JP2012240886A - Electrode material containing carbon as base body, fuel cell using the same, electrolytic production method of hydrogen, and method for producing the electrode material containing carbon as base body - Google Patents

Electrode material containing carbon as base body, fuel cell using the same, electrolytic production method of hydrogen, and method for producing the electrode material containing carbon as base body Download PDF

Info

Publication number
JP2012240886A
JP2012240886A JP2011112598A JP2011112598A JP2012240886A JP 2012240886 A JP2012240886 A JP 2012240886A JP 2011112598 A JP2011112598 A JP 2011112598A JP 2011112598 A JP2011112598 A JP 2011112598A JP 2012240886 A JP2012240886 A JP 2012240886A
Authority
JP
Japan
Prior art keywords
carbon
electrode material
group
electrode
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011112598A
Other languages
Japanese (ja)
Other versions
JP5653292B2 (en
Inventor
Shunichi Uchiyama
俊一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011112598A priority Critical patent/JP5653292B2/en
Publication of JP2012240886A publication Critical patent/JP2012240886A/en
Application granted granted Critical
Publication of JP5653292B2 publication Critical patent/JP5653292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material containing carbon as a base body capable of performing oxidation/reduction of hydrogen and reduction at a noble potential of oxygen without using a catalyst metal such as platinum, and to provide a fuel cell using the same, an electrolytic production method of hydrogen, and a method for producing the electrode material containing carbon as the base body.SOLUTION: A nitrogen-containing functional group is covalently bonded to a carbon atom on the surface of a carbon material used as an electrode by electrolytically oxidizing aqueous solution containing carbamic acid, and the carbon material having the nitrogen-containing functional group which is covalently bonded to the surface thereof is subjected to electrolytic reduction treatment in a strong acid, to thereby obtain the electrode material containing carbon as the base body having a diazo group and a sulfonic acid group as an electron-attracting group bonded to the surface thereof. The fuel cell is constituted by using the electrode material containing carbon as the base body.

Description

本発明は、炭素を基体とする電極材料、これを使用した燃料電池、水素の電解製造方法及び炭素を基体とする電極材料の製造方法に関する。   The present invention relates to an electrode material based on carbon, a fuel cell using the same, a method for electrolytic production of hydrogen, and a method for producing an electrode material based on carbon.

従来より、導電性炭素材料は、電池用電極、電気化学センサ用電極等として広く用いられている。しかし、その触媒活性能は必ずしも満足できるものではなく(非特許文献1参照)、水素の酸化還元を促進するために触媒担持等の技術が開発されている。   Conventionally, conductive carbon materials have been widely used as battery electrodes, electrochemical sensor electrodes, and the like. However, its catalytic activity is not always satisfactory (see Non-Patent Document 1), and a technology such as catalyst loading has been developed to promote oxidation and reduction of hydrogen.

例えば、下記特許文献1には、白金等の金属微粒子が多孔質炭素膜の細孔表面壁に分散担持された燃料電池用電極が開示されている。   For example, Patent Document 1 below discloses a fuel cell electrode in which metal fine particles such as platinum are dispersedly supported on the pore surface walls of a porous carbon film.

特開2004−335459号公報JP 2004-335459 A

「燃料電池の電極触媒」 荒又明子 p.114 北海道大学図書刊行会(2005)“Fuel Cell Electrode Catalyst” Akiko Aramata p. 114 Hokkaido University Library Publication Association (2005)

しかし、上記従来の技術においては、高価な白金を触媒として使用するので、コストが高くなるという問題があった。そこで、白金等の高価な触媒金属を使用しなくても電極の酸化還元特性を維持、向上できれば上記問題は解決する。   However, in the above conventional technique, since expensive platinum is used as a catalyst, there is a problem that the cost is increased. Therefore, the above problem can be solved if the oxidation-reduction characteristics of the electrode can be maintained and improved without using an expensive catalyst metal such as platinum.

本発明の目的は、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料、これを使用した燃料電池、水素の電解製造方法及び炭素を基体とする電極材料の製造方法を提供することにある。   An object of the present invention is to provide a carbon-based electrode material that can perform hydrogen oxidation-reduction and oxygen reduction at a noble potential without using a catalyst metal such as platinum, a fuel cell using the same, and hydrogen electrolysis An object of the present invention is to provide a manufacturing method and a manufacturing method of an electrode material based on carbon.

上記目的を達成するために、本発明の一実施形態は、炭素を基体とする電極材料であって、ジアゾ基、アゾ基またはヒドラジノ基が表面に結合したことを特徴とする。   In order to achieve the above object, one embodiment of the present invention is an electrode material based on carbon, characterized in that a diazo group, an azo group or a hydrazino group is bonded to the surface.

また、上記炭素を基体とする電極材料の表面には、ジアゾ基と、スルホン酸基を含む電子吸引性基とが結合していることを特徴とする。   In addition, a diazo group and an electron-withdrawing group containing a sulfonic acid group are bonded to the surface of the carbon-based electrode material.

また、本発明の他の実施形態は、燃料電池であって、上記炭素を基体とする電極材料を使用したことを特徴とする。   Another embodiment of the present invention is a fuel cell, characterized in that the electrode material based on carbon is used.

また、本発明のさらに他の実施形態は、水素の電解製造方法であって、上記炭素を基体とする電極材料を少なくとも陰極に使用したことを特徴とする。   Still another embodiment of the present invention is a method for electrolytically producing hydrogen, characterized in that the above-mentioned carbon-based electrode material is used at least for a cathode.

また、本発明のさらに他の実施形態は、炭素を基体とする電極材料の製造方法であって、炭素材料の表面に含窒素官能基を共有結合させ、前記表面に含窒素官能基を共有結合させた炭素材料を強酸中で電解還元処理し、前記電解還元処理後の炭素材料を、亜硝酸ナトリウムを溶解した硫酸中で反応させ、再度強酸中で電解還元処理する、ことを特徴とする。   Still another embodiment of the present invention is a method for producing a carbon-based electrode material, wherein a nitrogen-containing functional group is covalently bonded to the surface of the carbon material, and the nitrogen-containing functional group is covalently bonded to the surface. The carbon material is subjected to electrolytic reduction treatment in a strong acid, and the carbon material after the electrolytic reduction treatment is reacted in sulfuric acid in which sodium nitrite is dissolved, and again subjected to electrolytic reduction treatment in a strong acid.

本発明によれば、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料及びこれを使用した燃料電池並びに水素の電解製造方法を得ることができる。   According to the present invention, a carbon-based electrode material capable of performing redox of hydrogen and reduction of oxygen at a noble potential without using a catalyst metal such as platinum, a fuel cell using the same, and electrolysis of hydrogen A manufacturing method can be obtained.

カルバミン酸アンモニウム水溶液の電解酸化装置の構成例を示す図である。It is a figure which shows the structural example of the electrolytic oxidation apparatus of the ammonium carbamate aqueous solution. アミノ基が結合した炭素を基体とする電極材料を強酸水溶液中で電解改質する装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus which electrolytically reforms the electrode material which makes the base the carbon which the amino group couple | bonded in strong acid aqueous solution. 実施例1、2で作製した電極材料(II)及び電極材料(III)で測定した1M硫酸水溶液のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of 1M sulfuric acid aqueous solution measured with the electrode material (II) produced in Example 1, 2 and electrode material (III). 実施例1の手順(1)で得たアミノ基及びジアゾ基が結合した炭素材料、及び実施例1の手順(2)で得た電極材料(II)の窒素原子のXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the nitrogen atom of the carbon material which the amino group and diazo group which were obtained by the procedure (1) of Example 1, and the electrode material (II) obtained by the procedure (2) of Example 1. . 電極材料(II)のイオウ原子のXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the sulfur atom of electrode material (II). 実施例1の手順(1)で得たアミノ基及びジアゾ基が結合した炭素材料、及び実施例1の手順(2)で得た電極材料(II)の酸素原子のXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the oxygen atom of the carbon material which the amino group and diazo group which were obtained by the procedure (1) of Example 1, and the electrode material (II) obtained by the procedure (2) of Example 1. .

以下、本発明を実施するための形態(以下、実施形態という)を説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.

本実施形態では、炭素材料の表面の炭素原子に、アミノ基、ジアゾ基等の含窒素官能基を共有結合させ、表面に含窒素官能基を共有結合させた炭素材料を強酸中で電解還元処理することにより、ジアゾ基、アゾ基またはヒドラジノ基が表面に結合した炭素を基体とする電極材料を得る。また、炭素材料の表面に存在するジアゾ基は、スルホン酸基を含む電子吸引性基とイオン対を形成して安定化するので、これらの電子吸引性基を上記炭素材料の表面に結合させるのが好適である。   In the present embodiment, a carbon material in which a nitrogen-containing functional group such as an amino group or a diazo group is covalently bonded to a carbon atom on the surface of the carbon material, and the carbon material in which the nitrogen-containing functional group is covalently bonded to the surface is subjected to electrolytic reduction treatment in a strong acid. By doing so, an electrode material based on carbon having a diazo group, azo group or hydrazino group bonded to the surface is obtained. In addition, since the diazo group present on the surface of the carbon material is stabilized by forming an ion pair with the electron-withdrawing group including the sulfonic acid group, the electron-withdrawing group is bonded to the surface of the carbon material. Is preferred.

これにより、白金等の触媒金属を使用せずに水素の酸化還元及び酸素の貴電位における還元を行うことができる炭素を基体とする電極材料を得ることができる。また、この電極材料は、燃料電池、水の電気分解等に使用することができる。   Thereby, it is possible to obtain an electrode material based on carbon that can be subjected to hydrogen redox and oxygen noble potential reduction without using a catalyst metal such as platinum. The electrode material can be used for fuel cells, water electrolysis and the like.

また、本実施形態の炭素材料は、電極材料として必要な導電性を有するものであり、黒鉛等が好ましい。例えば、グラッシーカーボン、カーボンナノチューブ、カーボンフェルト、プラスチック成型カーボンまたはダイヤモンド電極等を使用することができる。   Moreover, the carbon material of this embodiment has conductivity required as an electrode material, and graphite or the like is preferable. For example, glassy carbon, carbon nanotube, carbon felt, plastic molded carbon, diamond electrode, or the like can be used.

アミノ基及びジアゾ基を炭素材料の表面の炭素原子に共有結合させるには、炭素材料を電極として例えばカルバミン酸を含む水溶液を電解酸化することによりカルバミン酸を炭素材料の表面の炭素原子に直接共有結合させ、その後脱炭酸してアミノ基、および電解で発生したカルバミン酸ラジカルがこのアミノ基に結合してさらに脱炭酸して生成したジアゾ基を炭素材料の表面の炭素原子に共有結合で直接導入する方法が好適である。上記カルバミン酸を含む水溶液としては、カルバミン酸アンモニウム、炭酸アンモニウムまたは炭酸水素アンモニウムを好適に使用することができる。   In order to covalently bond the amino group and diazo group to the carbon atom on the surface of the carbon material, the carbamic acid is directly shared with the carbon atom on the surface of the carbon material by electrolytic oxidation of an aqueous solution containing carbamic acid, for example, using the carbon material as an electrode. Bonded, then decarboxylated to amino group, and diazo group generated by further decarboxylation by binding of this carbamate radical generated by electrolysis to this amino group, directly introduced to the carbon atom on the surface of carbon material by covalent bond Is preferred. As the aqueous solution containing the carbamic acid, ammonium carbamate, ammonium carbonate, or ammonium bicarbonate can be suitably used.

以上のようにしてアミノ基及びジアゾ基を炭素材料の表面の炭素原子に直接共有結合させた例が以下に示される。   An example in which an amino group and a diazo group are directly covalently bonded to a carbon atom on the surface of a carbon material as described above is shown below.

Figure 2012240886
Figure 2012240886

なお、上記構造式(化1)では、炭素材料の一部の構造が示されており、炭素原子の六角形格子構造の数並びにアミノ基及びジアゾ基の数は、上記構造式(化1)のものに限定されない。   The structural formula (Chemical Formula 1) shows a partial structure of the carbon material, and the number of hexagonal lattice structures of carbon atoms and the number of amino groups and diazo groups are represented by the structural formula (Chemical Formula 1). It is not limited to those.

次に、上記表面に含窒素官能基(アミノ基及びジアゾ基)を共有結合させた炭素材料を強酸中で電解還元処理する。この場合の強酸としては、硫酸水溶液等を使用することができる。これにより、炭素材料の表面の炭素原子に、スルホン酸基を含む電子吸引性基が共有結合することにより導入される。   Next, the carbon material having a nitrogen-containing functional group (amino group and diazo group) covalently bonded to the surface is subjected to electrolytic reduction treatment in a strong acid. In this case, an aqueous sulfuric acid solution or the like can be used as the strong acid. Thereby, the electron withdrawing group containing a sulfonic acid group is introduced by covalent bonding to the carbon atom on the surface of the carbon material.

以下に、アミノ基及びジアゾ基が表面に結合した炭素材料を硫酸水溶液中で電解還元処理し、スルホン酸基を導入する場合の反応が示される。   The reaction in the case of introducing a sulfonic acid group by electrolytically reducing a carbon material having an amino group and a diazo group bonded to the surface in an aqueous sulfuric acid solution is shown below.

Figure 2012240886
Figure 2012240886

上記反応においては、アミノ基及びジアゾ基が表面に結合した炭素材料を硫酸水溶液中で電解還元することにより、ジアゾ基が還元されて電子供与性のヒドラジノ基となる。また、その際にHSO(硫酸)がHSO とOHに開裂してできたHSO イオンが、ヒドラジノ基に対してオルト位の電子リッチな炭素原子(C)を攻撃した結果、スルホン酸基が導入される。このようにして、表面に含窒素官能基(アミノ基またはヒドラジノ基)及びスルホン酸基を共有結合させた電極材料(I)が生成される。この電極材料(I)が、本実施形態にかかる炭素を基体とする電極材料の一例であり、構造式が以下に示される。 In the above reaction, a carbon material having an amino group and a diazo group bonded to the surface is electrolytically reduced in an aqueous sulfuric acid solution, whereby the diazo group is reduced to an electron donating hydrazino group. At that time, HSO 3 + ions formed by cleavage of H 2 SO 4 (sulfuric acid) into HSO 3 + and OH attack the electron-rich carbon atom (C ) in the ortho position with respect to the hydrazino group. As a result, a sulfonic acid group is introduced. In this way, the electrode material (I) having a nitrogen-containing functional group (amino group or hydrazino group) and a sulfonic acid group covalently bonded to the surface is produced. This electrode material (I) is an example of a carbon-based electrode material according to this embodiment, and the structural formula is shown below.

Figure 2012240886
Figure 2012240886

上記電極材料(I)は、表面の炭素原子にヒドラジノ基が結合している。また、表面の炭素原子にはスルホン酸基(SO )も結合している。 The electrode material (I) has a hydrazino group bonded to a carbon atom on the surface. In addition, a sulfonic acid group (SO 3 ) is also bonded to the surface carbon atom.

上記電極材料(I)は、空気中で酸化され、以下に示される電極材料(II)となる。   The electrode material (I) is oxidized in air to become an electrode material (II) shown below.

Figure 2012240886
Figure 2012240886

上記電極材料(II)が、本実施形態にかかる炭素を基体とする電極材料の他の例である。上記電極材料(II)は、表面の炭素原子にヒドラジノ基が酸化されたジアゾ基が結合している。また、表面の炭素原子にはスルホン酸基(SO )も結合しており、ジアゾ基とスルホン酸基とがイオン対を形成して安定化し、ジアゾ基が脱窒素して減少するのを防いでいる。なお、ヒドラジノ基とアゾ基はジアゾ基と異なって電解や酸素によって酸化または還元をされなければ安定である。下記構造式中のジアゾ基はアゾ基であってもよい。 The electrode material (II) is another example of an electrode material based on carbon according to the present embodiment. In the electrode material (II), a diazo group in which a hydrazino group is oxidized is bonded to a surface carbon atom. In addition, a sulfonic acid group (SO 3 ) is also bonded to the surface carbon atom, and the diazo group and the sulfonic acid group are stabilized by forming an ion pair, and the diazo group is reduced by denitrification. It is preventing. Unlike diazo groups, hydrazino groups and azo groups are stable unless oxidized or reduced by electrolysis or oxygen. The diazo group in the following structural formula may be an azo group.

また、上記電極材料(II)を、亜硝酸ナトリウムを溶解した硫酸中で反応させると、電極材料(III)が生成する。   Moreover, when the said electrode material (II) is made to react in the sulfuric acid which melt | dissolved sodium nitrite, electrode material (III) will produce | generate.

Figure 2012240886
Figure 2012240886

電極材料(III)も、本実施形態にかかる炭素を基体とする電極材料の例である。電極材料(III)では、表面の炭素原子に結合していたアミノ基がジアゾ基に変化しており、ジアゾ基の数が電極材料(II)よりも増加している。これにより、水素の酸化還元波が大きく増大するとともに、酸素還元波が卑方向にシフトする。この結果、水素の酸化還元及び酸素の還元の電子移動触媒サイトとしてジアゾ基が働いていると考えられる。なお、後述する実施例3において、酸素還元波の位置は亜硝酸ナトリウムによるジアゾ化により卑方向へシフトしたが、再度硫酸中で同様な電解還元を行ったところ、最初の位置に戻ったので、酸素の還元触媒サイトが有効に働くためには、ジアゾ基の数に対するスルホン酸基の数の比が大きいことが必要である。上記硫酸中での再度の電解還元処理により、ジアゾ基の数に対するスルホン酸基の数の比を大きくすることができる。   The electrode material (III) is also an example of a carbon-based electrode material according to this embodiment. In the electrode material (III), the amino group bonded to the carbon atoms on the surface is changed to a diazo group, and the number of diazo groups is increased as compared with the electrode material (II). Thereby, the oxidation-reduction wave of hydrogen greatly increases and the oxygen reduction wave shifts in the base direction. As a result, it is considered that the diazo group functions as an electron transfer catalyst site for hydrogen redox and oxygen reduction. In Example 3 to be described later, the position of the oxygen reduction wave was shifted to the base direction by diazotization with sodium nitrite, but when the same electrolytic reduction was performed again in sulfuric acid, it returned to the initial position. In order for the oxygen reduction catalyst site to work effectively, the ratio of the number of sulfonic acid groups to the number of diazo groups needs to be large. The ratio of the number of sulfonic acid groups to the number of diazo groups can be increased by re-electrolytic reduction treatment in sulfuric acid.

以上の様にして製造した本実施形態にかかる炭素を基体とする電極材料は、酸化還元特性等の電極特性が向上されているので、水素の電解製造(水の電気分解)用電極、燃料電池用電極、電気化学センサ、酸素還元触媒電極、バイオセンサ等に使用するのが好適である。水素の電解製造用電極として使用する場合には、少なくとも陰極用に使用することができるが、陰極、陽極の両方に使用してもよい。   Since the electrode material based on carbon according to the present embodiment manufactured as described above has improved electrode characteristics such as redox characteristics, etc., an electrode for electrolytic production of hydrogen (electrolysis of water), a fuel cell It is suitable to use for electrodes, electrochemical sensors, oxygen reduction catalyst electrodes, biosensors and the like. When used as an electrode for electrolytic production of hydrogen, it can be used at least for the cathode, but may be used for both the cathode and the anode.

次に、本実施形態の上記電極材料(II)を水素極及び酸素極に使用した燃料電池の動作原理の一例を説明する。以下の反応機構は、燃料電池の水素極及び酸素極における反応例である。   Next, an example of the operation principle of a fuel cell using the electrode material (II) of the present embodiment for a hydrogen electrode and an oxygen electrode will be described. The following reaction mechanism is a reaction example at the hydrogen electrode and the oxygen electrode of the fuel cell.

Figure 2012240886
Figure 2012240886

水素極において、電極材料(II)のジアゾ基が電解還元してアゾ基に変化した電極材料(IIa)のアゾ基が触媒サイトとなり、水素分子がアゾ基の2つの窒素原子に付加してヒドラジノ基に還元され、電極材料(IIb)となり、次にヒドラジノ基が電解酸化されて水素イオンが発生し、電極材料(IIa)に戻る。この際のヒドラジノ基のアゾ基への電解酸化は−0.2Vvs.Ag/AgCl付近で生じる。また、-0.2Vvs.Ag/AgClより負方向の電位領域ではヒドラジノ基の窒素原子に水素イオンがプロトネーションして電解還元されて水素分子を発生するものと考えられる。   At the hydrogen electrode, the azo group of the electrode material (IIa) in which the diazo group of the electrode material (II) is electrolytically reduced to an azo group becomes a catalyst site, and hydrogen molecules are added to two nitrogen atoms of the azo group to form hydrazino. Then, the hydrazino group is electrolytically oxidized to generate hydrogen ions and return to the electrode material (IIa). The electrolytic oxidation of the hydrazino group to the azo group at this time was −0.2 Vvs. Occurs in the vicinity of Ag / AgCl. Moreover, -0.2Vvs. In the potential region in the negative direction from Ag / AgCl, it is considered that hydrogen ions are protonated to the nitrogen atoms of the hydrazino group and electrolytically reduced to generate hydrogen molecules.

一方、酸素極では、電極材料(II)が、強力な電子吸引基であるスルホン酸基がジアゾ基の近くに導入されているので、より高電位である+0.6Vvs.Ag/AgCl付近で電解還元されアゾ基となり電極材料(IIa)が生成する。次に、このアゾ基を酸素が酸化してジアゾ基となり、電極材料(II)に戻す。これにより、スルホン酸基と静電引力で引き合って安定化した陽イオンのジアゾ基をメディエーターとする酸素還元波が現れる。   On the other hand, at the oxygen electrode, the electrode material (II) has a higher potential of +0.6 Vvs., Because the sulfonic acid group, which is a strong electron-withdrawing group, is introduced near the diazo group. In the vicinity of Ag / AgCl, it is electrolytically reduced to become an azo group, and the electrode material (IIa) is generated. Next, this azo group is oxidized with oxygen to form a diazo group, which is returned to the electrode material (II). As a result, an oxygen reduction wave using a cation diazo group stabilized by attracting the sulfonic acid group by electrostatic attractive force as a mediator appears.

以上の結果、酸素の還元波と水素の電解酸化波の電位差は約0.8Vとなり、起電力が約0.8Vの燃料電池を構成できることがわかる。   From the above results, it can be seen that the potential difference between the oxygen reduction wave and the hydrogen electrolytic oxidation wave is about 0.8 V, and a fuel cell with an electromotive force of about 0.8 V can be constructed.

以下、本発明の実施例を説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to the examples described below.

実施例1
(1)以下の手順により、炭素材料の表面の炭素原子に含窒素官能基を共有結合させた。
炭素材料としてカーボンフェルトを選択し、これを作用電極として用いて、0.1M(モル/リットル)のカルバミン酸アンモニウム水溶液を電解酸化した。
Example 1
(1) A nitrogen-containing functional group was covalently bonded to a carbon atom on the surface of the carbon material by the following procedure.
Carbon felt was selected as the carbon material, and this was used as a working electrode to electrolytically oxidize a 0.1 M (mol / liter) aqueous ammonium carbamate solution.

図1には、上記カルバミン酸アンモニウム水溶液の電解酸化装置の構成例が示される。図1において、直径2.5cm深さ5cmのプラスチック容器10に電解液として0.1Mカルバミン酸アンモニウム水溶液を入れ、作用電極12としてカーボンフェルト(日本カーボン株式会社製 高純度カーボンフェルト GF−20−3FH)を略球状として白金線14の先端に取り付けたもの、対極16として直径0.5mmの白金線、基準電極18として銀―塩化銀電極(Ag/AgCl)を用いた3電極法で定電位電解酸化を行った。カルバミン酸アンモニウムはメルク社製特級を用い、純水に溶解して0.1Mとした。なお、上記カーボンフェルトとしては、日本カーボン株式会社製 工業用カーボンフェルトGF−20−5Fを使用してもよい。   FIG. 1 shows a configuration example of the electrolytic oxidation apparatus for the ammonium carbamate aqueous solution. In FIG. 1, a 0.1 M ammonium carbamate aqueous solution is placed as an electrolyte in a plastic container 10 having a diameter of 2.5 cm and a depth of 5 cm, and carbon felt (high purity carbon felt GF-20-3FH manufactured by Nippon Carbon Co., Ltd.) is used as the working electrode 12. ) In a substantially spherical shape and attached to the tip of a platinum wire 14, a potentiostatic electrolysis by a three-electrode method using a platinum wire having a diameter of 0.5 mm as a counter electrode 16 and a silver-silver chloride electrode (Ag / AgCl) as a reference electrode 18 Oxidation was performed. Ammonium carbamate was dissolved in pure water to a concentration of 0.1M using a special grade manufactured by Merck. As the carbon felt, industrial carbon felt GF-20-5F manufactured by Nippon Carbon Co., Ltd. may be used.

上記定電位電解酸化は、ポテンショスタット/ガルバノスタット(北斗電工製HA−151)をポテンショスタット20として用い、作用電極12に、基準電極18に対して一定電位(1.1V)を印加して1時間行った。なお、定電位電解中はスターラー22によりカルバミン酸アンモニウム水溶液を攪拌した。電解酸化処理後、作用電極12としてのカーボンフェルトを蒸留水で洗浄し、含窒素官能基であるアミノ基及びジアゾ基が結合した炭素材料(上記構造式化1)を作製した。   The constant potential electrolytic oxidation is performed by using a potentiostat / galvanostat (HA-151 manufactured by Hokuto Denko) as the potentiostat 20, and applying a constant potential (1.1V) to the reference electrode 18 to the working electrode 12. Went for hours. During the constant potential electrolysis, the ammonium carbamate aqueous solution was stirred by the stirrer 22. After the electrolytic oxidation treatment, the carbon felt as the working electrode 12 was washed with distilled water to produce a carbon material (structure formula 1 above) in which an amino group and a diazo group, which are nitrogen-containing functional groups, were bonded.

(2)上記手順(1)で得たアミノ基及びジアゾ基が結合した炭素材料(構造式化1)を、以下の手順により強酸水溶液中で電解改質した。
図2には、アミノ基及びジアゾ基が結合した上記炭素材料を強酸水溶液中で電解改質する装置の構成例が示され、図1と同一要素には同一符号を付している。図2において、プラスチック容器10に電解液として1M硫酸水溶液を入れ、上記手順(1)で得たアミノ基及びジアゾ基が結合したカーボンフェルトをカーボンロッド24の先端に取り付けた作用電極12、上記手順(1)で使用した対極16としての白金線及び基準電極18としての銀―塩化銀電極を用いた3電極法で定電位電解還元を行った。なお、上記カーボンロッド24としては、筆記具(シャープペンシル)の芯を使用した。また、硫酸水溶液は、和光純薬工業株式会社製の1M硫酸(容量分析用)を使用した。
(2) The carbon material (Structural Formula 1) to which the amino group and diazo group were bonded obtained in the above procedure (1) was electrolytically modified in a strong acid aqueous solution by the following procedure.
FIG. 2 shows a configuration example of an apparatus for electrolytically reforming the above carbon material to which an amino group and a diazo group are bonded in a strong acid aqueous solution. The same elements as those in FIG. In FIG. 2, a working electrode 12 in which a 1M sulfuric acid aqueous solution is placed in a plastic container 10 as an electrolytic solution, and a carbon felt bonded with an amino group and a diazo group obtained in the above procedure (1) is attached to the tip of a carbon rod 24, Constant potential electrolytic reduction was performed by a three-electrode method using a platinum wire as the counter electrode 16 and a silver-silver chloride electrode as the reference electrode 18 used in (1). As the carbon rod 24, a writing instrument (mechanical pencil) core was used. The sulfuric acid aqueous solution used was 1M sulfuric acid (for volumetric analysis) manufactured by Wako Pure Chemical Industries, Ltd.

上記定電位電解還元は、ポテンショスタット/ガルバノスタット(北斗電工製HAB−151)をポテンショスタット20として用い、作用電極12に、基準電極18に対して一定電位(−1.0V)を印加して20時間行った。なお、定電位電解中はスターラー22により硫酸水溶液を攪拌した。電解還元処理を続けると、作用電極12と対極16との間に流れる電解還元電流が増加して行き、作用電極12の周囲から水素ガスが、対極16の周囲から酸素ガスが激しく発生した。これにより、アミノ基及びジアゾ基が表面に結合したカーボンフェルトの表面にスルホン酸基が導入される。また、ジアゾ基はヒドラジノ基となる(化2参照)。   The constant potential electrolytic reduction is performed by using a potentiostat / galvanostat (HAB-151 manufactured by Hokuto Denko) as the potentiostat 20 and applying a constant potential (−1.0 V) to the reference electrode 18 to the working electrode 12. It went for 20 hours. In addition, the sulfuric acid aqueous solution was stirred with the stirrer 22 during constant potential electrolysis. When the electrolytic reduction treatment was continued, the electrolytic reduction current flowing between the working electrode 12 and the counter electrode 16 increased, and hydrogen gas was generated from the periphery of the working electrode 12 and oxygen gas was generated violently from the periphery of the counter electrode 16. Thereby, a sulfonic acid group is introduced on the surface of the carbon felt having an amino group and a diazo group bonded to the surface. Further, the diazo group becomes a hydrazino group (see Chemical Formula 2).

上記電解還元処理後、作用電極12としてのカーボンフェルトを蒸留水で洗浄し、含窒素官能基であるアミノ基及びヒドラジノ基が結合し、かつ硫酸中で電解改質することによりスルホン酸基を表面の炭素原子に共有結合させた、炭素を基体とする電極材料(上記電極材料(I))を作製した。   After the electrolytic reduction treatment, the carbon felt as the working electrode 12 is washed with distilled water, and the amino group and hydrazino group, which are nitrogen-containing functional groups, are bonded, and the sulfonic acid group is formed on the surface by electrolytic modification in sulfuric acid. A carbon-based electrode material (the electrode material (I) described above) covalently bonded to carbon atoms was prepared.

さらに、上記電極材料(I)は、空気中で以下のように酸化され、ヒドラジノ基がジアゾ基となった電極材料(II)となる。   Further, the electrode material (I) is oxidized in the air as follows, and becomes an electrode material (II) in which the hydrazino group becomes a diazo group.

実施例2
実施例1で製造したカーボンフェルト(電極材料(II))を、0.01M亜硝酸ナトリウムを溶解した1M硫酸中で24時間反応させた。これにより、硫酸中において亜硝酸イオンが上記電極材料の表面に結合していた一級アミンと反応してジアゾ基を生成する。この結果、炭素を基体とする電極材料の他の例として上記電極材料(III)を作製した。
Example 2
The carbon felt produced in Example 1 (electrode material (II)) was reacted in 1M sulfuric acid in which 0.01M sodium nitrite was dissolved for 24 hours. Thereby, nitrite ions react with the primary amine bonded to the surface of the electrode material in sulfuric acid to generate a diazo group. As a result, the electrode material (III) was produced as another example of an electrode material based on carbon.

実施例3
実施例1、2で作製した電極材料(II)及び電極材料(III)をそれぞれ電極に使用して1M硫酸水溶液のサイクリックボルタンメトリーを実施し、サイクリックボルタモグラムを測定した。サイクリックボルタンメトリーは、北斗電工株式会社製 Electrochemical Polarization System HZ−3000を使用し、以下の条件で行った。
Example 3
Using the electrode material (II) and electrode material (III) prepared in Examples 1 and 2 as electrodes, cyclic voltammetry of 1M sulfuric acid aqueous solution was performed, and cyclic voltammograms were measured. Cyclic voltammetry was performed using the Hokuto Denko Electrochemical Polarization System HZ-3000 under the following conditions.

<サイクリックボルタンメトリーの実施条件>
1M硫酸水溶液中に、上記カーボンロッド24を連結した作用電極12、白金線の対極16及び銀―塩化銀の基準電極18を入れ、+1.0Vから−1.0Vの電位範囲で実施した。電位の掃引速度は40mV/秒で行い、測定は常温で行った。なお、電位範囲は実験目的によりその都度定めた。
<Implementation conditions for cyclic voltammetry>
The working electrode 12, to which the carbon rod 24 was connected, the counter electrode 16 of platinum wire, and the silver-silver chloride reference electrode 18 were placed in a 1M sulfuric acid aqueous solution, and the reaction was carried out in a potential range of + 1.0V to -1.0V. The potential sweep rate was 40 mV / sec, and the measurement was performed at room temperature. The potential range was determined each time according to the purpose of the experiment.

図3には、上記電極材料(II)及び電極材料(III)で測定した1M硫酸水溶液のサイクリックボルタモグラムが示される。図3では、縦軸が応答電流値であり、横軸が電極材料の電位である。   FIG. 3 shows a cyclic voltammogram of a 1M sulfuric acid aqueous solution measured with the electrode material (II) and the electrode material (III). In FIG. 3, the vertical axis represents the response current value, and the horizontal axis represents the potential of the electrode material.

図3に示される結果から、実施例1の手順(2)において、硫酸水溶液中で電解還元して得た電極材料(II)では水素の酸化還元波(水素の酸化波及び水素イオンの還元波)が現れ、酸素の還元波も出現したことが分かる。さらに、実施例2の手順によりアミノ基をジアゾ化して得た電極材料(III)では、水素の酸化還元波が大きく増大したことが分かる。一方、電極材料(III)では、酸素還元波が卑方向にシフトした。これより水素の酸化還元と酸素の還元波の電子移動触媒サイトとしてジアゾ基が働いていると考えられる。   From the results shown in FIG. 3, in the electrode material (II) obtained by electrolytic reduction in the sulfuric acid aqueous solution in the procedure (2) of Example 1, hydrogen oxidation-reduction waves (hydrogen oxidation waves and hydrogen ion reduction waves) were obtained. ) Appears, and it can be seen that oxygen reduction waves also appeared. Furthermore, in the electrode material (III) obtained by diazotizing the amino group by the procedure of Example 2, it can be seen that the oxidation-reduction wave of hydrogen increased greatly. On the other hand, in the electrode material (III), the oxygen reduction wave shifted in the base direction. This suggests that the diazo group works as an electron transfer catalyst site for hydrogen redox and oxygen reduction waves.

実施例4
実施例1の手順(1)で得たアミノ基及びジアゾ基が結合した炭素材料、及び実施例1の手順(2)で得た電極材料(II)のN1SのX線光電子分光(XPS)スペクトルを測定した。
Example 4
X-ray photoelectron spectroscopy (XPS) of N 1S of the carbon material bonded with the amino group and diazo group obtained in the procedure (1) of Example 1 and the electrode material (II) obtained in the procedure (2) of Example 1 The spectrum was measured.

図4には、上記XPSスペクトルが示される。なお、図4において、横軸は照射したX線を基準としたときの光電子のエネルギー、縦軸は観測された光電子の個数である。図4に示されるように、硫酸水溶液中で電解還元する前の手順(1)で得た炭素材料(アミノ基及びジアゾ基が結合しただけのもの)のN1Sスペクトルのピーク位置は、399.5eVであった。これに対して、硫酸水溶液中で電解還元した電極材料(II)のN1Sスペクトルのピーク位置は、401.5eVに大きくシフトしている。この差は、上記実施例1の手順(1)で得た炭素材料では、生成したジアゾ基が不安定なため、XPS測定時に窒素分子が脱離してしまうのに対し、硫酸水溶液中で電解還元した電極材料(II)では、スルホン酸基が導入されてジアゾ基とイオン対を形成し、安定化するためと考えられる。 FIG. 4 shows the XPS spectrum. In FIG. 4, the horizontal axis represents the photoelectron energy with reference to the irradiated X-ray, and the vertical axis represents the number of observed photoelectrons. As shown in FIG. 4, the peak position of the N 1S spectrum of the carbon material obtained by the procedure (1) before electrolytic reduction in an aqueous sulfuric acid solution (with only an amino group and a diazo group bonded) is 399. It was 5 eV. On the other hand, the peak position of the N 1S spectrum of the electrode material (II) electrolytically reduced in the sulfuric acid aqueous solution is greatly shifted to 401.5 eV. The difference is that in the carbon material obtained in the procedure (1) of Example 1 above, the generated diazo group is unstable, so that nitrogen molecules are eliminated during XPS measurement. In the electrode material (II), the sulfonic acid group is introduced to form an ion pair with the diazo group, which is considered to be stabilized.

さらに実施例2の手順により得た電極材料(III)についてXPSスペクトルを測定したところ、そのN1Sスペクトルは、図4の硫酸水溶液中で電解還元した電極材料(II)のN1Sスペクトルのピーク位置とほぼ同じ位置であった。得られたXPSスペクトルの位置、形状は文献値(Langmuir 25(16), 8888−8893 (2009)のFig.5)にあるジアゾ基のそれと良く一致した。従って、硫酸中において亜硝酸イオンが炭素材料(カーボンフェルト)の表面に存在する一級アミンと反応してジアゾ基を生成したことが確認できた。 Furthermore, when XPS spectrum was measured about the electrode material (III) obtained by the procedure of Example 2, the N 1S spectrum was the peak position of the N 1S spectrum of the electrode material (II) electrolytically reduced in the sulfuric acid aqueous solution of FIG. And almost the same position. The position and shape of the obtained XPS spectrum were in good agreement with those of the diazo group in the literature values (Langmuir 25 (16), 8888-8893 (2009) Fig. 5). Therefore, it was confirmed that nitrite ions reacted with primary amines present on the surface of the carbon material (carbon felt) in sulfuric acid to generate diazo groups.

実施例5
実施例1の手順(2)で得た電極材料(II)を使用し、イオウ原子のXPSスペクトル(S2P)を測定した。
Example 5
Using the electrode material (II) obtained in the procedure (2) of Example 1, the XPS spectrum (S 2P ) of the sulfur atom was measured.

図5には、上記XPSスペクトルが示される。図5において、電極材料(II)のS2Pスペクトルは、168.7eVの位置にピークがあり、スルホン酸基が導入されたことがわかる。 FIG. 5 shows the XPS spectrum. In FIG. 5, the S 2P spectrum of the electrode material (II) has a peak at a position of 168.7 eV, which indicates that a sulfonic acid group has been introduced.

一方、ジアゾ基を有しない炭素材料のS2Pスペクトルでは、上記位置にピークが現れず、スルホン化されていないことがわかった。 On the other hand, in the S 2P spectrum of the carbon material having no diazo group, it was found that no peak appeared at the above position and that the carbon material was not sulfonated.

以上の結果から、カーボンフェルト等の炭素材料表面にジアゾ基が導入されていると、硫酸水溶液中での電解還元によりジアゾ基が電子供与性のヒドラジノ基となり、HSO(硫酸)がHSO とOHに開裂してできたHSO イオンが、ヒドラジノ基に対してオルト位の電子リッチな炭素原子(C)を攻撃してスルホン酸基が導入されたものと考えられる。 From the above results, when a diazo group is introduced on the surface of a carbon material such as carbon felt, the diazo group becomes an electron-donating hydrazino group by electrolytic reduction in an aqueous sulfuric acid solution, and H 2 SO 4 (sulfuric acid) becomes HSO. It is thought that the HSO 3 + ion formed by cleavage into 3 + and OH attacked an electron-rich carbon atom (C ) in the ortho position with respect to the hydrazino group and a sulfonic acid group was introduced.

実施例6
実施例1の手順(1)で得たアミノ基及びジアゾ基が結合した炭素材料、及び実施例1の手順(2)で得た電極材料(II)の酸素原子(O1S)のXPSスペクトルを測定した。
Example 6
The XPS spectrum of the oxygen atom (O 1S ) of the carbon material to which the amino group and the diazo group obtained in the procedure (1) of Example 1 were bonded and the electrode material (II) obtained in the procedure (2) of Example 1 It was measured.

図6には、上記XPSスペクトルが示される。図6において、上記手順(1)で得た炭素材料に較べて、電極材料(II)ではスルホン酸の酸素原子の位置(531.7eV)に大きなスペクトルが現れている。これにより、スルホン酸基が導入されたことが、硫黄原子(実施例5)だけでなく酸素原子のスペクトルシフトからも同定された。   FIG. 6 shows the XPS spectrum. In FIG. 6, the electrode material (II) has a larger spectrum at the oxygen atom position (531.7 eV) in the electrode material (II) than the carbon material obtained in the procedure (1). Thereby, the introduction of the sulfonic acid group was identified not only from the sulfur atom (Example 5) but also from the spectral shift of the oxygen atom.

一般にジアゾ基は安定性に乏しく、高温では窒素が脱離してフェニルカチオンを生成し、水分子が反応してフェノールになることが知られている。しかし、カチオンであるジアゾ基の隣にアニオンであるスルホン酸基が存在すると両者でイオン対を形成し、安定化するものと考えられる。   In general, diazo groups are known to have poor stability, and at high temperatures, nitrogen is eliminated to form phenyl cations, and water molecules react to form phenol. However, if a sulfonic acid group that is an anion is present next to a diazo group that is a cation, it is thought that both form an ion pair and stabilize.

10 プラスチック容器、12 作用電極、14 白金線、16 対極、18 基準電極、20 ポテンショスタット、22 スターラー、24 カーボンロッド。   10 plastic container, 12 working electrode, 14 platinum wire, 16 counter electrode, 18 reference electrode, 20 potentiostat, 22 stirrer, 24 carbon rod.

Claims (5)

ジアゾ基、アゾ基またはヒドラジノ基が表面に結合したことを特徴とする炭素を基体とする電極材料。   A carbon-based electrode material characterized in that a diazo group, an azo group or a hydrazino group is bonded to the surface. 請求項1に記載の炭素を基体とする電極材料において、ジアゾ基と、スルホン酸基を含む電子吸引性基とが表面に結合していることを特徴とする炭素を基体とする電極材料。   2. The carbon-based electrode material according to claim 1, wherein a diazo group and an electron-withdrawing group containing a sulfonic acid group are bonded to the surface. 請求項1または請求項2に記載の炭素を基体とする電極材料を使用したことを特徴とする燃料電池。   A fuel cell using the carbon-based electrode material according to claim 1 or 2. 請求項1または請求項2に記載の炭素を基体とする電極材料を少なくとも陰極に使用したことを特徴とする水素の電解製造方法。   A method for electrolytic production of hydrogen, characterized in that the carbon-based electrode material according to claim 1 or 2 is used at least for a cathode. 炭素材料の表面に含窒素官能基を共有結合させ、
前記表面に含窒素官能基を共有結合させた炭素材料を強酸中で電解還元処理し、
前記電解還元処理後の炭素材料を、亜硝酸ナトリウムを溶解した硫酸中で反応させ、
再度強酸中で電解還元処理する、
ことを特徴とする炭素を基体とする電極材料の製造方法。
Nitrogen-containing functional groups are covalently bonded to the surface of the carbon material,
A carbon material having a nitrogen-containing functional group covalently bonded to the surface is subjected to electrolytic reduction treatment in a strong acid,
The carbon material after the electrolytic reduction treatment is reacted in sulfuric acid in which sodium nitrite is dissolved,
Electrolytic reduction treatment in strong acid again,
A method for producing a carbon-based electrode material.
JP2011112598A 2011-05-19 2011-05-19 Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon Expired - Fee Related JP5653292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011112598A JP5653292B2 (en) 2011-05-19 2011-05-19 Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112598A JP5653292B2 (en) 2011-05-19 2011-05-19 Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon

Publications (2)

Publication Number Publication Date
JP2012240886A true JP2012240886A (en) 2012-12-10
JP5653292B2 JP5653292B2 (en) 2015-01-14

Family

ID=47462969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112598A Expired - Fee Related JP5653292B2 (en) 2011-05-19 2011-05-19 Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon

Country Status (1)

Country Link
JP (1) JP5653292B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157178A (en) * 2012-01-30 2013-08-15 Shunichi Uchiyama Method of manufacturing electrode material whose base substance is carbon and fuel battery using electrode material manufactured by the method
JP2013202430A (en) * 2012-03-27 2013-10-07 Shunichi Uchiyama Oxidation reduction catalyst and fuel cell using the catalyst
JP2015039686A (en) * 2013-08-23 2015-03-02 内山 俊一 Hydrogen activating catalyst
JP2015089945A (en) * 2013-11-04 2015-05-11 渡辺 治 Facilities for resource-recycling biotechnical hydrogen production from biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188894A (en) * 1994-10-14 1996-07-23 Oriental Sangyo Kk Gaseous carbon dioxide-generating electrode device
JP2004356094A (en) * 2003-05-08 2004-12-16 Mitsubishi Chemicals Corp Laminate and method of manufacturing laminate
JP2008019120A (en) * 2006-07-12 2008-01-31 Shunichi Uchiyama Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188894A (en) * 1994-10-14 1996-07-23 Oriental Sangyo Kk Gaseous carbon dioxide-generating electrode device
JP2004356094A (en) * 2003-05-08 2004-12-16 Mitsubishi Chemicals Corp Laminate and method of manufacturing laminate
JP2008019120A (en) * 2006-07-12 2008-01-31 Shunichi Uchiyama Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014011210; K. OH-ISHI et al: 'Large Monolayer Domain Formed by C60-Azobenzene Derivative' Langmuir Vol.15, 19990224, P.2224-2226 *
JPN6014011211; O. A. FUENTES et al: 'Highly-Ordered Covalent Anchoring of Carbon Nanotubes on Electrode Surfaces by Diazonium Salt Reacti' Angewandte Chemie. International Edition Vol.50, 20110304, P.3457-3461 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157178A (en) * 2012-01-30 2013-08-15 Shunichi Uchiyama Method of manufacturing electrode material whose base substance is carbon and fuel battery using electrode material manufactured by the method
JP2013202430A (en) * 2012-03-27 2013-10-07 Shunichi Uchiyama Oxidation reduction catalyst and fuel cell using the catalyst
JP2015039686A (en) * 2013-08-23 2015-03-02 内山 俊一 Hydrogen activating catalyst
JP2015089945A (en) * 2013-11-04 2015-05-11 渡辺 治 Facilities for resource-recycling biotechnical hydrogen production from biomass

Also Published As

Publication number Publication date
JP5653292B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
Ye et al. Highly porous nickel@ carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium
Flexer et al. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
US9812727B2 (en) Charge transfer mediator based systems for electrocatalytic oxygen reduction
Palanisamy et al. Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor
JP2013202430A (en) Oxidation reduction catalyst and fuel cell using the catalyst
Hua et al. Glucose sensor based on an electrochemical reduced graphene oxide-poly (l-lysine) composite film modified GC electrode
Yang et al. Three-dimensional porous Ni film electrodeposited on Ni foam: High performance and low-cost catalytic electrode for H2O2 electrooxidation in KOH solution
Guo et al. Nickel nanowire arrays electrode as an efficient catalyst for urea peroxide electro-oxidation in alkaline media
Zhou et al. Electrocatalysis of template-electrosynthesized cobalt− porphyrin/polyaniline nanocomposite for oxygen reduction
JP2022515169A (en) A method of converting carbon dioxide (CO2) into CO by an electrolytic reaction
Ye et al. Three-dimensional carbon-and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell
Wu et al. Degradation of chloramphenicol with novel metal foam electrodes in bioelectrochemical systems
Li et al. Direct electrochemistry of cytochrome c immobilized on a novel macroporous gold film coated with a self-assembled 11-mercaptoundecanoic acid monolayer
JP2008019120A (en) Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor
Nikiforidis et al. An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery
Ojani et al. Copper-poly (2-aminodiphenylamine) as a novel and low cost electrocatalyst for electrocatalytic oxidation of methanol in alkaline solution
JP5653292B2 (en) Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon
Leong et al. Doubling the power output of a Mg-air battery with an acid-salt dual-electrolyte configuration
CN109136973A (en) A kind of base metal doping molybdenum carbide hydrogen-precipitating electrode and its preparation method and application
US20180023204A1 (en) Selective porphyrin-catalyzed electrochemical reduction of co2 into co in water
Boz et al. Taurine electrografting onto porous electrodes improves redox flow battery performance
Cheng et al. Comprehensive understanding and rational regulation of microenvironment for gas‐involving electrochemical reactions
El-Nagar et al. Auspicious metal-doped-Cu2O/Cu dendrite (M= Ni, Co, Fe) catalysts for direct alkaline fuel cells: Effect of dopants
Uchiyama et al. Observation of hydrogen oxidation wave using glassy carbon electrode fabricated by stepwise electrolyses in ammonium carbamate aqueous solution and hydrochloric acid
JP2008243490A (en) Electrode material, manufacturing method therefor, electrochemical sensor, and electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R150 Certificate of patent or registration of utility model

Ref document number: 5653292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees