JP2013157178A - Method of manufacturing electrode material whose base substance is carbon and fuel battery using electrode material manufactured by the method - Google Patents

Method of manufacturing electrode material whose base substance is carbon and fuel battery using electrode material manufactured by the method Download PDF

Info

Publication number
JP2013157178A
JP2013157178A JP2012016421A JP2012016421A JP2013157178A JP 2013157178 A JP2013157178 A JP 2013157178A JP 2012016421 A JP2012016421 A JP 2012016421A JP 2012016421 A JP2012016421 A JP 2012016421A JP 2013157178 A JP2013157178 A JP 2013157178A
Authority
JP
Japan
Prior art keywords
carbon
electrode material
electrode
group
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012016421A
Other languages
Japanese (ja)
Other versions
JP5545893B2 (en
Inventor
Shunichi Uchiyama
俊一 内山
Hiroaki Matsuura
宏昭 松浦
Yosuke Yamawaki
曜輔 山脇
Takahiro Marumoto
貴浩 丸本
Ichitaka Yajima
壱高 矢島
Ai Aoki
愛 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012016421A priority Critical patent/JP5545893B2/en
Publication of JP2013157178A publication Critical patent/JP2013157178A/en
Application granted granted Critical
Publication of JP5545893B2 publication Critical patent/JP5545893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode material whose base substance is carbon capable of performing oxidation reduction of hydrogen and reduction at noble potential of oxygen with no use of catalyst metal such as platina, and to provide a fuel battery which uses the electrode material manufactured by the method.SOLUTION: A carbon material is processed by ultrasonic radiation in a solution of an arbitrary ratio between hydrophilic organic compound and water. Then, with the carbon material as an electrode, an aqueous solution containing carbamic acid and ethanol is subjected to electrolytic oxidation, and the carbon material, in which a carbon atom on the surface of the carbon material is covalent-bonded to nitrogen-containing functional group and the surface is covalent-bonded to the nitrogen-containing functional group, is subjected to electrolytic reduction treatment in strong acid. And then, it is reacted with sulfuric acid in which sodium nitride is dissolved for diazotation, thereby forming an electrode material whose base substance is the carbon in which diazo group and sulfonic acid group acting as electron suction group are bonded on the surface. An electrode material whose base substance is the above stated carbon is used to constitute a fuel battery.

Description

本発明は、炭素を基体とする電極材料の製造方法及びこれにより製造した電極材料を使用した燃料電池に関する。   The present invention relates to a method for producing a carbon-based electrode material and a fuel cell using the electrode material produced thereby.

従来より、導電性炭素材料は、電池用電極、電気化学センサ用電極等として広く用いられている。しかし、その触媒活性能は必ずしも満足できるものではなく(非特許文献1参照)、水素の酸化還元を促進するために触媒担持等の技術が開発されている。   Conventionally, conductive carbon materials have been widely used as battery electrodes, electrochemical sensor electrodes, and the like. However, its catalytic activity is not always satisfactory (see Non-Patent Document 1), and a technology such as catalyst loading has been developed to promote oxidation and reduction of hydrogen.

例えば、下記特許文献1には、白金等の金属微粒子が多孔質炭素膜の細孔表面壁に分散担持された燃料電池用電極が開示されている。   For example, Patent Document 1 below discloses a fuel cell electrode in which metal fine particles such as platinum are dispersedly supported on the pore surface walls of a porous carbon film.

特開2004−335459号公報JP 2004-335459 A

「燃料電池の電極触媒」 荒又明子 p.114 北海道大学図書刊行会(2005)“Fuel Cell Electrode Catalyst” Akiko Aramata p. 114 Hokkaido University Library Publication Association (2005)

しかし、上記従来の技術においては、高価な白金を触媒として使用するので、コストが高くなるという問題があった。そこで、白金等の高価な触媒金属を使用しなくても電極の酸化還元特性を維持、向上できれば上記問題は解決する。   However, in the above conventional technique, since expensive platinum is used as a catalyst, there is a problem that the cost is increased. Therefore, the above problem can be solved if the oxidation-reduction characteristics of the electrode can be maintained and improved without using an expensive catalyst metal such as platinum.

本発明の目的は、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料の製造方法及びこれにより製造した電極材料を使用した燃料電池を提供することにある。   An object of the present invention is to provide a method for producing a carbon-based electrode material capable of performing hydrogen oxidation-reduction and oxygen reduction at a noble potential without using a catalyst metal such as platinum, and an electrode material produced thereby. It is to provide a used fuel cell.

上記目的を達成するために、本発明の一実施形態は、炭素を基体とする電極材料の製造方法であって、炭素材料を、アルコールを含む親水性有機化合物と水との任意比率の溶液中で超音波照射処理し、前記炭素材料の表面に含窒素官能基を共有結合させ、前記表面に含窒素官能基を共有結合させた炭素材料を電解還元処理し、前記電解還元処理後の炭素材料を、亜硝酸ナトリウムを溶解した硫酸中で反応させてジアゾ化する、ことを特徴とする。   In order to achieve the above object, one embodiment of the present invention is a method for producing a carbon-based electrode material, wherein the carbon material is contained in a solution of an alcohol-containing hydrophilic organic compound and water in an arbitrary ratio. The carbon material after the electrolytic reduction treatment is subjected to the ultrasonic irradiation treatment, the nitrogen-containing functional group is covalently bonded to the surface of the carbon material, the carbon material having the nitrogen-containing functional group covalently bonded to the surface is subjected to electrolytic reduction treatment, Is diazotized by reaction in sulfuric acid in which sodium nitrite is dissolved.

また、前記ジアゾ化の後、前記電解還元処理、前記ジアゾ化、前記電解還元処理の順序で各処理を繰り返すことを特徴とする。   Further, after the diazotization, each process is repeated in the order of the electrolytic reduction process, the diazotization, and the electrolytic reduction process.

また、前記親水性有機化合物はエタノール、プロパノールを含む低級アルコールであることを特徴とする。   Further, the hydrophilic organic compound is a lower alcohol including ethanol and propanol.

また、カルバミン酸と低級アルコールを含む親水性有機化合物とを含む水溶液を、前記炭素材料を電極として使用して電解酸化することにより、前記炭素材料の表面に含窒素官能基を共有結合させることを特徴とする。   Further, an aqueous solution containing a carbamic acid and a hydrophilic organic compound containing a lower alcohol is subjected to electrolytic oxidation using the carbon material as an electrode, thereby covalently bonding a nitrogen-containing functional group to the surface of the carbon material. Features.

また、前記炭素材料は、グラッシーカーボン、カーボンナノチューブ、カーボンフェルト、プラスチック成型カーボンまたはダイヤモンド電極のいずれかにより構成されていることを特徴とする。   The carbon material may be composed of any of glassy carbon, carbon nanotube, carbon felt, plastic molded carbon, or diamond electrode.

また、本発明の他の実施形態は、燃料電池であって、上記炭素を基体とする電極材料の製造方法により製造した電極材料を水素極と酸素極との少なくとも一方に使用したことを特徴とする。   Another embodiment of the present invention is a fuel cell, characterized in that an electrode material produced by the above-described method for producing an electrode material based on carbon is used for at least one of a hydrogen electrode and an oxygen electrode. To do.

本発明によれば、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料の製造方法及びこれにより製造した電極材料を使用した燃料電池を得ることができる。   According to the present invention, there is provided a method for producing a carbon-based electrode material capable of performing hydrogen oxidation-reduction and oxygen reduction at a noble potential without using a catalyst metal such as platinum, and an electrode material produced thereby. The used fuel cell can be obtained.

カルバミン酸アンモニウム水溶液の電解酸化装置の構成例を示す図である。It is a figure which shows the structural example of the electrolytic oxidation apparatus of the ammonium carbamate aqueous solution. アミノ基及びジアゾ基が結合した炭素材料を強酸水溶液中で電解改質する装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus which electrolytically reforms the carbon material which the amino group and the diazo group couple | bonded in strong acid aqueous solution. 実施例3にかかる燃料電池の構成例を示す図である。6 is a diagram illustrating a configuration example of a fuel cell according to Example 3. FIG. 電解酸化処理におけるカルバミン酸アンモニウム/エタノール/純水溶液中のエタノールの混合比率を変更して作成した電極材料を使用した場合の燃料電池の出力と電流との関係を示す図である。It is a figure which shows the relationship between the output of a fuel cell, and an electric current at the time of using the electrode material produced by changing the mixing ratio of the ammonium carbamate / ethanol / ethanol in the pure aqueous solution in electrolytic oxidation treatment. エタノールの混合比率と燃料電池の最大出力との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of ethanol, and the maximum output of a fuel cell. エタノールの混合比率が70%の場合の電極材料を使用した燃料電池に酸素または空気を供給したときの出力と電流との関係を示す図である。It is a figure which shows the relationship between an output when oxygen or air is supplied to the fuel cell using the electrode material in case the mixing ratio of ethanol is 70%. 電極材料(III)を電極に使用した場合の1M硫酸水溶液のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of 1M sulfuric acid aqueous solution at the time of using electrode material (III) for an electrode.

以下、本発明を実施するための形態(以下、実施形態という)を説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.

本実施形態では、炭素材料を、アルコールを含む親水性有機化合物と水との任意比率の溶液中で超音波照射処理し、この炭素材料の表面に含窒素官能基を電解酸化処理により共有結合させ、表面に含窒素官能基を共有結合させた炭素材料を電解還元処理し、電解還元処理後の炭素材料を、亜硝酸ナトリウムを溶解した強酸中で反応させてジアゾ化することにより炭素を基体とする電極材料を製造することを特徴としている。   In this embodiment, the carbon material is subjected to ultrasonic irradiation treatment in a solution of an alcohol-containing hydrophilic organic compound and water in an arbitrary ratio, and a nitrogen-containing functional group is covalently bonded to the surface of the carbon material by electrolytic oxidation treatment. Then, the carbon material having a nitrogen-containing functional group covalently bonded to the surface is subjected to electrolytic reduction treatment, and the carbon material after the electrolytic reduction treatment is reacted with a strong acid in which sodium nitrite is dissolved to diazotize the carbon with the substrate. It is characterized by manufacturing an electrode material.

上記炭素材料は、電極材料として必要な導電性を有するものであり、黒鉛等が好ましい。例えば、グラッシーカーボン、カーボンナノチューブ、カーボンフェルト、プラスチック成型カーボンまたはダイヤモンド電極等を使用することができる。   The carbon material has conductivity necessary as an electrode material, and graphite or the like is preferable. For example, glassy carbon, carbon nanotube, carbon felt, plastic molded carbon, diamond electrode, or the like can be used.

炭素材料の表面の炭素原子に共有結合する含窒素官能基は、例えばアミノ基、ジアゾ基等が挙げられる。アミノ基及びジアゾ基を炭素材料の表面の炭素原子に共有結合させるには、炭素材料を電極として例えばカルバミン酸と上記親水性有機化合物とを含む水溶液を電解酸化することによりカルバミン酸を炭素材料の表面の炭素原子に直接共有結合させ、その後脱炭酸してアミノ基、および電解で発生したカルバミン酸ラジカルがこのアミノ基に結合してさらに脱炭酸して生成したジアゾ基を炭素材料の表面の炭素原子に共有結合で直接導入する方法が好適である。   Examples of the nitrogen-containing functional group covalently bonded to the carbon atom on the surface of the carbon material include an amino group and a diazo group. In order to covalently bond the amino group and the diazo group to the carbon atom on the surface of the carbon material, the carbon material is used as an electrode, for example, by electrolytically oxidizing an aqueous solution containing carbamic acid and the above hydrophilic organic compound, Directly bonded to carbon atoms on the surface, then decarboxylated to form amino groups, and diazo groups generated by further decarboxylation by binding of the carbamate radicals generated by electrolysis to the amino groups and carbon on the surface of the carbon material. A method of directly introducing into a atom by a covalent bond is preferable.

上記親水性有機化合物としては、例えばエタノール、プロパノールを含む低級アルコールを使用することができる。また、上記カルバミン酸と親水性有機化合物とを含む水溶液としては、エタノール等の水溶液にカルバミン酸アンモニウム、炭酸アンモニウムまたは炭酸水素アンモニウムを加えたものを好適に使用することができる。   As the hydrophilic organic compound, for example, lower alcohols including ethanol and propanol can be used. As the aqueous solution containing the carbamic acid and the hydrophilic organic compound, an aqueous solution of ethanol or the like to which ammonium carbamate, ammonium carbonate, or ammonium hydrogen carbonate is added can be preferably used.

本実施形態では、エタノール等の親水性有機化合物と水との任意比率の溶液中で炭素材料を超音波照射処理することにより、その後カルバミン酸と親水性有機化合物とを含む水溶液を電解酸化する際に、疎水性の炭素材料の表面にカルバミン酸を含む水溶液が浸透しやすくなる。このため、含窒素官能基が共有結合する炭素材料の表面積が増大し、触媒活性能を向上することができる。   In this embodiment, when the carbon material is subjected to ultrasonic irradiation treatment in a solution of a hydrophilic organic compound such as ethanol and water in an arbitrary ratio, an aqueous solution containing carbamic acid and the hydrophilic organic compound is subsequently electrolytically oxidized. In addition, an aqueous solution containing carbamic acid is likely to penetrate into the surface of the hydrophobic carbon material. For this reason, the surface area of the carbon material to which the nitrogen-containing functional group is covalently bonded is increased, and the catalytic activity can be improved.

以上の工程によりアミノ基及びジアゾ基を炭素材料の表面の炭素原子に直接共有結合させた例が以下に示される。   An example in which an amino group and a diazo group are directly covalently bonded to a carbon atom on the surface of a carbon material by the above process is shown below.

Figure 2013157178
Figure 2013157178

なお、上記構造式(化1)では、炭素材料の一部の構造が示されており、炭素原子の六角形格子構造の数並びにアミノ基及びジアゾ基の数は、上記構造式(化1)のものに限定されない。   The structural formula (Chemical Formula 1) shows a partial structure of the carbon material, and the number of hexagonal lattice structures of carbon atoms and the number of amino groups and diazo groups are represented by the structural formula (Chemical Formula 1). It is not limited to those.

次に、上記表面に含窒素官能基(アミノ基及びジアゾ基)を共有結合させた炭素材料を水溶液中で電解還元処理する。この場合の強酸としては、硫酸などの強酸及びリン酸緩衝液などの水溶液を使用することができる。これにより、硫酸中で電解還元した場合は炭素材料の表面の炭素原子に、スルホン酸基を含む電子吸引性基が共有結合することにより導入される。   Next, the carbon material having a nitrogen-containing functional group (amino group and diazo group) covalently bonded to the surface is subjected to electrolytic reduction treatment in an aqueous solution. As the strong acid in this case, a strong acid such as sulfuric acid and an aqueous solution such as a phosphate buffer can be used. As a result, when electrolytic reduction is performed in sulfuric acid, an electron-withdrawing group including a sulfonic acid group is introduced into a carbon atom on the surface of the carbon material by covalent bonding.

以下に、アミノ基及びジアゾ基が表面に結合した炭素材料を硫酸水溶液中で電解還元処理し、スルホン酸基を導入する場合の反応が示される。   The reaction in the case of introducing a sulfonic acid group by electrolytically reducing a carbon material having an amino group and a diazo group bonded to the surface in an aqueous sulfuric acid solution is shown below.

Figure 2013157178
Figure 2013157178

上記反応においては、アミノ基及びジアゾ基が表面に結合した炭素材料を硫酸水溶液中で電解還元することにより、ジアゾ基が還元されて電子供与性のヒドラジノ基となる。また、その際にHSO(硫酸)がHSO とOHに開裂してできたHSO イオンが、ヒドラジノ基に対してオルト位の電子リッチな炭素原子(C)を攻撃した結果、スルホン酸基が導入される。このようにして、表面に含窒素官能基(アミノ基またはヒドラジノ基)及びスルホン酸基を共有結合させた電極材料(I)が生成される。この電極材料(I)の構造式が以下に示される。 In the above reaction, a carbon material having an amino group and a diazo group bonded to the surface is electrolytically reduced in an aqueous sulfuric acid solution, whereby the diazo group is reduced to an electron donating hydrazino group. At that time, HSO 3 + ions formed by cleavage of H 2 SO 4 (sulfuric acid) into HSO 3 + and OH attack the electron-rich carbon atom (C ) in the ortho position with respect to the hydrazino group. As a result, a sulfonic acid group is introduced. In this way, the electrode material (I) having a nitrogen-containing functional group (amino group or hydrazino group) and a sulfonic acid group covalently bonded to the surface is produced. The structural formula of this electrode material (I) is shown below.

Figure 2013157178
Figure 2013157178

上記電極材料(I)は、表面の炭素原子にヒドラジノ基が結合している。また、表面の炭素原子にはスルホン酸基(SO )も結合している。 The electrode material (I) has a hydrazino group bonded to a carbon atom on the surface. In addition, a sulfonic acid group (SO 3 ) is also bonded to the surface carbon atom.

上記電極材料(I)は、空気中で酸化され、以下に示される電極材料(II)となる。   The electrode material (I) is oxidized in air to become an electrode material (II) shown below.

Figure 2013157178
Figure 2013157178

上記電極材料(II)は、表面の炭素原子にヒドラジノ基が酸化されたジアゾ基が結合している。また、表面の炭素原子にはスルホン酸基(SO )も結合しており、ジアゾ基とスルホン酸基とがイオン対を形成して安定化し、ジアゾ基が脱窒素して減少するのを防いでいる。なお、ヒドラジノ基とアゾ基はジアゾ基と異なって電解や酸素によって酸化または還元をされなければ安定である。下記構造式中のジアゾ基はアゾ基であってもよい。 In the electrode material (II), a diazo group in which a hydrazino group is oxidized is bonded to a surface carbon atom. In addition, a sulfonic acid group (SO 3 ) is also bonded to the surface carbon atom, and the diazo group and the sulfonic acid group are stabilized by forming an ion pair, and the diazo group is reduced by denitrification. It is preventing. Unlike diazo groups, hydrazino groups and azo groups are stable unless oxidized or reduced by electrolysis or oxygen. The diazo group in the following structural formula may be an azo group.

また、上記電極材料(II)を、亜硝酸ナトリウムを溶解した硫酸中で反応させ、ジアゾ化すると、電極材料(III)が生成する。   When the electrode material (II) is reacted in sulfuric acid in which sodium nitrite is dissolved and diazotized, the electrode material (III) is generated.

Figure 2013157178
Figure 2013157178

電極材料(III)が、本実施形態にかかる炭素を基体とする電極材料の例である。電極材料(III)では、表面の炭素原子に結合していたアミノ基がジアゾ化によりジアゾ基に変化しており、ジアゾ基の数が電極材料(II)よりも増加している。これにより、電極材料(III)を使用して測定した1M硫酸水溶液のサイクリックボルタモグラムは、水素の酸化還元波が、電極材料(II)を使用して測定した1M(モル/リットル)硫酸水溶液のサイクリックボルタモグラムと較べて大きく増大するとともに、酸素還元波が貴方向にシフトする。これは、水素の酸化還元及び酸素の還元の電子移動触媒サイトとしてジアゾ基が働いているためと考えられる。なお、酸素還元波の位置は亜硝酸ナトリウムによるジアゾ化により卑方向へシフトするが、再度硫酸中で同様な電解還元を行うと、最初の位置に戻る。この結果、酸素の還元触媒サイトが有効に働くためには、ジアゾ基の数に対するスルホン酸基の数の比が大きいことが必要であることがわかる。上記ジアゾ化の後に硫酸中での再度の電解還元処理を行うと、ジアゾ基の数に対するスルホン酸基の数の比を大きくすることができる。さらに、上記再度の電解還元処理の後、ジアゾ化及び電解還元処理を繰り返すと、ジアゾ基の数に対するスルホン酸基の数の比をさらに大きくすることができる。   The electrode material (III) is an example of a carbon-based electrode material according to this embodiment. In the electrode material (III), the amino group bonded to the carbon atom on the surface is changed to a diazo group by diazotization, and the number of diazo groups is increased as compared with the electrode material (II). Thus, the cyclic voltammogram of the 1M sulfuric acid aqueous solution measured using the electrode material (III) shows that the oxidation-reduction wave of hydrogen was measured using the 1M (mol / liter) sulfuric acid aqueous solution measured using the electrode material (II). As compared with the cyclic voltammogram, the oxygen reduction wave shifts in a noble direction as it increases greatly. This is presumably because the diazo group acts as an electron transfer catalyst site for hydrogen redox and oxygen reduction. The position of the oxygen reduction wave shifts in the base direction due to diazotization with sodium nitrite, but returns to the initial position when similar electrolytic reduction is performed again in sulfuric acid. As a result, it is understood that the ratio of the number of sulfonic acid groups to the number of diazo groups needs to be large in order for the oxygen reduction catalyst site to work effectively. When the electrolytic reduction process is performed again in sulfuric acid after the diazotization, the ratio of the number of sulfonic acid groups to the number of diazo groups can be increased. Furthermore, if the diazotization and the electrolytic reduction treatment are repeated after the above electrolytic reduction treatment, the ratio of the number of sulfonic acid groups to the number of diazo groups can be further increased.

以上の様にして製造した本実施形態にかかる炭素を基体とする電極材料は、酸化還元特性等の電極特性が向上されているので、水素の電解製造(水の電気分解)用電極、燃料電池用電極、電気化学センサ、酸素還元触媒電極、バイオセンサ等に使用するのが好適である。本実施形態にかかる炭素を基体とする電極材料を燃料電池用電極として使用する場合には、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる。また、水素の電解製造用電極として使用する場合には、少なくとも陰極用に使用することができるが、陰極、陽極の両方に使用してもよい。   Since the electrode material based on carbon according to the present embodiment manufactured as described above has improved electrode characteristics such as redox characteristics, etc., an electrode for electrolytic production of hydrogen (electrolysis of water), a fuel cell It is suitable to use for electrodes, electrochemical sensors, oxygen reduction catalyst electrodes, biosensors and the like. When the electrode material based on carbon according to the present embodiment is used as an electrode for a fuel cell, hydrogen reduction and oxygen reduction at a noble potential can be performed without using a catalyst metal such as platinum. . Moreover, when using as an electrode for electrolytic production of hydrogen, it can be used at least for the cathode, but may be used for both the cathode and the anode.

以下、本発明の実施例を説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to the examples described below.

実施例1
(1)以下の手順により、炭素材料の表面の炭素原子に含窒素官能基を共有結合させた。
Example 1
(1) A nitrogen-containing functional group was covalently bonded to a carbon atom on the surface of the carbon material by the following procedure.

炭素材料として1×6×0.5cmの大きさのカーボンフェルトを選択し、これをエタノールと純水との任意比率の混合溶液中に浸して、1時間超音波照射処理を行った。この際に使用した超音波照射装置はブランソン1510であった。   A carbon felt having a size of 1 × 6 × 0.5 cm was selected as a carbon material, which was immersed in a mixed solution of ethanol and pure water in an arbitrary ratio, and subjected to ultrasonic irradiation treatment for 1 hour. The ultrasonic irradiation apparatus used at this time was Branson 1510.

次に、上記超音波照射処理を行ったカーボンフェルトを作用電極として用いて、0.1M(モル/リットル)のカルバミン酸アンモニウム/エタノール/純水溶液を電解酸化した。この場合のカルバミン酸アンモニウム/エタノール/純水溶液は、上記混合溶液中にカルバミン酸アンモニウムを溶解して調製した。また、電解酸化の条件は、銀―塩化銀電極(Ag/AgCl)を基準電極として用いて、+1.1V(vs.Ag/AgCl)の電位とし、電解時間1時間とした。   Next, 0.1 M (mol / liter) ammonium carbamate / ethanol / pure aqueous solution was electrolytically oxidized using the carbon felt subjected to the ultrasonic irradiation treatment as a working electrode. The ammonium carbamate / ethanol / pure aqueous solution in this case was prepared by dissolving ammonium carbamate in the above mixed solution. The electrolytic oxidation was performed using a silver-silver chloride electrode (Ag / AgCl) as a reference electrode, a potential of +1.1 V (vs. Ag / AgCl), and an electrolysis time of 1 hour.

図1には、上記カルバミン酸アンモニウム水溶液の電解酸化装置の構成例が示される。図1において、直径2.5cm深さ5cmのプラスチック容器10に電解液として0.1Mカルバミン酸アンモニウム/エタノール/純水溶液を入れ、作用電極12としてカーボンフェルト(日本カーボン株式会社製 工業用カーボンフェルトGF−20−5F)を略球状として白金線14の先端に取り付けたもの、対極16として直径0.5mmの白金線、基準電極18として銀―塩化銀電極(Ag/AgCl)を用いた3電極法で定電位電解酸化を行った。カルバミン酸アンモニウムはメルク社製特級を用い、エタノールは和光純薬製特級を用い、純水に溶解して0.1Mとした。   FIG. 1 shows a configuration example of the electrolytic oxidation apparatus for the ammonium carbamate aqueous solution. In FIG. 1, 0.1M ammonium carbamate / ethanol / pure aqueous solution is placed as an electrolyte in a plastic container 10 having a diameter of 2.5 cm and a depth of 5 cm, and carbon felt (industrial carbon felt GF manufactured by Nippon Carbon Co., Ltd.) is used as a working electrode 12. -20-5F) having a substantially spherical shape attached to the tip of the platinum wire 14, a platinum wire having a diameter of 0.5 mm as the counter electrode 16, and a silver-silver chloride electrode (Ag / AgCl) as the reference electrode 18 Then, constant potential electrolytic oxidation was performed. Ammonium carbamate used a special grade made by Merck, and ethanol used a special grade made by Wako Pure Chemical Industries.

上記定電位電解酸化は、ポテンショスタット/ガルバノスタット(北斗電工製HA−151)をポテンショスタット20として用い、作用電極12に、基準電極18に対して一定電位(1.1V)を印加して1時間行った。なお、定電位電解中はスターラー22によりカルバミン酸アンモニウム/エタノール/純水溶液を攪拌した。電解酸化処理後、作用電極12としてのカーボンフェルトを蒸留水で洗浄し、含窒素官能基であるアミノ基及びジアゾ基が結合した炭素材料(上記構造式化1)を作製した。   The constant potential electrolytic oxidation is performed by using a potentiostat / galvanostat (HA-151 manufactured by Hokuto Denko) as the potentiostat 20, and applying a constant potential (1.1V) to the reference electrode 18 to the working electrode 12. Went for hours. In addition, the ammonium carbamate / ethanol / pure aqueous solution was stirred by the stirrer 22 during constant potential electrolysis. After the electrolytic oxidation treatment, the carbon felt as the working electrode 12 was washed with distilled water to produce a carbon material (structure formula 1 above) in which an amino group and a diazo group, which are nitrogen-containing functional groups, were bonded.

(2)上記手順(1)で得たアミノ基及びジアゾ基が結合した炭素材料(構造式化1)を、以下の手順により強酸水溶液中で電解改質した。 (2) The carbon material (Structural Formula 1) to which the amino group and diazo group were bonded obtained in the above procedure (1) was electrolytically modified in a strong acid aqueous solution by the following procedure.

図2には、アミノ基及びジアゾ基が結合した上記炭素材料を強酸水溶液中で電解改質する装置の構成例が示され、図1と同一要素には同一符号を付している。図2において、プラスチック容器10に電解液として1M硫酸水溶液を入れ、上記手順(1)で得たアミノ基及びジアゾ基が結合したカーボンフェルトをカーボンロッド24の先端に取り付けた作用電極12、上記手順(1)で使用した対極16としての白金線及び基準電極18としての銀―塩化銀電極を用いた3電極法で定電位電解還元を行った。なお、上記カーボンロッド24としては、筆記具(シャープペンシル)の芯を使用した。また、硫酸水溶液は、和光純薬工業株式会社製の1M硫酸(容量分析用)を使用した。   FIG. 2 shows a configuration example of an apparatus for electrolytically reforming the above carbon material to which an amino group and a diazo group are bonded in a strong acid aqueous solution. The same elements as those in FIG. In FIG. 2, a working electrode 12 in which a 1M sulfuric acid aqueous solution is placed in a plastic container 10 as an electrolytic solution, and a carbon felt bonded with an amino group and a diazo group obtained in the procedure (1) is attached to the tip of a carbon rod 24, and the procedure described above. Constant potential electrolytic reduction was performed by a three-electrode method using a platinum wire as the counter electrode 16 and a silver-silver chloride electrode as the reference electrode 18 used in (1). As the carbon rod 24, a writing instrument (mechanical pencil) core was used. The sulfuric acid aqueous solution used was 1M sulfuric acid (for volumetric analysis) manufactured by Wako Pure Chemical Industries, Ltd.

上記定電位電解還元は、ポテンショスタット/ガルバノスタット(北斗電工製HAB−151)をポテンショスタット20として用い、作用電極12に、基準電極18に対して一定電位(−1.0V vs.Ag/AgCl)を印加して20時間行った。なお、定電位電解中はスターラー22により硫酸水溶液を攪拌した。電解還元処理を続けると、作用電極12と対極16との間に流れる電解還元電流が増加して行き、作用電極12の周囲から水素ガスが、対極16の周囲から酸素ガスが激しく発生した。これにより、アミノ基及びジアゾ基が表面に結合したカーボンフェルトの表面にスルホン酸基が導入される。また、ジアゾ基はヒドラジノ基となる(化2参照)。   The potentiostatic electrolytic reduction uses a potentiostat / galvanostat (HAB-151 manufactured by Hokuto Denko) as the potentiostat 20, a constant potential (−1.0 V vs. Ag / AgCl) with respect to the working electrode 12 and the reference electrode 18. ) Was applied for 20 hours. In addition, the sulfuric acid aqueous solution was stirred with the stirrer 22 during constant potential electrolysis. When the electrolytic reduction treatment was continued, the electrolytic reduction current flowing between the working electrode 12 and the counter electrode 16 increased, and hydrogen gas was generated from the periphery of the working electrode 12 and oxygen gas was generated violently from the periphery of the counter electrode 16. Thereby, a sulfonic acid group is introduced on the surface of the carbon felt having an amino group and a diazo group bonded to the surface. Further, the diazo group becomes a hydrazino group (see Chemical Formula 2).

上記電解還元処理後、作用電極12としてのカーボンフェルトを蒸留水で洗浄し、含窒素官能基であるアミノ基及びヒドラジノ基が結合し、かつ硫酸中で電解改質することによりスルホン酸基を表面の炭素原子に共有結合させた電極材料(上記電極材料(I)(化3))を作製した。   After the electrolytic reduction treatment, the carbon felt as the working electrode 12 is washed with distilled water, and the amino group and hydrazino group, which are nitrogen-containing functional groups, are bonded, and the sulfonic acid group is formed on the surface by electrolytic modification in sulfuric acid. Electrode material (the electrode material (I) (Chemical Formula 3)) covalently bonded to the carbon atoms was prepared.

さらに、上記電極材料(I)は、空気中で酸化され、ヒドラジノ基がジアゾ基となった電極材料(II)(化4)となる。   Further, the electrode material (I) is oxidized in the air to become an electrode material (II) (Chemical formula 4) in which the hydrazino group becomes a diazo group.

(3)上記手順(2)で得た電極材料(II))を、氷冷した0.1M亜硝酸ナトリウムを溶解した1M硫酸中に3時間浸し、ジアゾ化を行った。亜硝酸ナトリウムは和光純薬株式会社製一級を使用した。これにより、硫酸中において亜硝酸イオンが上記電極材料の表面に結合していた一級アミンと反応してジアゾ基を生成する。この結果、炭素を基体とする電極材料の例として上記電極材料(III)(化5)を作製した。 (3) The electrode material (II) obtained in the above procedure (2) was immersed in 1M sulfuric acid in which 0.1M sodium nitrite dissolved in ice for 3 hours for diazotization. Sodium nitrite used Wako Pure Chemical Industries grade 1 grade. Thereby, nitrite ions react with the primary amine bonded to the surface of the electrode material in sulfuric acid to generate a diazo group. As a result, the electrode material (III) (Chemical Formula 5) was produced as an example of an electrode material based on carbon.

(4)上記手順(2)(3)を1回ずつ繰り返し、その後さらに手順(2)を実施した。これにより、電極材料(III)の表面の炭素原子に共有結合しているジアゾ基の数に対するスルホン酸基の数の比を大きくすることができる。 (4) The procedures (2) and (3) were repeated once, and then procedure (2) was further performed. As a result, the ratio of the number of sulfonic acid groups to the number of diazo groups covalently bonded to carbon atoms on the surface of the electrode material (III) can be increased.

実施例2
実施例1で作製(超音波照射処理時のエタノール濃度は80体積%)した電極材料(III)を電極に使用して1M硫酸水溶液のサイクリックボルタンメトリーを実施し、サイクリックボルタモグラムを測定した。サイクリックボルタンメトリーは、北斗電工株式会社製 Electrochemical Polarization System HZ−3000を使用し、以下の条件で行った。
Example 2
Using the electrode material (III) prepared in Example 1 (ethanol concentration at the time of ultrasonic irradiation treatment is 80% by volume) as an electrode, cyclic voltammetry of 1M sulfuric acid aqueous solution was performed, and cyclic voltammogram was measured. Cyclic voltammetry was performed under the following conditions using an Electrochemical Polarization System HZ-3000 manufactured by Hokuto Denko Corporation.

<サイクリックボルタンメトリーの実施条件>
1M硫酸水溶液中に、上記カーボンロッド24を連結した作用電極12、白金線の対極16及び銀―塩化銀の基準電極18を入れ、+1.0Vから−0.4Vの電位範囲で実施した。電位の掃引速度は40mV/秒で行い、測定は常温で行った。なお、電位範囲は実験目的によりその都度定めた。
図7には、電極材料(III)を電極に使用した場合の1M硫酸水溶液のサイクリックボルタモグラムが示される。図7では、縦軸が応答電流値であり、横軸が電極材料の電位である。図7に示されるように、実施例1で作製した電極材料(III)を使用すると、水素の酸化還元波及び酸素の還元波が電池の関係となって大きく現れることが分かる。
<Implementation conditions for cyclic voltammetry>
The working electrode 12, to which the carbon rod 24 was connected, the counter electrode 16 of the platinum wire and the silver-silver chloride reference electrode 18 were placed in a 1M sulfuric acid aqueous solution, and the reaction was carried out in a potential range of + 1.0V to -0.4V. The potential sweep rate was 40 mV / sec, and the measurement was performed at room temperature. The potential range was determined each time according to the purpose of the experiment.
FIG. 7 shows a cyclic voltammogram of a 1M sulfuric acid aqueous solution when the electrode material (III) is used for an electrode. In FIG. 7, the vertical axis represents the response current value, and the horizontal axis represents the potential of the electrode material. As shown in FIG. 7, when the electrode material (III) produced in Example 1 is used, it can be seen that a hydrogen oxidation-reduction wave and an oxygen reduction wave appear greatly as a battery.

実施例3
実施例1で得た電極材料(III)を使用し、燃料電池を作製して放電動作を行わせた。
Example 3
Using the electrode material (III) obtained in Example 1, a fuel cell was produced and a discharge operation was performed.

図3には、本実施例3にかかる燃料電池の構成例が示される。燃料電池は、(有)筑波物質情報研究所より市販されているミニセルを使用し、正負極を上記電極材料(III)で構成した。図3において、ガス導入管26a及びガス排気管28aが設けられた集電体30aと、ガス導入管26b及びガス排気管28bが設けられた集電体30bとの間に、電極材料(III)で構成した酸素極32及び水素極34と、酸素極32と水素極34とを隔てる陽イオン交換膜36(旭硝子株式会社製セレミオン)とが配置され、フッ素樹脂(PTFE)製のガスケット38a、38bにより封止(シール)されている。また、酸素極32及び水素極34には、0.1Mリン酸緩衝液(pH=7.0)を含浸させた。   FIG. 3 shows a configuration example of the fuel cell according to the third embodiment. The fuel cell used was a minicell marketed by Tsukuba Materials Information Laboratory, and the positive and negative electrodes were composed of the electrode material (III). In FIG. 3, an electrode material (III) is disposed between a current collector 30a provided with a gas introduction pipe 26a and a gas exhaust pipe 28a and a current collector 30b provided with a gas introduction pipe 26b and a gas exhaust pipe 28b. And an oxygen electrode 32 and a hydrogen electrode 34, and a cation exchange membrane 36 (Selemion manufactured by Asahi Glass Co., Ltd.) separating the oxygen electrode 32 and the hydrogen electrode 34, and gaskets 38a and 38b made of fluororesin (PTFE). Is sealed (sealed). The oxygen electrode 32 and the hydrogen electrode 34 were impregnated with 0.1 M phosphate buffer (pH = 7.0).

以上のようにして構成した燃料電池の酸素極32には、ガス導入管26a及びガス排気管28aにより酸素ガスを供給し、水素極34には、ガス導入管26b及びガス排気管28bにより水素ガスを供給して、集電体30a及び集電体30bに接続した図示しないリード線から放電を行ったときのリード線間(集電体30aと集電体30bとの間)の起電力を測定し、発電試験を行った。   The oxygen electrode 32 of the fuel cell configured as described above is supplied with oxygen gas through the gas introduction pipe 26a and the gas exhaust pipe 28a, and the hydrogen electrode 34 is supplied with hydrogen gas through the gas introduction pipe 26b and the gas exhaust pipe 28b. To measure the electromotive force between the lead wires (between the current collector 30a and the current collector 30b) when discharging from a lead wire (not shown) connected to the current collector 30a and the current collector 30b. A power generation test was conducted.

図4には、電解酸化処理(実施例1の手順(1))におけるカルバミン酸アンモニウム/エタノール/純水溶液中のエタノールの混合比率を変更して作成した電極材料(III)を使用した場合の燃料電池の出力と電流との関係が示される。図4において、横軸が電流値(mA)、縦軸が燃料電池の出力(mW)である。また、エタノールの混合比率(体積%)としては、0%(A)、20%(B)、50%(C)、60%(D)、70%(E)、80%(F)を選択した。図4の例では、酸素極32及び水素極34に供給するガス流量として、酸素ガスを5ml/分、水素ガスを2ml/分とした。   FIG. 4 shows a fuel in the case of using electrode material (III) prepared by changing the mixing ratio of ammonium carbamate / ethanol / ethanol in a pure aqueous solution in electrolytic oxidation treatment (procedure (1) in Example 1). The relationship between battery output and current is shown. In FIG. 4, the horizontal axis represents the current value (mA), and the vertical axis represents the output (mW) of the fuel cell. Moreover, 0% (A), 20% (B), 50% (C), 60% (D), 70% (E), and 80% (F) are selected as the mixing ratio (volume%) of ethanol. did. In the example of FIG. 4, the gas flow rate supplied to the oxygen electrode 32 and the hydrogen electrode 34 is 5 ml / min for oxygen gas and 2 ml / min for hydrogen gas.

また、図5には、上記図4の結果から作成した、エタノールの混合比率と燃料電池の最大出力(曲線のピーク高さ)との関係が示される。図5において、横軸がエタノールの混合比率(体積%)、縦軸が燃料電池の最大出力(mW)である。   FIG. 5 shows the relationship between the ethanol mixing ratio and the maximum output of the fuel cell (the peak height of the curve) created from the results of FIG. In FIG. 5, the horizontal axis represents the mixing ratio (volume%) of ethanol, and the vertical axis represents the maximum output (mW) of the fuel cell.

図4、図5に示されるように、エタノールの混合比率が高まると燃料電池の最大出力が増大してゆき、エタノールの混合比率が60%で最大出力が最も高くなり、その後エタノールの混合比率の増大とともに最大出力が低下することが分かる。例えば、エタノールを使用しないAの場合の最大出力が3mWであったのに対し、エタノールの混合比率が60%であるDの場合では最大出力が53mW(1cmあたり8.8mW)に達している。エタノールを混合して出力が高まった理由は、カーボンフェルトの疎水性表面にエタノールが浸透して親水性を高め、活性サイト(含窒素官能基)が結合する有効な表面積を増加させたためであると考えられる。一方、エタノールの混合比率が60%より高くなると燃料電池の最大出力が低下したが、これはカルバミン酸の溶解度が減少したために十分なアミノ化が行えず、含窒素官能基が結合した活性サイトの面積が小さくなったからであると考えられる。 As shown in FIGS. 4 and 5, the maximum output of the fuel cell increases as the mixing ratio of ethanol increases, and the maximum output becomes the highest when the mixing ratio of ethanol is 60%. It can be seen that the maximum output decreases with increase. For example, in the case of A where ethanol is not used, the maximum output is 3 mW, whereas in the case of D where the mixing ratio of ethanol is 60%, the maximum output reaches 53 mW (8.8 mW per cm 2 ). . The reason why the output is increased by mixing ethanol is that ethanol penetrates the hydrophobic surface of carbon felt to increase the hydrophilicity and increase the effective surface area to which the active site (nitrogen-containing functional group) binds. Conceivable. On the other hand, when the mixing ratio of ethanol is higher than 60%, the maximum output of the fuel cell is reduced. This is because the solubility of carbamic acid is reduced, so that sufficient amination cannot be performed, and the active site to which the nitrogen-containing functional group is bonded. This is probably because the area has become smaller.

図6には、エタノールの混合比率が70%の場合の電極材料(III)を使用した燃料電池に酸素または空気を供給したときの出力と電流との関係が示される。図6において、横軸が電流値(mA)、縦軸が燃料電池の出力(mW)である。また、酸素(純酸素)の場合の供給量は5ml/分とし、空気の場合の供給量は20ml/分とした。また、水素の供給量は2ml/分とした。図6に示されるように、空気を流した場合は、酸素を流した場合より出力は若干低下するが、空気でも十分な発電が行えることがわかる。   FIG. 6 shows the relationship between the output and current when oxygen or air is supplied to the fuel cell using the electrode material (III) when the mixing ratio of ethanol is 70%. In FIG. 6, the horizontal axis represents the current value (mA), and the vertical axis represents the output (mW) of the fuel cell. The supply rate in the case of oxygen (pure oxygen) was 5 ml / min, and the supply rate in the case of air was 20 ml / min. The supply amount of hydrogen was 2 ml / min. As shown in FIG. 6, when air is flowed, the output is slightly lower than when oxygen is flowed, but it can be seen that sufficient power can be generated even with air.

また、エタノールの混合比率が50%の場合の電極材料(III)を使用した燃料電池で、35mAの一定電流を流し続けて長期発電試験を行ったところ、セル電圧が最初の0.550Vから138時間後に0.540Vとなった。この結果、極めて安定した発電を長期間行うことが出来ることが分かった。   In addition, when a long-term power generation test was carried out with a fuel cell using the electrode material (III) when the mixing ratio of ethanol was 50% and a constant current of 35 mA was applied, the cell voltage increased from the initial 0.550 V to 138. It became 0.540V after the time. As a result, it was found that extremely stable power generation can be performed for a long time.

10 プラスチック容器、12 作用電極、14 白金線、16 対極、18 基準電極、20 ポテンショスタット、22 スターラー、24 カーボンロッド、26a、26b ガス導入管、28a、28b ガス排気管、30a、30b 集電体、32 酸素極、34 水素極、36 陽イオン交換膜、38a、38b ガスケット。   DESCRIPTION OF SYMBOLS 10 Plastic container, 12 Working electrode, 14 Platinum wire, 16 Counter electrode, 18 Reference electrode, 20 Potentiostat, 22 Stirrer, 24 Carbon rod, 26a, 26b Gas introduction pipe, 28a, 28b Gas exhaust pipe, 30a, 30b Current collector 32 Oxygen electrode, 34 Hydrogen electrode, 36 Cation exchange membrane, 38a, 38b Gasket.

Claims (6)

炭素材料を、アルコールを含む親水性有機化合物と水との任意比率の溶液中で超音波照射処理し、
前記炭素材料の表面に含窒素官能基を共有結合させ、
前記表面に含窒素官能基を共有結合させた炭素材料を電解還元処理し、
前記電解還元処理後の炭素材料を、亜硝酸ナトリウムを溶解した硫酸中で反応させてジアゾ化する、
ことを特徴とする炭素を基体とする電極材料の製造方法。
The carbon material is subjected to ultrasonic irradiation treatment in a solution of an alcohol-containing hydrophilic organic compound and water in an arbitrary ratio,
Nitrogen-containing functional groups are covalently bonded to the surface of the carbon material,
Electrolytic reduction treatment of a carbon material having a nitrogen-containing functional group covalently bonded to the surface,
The carbon material after the electrolytic reduction is reacted in sulfuric acid in which sodium nitrite is dissolved to be diazotized.
A method for producing a carbon-based electrode material.
請求項1に記載の炭素を基体とする電極材料の製造方法において、前記ジアゾ化の後、前記電解還元処理、前記ジアゾ化、前記電解還元処理の順序で各処理を繰り返すことを特徴とする炭素を基体とする電極材料の製造方法。   2. The carbon-based electrode material manufacturing method according to claim 1, wherein after the diazotization, each treatment is repeated in the order of the electrolytic reduction treatment, the diazotization, and the electrolytic reduction treatment. Manufacturing method of electrode material using as a base. 請求項1または請求項2に記載の炭素を基体とする電極材料の製造方法において、前記親水性有機化合物がエタノール、プロパノールを含む低級アルコールであることを特徴とする炭素を基体とする電極材料の製造方法。   3. The method for producing a carbon-based electrode material according to claim 1 or 2, wherein the hydrophilic organic compound is a lower alcohol containing ethanol and propanol. Production method. 請求項1から3のいずれか一項に記載の炭素を基体とする電極材料の製造方法において、カルバミン酸と低級アルコールを含む親水性有機化合物とを含む水溶液を、前記炭素材料を電極として使用して電解酸化することにより、前記炭素材料の表面に含窒素官能基を共有結合させることを特徴とする炭素を基体とする電極材料の製造方法。   The method for producing an electrode material based on carbon according to any one of claims 1 to 3, wherein an aqueous solution containing a carbamic acid and a hydrophilic organic compound containing a lower alcohol is used as the electrode. A method for producing a carbon-based electrode material, wherein a nitrogen-containing functional group is covalently bonded to the surface of the carbon material by electrolytic oxidation. 請求項1から請求項4のいずれか一項に記載の炭素を基体とする電極材料の製造方法において、前記炭素材料は、グラッシーカーボン、カーボンナノチューブ、カーボンフェルト、プラスチック成型カーボンまたはダイヤモンド電極のいずれかにより構成されていることを特徴とする炭素を基体とする電極材料の製造方法。   5. The method for producing a carbon-based electrode material according to claim 1, wherein the carbon material is any one of glassy carbon, carbon nanotube, carbon felt, plastic molded carbon, or diamond electrode. A method for producing a carbon-based electrode material, characterized by comprising: 請求項1から請求項5のいずれか一項に記載の炭素を基体とする電極材料の製造方法により製造した電極材料を水素極と酸素極との少なくとも一方に使用したことを特徴とする燃料電池。   6. A fuel cell comprising the electrode material produced by the method for producing an electrode material based on carbon according to any one of claims 1 to 5 for at least one of a hydrogen electrode and an oxygen electrode. .
JP2012016421A 2012-01-30 2012-01-30 Method for producing carbon-based electrode material and fuel cell using electrode material produced thereby Expired - Fee Related JP5545893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016421A JP5545893B2 (en) 2012-01-30 2012-01-30 Method for producing carbon-based electrode material and fuel cell using electrode material produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016421A JP5545893B2 (en) 2012-01-30 2012-01-30 Method for producing carbon-based electrode material and fuel cell using electrode material produced thereby

Publications (2)

Publication Number Publication Date
JP2013157178A true JP2013157178A (en) 2013-08-15
JP5545893B2 JP5545893B2 (en) 2014-07-09

Family

ID=49052159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016421A Expired - Fee Related JP5545893B2 (en) 2012-01-30 2012-01-30 Method for producing carbon-based electrode material and fuel cell using electrode material produced thereby

Country Status (1)

Country Link
JP (1) JP5545893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202430A (en) * 2012-03-27 2013-10-07 Shunichi Uchiyama Oxidation reduction catalyst and fuel cell using the catalyst
JP2015089945A (en) * 2013-11-04 2015-05-11 渡辺 治 Facilities for resource-recycling biotechnical hydrogen production from biomass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242554A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Catalyst material for fuel cell, its manufacturing method, catalyst membrane, electrode-membrane assembly, and fuel cell
JP2007535787A (en) * 2004-03-15 2007-12-06 キャボット コーポレイション Modified carbon products, use of modified carbon products in fuel cells and similar devices, and methods relating to modified carbon products
JP2007335338A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
JP2008019120A (en) * 2006-07-12 2008-01-31 Shunichi Uchiyama Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor
JP2012017314A (en) * 2009-10-30 2012-01-26 Sumitomo Chemical Co Ltd Nitrogen-containing aromatic compound and metal complex
JP2012240886A (en) * 2011-05-19 2012-12-10 Shunichi Uchiyama Electrode material containing carbon as base body, fuel cell using the same, electrolytic production method of hydrogen, and method for producing the electrode material containing carbon as base body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535787A (en) * 2004-03-15 2007-12-06 キャボット コーポレイション Modified carbon products, use of modified carbon products in fuel cells and similar devices, and methods relating to modified carbon products
JP2007242554A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Catalyst material for fuel cell, its manufacturing method, catalyst membrane, electrode-membrane assembly, and fuel cell
JP2007335338A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
JP2008019120A (en) * 2006-07-12 2008-01-31 Shunichi Uchiyama Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor
JP2012017314A (en) * 2009-10-30 2012-01-26 Sumitomo Chemical Co Ltd Nitrogen-containing aromatic compound and metal complex
JP2012240886A (en) * 2011-05-19 2012-12-10 Shunichi Uchiyama Electrode material containing carbon as base body, fuel cell using the same, electrolytic production method of hydrogen, and method for producing the electrode material containing carbon as base body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014007662; 'カルバミン酸電解処理したカーボンを酸素極として用いる燃料電池' 第5回 埼玉工業大学 若手研究フォーラム 2007 研究発表論文集 , 20070630, p.82-84 *
JPN6014007664; '金属触媒を必要としない炭素電極を用いる水素-酸素燃料電池の開発' 第9回 埼玉工業大学 若手研究フォーラム 2011 研究発表論文集 , 20110709, p.168-170 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202430A (en) * 2012-03-27 2013-10-07 Shunichi Uchiyama Oxidation reduction catalyst and fuel cell using the catalyst
JP2015089945A (en) * 2013-11-04 2015-05-11 渡辺 治 Facilities for resource-recycling biotechnical hydrogen production from biomass

Also Published As

Publication number Publication date
JP5545893B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP2013202430A (en) Oxidation reduction catalyst and fuel cell using the catalyst
Hua et al. Glucose sensor based on an electrochemical reduced graphene oxide-poly (l-lysine) composite film modified GC electrode
JP2022515169A (en) A method of converting carbon dioxide (CO2) into CO by an electrolytic reaction
CN105940526A (en) An electrochemical cell containing a graphene coated electrode
Zikmund et al. Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells
US11359297B2 (en) Method for electrolysis of water and method for preparing catalysts for electrolysis of water
Guo et al. Nickel nanowire arrays electrode as an efficient catalyst for urea peroxide electro-oxidation in alkaline media
EP2841624B1 (en) An electrochemical process for water splitting using porous co3o4 nanorods
CN110205636A (en) A kind of preparation method of self-cradling type three-dimensional porous structure double-function catalyzing electrode
KR101584725B1 (en) Alkaline anion exchange membrane water electrolyzer using Ni electrodeposited hydrophilic porous carbon material and method for preparing the same
Chen et al. Base–acid hybrid water electrolysis
KR101566458B1 (en) Method for improving activity of oxygen evolution reaction and Ni catalysts used therein
Raoof et al. Poly (N-methylaniline)/nickel modified carbon paste electrode as an efficient and cheep electrode for electrocatalytic oxidation of formaldehyde in alkaline medium
JP2008019120A (en) Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor
Abbaspour et al. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution
JP5653292B2 (en) Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon
JP5545893B2 (en) Method for producing carbon-based electrode material and fuel cell using electrode material produced thereby
JP2015004112A (en) Electrolytic synthesis device
Yao et al. Study on the electrocatalytic degradation of 4-chlorophenol on PbO 2–ZrO 2 composite electrode and its electrochemical property
JP2008243490A (en) Electrode material, manufacturing method therefor, electrochemical sensor, and electrode for fuel cell
JP5826226B2 (en) Hydrogen activated catalyst
Ojani et al. High electrocatalysis of ethylene glycol oxidation based on nickel particles electrodeposited into poly (m-toluidine)/Triton X-100 composite
JP6591235B2 (en) Method for producing redox catalyst
JP5419905B2 (en) Method for producing electrode material based on carbon, electrode material based on carbon, fuel cell and secondary battery using the same
CN113215612A (en) Method for electrolyzing water and method for preparing catalyst for electrolyzing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5545893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees