JP2013158166A - 太陽光発電衛星システム - Google Patents

太陽光発電衛星システム Download PDF

Info

Publication number
JP2013158166A
JP2013158166A JP2012017671A JP2012017671A JP2013158166A JP 2013158166 A JP2013158166 A JP 2013158166A JP 2012017671 A JP2012017671 A JP 2012017671A JP 2012017671 A JP2012017671 A JP 2012017671A JP 2013158166 A JP2013158166 A JP 2013158166A
Authority
JP
Japan
Prior art keywords
satellite
condensing
main
satellites
orbit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012017671A
Other languages
English (en)
Inventor
Kuniharu Yasuda
国治 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012017671A priority Critical patent/JP2013158166A/ja
Publication of JP2013158166A publication Critical patent/JP2013158166A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 太陽方向を追尾するための機械的な駆動機構や、地上局を追尾するための機械的な駆動機構を用いることなく、発電と送電を行うことができる太陽光発電衛星システムを得る。
【解決手段】 太陽電池及び送電アンテナを固定した主衛星に対して、反射体を有する複数の集光衛星を周回させることによって、太陽光を反射させて主衛星の太陽電池へ太陽光を照射させことで、主衛星の太陽電池を発電させ、発電した電力をマイクロ波に変換して地球上に送電する。
【選択図】 図1

Description

この発明は、宇宙空間にて太陽光を受けて発電を行い、得られた電力を送電する太陽光発電衛星システムに関する。
従来の太陽光発電衛星は、太陽電池にて太陽光を受けて、得られた電力をマイクロ波のエネルギに変換し、送電アンテナを介してこれを地上へ伝送する(例えば、特許文献1参照)。
特許第3613158号公報(図2)
太陽光発電衛星は、地上の特定の場所へ送電するため、送電先の場所と衛星の位置関係が一定となる静止軌道上に配置し、太陽光発電衛星に搭載した送電アンテナを送電先へ指向させるのが望ましい。この場合、太陽光発電衛星は、静止軌道上を周回する間に衛星に対する太陽光の入射方向が変化する。
従来の太陽光発電衛星は、太陽の方向を追尾して太陽電池の受光面を回転駆動させるための駆動機構(以下「太陽追尾駆動機構」)を搭載する必要があった。このため太陽追尾駆動機構が故障した場合に、太陽光発電衛星はその機能を喪失し送電できなくなるという問題がある。
また、太陽追尾駆動機構を用いることなく衛星本体に太陽電池の受光面を固定し、送電アンテナをジンバルにて保持して送電アンテナの指向方向を機械的に駆動する機構(以下「送電アンテナ駆動機構」)を採用した場合であっても、送電アンテナ駆動機構が故障した場合、太陽光発電衛星はその機能を喪失し送電できなくなるという問題が依然として残る。
この発明は、かかる問題点を解決するためになされたものであり、太陽方向を追尾するための機械的な駆動機構や、地上局を追尾するための機械的な駆動機構を用いることなく、発電と送電を行うことができる太陽光発電衛星システムを得ることを目的とする。
この発明による太陽光発電衛星システムは、太陽光を受けて発電し、発電した電力を送電する主衛星と、上記主衛星の周りを周回するとともに、入射した太陽光を反射して上記主衛星に照射する反射体を有した複数の集光衛星と、を備え、上記それぞれの集光衛星の軌道は、遠地点が上記主衛星の軌道の外側に設定され、それぞれの軌道の遠地点の位置が互いに異なるように配置されたものである。
また、上記集光衛星は軌道制御装置を備え、上記主衛星に対する相対的位置関係を上記集光衛星の軌道の変更によって制御し、公転の周期に同期させて上記集光衛星の遠地点の位置を移動させるようにしても良い。
この発明によれば、太陽追尾駆動機構、送電アンテナ駆動機構を用いないため、機械的な駆動機構の故障による送電の停止が無く、システムの信頼性を高めることができる。また、駆動機構の動作に伴う機械的擾乱が発生しないため、送電アンテナの指向方向を安定化することができる。
実施の形態1による太陽光発電衛星システムの構成図である。 実施の形態1による太陽光発電衛星システムの軌道の配置図である。 実施の形態1による太陽光発電衛星6aの位置を、主衛星1を基準とした回転座標系で時間経過とともに示した図である。 実施の形態1による太陽光発電衛星システムの位置関係を示す図である。 実施の形態1による太陽光発電衛星システムの位置関係において太陽光の入射方向が変わった場合を示す図である。 実施の形態2による太陽光発電衛星システムの構成図である 実施の形態2による集光衛星の軌道制御前後での軌道を示す図である。 実施の形態2による太陽光発電衛星システムの位置関係を示す図である。 実施の形態2において太陽の方向が変化した場合の太陽光発電衛星の位置関係を示す図である。
実施の形態1.
図1は、この発明に係る実施の形態1による太陽光発電衛星システムの構成を示す図である。図1において、主衛星1と、複数の集光衛星6a、6b、6c、6dからなる衛星群は、太陽光発電衛星システムを構成する。主衛星1は、受光面で太陽光を受けて発電する太陽電池2と、これが発電した電力をマイクロ波に変換する送信部3と、送信部3で生成されたマイクロ波を放射する送信アンテナ4と、主衛星本体5とからなる。主衛星本体5は、一方の面に太陽電池2を搭載し、反対側の他方の面に送信アンテナ4を搭載している。主衛星本体5は、送信部3と姿勢制御装置(図示せず)を内蔵している。太陽電池2は、板状の太陽電池搭載用パネル(図示せず)と、太陽電池搭載用パネルの一方の表面上に実装された複数の太陽電池セル(図示せず)から構成される。太陽電池搭載用パネルの他方の面は主衛星本体5に取り付けられる。送信部3は、太陽電池2の発生電力をマイクロ波に変換して、送信アンテナ4に給電する。送信アンテナ4は、地球上の送電先を指向している。送信アンテナ4は、送信部3から給電されたマイクロ波を宇宙空間に放射し、地球上の送電先へ向かって送電する。また、太陽電池2は、主衛星本体5の有する姿勢制御装置(図示せず)にも電力を与える。
また、複数(図1の例では4つ)の集光衛星6a、6b、6c、6dは、それぞれ集光衛星本体7a、7b、7c、7dと、反射体8a、8b、8c、8dとからなる。それぞれの反射体8a、8b、8c、8dは、集光衛星本体7a、7b、7c、7dにそれぞれ固定され、表面に入射した太陽光を主衛星1の太陽電池2に向かって反射する。
なお、それぞれの反射体8a、8b、8c、8dは、表面または裏面の一部に図示しない太陽電池セルが実装されて、その発電した電力が集光衛星本体7a、7b、7c、7dにそれぞれ供給されることで、各集光衛星本体の具備した姿勢制御装置(図示せず)に電力を与えるように構成されても良い。この場合、各集光衛星本体の姿勢制御装置(図示せず)は、反射体8a、8b、8c、8dの反射面が主衛星1の太陽電池2の表面または裏面を向い対向するように、姿勢の制御を行う。
図2は、実施の形態1による太陽光発電衛星システムの軌道の配置図である。図2において、円軌道をなす主衛星1の軌道9に対して、集光衛星6a、6b、6c、6dのそれぞれの軌道10a、10b、10c、10dが配置される。軌道9、軌道10a、10b、10c、10dは何れも互いに異なる軌道となっている。各集光衛星の軌道10a、10b、10c、10dは、その軌道長半径を主衛星1の軌道9の半径と同じに設定するとともに、若干の離心率を与えた楕円とし、遠地点を主衛星1の軌道9の外側に設定する。図2の例では、軌道9に対して軌道10a、10b、10c、10dの遠地点AP10a、AP10b、AP10c、AP10dがそれぞれ90度間隔で異なる位置に配置されている。
このように軌道を設定することで、集光衛星6a、6b、6c、6dは、主衛星1を基準にした回転座標系にて、主衛星1のまわりを軌道周期と同じ周期でまわる。このように主衛星1の周りをまわる動作をフライアラウンドと呼ぶ。
図3はフライアラウンドする集光衛星6aだけに着目して、主衛星1を基準とする回転座標系での位置を時間経過に合わせて示した図である。図3において、軸Rは地球を中心とする動径方向にとり(反地球側を「正」とする)、軸Vは軸Rと直交し衛星の進行方向を「正」とする。集光衛星6aは、時刻tにおいて基準とする主衛星1よりも動径が大きいためケプラーの法則によって速度が主衛星1よりも遅く、主衛星1の進行に対して遅れるため時刻tでは軸Vにおいて負側(図中右側)へ移動する。その後、時刻t、時刻tでは動径が短くなるため主衛星1の下側(地球側)へ至り、主衛星1との相対速度が増して軸Vにおいて正側(図中左側)へ移動し、再び時刻tの時と同じ位置へ戻る。このようにして、集光衛星6aは主衛星1の周りを時計方向に軌道周期でフライアラウンドする。
図4はこの発明の実施の形態1による太陽光発電衛星システムの位置関係を北の天頂から見て示した図である。この図において、主衛星1の軌道一周回中の太陽光11の入射方向は変わらないものとし、図4中の下から上に向かっているものとする。また、主衛星1は地上へ電力を伝送するため絶えず軌道9の中心を指向しており、主衛星1に固定した太陽電池2の受光面が反地球側(図中では軌道の外側)を向いている。この図4において、主衛星1からなる太陽光発電衛星システムの時間経過による移動方向は、反時計まわりである。なお、図3では主衛星1を基準とする回転座標系での集光衛星6a、6b、6c、6dの位置の遷移を示したのに対し、図4では地球を中心とした慣性空間での太陽光発電衛星システムを示している。また、互いの位置関係によって太陽11の日陰にならないよう、集光衛星6a、6b、6c、6dの間隔は十分に離れているものとする。
次に図4を用いて、主衛星1と集光衛星6a、6b、6c、6dとの位置関係による発電の状態を、時間の経過に合わせて説明する。まず初期の時刻tにおいて主衛星1に搭載した太陽電池2の受光面は太陽と反対側にある。このため、従来の太陽光発電衛星システムは太陽追尾機構を用いて太陽電池を太陽方向に向けて発電を行うよう構成されていた。しかしながら、この実施の形態1による太陽光発電衛星システムは、集光衛星6a(t)と集光衛星6b(t)が反射した太陽光を、太陽電池2の受光面で受けて発電する。太陽電池2の電力はマイクロ波に変換され、送信アンテナ4から地上へ電力を伝送する。
時刻t及び時刻tにおいても、時刻tと同様に主衛星1の太陽電池2の受光面は太陽光を直接受けられないが、この実施の形態1では、集光衛星6a(t)及び集光衛星6b(t)にて反射した太陽光を受けて太陽電池2が発電する。時刻tでは主衛星1に搭載した太陽電池2が太陽に正対するため、集光衛星からの反射光を利用せずに発電できる。時刻t及び時刻tでは時刻tと同様に、主衛星1の太陽電池2は太陽光を直接受けられない。このため、太陽電池2は集光衛星6b(t)及び集光衛星6b(t)にて反射した太陽光を受けて発電する。
なお、集光衛星6a、6b、6c、6dはそれぞれ姿勢制御装置を具備しているが、慣性空間で大きく姿勢変更することなく、反射光を主衛星1へ送り込めることが、この図から分かる。
次に地球の公転によって、地球とこれを周回する太陽光発電衛星システムへの太陽光11の入射方向が反時計回りに変化した場合について説明する。図5は太陽光11の入射方向が図中上から下となった場合の太陽光発電衛群の位置関係を示している。
時刻tにおいては、主衛星1に搭載した太陽電池2が太陽に正対するため、集光衛星6a、6b、6c、6dからの反射光を利用せずに発電できる。また、時刻tでは集光衛星6d(t)にて反射した太陽光を受けて発電する。さらに、時刻tでは集光衛星6d(t)と集光衛星6c(t)にて反射した太陽光を受けて発電する。したがって、1年を通じて太陽光11の入射方向が変化しても、太陽光発電衛星システムは常時発電を続けることができる。
以上説明したように、実施の形態1の太陽光発電衛群は、太陽光を受けて太陽電池2で発電し、太陽電池2の発電した電力を送電する主衛星1と、上記主衛星1の周りを周回するとともに、入射した太陽光を反射して上記主衛星1に照射する反射体8a、8b、8c、8dを有した複数の集光衛星6a、6b、6c、6dと、を備え、上記それぞれの集光衛星6a、6b、6c、6dの軌道は、遠地点が上記主衛星1の軌道の外側に設定され、それぞれの軌道の遠地点の位置が互いに異なるように配置されて構成される。これによって、主衛星1に搭載した太陽電池2を回転駆動することなく、発電を継続することができる。
実施の形態2.
上記の実施の形態1では、集光衛星の軌道を変更していないが、それぞれに軌道制御装置を与えることで、積極的に遠地点の位置を変えても良い。
図6は、主衛星1、及び軌道制御装置(図示せず)と姿勢制御装置(図示せず)を具備した複数(図の例では2つ)の集光衛星6a、6bからなる、太陽光発電衛星システムの構成を示す図である。図6において、主衛星1は、図1と同じ構成を具備しており、太陽電池2と、送信部3と、送信アンテナ4と、主衛星本体5からなる。集光衛星6a、6bは、図1と同じ構成を具備しており、それぞれ反射体8a、8bと、集光衛星本体7a、7bからなる。また、実施の形態2の集光衛星本体7a、7bは、スラスタ、モーメンタムホイール、姿勢検出センサ、計算機などからなる姿勢制御装置(図示せず)と、スラスタ、位置検出センサ、計算機などからなる軌道制御装置(図示せず)とを搭載している。集光衛星本体7a、7bは、姿勢制御装置によって適宜姿勢を制御しながら、その軌道制御装置によって集光衛星6a、6bの軌道を制御し、遠地点の位置を地球の公転の周期に同期させて移動させる。
また、図7は集光衛星6aの軌道10aをこれに搭載した軌道制御装置によって制御し、遠地点の位置を地球の公転の周期に同期させて移動させた時の、半年後の軌道10aを示す模式図である。図7では、集光衛星6aの軌道のみについて表しているが、集光衛星の全てについて主衛星1の公転の周期に同期させて遠地点の位置を移動させる軌道制御を行う。
図8は実施の形態2における太陽光発電衛星システムの位置関係を北の天頂から見て示した図である。この図において、軌道一周回中の太陽光11の入射方向は変わらないものとし、図8中の下から上に向かっている。
図8の時刻tにおいて集光衛星6a(t)と集光衛星6b(t)は太陽光を反射させ、主衛星1の太陽電池2はこれを受けて発電し電力を地上へ伝送する。時刻tでは集光衛星6a(t)にて反射した太陽光を主衛星1が受けて発電する。時刻tでは主衛星1が太陽光を直接受けて発電する。時刻tでは集光衛星6b(t)にて反射した太陽光を主衛星1が受けて発電する。
図8は、地球の公転によって、地球とこれを周回する太陽光発電衛星システムへの太陽光11の入射方向が反時計回りに変化し、太陽光11の入射方向が図中上から下となった場合の、太陽光発電衛群の位置関係を示している。このとき集光衛星6a、6bの軌道の遠地点は軌道制御によって移動しており、図7では近地点となるタイミングであっても軌道制御後の図8では遠地点となる。この図8の時刻tにおいて太陽光を主衛星1が直接受けて発電する。時刻tでは集光衛星6b(t)にて反射した太陽光を主衛星1が受けて発電する。時刻tでは集光衛星6a(t)、6b(t)にて反射した太陽光を主衛星1が受けて発電する。同様にして時刻tでは集光衛星6b(t)にて反射した太陽光を主衛星1が受けて発電する。
このように実施の形態2による太陽光発電衛星システムは、太陽光を受けて太陽電池2で発電し、太陽電池2の発電した電力を送電する主衛星1と、上記主衛星1の周りを周回するとともに、入射した太陽光を反射して上記主衛星1に照射する反射体8a、8bを有した複数の集光衛星6a、6bと、を備え、上記それぞれの集光衛星6a、6bの軌道は、遠地点が上記主衛星1の軌道の外側に設定され、それぞれの軌道の遠地点の位置が互いに異なるように配置されて構成される。また、上記集光衛星は軌道制御装置を備え、上記主衛星に対する相対的位置関係を上記集光衛星の軌道の変更によって制御し、公転の周期に同期させて上記集光衛星の遠地点の位置を移動させる。
したがって、公転の周期に同期させて集光衛星6a、6bの遠地点の位置を軌道制御によって移動させることにより、主衛星1と少なくとも2つの集光衛星6a、6bを用いて、1年を通じた太陽光11の入射方向変化においても発電することができる。
ところで、上記実施の形態1、2の説明では、太陽電池2の受光面を平面状でかつ片面としていたが、立体的に構成しても良く、平面状でかつ両面としても良いことは言うまでもない。
1 主衛星、2 太陽電池、3 送信部、4 送信アンテナ、5 主衛星本体、6a 集光衛星、6b 集光衛星、6c 集光衛星、6d 集光衛星、7a 集光衛星本体、7b 集光衛星本体、7c 集光衛星本体、7d 集光衛星本体、8a 反射体、8b 反射体、8c 反射体、8d 反射体。

Claims (2)

  1. 太陽光を受けて発電し、発電した電力を送電する主衛星と、
    上記主衛星の周りを周回するとともに、入射した太陽光を反射して上記主衛星に照射する反射体を有した複数の集光衛星と、
    を備え、
    上記それぞれの集光衛星の軌道は、遠地点が上記主衛星の軌道の外側に設定され、それぞれの軌道の遠地点の位置が互いに異なるように配置された太陽光発電衛星システム。
  2. 上記集光衛星は軌道制御装置を備え、上記主衛星に対する相対的位置関係を上記集光衛星の軌道の変更によって制御し、公転の周期に同期させて上記集光衛星の遠地点の位置を移動させる請求項1記載の太陽光発電衛星システム。
JP2012017671A 2012-01-31 2012-01-31 太陽光発電衛星システム Pending JP2013158166A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017671A JP2013158166A (ja) 2012-01-31 2012-01-31 太陽光発電衛星システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017671A JP2013158166A (ja) 2012-01-31 2012-01-31 太陽光発電衛星システム

Publications (1)

Publication Number Publication Date
JP2013158166A true JP2013158166A (ja) 2013-08-15

Family

ID=49052849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017671A Pending JP2013158166A (ja) 2012-01-31 2012-01-31 太陽光発電衛星システム

Country Status (1)

Country Link
JP (1) JP2013158166A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090995A1 (ko) * 2015-11-27 2017-06-01 한국항공우주연구원 고정반사판이 설치된 위성용 수동형 마이크로파 탐측기
CN112379684A (zh) * 2020-11-24 2021-02-19 沈阳航空航天大学 空间太阳能电站能量传输多智能体容错协同控制方法
CN112468058A (zh) * 2020-11-24 2021-03-09 沈阳航空航天大学 空间太阳能电站能量传输多智能体协同控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090995A1 (ko) * 2015-11-27 2017-06-01 한국항공우주연구원 고정반사판이 설치된 위성용 수동형 마이크로파 탐측기
US10989836B2 (en) 2015-11-27 2021-04-27 Korea Aerospace Research Institute Passive microwave sounder for satellite, having fixed reflection plate
CN112379684A (zh) * 2020-11-24 2021-02-19 沈阳航空航天大学 空间太阳能电站能量传输多智能体容错协同控制方法
CN112468058A (zh) * 2020-11-24 2021-03-09 沈阳航空航天大学 空间太阳能电站能量传输多智能体协同控制方法
CN112468058B (zh) * 2020-11-24 2022-02-22 沈阳航空航天大学 空间太阳能电站能量传输多智能体协同控制方法
CN112379684B (zh) * 2020-11-24 2023-11-28 沈阳航空航天大学 空间太阳能电站能量传输多智能体容错协同控制方法

Similar Documents

Publication Publication Date Title
TWI451577B (zh) 太陽追跡裝置及其追跡方法
US4371135A (en) Solar array spacecraft reflector
JP4478031B2 (ja) 宇宙発電システム
CN101403928A (zh) 太阳能聚能器的自动跟踪太阳系统
CN101093967A (zh) 具三角度追踪阳光的太阳能发电装置
CN103274060B (zh) 一种基于日光反射的航天器补能系统
CN105899430A (zh) 用于控制航天器的日光采集阶段的方法和装置
JP2013158166A (ja) 太陽光発電衛星システム
CN103868246A (zh) 一种功率密度可调的薄膜反射聚光式空间太阳能聚能站
Meng et al. Adjustment, error analysis and modular strategy for Space Solar Power Station
AU2014216902C1 (en) Solar tracking concentrator
CN110641741B (zh) 双自由度太阳帆板控制方法及其控制系统
CN206710899U (zh) 一种太阳方位跟踪系统
Tania et al. Sun tracking schemes for photovoltaic panels
Jin et al. Motion analysis and trajectory planning of solar tracking of a class of Space Solar Power Station
CN102566583A (zh) 一种太阳跟踪器时控装置
KR100948251B1 (ko) 건축물 지붕에 설치되어 태양을 따라 이동되는 태양광 전지판 장치
JP2009196496A (ja) 人工衛星
Xu et al. A novel solar tracker driven by waves: From idea to implementation
KR101585002B1 (ko) 태양전지의 전력차를 이용한 태양추적장치
WO2020179568A1 (ja) 太陽光発電装置及び太陽追尾方法
KR101612426B1 (ko) 반사경이 구비된 고정형 태양광 발전기
JP2017227408A (ja) ヘリオスタット装置
Prinsloo et al. Mechatronic platform with 12m2 solar thermal concentrator for rural power generation in Africa
JP3536066B2 (ja) 人工衛星