JP2013157522A - Semiconductor device, method of manufacturing semiconductor device, testing instrument for semiconductor device, method of testing semiconductor device, and method of connecting semiconductor device - Google Patents
Semiconductor device, method of manufacturing semiconductor device, testing instrument for semiconductor device, method of testing semiconductor device, and method of connecting semiconductor device Download PDFInfo
- Publication number
- JP2013157522A JP2013157522A JP2012018213A JP2012018213A JP2013157522A JP 2013157522 A JP2013157522 A JP 2013157522A JP 2012018213 A JP2012018213 A JP 2012018213A JP 2012018213 A JP2012018213 A JP 2012018213A JP 2013157522 A JP2013157522 A JP 2013157522A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- external lead
- out terminal
- external
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/4901—Structure
- H01L2224/4903—Connectors having different sizes, e.g. different diameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
この発明は、半導体装置、半導体装置の製造方法、半導体装置の試験器具、半導体装置の試験方法および半導体装置の接続方法に関する。 The present invention relates to a semiconductor device, a semiconductor device manufacturing method, a semiconductor device test instrument, a semiconductor device test method, and a semiconductor device connection method.
IGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFETなどのパワー半導体装置や電子回路を内蔵した半導体装置では、外部導出端子を測定プローブで挟み込んで電気的特性の測定試験を行なう場合がある。また、半導体装置の外部導出端子と外部回路配線の接続を溶接で行なう場合がある。 In a power semiconductor device such as IGBT (Insulated Gate Bipolar Transistor) or MOSFET, or a semiconductor device incorporating an electronic circuit, a measurement test of electrical characteristics may be performed by sandwiching an external lead terminal with a measurement probe. In some cases, the external lead-out terminal of the semiconductor device and the external circuit wiring are connected by welding.
図7は、従来の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のY−Y線で切断した要部断面図である。この半導体装置500は、IGBTを例に挙げたが、このIGBTの他にチップ内に電子回路を内蔵する場合もある。また、図では樹脂ケース57の内部は点線で示した。 7A and 7B are configuration diagrams of a conventional semiconductor device, in which FIG. 7A is a plan view of the main part, and FIG. 7B is a cross-sectional view of the main part taken along line YY in FIG. . In this semiconductor device 500, an IGBT is taken as an example. However, in addition to this IGBT, an electronic circuit may be built in a chip. In the figure, the inside of the resin case 57 is indicated by a dotted line.
この半導体装置500は、ダイ51と、このダイ51上に半田72などで固着されるIGBTチップ53と、外部導出端子52と、これらを被覆する樹脂ケース57とを備える。ダイ51や外部導出端子52は樹脂封止された後、リードフレームから切り出される。ダイ51と接続する外部導出端子52はダイ51を介してIGBTチップ53裏面のコレクタ電極に接続し、半導体装置500のコレクタ端子となる。IGBTのエミッタ電極54とボンディングワイヤ56で接続する外部導出端子52は半導体装置500のエミッタ端子となる。また、ゲート電極パッド55とボンディングワイヤ56で接続する外部導出端子52は半導体装置500のゲート端子となる。ダイ51と外部導出端子52の母材は銅無垢の部材61なので、製造工程中の熱履歴で厚い自然酸化膜が形成されるのを防止するため、ダイ51と外部導出端子52に、例えば、ニッケルメッキ層60が形成されている。 The semiconductor device 500 includes a die 51, an IGBT chip 53 fixed on the die 51 with solder 72 or the like, an external lead-out terminal 52, and a resin case 57 that covers them. The die 51 and the external lead-out terminal 52 are resin-sealed and then cut out from the lead frame. The external lead-out terminal 52 connected to the die 51 is connected to the collector electrode on the back surface of the IGBT chip 53 via the die 51 and becomes the collector terminal of the semiconductor device 500. The external lead-out terminal 52 connected to the IGBT emitter electrode 54 with the bonding wire 56 becomes the emitter terminal of the semiconductor device 500. The external lead-out terminal 52 connected to the gate electrode pad 55 with the bonding wire 56 is a gate terminal of the semiconductor device 500. Since the base material of the die 51 and the external lead-out terminal 52 is a solid copper member 61, in order to prevent a thick natural oxide film from being formed due to the thermal history during the manufacturing process, A nickel plating layer 60 is formed.
また、特許文献1には、電極パッドとプローブ針とが接触する部分の雰囲気を、非酸化性雰囲気にさせるための、不活性ガス又は還元性ガスを供給する非酸化性気体供給手段及びノズルを設けた検査装置を用いることで、半導体装置の電気的特性の試験を、半導体装置に損傷を与えずに、かつ高精度に行うことができることが開示されている。 Further, Patent Document 1 includes a non-oxidizing gas supply means for supplying an inert gas or a reducing gas and a nozzle for making the atmosphere of the portion where the electrode pad and the probe needle are in contact with each other into a non-oxidizing atmosphere. It is disclosed that by using the inspection device provided, the electrical characteristics of the semiconductor device can be tested with high accuracy without damaging the semiconductor device.
また、特許文献2には、不活性ガス雰囲気中で安定な測定を、スピーディにかつ安価に行うことができる電気的特性測定装置で、よりコンパクトな装置および測定方法が開示されている。 Patent Document 2 discloses a more compact apparatus and measurement method that is an electrical characteristic measurement apparatus that can perform a stable measurement in an inert gas atmosphere speedily and inexpensively.
図7の半導体装置500のように、ニッケルメッキ層60が形成された外部導出端子52に図示しない外部回路配線を溶接する場合、ニッケルメッキ層60により溶接性が低下し、接合不良が発生する場合がある。そのため、外部導出端子52にニッケルメッキ層を形成しない場合が考えられる。 When welding an external circuit wiring (not shown) to the external lead-out terminal 52 on which the nickel plating layer 60 is formed, as in the semiconductor device 500 of FIG. 7, the weldability is reduced by the nickel plating layer 60, resulting in poor bonding. There is. Therefore, a case where a nickel plating layer is not formed on the external lead-out terminal 52 can be considered.
図8は、銅無垢の部材61からなるの外部導出端子52を有する半導体装置600の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のY−Y線で切断した要部断面図である。この半導体装置600と図7の半導体装置500の違いは、ダイ51と外部導出端子52にニッケルメッキ層60を形成しない銅無垢の部材61を用いた点である。 FIGS. 8A and 8B are configuration diagrams of a semiconductor device 600 having an external lead-out terminal 52 made of a solid copper member 61. FIG. 8A is a plan view of the main part, and FIG. 8B is a plan view of FIG. It is principal part sectional drawing cut | disconnected by the YY line. The difference between the semiconductor device 600 and the semiconductor device 500 of FIG. 7 is that a solid copper member 61 that does not form the nickel plating layer 60 on the die 51 and the external lead-out terminal 52 is used.
図9は、図8の半導体装置600の電気的特性の測定試験を行なう様子を示す図であり、同図(a)は外部導出端子52を測定プローブ80で挟みこむ前の図、同図(b)は外部導出端子52を挟み込んだ後の図である。 FIG. 9 is a diagram showing a state in which a measurement test of electrical characteristics of the semiconductor device 600 of FIG. 8 is performed. FIG. 9A is a diagram before the external lead-out terminal 52 is sandwiched between the measurement probes 80. FIG. b) is a view after the external lead-out terminal 52 is sandwiched.
この半導体装置600では、製造工程中の熱履歴により銅無垢の部材61が酸化し、外部導出端子52の表面に厚い自然酸化膜70が形成され、図9で示ように、電気的特性の測定試験工程において、測定プローブ80が厚い自然酸化膜70により銅地(銅無垢の部材61)に接触できず接触不良が発生することがある。図中の符号で81はテスタである。 In this semiconductor device 600, the solid copper member 61 is oxidized by the thermal history during the manufacturing process, and a thick natural oxide film 70 is formed on the surface of the external lead-out terminal 52. As shown in FIG. In the test process, the measurement probe 80 may not be in contact with the copper base (solid copper member 61) due to the thick natural oxide film 70, and contact failure may occur. Reference numeral 81 in the figure denotes a tester.
そのため、従来は、酸化を抑えるために熱履歴工程を不活性ガスである窒素雰囲気下で実施するとともに特許文献1,2に開示されているように試験も不活性ガス雰囲気下で実施する、もしくは前記したように、酸化しないように外部導出端子52をニッケルメッキ層60で覆い、電気的特性を測定することが行なわれている。 Therefore, conventionally, in order to suppress oxidation, the thermal history process is performed in a nitrogen atmosphere that is an inert gas, and the test is also performed in an inert gas atmosphere as disclosed in Patent Documents 1 and 2, or As described above, the external lead-out terminal 52 is covered with the nickel plating layer 60 so as not to be oxidized, and the electrical characteristics are measured.
また、その後の外部回路配線との接続のための溶接工程では、ニッケルメッキが施されている場合は溶接する前にニッケルメッキ層60を剥がして銅無垢の部材61を露出させて溶接することが行なわれている。 Further, in the subsequent welding process for connection to the external circuit wiring, when nickel plating is applied, the nickel plating layer 60 is peeled off before the welding to expose the solid copper member 61 for welding. It is done.
しかし、これらの方法はいずれも設備の導入や工数の増加によるコストアップが問題になる。
また、特許文献1および特許文献2では、不活性ガスを用いないで、銅無垢の部材で形成された外部導出端子を備えた半導体装置の特性試験や溶接をすることについては記載されていない。
However, any of these methods has a problem of cost increase due to introduction of equipment and increase in man-hours.
Further, Patent Document 1 and Patent Document 2 do not describe performing a characteristic test or welding of a semiconductor device provided with an external lead terminal formed of a solid copper member without using an inert gas.
この発明の目的は、前記の課題を解決して、不活性ガスを用いず銅無垢の部材からなる外部導出端子に形成された自然酸化膜の少なくとも一部を破り、銅無垢の部材を露出させることで、外部回路配線との溶接性を向上させ、試験治具との接触不良を防止できる半導体装置、半導体装置の製造方法、半導体装置の試験器具、半導体装置の試験方法および半導体装置の接続方法を低コストで提供することにある。 The object of the present invention is to solve the above-described problems and break at least a part of a natural oxide film formed on an external lead-out terminal made of a solid copper member without using an inert gas to expose the solid copper member. Semiconductor device capable of improving weldability with external circuit wiring and preventing contact failure with test jig, semiconductor device manufacturing method, semiconductor device test instrument, semiconductor device test method, and semiconductor device connection method Is to be provided at a low cost.
前記の目的を達成するために、特許請求の範囲の請求項1に記載の発明によれば、半導体チップと、該半導体チップの裏面が固着するダイと、該ダイに接続する外部導出端子と、前記半導体チップおよび前記ダイを収納するケースとを有する半導体装置において、前記外部導出端子が前記半導体装置の製造プロセス中の熱履歴で容易に酸化される部材で形成され、前記外部導出端子の外部回路配線との接続箇所の一方の面に凹部と他方の面に該凹部に対応する凸部を設け、前記凸部の表面の前記凸部が設けられる前の熱履歴で形成された自然酸化膜の少なくとも一部が破壊されている構成とする。 In order to achieve the above object, according to the invention described in claim 1 of the claims, a semiconductor chip, a die to which the back surface of the semiconductor chip is fixed, an external lead terminal connected to the die, In the semiconductor device having the semiconductor chip and the case for housing the die, the external lead-out terminal is formed of a member that is easily oxidized by a thermal history during the manufacturing process of the semiconductor device, and an external circuit of the external lead-out terminal A concave portion is provided on one surface of the connection portion with the wiring, and a convex portion corresponding to the concave portion is provided on the other surface, and a natural oxide film formed by a thermal history before the convex portion on the surface of the convex portion is provided. At least a part is destroyed.
また、特許請求の範囲の請求項2記載の発明によれば、請求項1に記載の発明において、前記部材が、銅無垢であるとよい。
また、特許請求の範囲の請求項3記載の発明によれば、請求項1に記載の発明において、前記ケースが樹脂ケースであるとよい。
According to the invention described in claim 2 of the claims, in the invention described in claim 1, the member is preferably made of pure copper.
According to the invention described in claim 3 of the claims, in the invention described in claim 1, the case may be a resin case.
また、特許請求の範囲の請求項4記載の発明によれば、銅無垢のリードフレームのダイに相当する箇所に半導体チップを固着する工程と、前記リードフレームのダイに相当する箇所と、前記半導体チップと、前記リードフレームの外部導出端子に相当する箇所の一部とを樹脂ケースに収納する工程と、前記リードフレームの所定の箇所を切断する工程と、
前記外部導出端子の外部回路配線との接続箇所の両側に、加圧治具の凸部と凹部とを接触させ、前記加圧治具を加圧することで前記外部導出端子に凹部と凸部を形成し、該凹部と凸部のそれぞれの表面に形成された自然酸化膜の少なくとも一部を破壊し前記銅無垢を露出させる工程と、を含む製造方法とする。
According to the invention of claim 4, the step of fixing a semiconductor chip to a portion corresponding to a die of a solid copper lead frame, a portion corresponding to the die of the lead frame, and the semiconductor A step of housing the chip and a portion of the lead frame corresponding to the external lead-out terminal in a resin case, a step of cutting a predetermined portion of the lead frame,
The convex portion and concave portion of the pressurizing jig are brought into contact with both sides of the connection portion of the external lead terminal with the external circuit wiring, and the concave portion and convex portion are formed on the external lead terminal by pressurizing the pressurizing jig. And forming and destroying at least a part of the natural oxide film formed on the surface of each of the concave and convex portions to expose the pure copper.
また、特許請求の範囲の請求項5記載の発明によれば、半導体装置の測定試験に用いる試験器具であって、請求項4に記載の前記加圧治具と同等形状の凸部と凹部を形成した測定プローブを有し、該測定プローブがテスタに接続する試験器具とする。 According to the invention described in claim 5 of the claims, it is a test instrument used for a measurement test of a semiconductor device, and has a convex portion and a concave portion having the same shape as the pressure jig according to claim 4. A test instrument having the formed measurement probe and connected to the tester is provided.
また、特許請求の範囲の請求項6記載の発明によれば、銅無垢のリードフレームのダイに相当する箇所と、該ダイに固着された半導体チップおよび前記リードフレームの外部導出端子に相当する箇所の一部を樹脂ケースに収納した半導体装置の試験方法であって、前記リードフレームから切り離された外部導出端子の外部回路配線との接続箇所に、請求項5に記載の前記測定プローブの凸部と凹部を接触させて、前記測定プローブの凸部と凹部に対応する凹部と凸部を前記外部導出端子に形成し、前記外部導出端子に形成された前記凹部と凸部のそれぞれの表面に形成された自然酸化膜の少なくとも一部を破壊して銅無垢を露出させた状態で前記測定プローブと前記外部導出端子を接触させる工程と、前記測定プローブに接続するテスタにより半導体装置の電気的特性を測定試験する工程と、を含む試験方法とする。 According to the invention of claim 6, a portion corresponding to a die of a solid copper lead frame, a semiconductor chip fixed to the die, and a portion corresponding to an external lead terminal of the lead frame A test method for a semiconductor device in which a part of the test probe is housed in a resin case, wherein the convex portion of the measurement probe according to claim 5 is connected to an external circuit wiring of an external lead-out terminal separated from the lead frame. And the concave portion corresponding to the concave portion and the convex portion are formed on the external lead-out terminal, and formed on the respective surfaces of the concave portion and the convex portion formed on the external lead-out terminal. A step of bringing the measurement probe and the external lead-out terminal into contact with each other in a state in which at least a part of the formed natural oxide film is broken to expose the solid copper, and a tester connected to the measurement probe. And measuring testing electrical characteristics of a semiconductor device, the test method comprising.
また、特許請求の範囲の請求項7記載の発明によれば、請求項6に記載の前記半導体装置の試験方法が終了した後に、前記外部導出端子の凸部に外部回路配線を溶接して前記外部導出端子を前記外部回路配線に接続する半導体装置の接続方法とする。 According to a seventh aspect of the present invention, after the test method for the semiconductor device according to the sixth aspect is completed, the external circuit wiring is welded to the convex portion of the external lead-out terminal to complete the test. A semiconductor device connection method for connecting an external lead-out terminal to the external circuit wiring.
この発明によれば、銅無垢の部材からなる外部導出端子に加圧治具(もしくは試験治具)を用いて凹部および凸部を形成し、製造工程中の熱履歴で形成された自然酸化膜の少なくとも一部を破壊し、銅無垢の部材を露出させる。この銅無垢の部材が露出した外部導出端子もしくは銅無垢の部材に薄い自然酸化膜が形成された外部導出端子の凸部に外部回路配線を溶接することで、溶接性を向上させ、半導体装置の信頼性を高めることができる。 According to this invention, a natural oxide film is formed by forming a recess and a protrusion on an external lead-out terminal made of a solid copper member using a pressure jig (or a test jig), and a thermal history during the manufacturing process. At least a part of the material is destroyed to expose a solid copper member. The weldability is improved by welding the external circuit wiring to the convex portion of the external lead-out terminal from which the solid copper member is exposed or the thin natural oxide film is formed on the solid copper member. Reliability can be increased.
また、試験治具の凸部と凹部で外部導出端子の自然酸化膜の少なくとも一部が破られ銅無垢の部材が露出した凹部および/または凸部を形成し、当該外部導出端子の凹部および/または凸部を試験治具を接触させることで、試験器具と外部導出端子の接触不良を防止することができる。 In addition, at least a part of the natural oxide film of the external lead terminal is broken by the convex part and the concave part of the test jig to form a concave part and / or convex part in which the solid copper member is exposed, and the concave part of the external lead terminal and / or Alternatively, a contact failure between the test tool and the external lead-out terminal can be prevented by bringing the test jig into contact with the convex portion.
また、銅無垢の部材からなるの外部導出端子に酸化を防止するための例えばニッケルメッキなどを施さないことで低コスト化を図ることができる。 Further, it is possible to reduce the cost by not applying, for example, nickel plating for preventing oxidation to the external lead terminal made of a solid copper member.
実施の形態を以下の実施例で説明する。
<実施例1>
図1は、この発明の第1実施例であるの半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のY−Y線で切断した要部断面図である。この半導体装置100は、ここではIGBT(絶縁ゲート型バイポーラトランジスタ)を例に挙げたがこれに限るものではなく、MOSFETや電子回路などを内蔵した半導体装置であってもよい。なお、電子回路などを内蔵する場合は外部導出端子2の本数はさらに増加させる必要がある。
Embodiments will be described in the following examples.
<Example 1>
FIG. 1 is a block diagram of a semiconductor device according to a first embodiment of the present invention. FIG. 1 (a) is a plan view of an essential part, and FIG. 1 (b) is a YY line of FIG. 1 (a). It is the principal part sectional drawing cut | disconnected. The semiconductor device 100 has been described here as an example of an IGBT (insulated gate bipolar transistor). However, the semiconductor device 100 is not limited to this, and may be a semiconductor device incorporating a MOSFET, an electronic circuit, or the like. In addition, when incorporating an electronic circuit etc., it is necessary to further increase the number of the external lead-out terminals 2.
この半導体装置100は、支持台であるダイ1と、このダイ1上に半田22などで固着されるIGBTチップ3と、外部導出端子2と、これらを被覆する樹脂ケース7とを備える。ダイ1や外部導出端子2は樹脂封止された後、図2のリードフレーム20から切り出される。ダイ1と接続する外部導出端子2はダイ1を介してIGBTチップ3裏面のコレクタ電極と接続し、半導体装置100のコレクタ端子となる。IGBTのエミッタ電極4とボンディングワイヤ6で接続する外部導出端子2は半導体装置100のエミッタ端子となる。また、ゲート電極パッド5とボンディングワイヤ6で接続する外部導出端子2は半導体装置100のゲート端子となる。樹脂ケース7から露出する前記の外部導出端子2の外部回路配線と接続する箇所41には、外部導出端子2の両面に凹部8とこれに対応する凸部9がそれぞれ形成されている。前記のダイ1と外部導出端子2は図2(a)に示す銅無垢の部材11からなるリードフレーム20から切り出される。前記の凹部8および凸部9では半導体装置100の製造工程中の熱履歴により形成された数百nm程度の厚い自然酸化膜10の少なくとも一部が破壊され銅無垢の部材11が露出している。また、製造工程中の熱履歴以外の例えば保管中に、この銅無垢の部材11には図示しない数10nm程度の極薄い自然酸化膜が形成されていることもある。前記の凸部9は、ダボと称する場合もある。 The semiconductor device 100 includes a die 1 that is a support base, an IGBT chip 3 that is fixed onto the die 1 with solder 22 or the like, an external lead-out terminal 2, and a resin case 7 that covers them. The die 1 and the external lead-out terminal 2 are resin-sealed and then cut out from the lead frame 20 in FIG. The external lead-out terminal 2 connected to the die 1 is connected to the collector electrode on the back surface of the IGBT chip 3 through the die 1 and becomes a collector terminal of the semiconductor device 100. The external lead-out terminal 2 connected to the IGBT emitter electrode 4 by the bonding wire 6 becomes the emitter terminal of the semiconductor device 100. The external lead-out terminal 2 connected to the gate electrode pad 5 by the bonding wire 6 is a gate terminal of the semiconductor device 100. A concave portion 8 and a convex portion 9 corresponding to the concave portion 8 are formed on both surfaces of the external lead-out terminal 2 at a portion 41 exposed from the resin case 7 and connected to the external circuit wiring of the external lead-out terminal 2. The die 1 and the external lead-out terminal 2 are cut out from a lead frame 20 made of a solid copper member 11 shown in FIG. In the concave portion 8 and the convex portion 9, at least a part of the thick natural oxide film 10 of about several hundred nm formed by the thermal history during the manufacturing process of the semiconductor device 100 is broken, and the solid copper member 11 is exposed. . Further, during storage other than the thermal history during the manufacturing process, for example, during storage, an extremely thin natural oxide film of about several tens of nm (not shown) may be formed on the solid copper member 11. The convex portion 9 may be referred to as a dowel.
前記の凸部9と外部回路配線42とは溶接で接続されるが、銅無垢の部材11が露出しているので、溶接パワーが小さい場合でも容易に溶接されて溶接性を向上させることができる。また、極薄い自然酸化膜が形成されていても、溶接時に簡単に破られて銅無垢の部材11が露出するので、溶接性を高めることができる。 The convex portion 9 and the external circuit wiring 42 are connected by welding. However, since the solid copper member 11 is exposed, it can be easily welded even when the welding power is small to improve the weldability. . Further, even if an extremely thin natural oxide film is formed, it is easily broken during welding and the pure copper member 11 is exposed, so that the weldability can be improved.
また、ダイ1や外部導出端子2の表面に酸化防止のためのニッケルメッキを施さないので、製造工数が削減できて製造コストを低くすることができる。また、メッキのための設備も不要となる。 Further, since nickel plating for preventing oxidation is not applied to the surfaces of the die 1 and the external lead-out terminal 2, the number of manufacturing steps can be reduced and the manufacturing cost can be reduced. Also, no plating equipment is required.
この凹部8および凸部9は同一面内に複数個形成する場合もある。
凸部9は凹部8の形成により裏面に突き出されて形成される。外部導出端子2の表裏に形成される凹部8と凸部9の平面形状は図1(a)に示す円形の他に三角形、四角形、多角形などであり、その深さは例えば、0.3mm〜0.5mm程度である。また、外部導出端子の厚さは例えば、1mm程度である。
A plurality of the concave portions 8 and the convex portions 9 may be formed in the same plane.
The convex portion 9 is formed to protrude from the back surface by forming the concave portion 8. The planar shape of the concave portion 8 and the convex portion 9 formed on the front and back sides of the external lead-out terminal 2 is a triangle, a quadrangle, a polygon, etc. in addition to the circle shown in FIG. About 0.5 mm. The thickness of the external lead-out terminal is, for example, about 1 mm.
また、外部導出端子2の凸部9を除いてニッケルメッキ層を形成する場合もある。この場合も凸部9にニッケルメッキ層がないため、溶接性は向上する。
<実施例2>
図2は、この発明の第2実施例である半導体装置の製造方法であり、同図(a)〜同図(d)は工程順に示した要部製造工程平面図である。
In some cases, a nickel plating layer is formed except for the convex portion 9 of the external lead-out terminal 2. Also in this case, since there is no nickel plating layer in the convex part 9, weldability improves.
<Example 2>
FIG. 2 shows a method of manufacturing a semiconductor device according to a second embodiment of the present invention. FIGS. 2A to 2D are plan views of the main part manufacturing process shown in the order of steps.
同図(a)において、ダイ1や外部導出端子2となる銅無垢の部材からなるリードフレーム20を準備する。このリードフレーム20には酸化防止のためのニッケルメッキは施されていない。 In FIG. 2A, a lead frame 20 made of a solid copper member to be used as the die 1 and the external lead-out terminal 2 is prepared. The lead frame 20 is not subjected to nickel plating for preventing oxidation.
同図(b)において、ダイ1上に図示しない半田22を介してIGBTチップ3を固着する。続いて、エミッタ電極4とゲート電極パッド5と外部導出端子2をボンディングワイヤ6で接続する。さらに、モールド樹脂でダイ1、IGBTチップ3および外部導出端子2の一部を被覆する。このモールド樹脂が樹脂ケース7となる。この段階でダイ1や外部導出端子2には数百nm程度の厚い自然酸化膜10が形成される。 In FIG. 2B, the IGBT chip 3 is fixed on the die 1 via solder 22 (not shown). Subsequently, the emitter electrode 4, the gate electrode pad 5 and the external lead-out terminal 2 are connected by the bonding wire 6. Further, the die 1, the IGBT chip 3, and a part of the external lead-out terminal 2 are covered with a mold resin. This mold resin becomes the resin case 7. At this stage, a thick natural oxide film 10 of about several hundred nm is formed on the die 1 and the external lead-out terminal 2.
同図(c)において、同図(b)の点線で示す所定の箇所21でリードフレーム20を切断する。
同図(d)において、樹脂ケース7から露出した外部導出端子2の図示しない外部回路配線と接続する箇所41に凹部8と凸部9を形成して、製造工程中の熱履歴で形成された、数百nm程度の厚さの自然酸化膜10の少なくとも一部を破壊する。この破壊により一部銅無垢の部材11が露出した外部導出端子2を有する樹脂ケース7の半導体装置100であるIGBTが出来上がる。この凹部8と凸部9の露出した銅無垢の部材11には製造工程中の熱履歴以外のIGBTの保管等で図示しない薄い自然酸化膜(例えば、数十nm程度の厚さ)が形成されていることもある。
In FIG. 2C, the lead frame 20 is cut at a predetermined portion 21 indicated by a dotted line in FIG.
In FIG. 4D, the concave portion 8 and the convex portion 9 are formed in the portion 41 connected to the external circuit wiring (not shown) of the external lead-out terminal 2 exposed from the resin case 7, and formed by the thermal history during the manufacturing process. Then, at least a part of the natural oxide film 10 having a thickness of about several hundred nm is destroyed. Due to this destruction, an IGBT which is the semiconductor device 100 of the resin case 7 having the external lead-out terminal 2 from which the part 11 made of pure copper is exposed is completed. A thin natural oxide film (for example, a thickness of about several tens of nanometers) (not shown) is formed on the solid copper member 11 where the concave portions 8 and the convex portions 9 are exposed by storing the IGBT other than the thermal history during the manufacturing process. Sometimes.
また、図1に関する説明の文末で説明した凸部9を除いてニッケルメッキ層を形成する場合は、図2(a)と図2(b)の間の工程でリードフレームの溶接する予定の箇所41をマスクしてリードフレーム20にニッケルメッキ層を形成する。その後の工程は図2と同じである。 Further, when the nickel plating layer is formed except for the convex portion 9 described at the end of the description related to FIG. 1, the location where the lead frame is to be welded in the process between FIG. 2A and FIG. 41 is masked to form a nickel plating layer on the lead frame 20. The subsequent steps are the same as in FIG.
図3は、図2(d)の工程の詳細な説明図であり、同図(a)は外部導出端子2に凹部8と凸部9を形成する前の図、同図(b)は外部導出端子2に凹部8と凸部9を形成後の図である。 3A and 3B are detailed explanatory views of the process of FIG. 2D. FIG. 3A is a view before forming the concave portion 8 and the convex portion 9 in the external lead-out terminal 2, and FIG. FIG. 6 is a view after forming a concave portion 8 and a convex portion 9 on the lead-out terminal 2.
シリンダ・ピストン機構12の伸縮部12aの先端に凸部13を有する上加圧治具14を装着し、シリンダ・ピストン機構15の伸縮部15aの先端に凹部16を有する下加圧治具17を装着する。シリンダ・ピストン機構12,15を可動させ伸縮部12a,15aを伸ばすことで、外部導出端子2の両面を加圧治具14,17で挟みこむ。シリンダ・ピストン機構12,15で加圧することで外部導出端子2のおもて面2aを凹状にへこませて凹部8を形成し、それと同時に裏面2bを凸状に出っ張らせて凸部9を形成する。このとき厚い自然酸化膜10は破られ銅無垢の部材11が露出する。
<実施例3>
図4は、この発明の第3実施例である半導体装置の試験器具の要部構成図である。図ではテスタ37も示した。
An upper pressurizing jig 14 having a convex portion 13 is attached to the tip of the expansion / contraction part 12 a of the cylinder / piston mechanism 12, and a lower pressurization jig 17 having a concave part 16 at the tip of the expansion / contraction part 15 a of the cylinder / piston mechanism 15. Installing. The cylinder / piston mechanisms 12 and 15 are moved to extend the telescopic portions 12 a and 15 a, so that both surfaces of the external lead-out terminal 2 are sandwiched between the pressurizing jigs 14 and 17. By applying pressure by the cylinder / piston mechanisms 12 and 15, the front surface 2a of the external lead-out terminal 2 is dented to form a concave portion 8, and at the same time, the rear surface 2b is projected to project the convex portion 9 Form. At this time, the thick natural oxide film 10 is broken and the pure copper member 11 is exposed.
<Example 3>
FIG. 4 is a block diagram showing the principal part of a test apparatus for a semiconductor device according to a third embodiment of the present invention. The tester 37 is also shown in the figure.
図4に示す試験治具200は、凸部31を有する上測定プローブ32と凹部33を有する下測定プローブ34で構成され、上下測定プローブ32,34は加圧測定機能を有する。この凸部31と凹部33の形状は図3の加圧治具14,17の凸部13と凹部16の形状と同じとしているが、異なっても構わない。また、測定プローブを構成する上測定プローブ32は主電流を流す主配線35を介してテスタ37に接続し、下測定プローブ34は測定線36を介してテスタ37に接続する。なお、上測定プローブ32,下測定プローブ34と主配線35,測定線36との接続関係は逆にしてもよい。また、主配線35,測定線36を一つの配線にして上測定プローブ32,下測定プローブ34の一方に接続し、主電流の供給と測定とを当該一つの配線で行うようにしてもよい。 The test jig 200 shown in FIG. 4 includes an upper measurement probe 32 having a convex portion 31 and a lower measurement probe 34 having a concave portion 33, and the upper and lower measurement probes 32 and 34 have a pressure measurement function. The shapes of the convex portions 31 and the concave portions 33 are the same as the shapes of the convex portions 13 and the concave portions 16 of the pressing jigs 14 and 17 in FIG. 3, but they may be different. Further, the upper measurement probe 32 constituting the measurement probe is connected to the tester 37 via the main wiring 35 through which the main current flows, and the lower measurement probe 34 is connected to the tester 37 via the measurement line 36. The connection relationship between the upper measurement probe 32 and the lower measurement probe 34, the main wiring 35, and the measurement line 36 may be reversed. Alternatively, the main wiring 35 and the measurement line 36 may be connected to one of the upper measurement probe 32 and the lower measurement probe 34 so that the main current is supplied and measured with the one wiring.
後述の図5に示すように、この上下測定プローブ32,34は前記の図2(d)の工程に入る前にシリンダ・ピストン機構12,15の伸縮部12a,15aの先端に加圧治具14,17の代わりに取り付けられる。そして図2(d)の工程に入り、図4に示す外部導出端子2に凹部8、凸部9を形成した状態でテスタ37により半導体装置の電気的測定試験を行なう。このように、上下測定プローブ32,34で外部導出端子2に凹部8および凸部9を形成し、厚い自然酸化膜10を破ることで外部導出端子2と上下測定プローブ32,33との接触不良が防止される。
<実施例4>
図5は、この発明の第4実施例である半導体装置の試験方法を示し、同図(a)および同図(b)は工程順に示した要部工程図である。この試験方法は製造方法の一環として組み込んでもよい。
As shown in FIG. 5 described later, the vertical measurement probes 32 and 34 are attached to the tips of the expansion / contraction portions 12a and 15a of the cylinder / piston mechanisms 12 and 15 before entering the step of FIG. 14 and 17 are attached instead. Then, the process of FIG. 2D is entered, and an electrical measurement test of the semiconductor device is performed by the tester 37 with the recesses 8 and the protrusions 9 formed in the external lead-out terminals 2 shown in FIG. In this way, the concave and convex portions 8 and the convex portions 9 are formed in the external lead-out terminal 2 by the vertical measurement probes 32 and 34, and the thick natural oxide film 10 is broken, thereby causing poor contact between the external lead-out terminal 2 and the vertical measurement probes 32 and 33. Is prevented.
<Example 4>
FIG. 5 shows a test method for a semiconductor device according to a fourth embodiment of the present invention. FIG. 5A and FIG. 5B are principal part process diagrams shown in the order of processes. This test method may be incorporated as part of the manufacturing method.
同図(a)において、上下測定プローブ32,34の凸部31と凹部33を、半導体装置の外部導出端子2の外部回路配線と溶接する箇所41の上下にそれぞれ配置する。
同図(b)において、シリンダ・ピストン機構12,15を駆動して上下測定プローブ32,34で外部導出端子2を挟み込む。続いて、シリンダ・ピストン機構12,15により外部導出端子2に加圧力F(例えば、10000N:1トン程度)を加えて外部導出端子2に凹部8と凸部9を形成する。このとき、凹部8および凸部9を被覆している厚い自然酸化膜10の少なくとも一部が破れて銅無垢の部材11が露出し、上下測定プローブ32,34の凸部31と凹部33は外部導出端子2の銅無垢の部材11が露出した凹部8と凸部9に接触をする。外部導出端子2の銅無垢の部材11が露出した凹部8と凸部9に上下測定プローブ32,34の凸部31と凹部33が接触するので接触不良を防止することができる。
In FIG. 2A, the convex portions 31 and the concave portions 33 of the vertical measurement probes 32 and 34 are respectively disposed above and below the portion 41 to be welded with the external circuit wiring of the external lead-out terminal 2 of the semiconductor device.
In FIG. 2B, the cylinder / piston mechanisms 12 and 15 are driven to sandwich the external lead-out terminal 2 with the vertical measurement probes 32 and 34. Subsequently, a pressure F (for example, about 10000 N: about 1 ton) is applied to the external lead-out terminal 2 by the cylinder / piston mechanisms 12 and 15 to form the concave portion 8 and the convex portion 9 in the external lead-out terminal 2. At this time, at least part of the thick natural oxide film 10 covering the concave portion 8 and the convex portion 9 is broken to expose the solid copper member 11, and the convex portions 31 and the concave portions 33 of the upper and lower measurement probes 32 and 34 are externally provided. Contact is made between the concave portion 8 and the convex portion 9 where the solid copper member 11 of the lead-out terminal 2 is exposed. Since the convex portions 31 and the concave portions 33 of the vertical measurement probes 32 and 34 are in contact with the concave portions 8 and the convex portions 9 where the solid copper member 11 of the external lead-out terminal 2 is exposed, poor contact can be prevented.
このようにして、不活性ガス雰囲気にしない場合でも、接触不良が起こらない状態で半導体装置の電気的測定試験をテスタ37で実施することができる。この試験が終了して図1の半導体装置100のIGBTが出来上がることになる。 In this way, even when the inert gas atmosphere is not used, the electrical measurement test of the semiconductor device can be performed by the tester 37 in a state where contact failure does not occur. After this test, the IGBT of the semiconductor device 100 of FIG. 1 is completed.
この電気的測定試験は図2(d)の工程を兼ねているので、図2(d)の工程が終了した後に改めて電気的測定試験を行なう場合より、試験コストを低減できる。
また、この試験では、前記したように不活性ガス雰囲気を用いないので、試験コストを低減することができる。
Since this electrical measurement test also serves as the process of FIG. 2D, the test cost can be reduced as compared with the case where the electrical measurement test is performed again after the process of FIG.
In addition, in this test, since the inert gas atmosphere is not used as described above, the test cost can be reduced.
さらに不活性ガス雰囲気にする装置は不要なので安価なテスタを用いることができる。
<実施例5>
図6は、この発明の第5実施例である半導体装置の接続方法を示し、同図(a)〜同図(b)は工程順に示した要部工程図である。接続は溶接を用いて行なう。
Furthermore, since an apparatus for making an inert gas atmosphere is unnecessary, an inexpensive tester can be used.
<Example 5>
FIG. 6 shows a method for connecting a semiconductor device according to a fifth embodiment of the present invention, and FIGS. 6A to 6B are principal part process diagrams shown in the order of processes. Connection is made using welding.
同図(a)において、図2(d)または図4(b)の工程が終了した後、厚い自然酸化膜10が除去され銅無垢の部材11が露出した(または図示しない薄い自然酸化膜が被覆した)半導体装置500の外部導出端子2の凸部9に外部回路配線42を接触させて配置する。 In FIG. 2A, after the process of FIG. 2D or FIG. 4B is completed, the thick natural oxide film 10 is removed and the solid copper member 11 is exposed (or a thin natural oxide film not shown). The external circuit wiring 42 is placed in contact with the convex portion 9 of the external lead-out terminal 2 of the semiconductor device 500 that is covered.
同図(b)において、凸部9と外部回路配線42を溶接して、外部導出端子2と外部回路配線42を溶接箇所43で接続する。凸部が図示しない薄い自然酸化膜で被覆されている場合でも、小さな溶接エネルギーで容易に自然酸化膜が破られるのでニッケルメッキされた場合より溶接性は向上する。 In FIG. 4B, the convex portion 9 and the external circuit wiring 42 are welded, and the external lead-out terminal 2 and the external circuit wiring 42 are connected at a welding location 43. Even when the convex portion is covered with a thin natural oxide film (not shown), the natural oxide film is easily broken with a small welding energy, so that the weldability is improved as compared with the case of nickel plating.
このように銅無垢の部材11が露出した凸部9もしくは図示しない薄い自然酸化膜が被覆された凸部9で溶接することで、溶接性を向上させることができる。 Thus, weldability can be improved by welding with the convex part 9 where the solid copper member 11 is exposed or the convex part 9 covered with a thin natural oxide film (not shown).
1 ダイ
2 外部導出端子
3 IGBTチップ
4 エミッタ電極
5 ゲート電極パッド
6 ボンディングワイヤ
7 樹脂ケース
8 凹部(外部導出端子2)
9 凸部(外部導出端子2)
10 厚い自然酸化膜
11 銅無垢の部材
12、15 シリンダ・ピストン機構
13 凸部(加圧治具14)
14 加圧治具
16 凹部(加圧治具17)
17 加圧治具
20 リードフレーム
21 箇所
22 半田
31 凸部(上測定プローブ32)
32 上測定プローブ
33 凹部(下測定プローブ34)
34 下測定プローブ
35 主配線
36 測定線
37 テスタ
41 箇所
42 外部回路配線
43 溶接箇所
100 半導体装置
200 試験治具
500 半導体装置
Reference Signs List 1 die 2 external lead-out terminal 3 IGBT chip 4 emitter electrode 5 gate electrode pad 6 bonding wire 7 resin case 8 recess (external lead-out terminal 2)
9 Convex (external lead-out terminal 2)
10 Thick natural oxide film 11 Solid copper member 12, 15 Cylinder / piston mechanism 13 Convex part (pressure jig 14)
14 Pressure jig 16 Recess (Pressure jig 17)
17 Pressurizing jig 20 Lead frame 21 locations 22 Solder 31 Convex part (upper measurement probe 32)
32 Upper measurement probe 33 Recess (lower measurement probe 34)
34 Lower measurement probe 35 Main wiring 36 Measurement line 37 Tester 41 location 42 External circuit wiring 43 Welding location 100 Semiconductor device 200 Test jig 500 Semiconductor device
Claims (7)
前記リードフレームのダイに相当する箇所と、前記半導体チップと、前記リードフレームの外部導出端子に相当する箇所の一部とを樹脂ケースに収納する工程と、
前記リードフレームの所定の箇所を切断する工程と、
前記外部導出端子の外部回路配線との接続箇所の両側に、加圧治具の凸部と凹部とを接触させ、前記加圧治具を加圧することで前記外部導出端子に凹部と凸部を形成し、該凹部と凸部のそれぞれの表面に形成された自然酸化膜の少なくとも一部を破壊し前記銅無垢を露出させる工程と、
を含むことを特徴とする半導体装置の製造方法。 A process of fixing a semiconductor chip to a portion corresponding to a die of a solid copper lead frame;
Storing a portion corresponding to a die of the lead frame, the semiconductor chip, and a part of a portion corresponding to an external lead-out terminal of the lead frame in a resin case;
Cutting a predetermined portion of the lead frame;
The convex portion and concave portion of the pressurizing jig are brought into contact with both sides of the connection portion of the external lead terminal with the external circuit wiring, and the concave portion and convex portion are formed on the external lead terminal by pressurizing the pressurizing jig. Forming and destroying at least a part of the natural oxide film formed on the surface of each of the concave and convex portions and exposing the solid copper,
A method for manufacturing a semiconductor device, comprising:
前記測定プローブに接続するテスタにより半導体装置の電気的特性を測定試験する工程と、
を含むことを特徴とする半導体装置の試験方法。 A test method for a semiconductor device in which a part corresponding to a die of a solid copper lead frame, a semiconductor chip fixed to the die, and a part of a part corresponding to an external lead-out terminal of the lead frame are accommodated in a resin case. The convex portion and concave portion of the measurement probe according to claim 5 are brought into contact with a connection portion of the external lead terminal separated from the lead frame with the external circuit wiring to correspond to the convex portion and concave portion of the measurement probe. Forming concave portions and convex portions on the external lead-out terminals, and exposing at least a part of the natural oxide film formed on the respective surfaces of the concave and convex portions formed on the external lead-out terminals to expose the solid copper. Contacting the measurement probe and the external lead-out terminal in a state in which
A step of measuring and testing electrical characteristics of the semiconductor device by a tester connected to the measurement probe;
A method for testing a semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012018213A JP5935355B2 (en) | 2012-01-31 | 2012-01-31 | Semiconductor device and manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012018213A JP5935355B2 (en) | 2012-01-31 | 2012-01-31 | Semiconductor device and manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013157522A true JP2013157522A (en) | 2013-08-15 |
JP5935355B2 JP5935355B2 (en) | 2016-06-15 |
Family
ID=49052411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012018213A Expired - Fee Related JP5935355B2 (en) | 2012-01-31 | 2012-01-31 | Semiconductor device and manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5935355B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103852707A (en) * | 2014-03-04 | 2014-06-11 | 中国科学院电工研究所 | Power semiconductor chip testing tool |
CN103954804A (en) * | 2014-04-10 | 2014-07-30 | 中国科学院电工研究所 | Copper clad ceramic substrate used for testing of power semiconductor chips |
JP2017036993A (en) * | 2015-08-10 | 2017-02-16 | 新電元工業株式会社 | Connection jig and electrification test method of semiconductor device |
JP7542512B2 (en) | 2021-12-06 | 2024-08-30 | 三菱電機株式会社 | Semiconductor Device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197477A (en) * | 1981-05-29 | 1982-12-03 | Toshiba Corp | Measuring method for electronic parts |
JPH0741478U (en) * | 1993-12-27 | 1995-07-21 | 株式会社テセック | Measuring device for electronic components |
JPH1064951A (en) * | 1996-08-23 | 1998-03-06 | Nec Corp | Manufacture of semiconductor device |
JP2001274206A (en) * | 2000-03-23 | 2001-10-05 | Nec Corp | Connection conductor for semiconductor package, semiconductor package, and assembly method of semiconductor package |
JP2003045920A (en) * | 2001-07-31 | 2003-02-14 | Mitsubishi Electric Corp | Power semiconductor device and method for manufacturing the same |
JP2011179842A (en) * | 2010-02-26 | 2011-09-15 | Fujitsu Semiconductor Ltd | Contactor, test device for semiconductor apparatus, and method for manufacturing semiconductor apparatus |
-
2012
- 2012-01-31 JP JP2012018213A patent/JP5935355B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197477A (en) * | 1981-05-29 | 1982-12-03 | Toshiba Corp | Measuring method for electronic parts |
JPH0741478U (en) * | 1993-12-27 | 1995-07-21 | 株式会社テセック | Measuring device for electronic components |
JPH1064951A (en) * | 1996-08-23 | 1998-03-06 | Nec Corp | Manufacture of semiconductor device |
JP2001274206A (en) * | 2000-03-23 | 2001-10-05 | Nec Corp | Connection conductor for semiconductor package, semiconductor package, and assembly method of semiconductor package |
JP2003045920A (en) * | 2001-07-31 | 2003-02-14 | Mitsubishi Electric Corp | Power semiconductor device and method for manufacturing the same |
JP2011179842A (en) * | 2010-02-26 | 2011-09-15 | Fujitsu Semiconductor Ltd | Contactor, test device for semiconductor apparatus, and method for manufacturing semiconductor apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103852707A (en) * | 2014-03-04 | 2014-06-11 | 中国科学院电工研究所 | Power semiconductor chip testing tool |
CN103852707B (en) * | 2014-03-04 | 2016-08-24 | 中国科学院电工研究所 | A kind of power semiconductor chip test fixture |
CN103954804A (en) * | 2014-04-10 | 2014-07-30 | 中国科学院电工研究所 | Copper clad ceramic substrate used for testing of power semiconductor chips |
JP2017036993A (en) * | 2015-08-10 | 2017-02-16 | 新電元工業株式会社 | Connection jig and electrification test method of semiconductor device |
JP7542512B2 (en) | 2021-12-06 | 2024-08-30 | 三菱電機株式会社 | Semiconductor Device |
Also Published As
Publication number | Publication date |
---|---|
JP5935355B2 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5016892B2 (en) | Inspection apparatus and inspection method | |
US6104201A (en) | Method and apparatus for passive characterization of semiconductor substrates subjected to high energy (MEV) ion implementation using high-injection surface photovoltage | |
JP5935355B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP2007227893A (en) | Semiconductor device manufacturing method | |
JP2001338955A (en) | Semiconductor device and its manufacturing method | |
KR20000047438A (en) | Method and apparatus for testing semiconductor devices | |
JP2010098036A (en) | Resin case and method of manufacturing the same | |
US20090174422A1 (en) | Probe Card and Manufacturing Method Thereof | |
TWI829696B (en) | Probe, inspection jig, inspection device and method of manufacturing probe | |
CN205484688U (en) | Chip failure analysis appearance | |
US20020039807A1 (en) | Manufacturing method of a semiconductor device | |
JP2013120079A (en) | Bumped membrane sheet for probe card, probe card, and method for manufacturing bumped membrane sheet for probe card | |
JP2009276090A (en) | Probe card equipped with interposer | |
CN209044015U (en) | A kind of high-precision quasi core piece design analytical equipment | |
CN104916609A (en) | Semiconductor device and wedge-shaped joint device | |
JP5626567B2 (en) | Assembling method of device mounting board | |
JPH11297882A (en) | Semiconductor device, manufacture thereof, electronic device and manufacture thereof | |
JP2012028596A (en) | Semiconductor device manufacturing method | |
JP2017223480A (en) | Contact probe, semiconductor element test device, and semiconductor element test method | |
US20240201223A1 (en) | Manufacturing method of semiconductor device and test socket for use in the same | |
JP5126009B2 (en) | Test method, test apparatus and semiconductor device manufacturing method | |
JPS62115748A (en) | Formation of gold bump | |
JPH11118878A (en) | Ic fixing jig | |
JP2004039915A (en) | Semiconductor device | |
JP2658831B2 (en) | Method of manufacturing inspection connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150930 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20151005 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20151005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5935355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |