the object thereof is to provide a discharge surface treatment electrode capable of performing stable discharge with many selections of material particles and a method for producing the discharge surface treatment electrode. It is to be.

上述の課題を解決するために、本発明に係る放電表面処理用電極は、
被処理材料との間に放電を発生させ、そのエネルギーにより前記被処理材料表面に被膜を形成する放電表面処理用電極であって、
前記被膜の材料となる材料粒子を含む材料粒子部と、
電力を供給される一方の端部から、前記放電の起点となる他方の端部まで連続するように形成されており、前記材料粒子部より体積抵抗率が低い導電経路部と、を有する。
In order to solve the above-described problems, an electrode for discharge surface treatment according to the present invention is:
An electrode for discharge surface treatment that generates a discharge between the material to be treated and forms a film on the surface of the material to be treated by its energy,
A material particle portion containing material particles to be the material of the coating;
A conductive path portion formed so as to continue from one end portion to which power is supplied to the other end portion serving as a starting point of the discharge, and having a volume resistivity lower than that of the material particle portion.

本発明に係る放電表面処理用電極は、被膜の材料となる材料粒子を含む材料粒子部とは別に、材料粒子部より体積抵抗率が低く、電極内の導電経路となる導電経路部を有する。従来技術に係る放電表面処理用電極は、基本的に単一の層からなるものであったが、本発明に係る放電表面処理用電極は、導電経路部を有することにより、材料粒子部の導電性を補い、安定した放電を実現することができる。したがって、本発明に係る放電表面処理用電極は、材料粒子部の導電性が低いような場合にでも放電を行うことが可能である。また、材料粒子が均一に分散されず、材料粒子部の一部に体積抵抗率が高い部分ができてしまうような場合にでも、導電経路部による確実な導電経路が、放電の起点となる箇所の近くまで形成されていることにより、放電特性のばらつきを抑制することが可能である。そのため、本発明に係る放電表面処理用電極は、放電処理時において放電状態が不安定になることを防止することができ、高精度な放電表面処理を実施できる。   The electrode for discharge surface treatment according to the present invention has a conductive path portion that has a volume resistivity lower than that of the material particle portion and serves as a conductive path in the electrode, in addition to the material particle portion including the material particles that become the material of the coating film. The electrode for discharge surface treatment according to the prior art was basically composed of a single layer. However, the electrode for discharge surface treatment according to the present invention has a conductive path portion, so Therefore, stable discharge can be realized. Therefore, the discharge surface treatment electrode according to the present invention can discharge even when the material particle portion has low conductivity. In addition, even when the material particles are not uniformly dispersed and a part having a high volume resistivity is formed in a part of the material particle part, a place where a reliable conductive path by the conductive path part is a starting point of discharge It is possible to suppress variation in discharge characteristics. Therefore, the discharge surface treatment electrode according to the present invention can prevent the discharge state from becoming unstable during the discharge treatment, and can implement a highly accurate discharge surface treatment.

また、本発明に係る放電表面処理用電極は、導電経路部が導電性を補うことにより、比較的導電性の低い材料粒子を採用したり、材料粒子部の内部に導電性の低い粒子を混在させることも可能であり、放電表面処理において被処理材料の表面に形成したい被膜の性質に応じて、様々な種類の材料粒子等を含み得る。   Further, the electrode for discharge surface treatment according to the present invention employs material particles having relatively low conductivity by the conductive path portion supplementing conductivity, or mixes particles having low conductivity inside the material particle portion. Depending on the properties of the film to be formed on the surface of the material to be treated in the discharge surface treatment, various kinds of material particles and the like can be included.

また、例えば、前記材料粒子部と前記導電経路部は、前記導電経路部の電流方向に略垂直な方向に沿って配置されていても良い。   For example, the material particle part and the conductive path part may be arranged along a direction substantially perpendicular to the current direction of the conductive path part.

材料粒子部と導電経路部を、導電経路部の電流方向に略垂直な方向に沿って交互に配置することにより、材料粒子部における任意の部分が、導電経路部に近接して配置されるようになるため、導電経路部が材料粒子部の導電性を好適に補うことができる。   By arranging the material particle part and the conductive path part alternately along a direction substantially perpendicular to the current direction of the conductive path part, an arbitrary part in the material particle part is arranged close to the conductive path part. Therefore, the conductive path portion can suitably supplement the conductivity of the material particle portion.

また、例えば、前記導電経路部は、前記材料粒子部を挟んで、層状又は棒状に複数形成されていても良い。   Further, for example, a plurality of the conductive path portions may be formed in a layer shape or a rod shape with the material particle portion interposed therebetween.

導電経路部が、材料粒子部を挟んで層状又は棒状に複数形成されていることにより、このような放電表面処理用電極は、材料粒子部における任意の部分が、導電経路部に近接して配置されるようになるため、導電経路部が材料粒子部の導電性を好適に補うことができる。   Since a plurality of conductive path portions are formed in layers or rods with the material particle portion in between, any part of the material particle portion is disposed close to the conductive path portion. Therefore, the conductive path portion can suitably supplement the conductivity of the material particle portion.

また、本発明に係る放電表面処理用電極の製造方法は、被処理材料との間に放電を発生させ、そのエネルギーにより前記被処理材料表面に被膜を形成する放電表面処理用電極の製造方法であって、
前記被膜の材料となる材料粒子を含む材料粒子層と、前記材料粒子より導電性の高い導電部材を含む導電部材層とを交互に積層させる工程と、
積層された前記材料粒子層及び前記導電部材層を焼結する工程と、を含む。
Moreover, the manufacturing method of the electrode for discharge surface treatment which concerns on this invention is a manufacturing method of the electrode for discharge surface treatment which generate | occur | produces discharge between material to be processed, and forms a film on the surface of said material to be processed with the energy. There,
A step of alternately laminating a material particle layer containing material particles as a material of the coating and a conductive member layer containing a conductive member having higher conductivity than the material particles;
And sintering the laminated material particle layer and the conductive member layer.

本発明に係る放電表面処理用電極の製造方法は、材料粒子層と導電部材層を交互に積層させる工程を含むことにより、このような製造方法によって製造された放電表面処理用電極は、材料粒子層による材料粒子部と導電部材層による導電経路部が積層された構造となり、材料粒子部の導電性を、導電経路部が補うことができる。従来技術に係る放電表面処理用電極は1層構造であり、全体をなるべく均質に形成することによって放電を安定させようとするものであったため、材料粒子層と導電部材層の2層構造を形成する本発明に係る放電表面処理用電極の製造方法は、画期的なものである。また、積層構造とすることにより、焼結後に材料粒子部となる材料粒子層における任意の部分が、焼結後に導電経路部となる導電部材層に近接して配置されるため、このような製造方法によって製造された放電表面処理用電極は、安定した放電と被膜形成を実現することができる。   The discharge surface treatment electrode manufacturing method according to the present invention includes a step of alternately laminating material particle layers and conductive member layers, whereby the discharge surface treatment electrode manufactured by such a manufacturing method includes material particles. The material particle part by the layer and the conductive path part by the conductive member layer are laminated, and the conductive path part can supplement the conductivity of the material particle part. The discharge surface treatment electrode according to the prior art has a single-layer structure, and is intended to stabilize the discharge by forming the entire structure as homogeneously as possible. Therefore, a two-layer structure of a material particle layer and a conductive member layer is formed. The method for producing an electrode for discharge surface treatment according to the present invention is epoch-making. In addition, by forming a laminated structure, an arbitrary portion in the material particle layer that becomes the material particle portion after sintering is disposed in proximity to the conductive member layer that becomes the conductive path portion after sintering. The discharge surface treatment electrode manufactured by the method can realize stable discharge and film formation.

また、本発明の第2の観点に係る放電表面処理用電極の製造方法は、被処理材料との間に放電を発生させ、そのエネルギーにより前記被処理材料表面に被膜を形成する放電表面処理用電極の製造方法であって、
前記被膜の材料となる材料粒子より導電性の高い膜状又は棒状の導電部材を、成形型内に配置する工程と、
前記導電部材が配置された成形型内に前記材料粒子を充填する工程と、
前記導電部材と前記材料粒子とを圧縮成形して成形体を形成する工程と、
前記成形体を焼結する工程と、を含む。
In addition, the discharge surface treatment electrode manufacturing method according to the second aspect of the present invention is for discharge surface treatment in which a discharge is generated between a material to be treated and a film is formed on the surface of the material to be treated by the energy. An electrode manufacturing method comprising:
Arranging a film-like or rod-like conductive member having a higher conductivity than the material particles as the material of the coating in a mold; and
Filling the material particles in a mold in which the conductive member is disposed;
Forming the molded body by compression molding the conductive member and the material particles;
Sintering the molded body.

第2の観点に係る製造方法のように、2つの層を交互に積み重ねる方法をとらず、導電部材を予め成形型内に配置する製造方法によっても、焼結後に材料粒子部と導電経路部の2層構造を有する放電表面処理用電極を製造することができる。   Unlike the manufacturing method according to the second aspect, the method of alternately stacking the two layers, and the manufacturing method in which the conductive member is placed in the mold in advance, the material particle portion and the conductive path portion after the sintering An electrode for discharge surface treatment having a two-layer structure can be produced.

図1は、本発明の一実施形態に係る放電表面処理用電極を用いた表面処理の概要を表す概念図である。FIG. 1 is a conceptual diagram showing an outline of surface treatment using a discharge surface treatment electrode according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る放電表面処理用電極の構造を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining the structure of a discharge surface treatment electrode according to an embodiment of the present invention. 図3は、本発明の第1実施形態に係る放電表面処理用電極の製造方法を表すフローチャートである。FIG. 3 is a flowchart showing the method for manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る放電表面処理用電極の製造方法における中間生成物を表す概念図である。FIG. 4 is a conceptual diagram showing an intermediate product in the method for manufacturing the electrode for discharge surface treatment according to the first embodiment of the present invention. 図5は、本発明の第2実施形態に係る放電表面処理用電極の製造方法を表すフローチャートである。FIG. 5 is a flowchart showing a method for manufacturing an electrode for discharge surface treatment according to the second embodiment of the present invention. 図6は、本発明の第2実施形態に係る放電表面処理用電極の製造方法における中間生成物を表す概念図である。FIG. 6 is a conceptual diagram showing an intermediate product in the method for manufacturing the electrode for discharge surface treatment according to the second embodiment of the present invention.

以下に、図面等を用いて本発明の一実施形態に係る放電表面処理用電極の説明を行う。   The discharge surface treatment electrode according to an embodiment of the present invention will be described below with reference to the drawings and the like.

第1実施形態
図1は、本発明の第1実施形態に係る放電表面処理用電極10を用いた放電表面処理の概要を表す概念図である。放電表面処理では、加工液16中に設置した被処理材料18と放電表面処理用電極10の間に放電を発生させ、そのエネルギーにより、被処理材料18の表面に硬質被膜20を形成する。放電表面処理において形成される被膜20は、放電時に溶融等した放電表面処理用電極10の電極材料、特に材料粒子14を用いて形成される。
First Embodiment FIG. 1 is a conceptual diagram showing an outline of a discharge surface treatment using a discharge surface treatment electrode 10 according to a first embodiment of the present invention. In the discharge surface treatment, a discharge is generated between the material to be treated 18 installed in the machining liquid 16 and the discharge surface treatment electrode 10, and the hard film 20 is formed on the surface of the material to be treated 18 by the energy. The coating film 20 formed in the discharge surface treatment is formed using the electrode material of the discharge surface treatment electrode 10 that has been melted during discharge, particularly the material particles 14.

放電表面処理用電極10は、電源24と電気的に接続されている電極取付部26に取り付けられて使用される。放電表面処理用電極10の一方の端部10aは、電極取付部26に接触しており、電源24からの電力は、一方の端部10aから放電表面処理用電極10に供給される。電源24は、被処理材料18とも電気的に接続されており、放電表面処理用電極10と被処理材料18の間の電位差を制御し、放電表面処理用電極10と被処理材料18の間にパルス状の放電を発生させる。放電表面処理用電極10の他方の端部10bは、放電表面処理用電極10における被処理材料18に近接する側の端部であり、放電表面処理時に放電の起点が生じる。   The discharge surface treatment electrode 10 is used by being attached to an electrode attachment portion 26 that is electrically connected to a power source 24. One end portion 10a of the discharge surface treatment electrode 10 is in contact with the electrode mounting portion 26, and power from the power source 24 is supplied to the discharge surface treatment electrode 10 from the one end portion 10a. The power source 24 is also electrically connected to the material to be treated 18, controls the potential difference between the discharge surface treatment electrode 10 and the material to be treated 18, and between the discharge surface treatment electrode 10 and the material to be treated 18. A pulsed discharge is generated. The other end portion 10b of the discharge surface treatment electrode 10 is an end portion of the discharge surface treatment electrode 10 on the side close to the material 18 to be processed, and a starting point of discharge is generated during the discharge surface treatment.

図2は、放電表面処理用電極10の内部構造を説明するための概念図であり、放電表面処理用電極10の断面を表している。放電表面処理用電極10は、材料粒子部30と導電経路部32が、X軸方向に沿って交互に配置された構造を有する。図2に示す断面では、材料粒子部30と導電経路部32は、それぞれY軸方向に伸びる帯状の層を形成しており、X軸方向に沿って積層された積層構造を形成している。なお、図2に示すY軸方向は、放電表面処理用電極10における給電側の端部である一方の端部10aから、放電の基点となる側の端部である他方の端部10bへ向かう方向であり、X軸方向は、Y軸方向に垂直な方向である。   FIG. 2 is a conceptual diagram for explaining the internal structure of the discharge surface treatment electrode 10 and shows a cross section of the discharge surface treatment electrode 10. The discharge surface treatment electrode 10 has a structure in which the material particle portions 30 and the conductive path portions 32 are alternately arranged along the X-axis direction. In the cross section shown in FIG. 2, the material particle part 30 and the conductive path part 32 each form a band-like layer extending in the Y-axis direction, and form a laminated structure laminated along the X-axis direction. Note that the Y-axis direction shown in FIG. 2 is directed from one end portion 10a that is the power supply side end portion of the discharge surface treatment electrode 10 to the other end portion 10b that is the end portion on the discharge base point side. The X-axis direction is a direction perpendicular to the Y-axis direction.

材料粒子部30は、被処理材料18の表面に形成される被膜20(図1参照)の材料となる材料粒子14を含んでいる。材料粒子部30には、材料粒子14の他に、材料粒子14同士の結合性を調整する軟性金属や、樹脂が炭素化することによって形成された炭素等が含まれる場合がある。   The material particle portion 30 includes material particles 14 that are materials of the coating film 20 (see FIG. 1) formed on the surface of the material 18 to be processed. In addition to the material particles 14, the material particle portion 30 may include a soft metal that adjusts the bonding property between the material particles 14, carbon formed by carbonization of the resin, and the like.

導電経路部32は、一方の端部10aから他方の端部10bまで連続するように形成されている。導電経路部32は、材料粒子部30より体積抵抗率が低く、例えば導電性の良好なFe、Ni、Cu等の金属を主要な材料とすることができるが、特に限定されない。導電経路部32には、導電経路部32に導電性を付与する導電部材の他にも、樹脂が炭素化することによって形成された炭素や、材料粒子14などを含んでいても良く、材料粒子部30に対して含有物質の一部が共通していても良い。   The conductive path portion 32 is formed so as to continue from one end portion 10a to the other end portion 10b. The conductive path portion 32 has a volume resistivity lower than that of the material particle portion 30 and can be mainly made of metal such as Fe, Ni, or Cu having good conductivity, but is not particularly limited. In addition to the conductive member that imparts conductivity to the conductive path portion 32, the conductive path portion 32 may include carbon formed by carbonization of the resin, material particles 14, and the like. A part of the contained material may be common to the portion 30.

導電経路部32は、電極取付部26に接触して電力を供給される一方の端部10aから、被処理材料18に近接する他方の端部10bまで連続しており、放電表面処理時には、導電経路部32の内部を、Y軸方向に沿って電流が流れる。本実施形態において、導電経路部32は層状であり、材料粒子部30を挟んで複数形成されているが、導電経路部32は、棒状や膜状であっても良い。また、導電経路部32は材料粒子部30に対して、均等に配置されていると良い。これは、導電経路部32が放電の起点となるため、この箇所に熱が生じ、放電表面処理が行われるため、この導電経路部32から材料粒子部30の粒子が離れすぎないように均等に配置することで安定した放電表面処理をすることができる。   The conductive path portion 32 is continuous from one end portion 10a to which power is supplied in contact with the electrode mounting portion 26 to the other end portion 10b adjacent to the material 18 to be processed. A current flows in the path portion 32 along the Y-axis direction. In the present embodiment, the conductive path portion 32 is layered, and a plurality of conductive path portions 32 are formed with the material particle portion 30 interposed therebetween. However, the conductive path portion 32 may be rod-shaped or film-shaped. In addition, the conductive path portion 32 is preferably arranged evenly with respect to the material particle portion 30. This is because the conductive path portion 32 is the starting point of discharge, and heat is generated at this location, and the discharge surface treatment is performed, so that the particles of the material particle portion 30 are not separated too far from the conductive path portion 32. By disposing, stable discharge surface treatment can be performed.

図3は、図2に示す放電表面処理用電極10の製造方法を表すフローチャートであり、図4(a)〜図4(c)は、放電表面処理用電極10の製造方法における中間生成物を表す概念図である。図3に示すステップS001では、図4(a)に示すような材料粒子層30aを形成する。   FIG. 3 is a flowchart showing a method of manufacturing the discharge surface treatment electrode 10 shown in FIG. 2, and FIGS. 4A to 4C show intermediate products in the method of manufacturing the discharge surface treatment electrode 10. FIG. In step S001 shown in FIG. 3, a material particle layer 30a as shown in FIG. 4A is formed.

材料粒子層30aは、焼結工程(図3のステップS004)後に材料粒子部30(図2参照)となる部分であり、例えば材料粒子14と、バインダとしての樹脂及び有機溶剤を混合してシート状に形成される。材料粒子14の材質は特に限定されないが、チタン(Ti)、チタン水素化物(TiH)、チタン炭化物(TiC)、チタンニッケル合金(TiN)、タングステンカーバイド、クロムカーバイド、コバルト、BN、B4C、ホウ化物、MoSi2、酸化鉄、酸化亜鉛等の導体を用いることができる。また、材料粒子14をフェノール樹脂等で被覆することにより、材料粒子14として不導体を採用することが可能である。材料粒子14を被覆した炭素は、焼結工程(図3のステップS004)において炭化され、焼結工程後において材料粒子14が導電性の炭素で被覆されることにより、材料粒子部30内部の導電経路が形成されるからである。したがって、樹脂によって被覆することにより、材料粒子14の材質として、チタン酸化物(TiO)、アルミナ、酸化クロム、ジルコニア等の不導体や、溶射材料として通常用いられるクロミア、イットリア、セリア、カルシア、グレーアルミナ、アルミナ−チタニア、ムライト、SiO、ベリリア等を採用することができる。 The material particle layer 30a is a portion that becomes the material particle portion 30 (see FIG. 2) after the sintering process (step S004 in FIG. 3). For example, the material particle layer 14 is mixed with a resin as a binder and an organic solvent to form a sheet. It is formed in a shape. The material of the material particle 14 is not particularly limited, but titanium (Ti), titanium hydride (TiH 2 ), titanium carbide (TiC), titanium nickel alloy (TiN), tungsten carbide, chromium carbide, cobalt, BN, B4C, boron A conductor such as a chemical compound, MoSi2, iron oxide, or zinc oxide can be used. Further, by covering the material particles 14 with a phenol resin or the like, it is possible to employ a nonconductor as the material particles 14. The carbon coated with the material particles 14 is carbonized in the sintering process (step S004 in FIG. 3). After the sintering process, the material particles 14 are coated with the conductive carbon, so that the conductivity inside the material particle portion 30 is increased. This is because a route is formed. Therefore, by coating with resin, as the material of the material particles 14, non-conductor such as titanium oxide (TiO 2 ), alumina, chromium oxide, zirconia, and chromia, yttria, ceria, calcia, gray alumina, alumina - titania, mullite, SiO 2, can be employed beryllia and the like.

材料粒子層30aに含まれる材料粒子14は、ボールミル等によって粉砕して生成された粉体であってもよく、粉末が凝集した凝集体であっても良い。材料粒子14の粒径は特に限定されないが、例えば1〜100μm程度とすることができる。材料粒子層30aに含まれる樹脂としては、フェノール樹脂の他に、エポキシ樹脂、ポリアミド等を使用することが可能であり、有機溶剤は樹脂等に応じて適宜選択すれば良く、特に限定されない。   The material particles 14 included in the material particle layer 30a may be a powder generated by pulverization with a ball mill or the like, or may be an aggregate in which the powder is aggregated. Although the particle diameter of the material particle 14 is not specifically limited, For example, it can be set as about 1-100 micrometers. As the resin contained in the material particle layer 30a, epoxy resin, polyamide, or the like can be used in addition to the phenol resin, and the organic solvent may be appropriately selected depending on the resin and the like, and is not particularly limited.

図3に示すステップS002では、図4(b)に示すような導電部材層32aを形成する。導電部材層32aは、焼結工程(図3のステップS004)後に導電経路部32(図2参照)となる部分であり、例えば粉末状の導電部材と、バインダとしての樹脂及び有機溶剤を混合して、シート状に形成される。導電部材層32aに含まれる導電部材としては、材料粒子層30aに含まれる材料粒子14より導電性の高い材料を用いることが好ましく、例えば、Fe、Ni、Cu、Ag、W等を採用することができる。導電部材層32aに含まれる樹脂及びバインダについても、材料粒子層30aと同様に、特に限定されない。なお、導電部材層32aは、粉末状の導電性材料とバインダを含むものに限られず、膜状、線状又は網状の導電部材のみによって構成されてもよい。   In step S002 shown in FIG. 3, a conductive member layer 32a as shown in FIG. 4B is formed. The conductive member layer 32a is a portion that becomes the conductive path portion 32 (see FIG. 2) after the sintering step (step S004 in FIG. 3). For example, a powdered conductive member, a resin as a binder, and an organic solvent are mixed. And formed into a sheet shape. As the conductive member included in the conductive member layer 32a, a material having higher conductivity than the material particles 14 included in the material particle layer 30a is preferably used. For example, Fe, Ni, Cu, Ag, W, or the like is employed. Can do. The resin and the binder contained in the conductive member layer 32a are not particularly limited as is the case with the material particle layer 30a. Note that the conductive member layer 32a is not limited to the one containing a powdery conductive material and a binder, and may be configured only by a film-like, linear, or net-like conductive member.

図3に示すステップS003では、図4(b)及び図4(c)に示すように、材料粒子層30aと導電部材層32aとを交互に積層させ、積層体を得る。図4に示すステップS004では、ステップS003で形成された積層体を焼結し、図2に示すような放電表面用電極10を得る。ステップS004の焼結工程における焼結温度は、特に限定されないが、例えば700℃〜3000℃程度とすることができる。   In step S003 shown in FIG. 3, as shown in FIGS. 4B and 4C, the material particle layers 30a and the conductive member layers 32a are alternately laminated to obtain a laminate. In step S004 shown in FIG. 4, the laminated body formed in step S003 is sintered to obtain the discharge surface electrode 10 as shown in FIG. Although the sintering temperature in the sintering process of step S004 is not specifically limited, For example, it can be set as about 700 to 3000 degreeC.

図4(a)〜図4(c)では、一度シート状の材料粒子層30a及び導電部材層32aを形成した後に積層する方法を挙げて説明したが、材料粒子層30aと導電部材層32aを積層する方法はこれに限定されず、例えば金型の内部に、粉末状の材料粒子14と導電部材とを、交互に敷き詰めることによって、材料粒子層30aと導電部材層32aを積層しても良い。   In FIG. 4A to FIG. 4C, the method of laminating the sheet-shaped material particle layer 30a and the conductive member layer 32a once has been described. However, the material particle layer 30a and the conductive member layer 32a are separated from each other. The method of stacking is not limited to this, and for example, the material particle layer 30a and the conductive member layer 32a may be stacked by alternately spreading the powdered material particles 14 and the conductive member inside the mold. .

図1及び図2に示す放電表面処理用電極10は、給電側である一方の端部10aから放電の起点となる側の他方の端部10bまで連続する導電経路部32を有することにより、材料粒子部30の導電性を、より体積抵抗率が低い導電経路部32が補うことにより、安定した放電を実現することができる。また、材料粒子部30の均一性が劣る場合であっても、導電経路部32という確実な導電経路が存在することにより、放電表面処理用電極10における他方の端部10bで安定した放電を起こすことが可能であり、被処理材料18により均質な被膜20を形成することが可能である。また、放電表面処理用電極10は、安定した放電を実現することにより、材料粒子14の転移効率の上昇も期待できる。   The discharge surface treatment electrode 10 shown in FIG. 1 and FIG. 2 has a conductive path portion 32 that continues from one end portion 10a on the power feeding side to the other end portion 10b on the discharge starting side. Stable discharge can be realized by supplementing the conductivity of the particle part 30 with the conductive path part 32 having a lower volume resistivity. Even when the uniformity of the material particle part 30 is inferior, the presence of a reliable conductive path called the conductive path part 32 causes a stable discharge at the other end 10b of the discharge surface treatment electrode 10. It is possible to form a uniform film 20 with the material 18 to be treated. The discharge surface treatment electrode 10 can also be expected to increase the transfer efficiency of the material particles 14 by realizing a stable discharge.

また、放電表面処理用電極10は、導電経路部32が材料粒子部30の導電性を補うことにより、材料粒子部30の単一層からなる放電表面処理用電極に比べて、材料粒子部30の体積抵抗率が高くても、放電表面処理用電極10として良好に機能することが可能である。したがって、放電表面処理用電極10は、放電表面処理において被処理材料18の表面に形成したい被膜20の性質に応じて、様々な種類の材料粒子14を含み得る。   Further, the discharge surface treatment electrode 10 has the conductive path portion 32 supplementing the conductivity of the material particle portion 30, so that the discharge surface treatment electrode 10 has a material particle portion 30 having a single layer. Even if the volume resistivity is high, the discharge surface treatment electrode 10 can function well. Accordingly, the discharge surface treatment electrode 10 can include various types of material particles 14 depending on the properties of the coating 20 that is desired to be formed on the surface of the material 18 to be treated in the discharge surface treatment.

さらに、材料粒子部30と導電経路部32を、導電経路部32の電流方向(Y軸方向)に略垂直な方向(X軸方向)に沿って交互に配置することにより、材料粒子部30における任意の部分が、導電経路部32に近接して配置されるようになるため、導電経路部32が材料粒子部30の導電性を、より好適に補うことができる。なお、放電表面処理用電極10を用いた放電表面処理によって形成される被膜20には、材料粒子14だけでなく、導電経路部32の導電部材が含まれる場合もあり、被膜20を材料粒子14と導電部材が反応して形成された化合物とすることも可能である。このように、放電表面処理用電極10は、導電経路部32に含まれる導電部材の材質を調整することにより、被膜20の特質を変更することも可能である。   Furthermore, the material particle portions 30 and the conductive path portions 32 are alternately arranged along a direction (X-axis direction) substantially perpendicular to the current direction (Y-axis direction) of the conductive path portions 32, thereby Since an arbitrary part comes to be disposed close to the conductive path portion 32, the conductive path portion 32 can more appropriately supplement the conductivity of the material particle portion 30. The coating film 20 formed by the discharge surface treatment using the discharge surface treatment electrode 10 may include not only the material particles 14 but also the conductive member of the conductive path portion 32, and the coating film 20 is formed of the material particles 14. It is also possible to use a compound formed by a reaction between the conductive member and the conductive member. As described above, the discharge surface treatment electrode 10 can also change the characteristics of the coating 20 by adjusting the material of the conductive member included in the conductive path portion 32.

第2実施形態
図1及び図2に示すような放電表面処理用電極10は、図3及び図4を用いて説明したように、材料粒子層30aと導電部材層32aを積層する方法以外にも、以下に示すような方法で製造することが可能である。図5は、第2実施形態に係る製造方法を表すフローチャートであり、図6(a)及び図6(b)は、第2実施形態に係る製造方法における中間生成物を表す概念図である。
Second Embodiment As shown in FIGS. 3 and 4, the discharge surface treatment electrode 10 as shown in FIGS. 1 and 2 is not limited to the method of laminating the material particle layer 30 a and the conductive member layer 32 a. It can be manufactured by the following method. FIG. 5 is a flowchart showing a manufacturing method according to the second embodiment, and FIGS. 6A and 6B are conceptual diagrams showing intermediate products in the manufacturing method according to the second embodiment.

図5に示すステップS101では、放電表面処理用電極10の製造に用いる導電部材32b(図6(a)参照)と、材料粒子14(図6(b)参照)を準備する。ステップS101で準備する導電部材32bの材質は、図3に示す導電部材層32aの形成工程(ステップS002)で用いた導電部材と同様であるが、その形状は、図6(a)に示すように棒状である。また、ステップS101で準備する材料粒子14は、図3に示す材料粒子層30aの形成工程(ステップS001)で用いた材料粒子14と同様である。   In step S101 shown in FIG. 5, a conductive member 32b (see FIG. 6A) and material particles 14 (see FIG. 6B) used for manufacturing the discharge surface treatment electrode 10 are prepared. The material of the conductive member 32b prepared in step S101 is the same as the conductive member used in the conductive member layer 32a formation step (step S002) shown in FIG. 3, but the shape is as shown in FIG. 6A. It is rod-shaped. Further, the material particles 14 prepared in step S101 are the same as the material particles 14 used in the forming step (step S001) of the material particle layer 30a shown in FIG.

図5のステップS102では、図6(a)に示すように、棒状の導電部材32bを、成形型40内に配置する。導電部材32bは、例えばX軸方向及びZ軸方向に所定の間隔で配置されるが、好ましくは互いに略均等な間隔を空けて配置される。なお、第2実施形態に用いられる導電部材32bは膜状であっても良く、その場合、ステップS102において、導電部材32bは、X軸方向又はZ軸方向に沿って所定の間隔で配置されても良い。   In step S <b> 102 of FIG. 5, as shown in FIG. 6A, the rod-shaped conductive member 32 b is arranged in the mold 40. For example, the conductive members 32b are arranged at predetermined intervals in the X-axis direction and the Z-axis direction, but are preferably arranged at substantially equal intervals. The conductive member 32b used in the second embodiment may be in the form of a film. In that case, in step S102, the conductive member 32b is arranged at a predetermined interval along the X-axis direction or the Z-axis direction. Also good.

図5のステップS103では、図6(b)に示すように、導電部材32bが配置された成形型40内に、材料粒子14を充填する。さらにステップS104では、図6(b)に示すように、導電部材32bと材料粒子14とを圧縮成形して成形体を形成する。ステップS105では、ステップS104で形成した成形体を焼結し、放電表面処理用電極10を得る。ステップS105における焼結温度は、図3のステップS004における焼結温度と同程度で良い。   In step S103 of FIG. 5, as shown in FIG. 6B, the material particles 14 are filled into the molding die 40 in which the conductive member 32b is disposed. Furthermore, in step S104, as shown in FIG. 6B, the conductive member 32b and the material particles 14 are compression-molded to form a molded body. In step S105, the compact formed in step S104 is sintered to obtain the discharge surface treatment electrode 10. The sintering temperature in step S105 may be approximately the same as the sintering temperature in step S004 of FIG.

このように、2つの層を交互に積み重ねる方法をとらず、導電部材32bを予め成形型40内に配置する製造方法によっても、焼結後に材料粒子部30と導電経路部32の2層構造を有する放電表面処理用電極10を製造することができる。また、第2実施形態に係る製造方法によって製造された放電表面処理用電極10も、第1実施形態に係る製造方法によって製造された放電表面処理用電極10と同様の効果を奏する。   In this way, the two-layer structure of the material particle part 30 and the conductive path part 32 after sintering is also obtained by a manufacturing method in which the conductive member 32b is placed in the mold 40 in advance without using a method of alternately stacking two layers. The discharge surface treatment electrode 10 can be manufactured. In addition, the discharge surface treatment electrode 10 manufactured by the manufacturing method according to the second embodiment also has the same effects as the discharge surface treatment electrode 10 manufactured by the manufacturing method according to the first embodiment.

10…放電表面処理用電極
10a…一方の端部
10b…他方の端部
14…材料粒子
16…加工液
18…被処理材料
20…被膜
24…電源
26…電極取付部
30…材料粒子部
30a…材料粒子層
32…導電経路部
32a…導電部材層
32b…導電部材
40…成形型
DESCRIPTION OF SYMBOLS 10 ... Electrode for discharge surface treatment 10a ... One end 10b ... The other end 14 ... Material particle 16 ... Processing liquid 18 ... Material to be processed 20 ... Film 24 ... Power supply 26 ... Electrode attaching part 30 ... Material particle part 30a ... Material particle layer 32 ... conductive path portion 32a ... conductive member layer 32b ... conductive member 40 ... molding die

Claims (5)

被処理材料との間に放電を発生させ、そのエネルギーにより前記被処理材料表面に被膜を形成する放電表面処理用電極であって、
前記被膜の材料となる材料粒子を含む材料粒子部と、
電力を供給される一方の端部から、前記放電の起点となる他方の端部まで連続するように形成されており、前記材料粒子部より体積抵抗率が低い導電経路部と、
を有する放電表面処理用電極。
An electrode for discharge surface treatment that generates a discharge between the material to be treated and forms a film on the surface of the material to be treated by its energy,
A material particle portion containing material particles to be the material of the coating;
Formed from one end to which electric power is supplied to the other end that is the starting point of the discharge, and a conductive path having a lower volume resistivity than the material particle,
An electrode for discharge surface treatment.
前記材料粒子部と前記導電経路部は、前記導電経路部の電流方向に略垂直な方向に沿って配置されていることを特徴とする請求項1に記載の放電表面処理用電極。   2. The discharge surface treatment electrode according to claim 1, wherein the material particle part and the conductive path part are arranged along a direction substantially perpendicular to a current direction of the conductive path part. 前記導電経路部は、前記材料粒子部を挟んで、層状又は棒状に複数形成されていることを特徴とする請求項1又は請求項2に記載の放電表明処理用電極。   3. The discharge assertion processing electrode according to claim 1, wherein a plurality of the conductive path portions are formed in a layer shape or a rod shape with the material particle portion interposed therebetween. 被処理材料との間に放電を発生させ、そのエネルギーにより前記被処理材料表面に被膜を形成する放電表面処理用電極の製造方法であって、
前記被膜の材料となる材料粒子を含む材料粒子層と、前記材料粒子より導電性の高い導電部材を含む導電部材層とを交互に積層させる工程と、
積層された前記材料粒子層及び前記導電部材層を焼結する工程と、
を含む放電表面処理用電極の製造方法。
A method for producing an electrode for discharge surface treatment, wherein a discharge is generated between the material to be treated and a film is formed on the surface of the material to be treated by its energy,
A step of alternately laminating a material particle layer containing material particles as a material of the coating and a conductive member layer containing a conductive member having higher conductivity than the material particles;
Sintering the laminated material particle layer and the conductive member layer;
A method for producing an electrode for discharge surface treatment comprising
被処理材料との間に放電を発生させ、そのエネルギーにより前記被処理材料表面に被膜を形成する放電表面処理用電極の製造方法であって、
前記被膜の材料となる材料粒子より導電性の高い膜状又は棒状の導電部材を、成形型内に配置する工程と、
前記導電部材が配置された成形型内に前記材料粒子を充填する工程と、
前記導電部材と前記材料粒子とを圧縮成形して成形体を形成する工程と、
前記成形体を焼結する工程と、
を含む放電表面処理用電極の製造方法。
A method for producing an electrode for discharge surface treatment, wherein a discharge is generated between the material to be treated and a film is formed on the surface of the material to be treated by its energy,
Arranging a film-like or rod-like conductive member having a higher conductivity than the material particles as the material of the coating in a mold; and
Filling the material particles in a mold in which the conductive member is disposed;
Forming the molded body by compression molding the conductive member and the material particles;
Sintering the molded body;
A method for producing an electrode for discharge surface treatment comprising
JP2012023240A 2012-02-06 2012-02-06 Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment Pending JP2013159828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023240A JP2013159828A (en) 2012-02-06 2012-02-06 Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023240A JP2013159828A (en) 2012-02-06 2012-02-06 Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment

Publications (1)

Publication Number Publication Date
JP2013159828A true JP2013159828A (en) 2013-08-19

Family

ID=49172345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023240A Pending JP2013159828A (en) 2012-02-06 2012-02-06 Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment

Country Status (1)

Country Link
JP (1) JP2013159828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227206B1 (en) * 2016-12-28 2017-11-08 三菱電機株式会社 Method for producing discharge surface-treated electrode and method for producing film body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227206B1 (en) * 2016-12-28 2017-11-08 三菱電機株式会社 Method for producing discharge surface-treated electrode and method for producing film body
WO2018123050A1 (en) * 2016-12-28 2018-07-05 三菱電機株式会社 Method for manufacturing discharge surface treatment electrode, and method for manufacturing coated object
US10577695B2 (en) 2016-12-28 2020-03-03 Mitsubishi Electric Corporation Method for manufacturing discharge surface treatment electrode and method for manufacturing film body
DE112016002010B4 (en) 2016-12-28 2021-12-23 Mitsubishi Electric Corporation Method of manufacturing an electrode for surface treatment by discharge and method of manufacturing a film body

Similar Documents

Publication Publication Date Title
US9676064B2 (en) Controllably-formed brazing structures and related compositions and methods
KR101534478B1 (en) Highly thermally conductive composite material
Tian et al. 3D printing of cellular materials for advanced electrochemical energy storage and conversion
JP6412485B2 (en) Fuel cell electrode material and method for producing the same
Grasso et al. Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008
US20190134713A1 (en) Additive manufacturing
KR20210029275A (en) Method for producing a porous transport layer for an electrochemical cell
JP5573110B2 (en) Sintered metal sheet material for electrochemical member and method for producing sintered metal sheet material for electrochemical member
CN106735207B (en) A kind of preparation method of high-compactness Cu/CuCr gradient composites
TWI466847B (en) Method for manufacturing ceramic sintered body, ceramic sintered body and ceramic heater
JP5863329B2 (en) Cemented carbide and method for producing the same
Xu et al. 3D printing of next‐generation electrochemical energy storage devices: from multiscale to multimaterial
CN111768888B (en) Conductive composites made from coated powders
JP5833786B1 (en) ELECTRODE MATERIAL FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
JP4346874B2 (en) Porous conductive plate
JP3819341B2 (en) Porous conductive plate
JP2013159828A (en) Electrode for electric discharge surface treatment and manufacturing method of electrode for electric discharge surface treatment
Xu et al. Laser-Induced Selective Metallization on Polymers for Both NIR and UV Lasers: Preparing 2D and 3D Circuits
JP3430166B2 (en) Porous conductive plate
JP2010193621A (en) Metal graphite brush
CN101572194A (en) Profiled high conductivity copper-tungsten electrical contact material and processing technique thereof
JP5814813B2 (en) Discharge surface treatment electrode and method for producing discharge surface treatment electrode
JP5898459B2 (en) Discharge surface treatment electrode and method for producing discharge surface treatment electrode
WO2020202139A1 (en) Particulate matter comprising coated microparticles and uses of same in printing
JP2001348277A (en) Method and device for spark plasma sintering