JP2013156227A - Method for removing radioactive material - Google Patents

Method for removing radioactive material Download PDF

Info

Publication number
JP2013156227A
JP2013156227A JP2012019184A JP2012019184A JP2013156227A JP 2013156227 A JP2013156227 A JP 2013156227A JP 2012019184 A JP2012019184 A JP 2012019184A JP 2012019184 A JP2012019184 A JP 2012019184A JP 2013156227 A JP2013156227 A JP 2013156227A
Authority
JP
Japan
Prior art keywords
treatment
liquid
activated sludge
solid
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012019184A
Other languages
Japanese (ja)
Inventor
Eiichiro Imayasu
英一郎 今安
Kazuhisa Fukunaga
和久 福永
Hideo Nishiyama
秀雄 西山
Yasushi Aketagawa
康 明田川
Takuya Shibata
卓弥 柴田
Makikatsu Takahashi
牧克 高橋
Yasuhiko Tsunoda
安彦 角田
Akio Yoshii
明央 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erh Techno Res Kk
ERH TECHNO RESEARCH KK
WEEGLE CO Ltd
Daiichi Techno Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
Erh Techno Res Kk
ERH TECHNO RESEARCH KK
WEEGLE CO Ltd
Daiichi Techno Co Ltd
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erh Techno Res Kk, ERH TECHNO RESEARCH KK, WEEGLE CO Ltd, Daiichi Techno Co Ltd, Nippon Steel and Sumikin Engineering Co Ltd filed Critical Erh Techno Res Kk
Priority to JP2012019184A priority Critical patent/JP2013156227A/en
Publication of JP2013156227A publication Critical patent/JP2013156227A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing radioactive materials from active sludge containing the radioactive materials.SOLUTION: A method 1 for removing radioactive materials has an elution process 20 for solubilizing active sludge Sand eluting radioactive materials in the active sludge Sinto liquid, a solid body and liquid body separation process 30 for separating a liquid body Lfrom a solid body Safter the elution process 20, and an adsorption process 40 for adsorbing the radioactive materials in the liquid body Lseparated by the solid body and liquid body separation process 30 to adsorbent. Further, the method has a dehydration process 50 for dehydrating the solid body Sseparated by the solid body and liquid body separation process 30 and separating separate liquid Lfrom a dehydrated cake S, and a process for adsorbing the separate liquid Lseparated by the dehydration process 50 to the adsorbent.

Description

本発明は、放射性物質を含む活性汚泥から放射性物質を除去する方法に関する。   The present invention relates to a method for removing radioactive substances from activated sludge containing radioactive substances.

放射性セシウム等の放射性物質が検出された活性汚泥は、下水処理工程において生物濃縮と機械濃縮とを繰り返すことで、放射性物質が高濃度まで濃縮されたものと考えられる。
また、例えば放射性セシウムを含む活性汚泥を貯留する貯留槽中の上澄み液、および該活性汚泥を脱水処理した分離液からは放射性セシウムが検出されないことから、活性汚泥自体が放射性セシウムを微生物の細胞内に高濃度に濃縮した状態で含有していると推測される。
The activated sludge in which radioactive substances such as radioactive cesium have been detected is considered to have been concentrated to a high concentration by repeating bioconcentration and mechanical concentration in the sewage treatment process.
In addition, since radioactive cesium is not detected in the supernatant liquid in the storage tank for storing activated sludge containing radioactive cesium, and in the separated liquid obtained by dehydrating the activated sludge, the activated sludge itself does not contain radioactive cesium in the cells of microorganisms. It is presumed that it is contained in a highly concentrated state.

上述したように、活性汚泥は放射性物質を高濃度に濃縮した状態で保持できるが、現状では放射性物質を含む活性汚泥から放射性物質を除去する有効な方法はあまり知られていない。そのため、放射性物質を含む活性汚泥などは、以下のようにして処分されている。
例えば汚泥が放射性物質として放射性セシウムを含む場合、放射性セシウム濃度が8000Bq/kg以下の汚泥やその焼却灰については、跡地を住居等に使用しない前提で、防水対策を講じれば埋め立て処分が可能である。また、放射性セシウム濃度が低濃度であれば汚泥を堆肥原料やセメント原料として取引することは可能であるが、堆肥原料の場合の放射性セシウム濃度は200Bq/kg以下、セメント原料の場合はクリアランスレベルとして100Bq/kg以下でなければ取引が困難である。
As described above, the activated sludge can be maintained in a state where the radioactive substance is concentrated to a high concentration. However, at present, there are few known effective methods for removing the radioactive substance from the activated sludge containing the radioactive substance. For this reason, activated sludge containing radioactive substances is disposed of as follows.
For example, when sludge contains radioactive cesium as a radioactive substance, sludge with a radioactive cesium concentration of 8000 Bq / kg or less and its incinerated ash can be disposed of in landfill if waterproofing measures are taken on the premise that the former site will not be used for dwelling etc. . In addition, if the radioactive cesium concentration is low, it is possible to trade sludge as compost raw material or cement raw material, but the radioactive cesium concentration in the case of compost raw material is 200 Bq / kg or less, and the clearance level in the case of cement raw material Trading is difficult unless it is 100 Bq / kg or less.

このように、放射性物質を含む活性汚泥は、放射性物質の濃度をある程度まで低減しないと処分できない。よって、放射性物質を含む活性汚泥から放射性物質を除去できる方法が求められている。   Thus, activated sludge containing radioactive substances cannot be disposed unless the concentration of radioactive substances is reduced to some extent. Therefore, there is a need for a method that can remove radioactive substances from activated sludge containing radioactive substances.

放射性物質の処理方法としては、例えば放射性物質を含む放射性排水を活性汚泥により処理し、放射性物質を含む活性汚泥(固形分)と、放射性物質が除去された処理水とに固液分離する方法が提案されている(例えば特許文献1参照)。   As a method for treating radioactive substances, for example, there is a method in which radioactive wastewater containing radioactive substances is treated with activated sludge and solid-liquid separated into activated sludge (solids) containing radioactive substances and treated water from which radioactive substances have been removed. It has been proposed (see, for example, Patent Document 1).

特開2007−64732号公報JP 2007-64732 A

しかしながら、特許文献1に記載の方法では、放射性物質を含む活性汚泥から放射性物質を除去するには至っていない。   However, the method described in Patent Document 1 has not yet removed the radioactive substance from the activated sludge containing the radioactive substance.

本発明は、上記事情に鑑みてなされたものであり、放射性物質を含む活性汚泥から放射性物質を除去できる方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the method of removing a radioactive substance from the activated sludge containing a radioactive substance.

本発明者らは鋭意検討した結果、活性汚泥を可溶化すれば微生物の細胞内に取り込まれていた放射性セシウム等の放射性物質を液中に溶出でき、活性汚泥から放射性物質を除去できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that if activated sludge is solubilized, radioactive substances such as radioactive cesium that have been incorporated into the cells of microorganisms can be eluted into the liquid, and radioactive substances can be removed from activated sludge. The present invention has been completed.

すなわち、本発明の放射性物質の除去方法は、放射性物質を含む活性汚泥から放射性物質を除去する方法であって、前記活性汚泥を可溶化し、活性汚泥中の放射性物質を液中に溶出させる溶出工程と、溶出工程の後に液体と固体とを分離する固液分離工程とを有することを特徴とする。
また、固液分離工程により分離した液体中の放射性物質を吸着材に吸着させる吸着工程を有することが好ましい。
さらに、固液分離工程により分離した固体を脱水し、分離液と脱水ケーキに分離する脱水工程を有し、脱水工程により分離した分離液を吸着材に吸着させることが好ましい。
また、本発明の放射性物質の除去方法は、放射性物質がセシウムである場合に特に好適である。
さらに、活性汚泥を可溶化する方法が、アルカリ処理、酸化処理、酸処理、加温処理、超音波処理からなる群より選ばれる1種以上の方法であることが好ましい。
また、前記吸着材が、高分子基材の存在下で反応性モノマーがグラフト重合したグラフト物であることが好ましい。
That is, the method for removing a radioactive substance of the present invention is a method for removing a radioactive substance from an activated sludge containing a radioactive substance, wherein the activated sludge is solubilized and the radioactive substance in the activated sludge is eluted in a liquid. And a solid-liquid separation step of separating the liquid and the solid after the elution step.
Moreover, it is preferable to have an adsorption | suction process which makes the adsorbent adsorb | suck the radioactive substance in the liquid isolate | separated by the solid-liquid separation process.
Furthermore, it is preferable to have a dehydration step of dehydrating the solid separated by the solid-liquid separation step and separating it into a separation solution and a dehydrated cake, and adsorbing the separation solution separated by the dehydration step to the adsorbent.
In addition, the method for removing a radioactive substance of the present invention is particularly suitable when the radioactive substance is cesium.
Furthermore, the method for solubilizing activated sludge is preferably one or more methods selected from the group consisting of alkali treatment, oxidation treatment, acid treatment, heating treatment, and ultrasonic treatment.
The adsorbent is preferably a graft product obtained by graft polymerization of a reactive monomer in the presence of a polymer substrate.

本発明によれば、放射性物質を含む活性汚泥から放射性物質を除去できる方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can remove a radioactive substance from the activated sludge containing a radioactive substance can be provided.

本発明に用いる放射性物質の除去装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the removal apparatus of the radioactive substance used for this invention. 本発明に用いる放射性物質の除去装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the removal apparatus of the radioactive substance used for this invention. 本発明に用いる放射性物質の除去装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the removal apparatus of the radioactive substance used for this invention. 本発明に用いる放射性物質の除去装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the removal apparatus of the radioactive substance used for this invention.

本発明の放射性物質の除去方法は、放射性物質を含む活性汚泥を可溶化し、活性汚泥中の放射性物質を液中に溶出させる溶出工程と、溶出工程の後に液体と固体とを分離する固液分離工程とを有する。
また、本発明の放射性物質の除去方法は、固液分離工程により分離した液体中の放射性物質を吸着材に吸着させる吸着工程や、固液分離工程により分離した固体を脱水し、分離液と脱水ケーキに分離する脱水工程を有することが好ましく、さらに、脱水工程により分離した分離液を吸着材に吸着させることが好ましい。
以下、本発明の放射性物質の除去方法の一例について、図面を用いて具体的に説明する。なお、図2〜4において、図1と同じ構成要素には同じ符号を付してその説明を省略する。
The method for removing a radioactive substance according to the present invention includes an elution step of solubilizing activated sludge containing a radioactive substance and eluting the radioactive substance in the activated sludge into a liquid, and a solid-liquid separating the liquid and the solid after the elution step. A separation step.
In addition, the method for removing a radioactive substance according to the present invention includes an adsorption process in which a radioactive substance in a liquid separated by a solid-liquid separation process is adsorbed to an adsorbent, and a solid separated by a solid-liquid separation process is dehydrated to separate the separated liquid and It is preferable to have a dehydration step for separating the cake, and it is preferable that the separated liquid separated by the dehydration step is adsorbed on the adsorbent.
Hereinafter, an example of the method for removing a radioactive substance of the present invention will be specifically described with reference to the drawings. 2-4, the same code | symbol is attached | subjected to the same component as FIG. 1, and the description is abbreviate | omitted.

<放射性物質の除去装置>
図1は、本発明に用いる放射性物質の除去装置の一例を示す概略構成図である。この例の放射性物質の除去装置1は、上流側から順に、放射性物質を含む活性汚泥Sを一旦貯留する汚泥貯留手段10と、活性汚泥Sを可溶化し、活性汚泥中の放射性物質を液中に溶出させる溶出手段20と、液体Lと固体Sとを分離する固液分離手段30と、分離した液体L中の放射性物質を吸着材に吸着させる吸着手段40と、分離した固体Sを脱水し、分離液Lと脱水ケーキSに分離する脱水手段50とを具備して構成されている。
<Radioactive substance removal device>
FIG. 1 is a schematic configuration diagram showing an example of a radioactive substance removing apparatus used in the present invention. In this example, the radioactive substance removal apparatus 1 is, in order from the upstream side, the sludge storage means 10 for temporarily storing the activated sludge S 0 containing the radioactive substance, and the activated sludge S 0 solubilized to remove the radioactive substance in the activated sludge. The elution means 20 for elution in the liquid, the solid-liquid separation means 30 for separating the liquid L 1 and the solid S 1, and the adsorption means 40 for adsorbing the radioactive substance in the separated liquid L 1 to the adsorbent were separated. The solid S 1 is dehydrated, and includes a dehydrating means 50 that separates the separated liquid L 2 and the dehydrated cake S 2 .

(活性汚泥)
本発明の対象となる活性汚泥Sは、通常の下水汚泥や産業排水処理に使用される活性汚泥であり、かつ、放射性物質を含む。なお、本発明において放射性物質を除去する前の活性汚泥を「未処理の活性汚泥」、または単に「活性汚泥」という場合がある。
(Activated sludge)
Activated sludge S 0 to which the present invention is the activated sludge used for normal sewage sludge and industrial waste water treatment, and includes a radioactive substance. In the present invention, the activated sludge before removal of radioactive substances may be referred to as “untreated activated sludge” or simply “activated sludge”.

活性汚泥に含まれる放射性物質としては特に制限されないが、放射性セシウム、放射性ストロンチウム、放射性ジルコニウム、放射性ルテニウム、放射性セリウムなどが挙げられる。これらの中でも、本発明は放射性セシウムを含む活性汚泥から放射性セシウムを除去する場合に特に好適である。   Although it does not restrict | limit especially as a radioactive substance contained in activated sludge, Radiocesium, radioactive strontium, radioactive zirconium, radioactive ruthenium, radioactive cerium etc. are mentioned. Among these, this invention is especially suitable when removing radioactive cesium from the activated sludge containing radioactive cesium.

(汚泥貯留手段)
汚泥貯留手段10は、活性汚泥Sを一旦貯留する手段である。
汚泥貯留手段10は汚泥貯留槽11を備える。汚泥貯留槽11としては、活性汚泥Sを貯留できるものであれば特に制限されない。
(Sludge storage means)
Sludge storage means 10 is means for temporarily storing the activated sludge S 0.
The sludge storage means 10 includes a sludge storage tank 11. The sludge storage tank 11 is not particularly limited as long as it can store the activated sludge S 0.

(溶出手段)
溶出手段20は、活性汚泥Sを可溶化し、活性汚泥中の放射性物質を液中に溶出させる手段である。
この例の溶出手段20は、アルカリ処理手段21と、アルカリ処理手段21の下流に位置する酸化処理手段22とで構成されている。
(Elution means)
Elution means 20, activated sludge S 0 solubilized, a means for eluting a radioactive material in the activated sludge in the liquid.
The elution means 20 in this example includes an alkali treatment means 21 and an oxidation treatment means 22 positioned downstream of the alkali treatment means 21.

アルカリ処理手段21は、汚泥貯留手段10から送られた活性汚泥Sを加温しながら貯留する第1の処理槽21aと、第1の処理槽21aに貯留された活性汚泥Sを撹拌する撹拌機21bと、第1の処理槽21aに貯留された活性汚泥Sにアルカリを添加するアルカリ添加手段21cとを備える。
第1の処理槽21aとしては、活性汚泥Sを貯留できるものであれば特に制限されないが、アルカリや加温によって劣化しにくい材質のものが好ましい。
撹拌機21bとしては、活性汚泥Sを撹拌できるものであれば特に制限されない。
アルカリ添加手段21cとしては、アルカリを添加できるものであれば特に制限されない。
Alkali treatment means 21, stirring with the first treatment tank 21a for storing while the activated sludge S 0 sent from the sludge storage means 10 is warmed, the activated sludge S 0 which is stored in the first treatment tank 21a comprising a stirrer 21b, and alkali addition means 21c for adding an alkali to the active sludge S 0 which is stored in the first treatment tank 21a.
As the first treatment tank 21a, it is not particularly limited as long as it can store the activated sludge S 0, those hard material degraded by alkali or heating is preferable.
The stirrer 21b, are not particularly limited as long as it can stir the activated sludge S 0.
The alkali adding means 21c is not particularly limited as long as an alkali can be added.

酸化処理手段22は、アルカリ処理手段21から送られた活性汚泥Sを加温しながら貯留する第2の処理槽22aと、第2の処理槽22aに貯留された活性汚泥Sを撹拌する撹拌機22bと、第2の処理槽22aに貯留された活性汚泥Sに酸化剤を添加する酸化剤添加手段22cとを備える。
第2の処理槽22aとしては、活性汚泥Sを貯留できるものであれば特に制限されないが、酸化剤によって劣化しにくい材質のものが好ましい。
撹拌機22bとしては、活性汚泥Sを撹拌できるものであれば特に制限されない。
酸化剤添加手段22cとしては、酸化剤を添加できるものであれば特に制限されない。
Oxidation means 22 is stirred and second treatment tank 22a for storing while the activated sludge S 0 sent from the alkaline treatment means 21 is warmed, the activated sludge S 0 stored in the second treatment tank 22a comprising a stirrer 22b, the oxidizing agent addition means 22c for adding an oxidizing agent to the activated sludge S 0 stored in the second treatment tank 22a.
The second treatment tank 22a, is not particularly limited as long as it can store the activated sludge S 0, those hard material degraded by oxidizing agents are preferred.
The stirrer 22b, are not particularly limited as long as it can stir the activated sludge S 0.
The oxidizing agent adding means 22c is not particularly limited as long as it can add an oxidizing agent.

(固液分離手段)
固液分離手段30は、液体Lと固体Sとを分離する手段である。
固液分離手段30としては、例えばフィルタを備えた濾過機、遠心分離機、膜分離装置などが挙げられる。また、処理される活性汚泥Sの量が少なければ、脱水機を用いてもよい。
(Solid-liquid separation means)
The solid-liquid separation unit 30 is a unit that separates the liquid L 1 and the solid S 1 .
Examples of the solid-liquid separation means 30 include a filter equipped with a filter, a centrifuge, and a membrane separation device. Also, the less the amount of activated sludge S 0 to be processed, it may be used dehydrator.

(吸着手段)
吸着手段40は、分離した液体L中の放射性物質を吸着材(図示略)に吸着させる手段である。
吸着材としては、放射性物質を吸着できるものであれば特に制限されないが、例えば高分子基材の存在下で反応性モノマーがグラフト重合したグラフト物が適している。該グラフト物は、例えば特許第4465447号公報に記載の合成方法により簡便に合成できる。具体的には、1または2官能性のリン酸基を有する反応性モノマーのうち、モノエステルおよびジエステル構造を有する2つの前記モノマーを同時に高分子基材にグラフト重合して、グラフト物を得る。高分子基材としては、不織布状または繊維状のポリエチレン、ポリプロピレン等が挙げられる。一方、反応性モノマーとしては、モノ(2−(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2−(メタ)アクリロイルオキシエチル)アシッドホスフェートなどが挙げられる。
なお、吸着材としては上述したグラフト物に限定されず、例えばゼオライト系吸着材、プルシアンブルー系吸着材などを用いてもよい。
(Adsorption means)
Suction means 40 is means for adsorbed by the adsorbent (not shown) the radioactive material in the liquid L in 1 separated.
The adsorbent is not particularly limited as long as it can adsorb radioactive substances. For example, a graft product obtained by graft polymerization of a reactive monomer in the presence of a polymer base material is suitable. The graft product can be easily synthesized by, for example, a synthesis method described in Japanese Patent No. 4465447. Specifically, among the reactive monomers having a mono- or bifunctional phosphate group, two monomers having a monoester structure and a diester structure are simultaneously graft-polymerized on a polymer substrate to obtain a graft product. Examples of the polymer substrate include non-woven or fibrous polyethylene, polypropylene, and the like. On the other hand, examples of the reactive monomer include mono (2- (meth) acryloyloxyethyl) acid phosphate and di (2- (meth) acryloyloxyethyl) acid phosphate.
The adsorbent is not limited to the above-described graft product, and for example, a zeolite adsorbent or a Prussian blue adsorbent may be used.

(脱水手段)
脱水手段50は、分離した固体Sを脱水し、分離液Lと脱水ケーキSに分離する手段である。
脱水手段50としては、汚泥を脱水する公知の脱水機を用いることができる。
この例の脱水手段50は、分離液Lが固液分離手段30によって分離された液体Lに合流できるようになっている。そして、液体Lに合流した分離液Lは吸着手段40の吸着材に吸着される。
(Dehydration means)
The dehydrating unit 50 is a unit that dehydrates the separated solid S 1 and separates it into a separated liquid L 2 and a dehydrated cake S 2 .
As the dehydrating means 50, a known dehydrator for dewatering sludge can be used.
This example dehydration means 50 is adapted to be merged in the liquid L 1 separated by the separating liquid L 2 is a solid-liquid separation means 30. Then, the separation liquid L 2 that has joined the liquid L 1 is adsorbed by the adsorbent of the adsorbing means 40.

<除去方法>
以下に、本発明の放射性物質の除去方法の各工程について、図1に示す放射性物質の除去装置1を用いて詳しく説明する。
まず、活性汚泥Sを汚泥貯留手段10の汚泥貯留槽11に一旦貯留する(貯留工程)。活性汚泥Sを汚泥貯留槽11に貯留することで、上澄み液(図示略)が分離されるので、この上澄み液を取り除くことが好ましい。なお、放射性物質は活性汚泥に取り込まれているため、上澄み液には含まれていない。そのため、取り除いた上澄み液はそのまま系外へ排出できる。
<Removal method>
Below, each process of the removal method of the radioactive substance of this invention is demonstrated in detail using the radioactive substance removal apparatus 1 shown in FIG.
First, once storing the activated sludge S 0 to sludge storage tank 11 of the sludge storage means 10 (storing step). Activated sludge S 0 By storing the sludge storage tank 11, since the supernatant (not shown) is separated, it is preferable to remove this supernatant. In addition, since the radioactive substance is taken in the activated sludge, it is not contained in the supernatant liquid. Therefore, the removed supernatant liquid can be discharged out of the system as it is.

(溶出工程)
溶出工程は、汚泥貯留手段10の汚泥貯留槽11に一旦貯留され、上澄み液が分離された活性汚泥Sを、溶出手段20によって可溶化し、活性汚泥中の放射性物質を液中に溶出させる工程である。
活性汚泥Sを可溶化することで微生物の細胞内に取り込まれていた放射性物質が液中に溶出する。
(Elution process)
In the elution step, the activated sludge S 0 once stored in the sludge storage tank 11 of the sludge storage means 10 and separated from the supernatant liquid is solubilized by the elution means 20, and the radioactive substance in the activated sludge is eluted in the liquid. It is a process.
Radioactive materials have been incorporated into the cells of the microorganism by solubilization activated sludge S 0 is eluted into the liquid.

活性汚泥を可溶化する方法としては、アルカリ処理、酸化処理、酸処理等の化学処理;加温処理;超音波処理等の機械処理などの処理方法が挙げられる。
上述した処理方法により活性汚泥を可溶化することで、活性汚泥中の微生物の細胞膜が破壊されやすくなり、その結果、液中に放射性物質が溶出しやすくなる。
Examples of methods for solubilizing activated sludge include chemical treatments such as alkali treatment, oxidation treatment and acid treatment; treatment methods such as heating treatment; mechanical treatment such as ultrasonic treatment.
By solubilizing activated sludge by the above-described treatment method, the cell membrane of microorganisms in the activated sludge is easily destroyed, and as a result, radioactive substances are easily eluted in the liquid.

アルカリ処理により活性汚泥を可溶化する場合、アルカリとしては、例えば水酸化ナトリウムなどが挙げられる。
アルカリの添加量が多くなるほど、すなわちアルカリを添加した後の活性汚泥のpHが高くなるほど、活性汚泥中の微生物の細胞膜はアルカリによる分解反応により破壊されやすくなる。アルカリの添加量は、活性汚泥の固形分100質量部に対して20〜60質量部が好ましく、30〜50質量部がより好ましい。アルカリの添加量が20質量部以上であれば、活性汚泥中の微生物の細胞膜を十分に破壊できる。なお、アルカリの添加量が60質量部を超えても、細胞膜の破壊効果は頭打ちとなる。
In the case where the activated sludge is solubilized by alkali treatment, examples of the alkali include sodium hydroxide.
The greater the amount of alkali added, that is, the higher the pH of the activated sludge after adding the alkali, the easier the cell membrane of microorganisms in the activated sludge is destroyed by the decomposition reaction with alkali. 20-60 mass parts is preferable with respect to 100 mass parts of solid content of activated sludge, and, as for the addition amount of an alkali, 30-50 mass parts is more preferable. If the amount of alkali added is 20 parts by mass or more, the cell membrane of microorganisms in the activated sludge can be sufficiently destroyed. In addition, even if the addition amount of the alkali exceeds 60 parts by mass, the cell membrane destruction effect reaches its peak.

酸化処理により活性汚泥を可溶化する場合、酸化剤を活性汚泥に添加すればよい。酸化剤としては酸化力の強いものであれば特に制限されないが、例えば過酸化水素、過硫酸塩、オゾンなどが挙げられる。
酸化剤の添加量が多くなるほど、活性汚泥中の微生物の細胞膜は酸化剤による酸化分解反応により破壊されやすくなる。酸化剤の添加量は、酸化剤として過酸化水素や過硫酸塩等の薬剤を用いる場合には液状の活性汚泥1Lに対して、酸化剤を添加した後の活性汚泥中の飽和溶存酸素量が3000〜7000mgとなる量が好ましく、より好ましくは4000〜6000mgである。酸化剤の添加量が3000mg以上であれば、活性汚泥中の微生物の細胞膜を十分に破壊できる。なお、酸化剤の添加量が7000mgを超えても、細胞膜の破壊効果は頭打ちとなる。
一方、酸化剤としてオゾン等のガスを用いる場合には液状の活性汚泥1Lに対して、酸化剤を添加した後の活性汚泥の飽和溶存酸素量が4000mg以上となる量が好ましい。酸化剤の添加量が4000mg以上であれば、活性汚泥中の微生物の細胞膜を十分に破壊できる。
When solubilizing activated sludge by oxidation treatment, an oxidizing agent may be added to the activated sludge. The oxidizing agent is not particularly limited as long as it has strong oxidizing power, and examples thereof include hydrogen peroxide, persulfate, and ozone.
As the amount of oxidant added increases, the cell membrane of microorganisms in the activated sludge is more easily destroyed by the oxidative decomposition reaction with the oxidant. The amount of oxidant added is the amount of saturated dissolved oxygen in the activated sludge after adding the oxidant to 1 L of liquid activated sludge when a chemical such as hydrogen peroxide or persulfate is used as the oxidant. The amount of 3000 to 7000 mg is preferred, and more preferably 4000 to 6000 mg. If the added amount of the oxidizing agent is 3000 mg or more, the cell membrane of microorganisms in the activated sludge can be sufficiently destroyed. In addition, even if the addition amount of the oxidizing agent exceeds 7000 mg, the cell membrane destruction effect reaches its peak.
On the other hand, when a gas such as ozone is used as the oxidizing agent, the amount of saturated dissolved oxygen in the activated sludge after addition of the oxidizing agent is preferably 4000 mg or more with respect to 1 L of liquid activated sludge. If the addition amount of the oxidizing agent is 4000 mg or more, the cell membrane of microorganisms in the activated sludge can be sufficiently destroyed.

酸処理により活性汚泥を可溶化する場合、酸としては、例えば塩酸、硫酸などが挙げられる。
酸の添加量が多くなるほど、すなわち酸を添加した後の活性汚泥のpHが低くなるほど、活性汚泥中の微生物の細胞膜は酸による分解反応により破壊されやすくなる。
When solubilizing activated sludge by acid treatment, examples of the acid include hydrochloric acid and sulfuric acid.
The greater the amount of acid added, that is, the lower the pH of the activated sludge after the acid is added, the more easily the microbial cell membrane in the activated sludge is destroyed by the acid decomposition reaction.

加温処理により活性汚泥を可溶化する場合、活性汚泥を50〜150℃に加温するのが好ましい。50℃以上に加温すれば、活性汚泥中の微生物の細胞膜が破壊されやすくなる。また、詳しくは後述するが、特に大気圧下で化学処理と加温処理とを併用する場合は50〜90℃が好ましく、加圧下で化学処理と加温処理とを併用する場合は100〜150℃が好ましい。
活性汚泥を加温する方法については特に制限されない。
When solubilizing activated sludge by heating treatment, it is preferable to heat the activated sludge to 50 to 150 ° C. When heated to 50 ° C. or higher, the cell membrane of microorganisms in the activated sludge is easily destroyed. Moreover, although mentioned later in detail, when using a chemical process and a heating process together under atmospheric pressure especially, 50-90 degreeC is preferable, and when using a chemical process and a heating process under pressure together, it is 100-150. ° C is preferred.
The method for warming the activated sludge is not particularly limited.

超音波処理により活性汚泥を可溶化する場合、例えば超音波発生装置等を用いて活性汚泥を超音波処理すればよい。   When solubilizing activated sludge by ultrasonic treatment, the activated sludge may be ultrasonically treated using, for example, an ultrasonic generator.

これらアルカリ処理、酸化処理、酸処理、加温処理、超音波処理は1種単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合は、同時に行ってもよいし、順次行ってもよい。特に、細胞膜の分解反応をより進行させやすくする点で、アルカリ処理、酸化処理、酸処理等の化学処理は、加温処理と同時に行うことが好ましい。ただし、酸化剤としてオゾンなどのガスを用いて酸化処理する場合、加温処理と同時に行うと活性汚泥に添加したオゾンが揮発してしまい、酸化分解反応が十分に進行しにくくなることがある。従って、酸化処理と加温処理とを同時に行う場合は、酸化剤として過酸化水素や過硫酸塩などの薬剤を用いて酸化処理を行うのが好ましい。
また、超音波処理と、超音波処理以外の処理(他の処理)とを併用する場合、超音波処理と他の処理とを同時に行ってもよいが、特にアルカリ処理、酸化処理、酸処理等の化学処理と超音波処理とを併用する場合は、化学処理を行った後で超音波処理を行うのが好ましい。
These alkali treatment, oxidation treatment, acid treatment, heating treatment, and ultrasonic treatment may be used alone or in combination of two or more. When using 2 or more types together, you may carry out simultaneously and may carry out sequentially. In particular, the chemical treatment such as alkali treatment, oxidation treatment, and acid treatment is preferably performed simultaneously with the heating treatment in order to facilitate the cell membrane decomposition reaction. However, when oxidation treatment is performed using a gas such as ozone as an oxidant, ozone added to the activated sludge volatilizes simultaneously with the heating treatment, and the oxidative decomposition reaction may not proceed sufficiently. Therefore, when the oxidation treatment and the heating treatment are performed simultaneously, it is preferable to perform the oxidation treatment using an agent such as hydrogen peroxide or persulfate as the oxidizing agent.
In addition, when ultrasonic treatment and treatment other than ultrasonic treatment (other treatment) are used in combination, ultrasonic treatment and other treatment may be performed at the same time, particularly alkali treatment, oxidation treatment, acid treatment, etc. When the chemical treatment and the ultrasonic treatment are used in combination, it is preferable to perform the ultrasonic treatment after the chemical treatment.

図1に示す溶出手段20では、アルカリ処理手段21にてアルカリ処理と加温処理を併用して第1の溶出処理を行った後で、酸化処理手段22にて酸化処理と加温処理を併用して第2の溶出処理を行う。   In the elution means 20 shown in FIG. 1, after the first elution treatment is performed by using the alkali treatment means 21 together with the alkali treatment and the heating treatment, the oxidation treatment means 22 is used together with the oxidation treatment and the heating treatment. Then, the second elution process is performed.

溶出処理の時間は、処理方法の種類や処理温度、活性汚泥の状態などに依存するので、通常は、活性汚泥が可溶化したかどうかを目視にて判断し、活性汚泥が可溶化するまで処理を行う。
なお、処理温度が高いほど処理時間は短くなる傾向にある。また、アルカリ処理や酸処理により活性汚泥を可溶化する場合よりも、酸化処理により活性汚泥を可溶化する場合の方が、処理時間は短くなる傾向にある。また、超音波処理により活性汚泥を可溶化する場合は、通常、5〜30分が好ましく、5〜15分がより好ましい。
Since the elution treatment time depends on the type of treatment method, treatment temperature, activated sludge condition, etc., it is usually judged visually whether the activated sludge has been solubilized and processed until the activated sludge is solubilized. I do.
The processing time tends to be shorter as the processing temperature is higher. Further, the treatment time tends to be shorter in the case where the activated sludge is solubilized by the oxidation treatment than in the case where the activated sludge is solubilized by the alkali treatment or the acid treatment. Moreover, when solubilizing activated sludge by ultrasonic treatment, 5 to 30 minutes is usually preferable, and 5 to 15 minutes is more preferable.

また、溶出処理の圧力は、大気圧〜1.5MPaが好ましく、処理方法の種類に応じて決定すればよい。   Further, the pressure of the elution treatment is preferably from atmospheric pressure to 1.5 MPa, and may be determined according to the type of treatment method.

(固液分離工程)
固液分離工程は、溶出工程の後に液体Lと固体Sとを固液分離手段30によって分離する工程である。
溶出工程の後で液体Lと固体Sとを分離することによって、放射性物質が溶出した液体Lと、放射性物質が除去された可溶化後の活性汚泥を含む固体Sとに分離でき、活性汚泥Sから放射性物質が除去される。
液体Lと固体Sとを分離する方法としては、例えばフィルタを用いる濾過方式、遠心分離方式、膜分離方式などが挙げられる。また、処理される活性汚泥Sの量が少なければ、脱水方式を用いてもよい。
(Solid-liquid separation process)
The solid-liquid separation step is a step of separating the liquid L 1 and the solid S 1 by the solid-liquid separation means 30 after the elution step.
By separating the liquid L 1 and the solid S 1 after the elution step, the liquid L 1 of radioactive material eluted, can be separated into a solid S 1 containing the activated sludge after solubilization radioactive material has been removed , radioactive material is removed from the active sludge S 0.
Examples of a method for separating the liquid L 1 and the solid S 1 include a filtration method using a filter, a centrifugal separation method, and a membrane separation method. Also, the less the amount of activated sludge S 0 to be processed, it may be used dehydrating methods.

(吸着工程)
吸着工程は、固液分離工程により分離した液体L中の放射性物質を吸着手段40によって吸着材に吸着させる工程である。
吸着工程により、放射性物質は吸着材に吸着されるので、液体Lから放射性物質を除去できる。
吸着工程により放射性物質が除去された除去液Lは、系外へ排出される。
(Adsorption process)
Adsorption step is a step of adsorbing the adsorbent radioactive materials in the liquid L in 1 separated by solid-liquid separation step by the adsorption means 40.
The adsorption step, radioactive material because it is adsorbed by the adsorbent can be removed radioactive material from the liquid L 1.
The removal liquid L 3 from which the radioactive substance has been removed by the adsorption process is discharged out of the system.

(脱水工程)
脱水工程は、固液分離工程により分離した固体Sを脱水手段50によって脱水し、分離液Lと脱水ケーキSに分離する工程である。
ところで、固液分離工程では、固液分離手段30の性能によっては液体Lと固体Sが完全に分離されず、液体Lの一部が固体Sに付着してしまう場合がある。液体Lには活性汚泥から除去された放射性物質が含まれているので、固体Sに液体Lの一部が付着していると、液体Lに溶出した放射性物質が固体Sに付着していることになる。
このような場合、脱水工程を行えば分離液Lと脱水ケーキSに分離できるので、固液分離工程において固体Sに液体Lの一部が付着していても、液体Lに溶出した放射性物質が脱水ケーキSに付着するのを防げる。
(Dehydration process)
The dehydration step is a step in which the solid S 1 separated in the solid-liquid separation step is dehydrated by the dehydrating means 50 and separated into the separated liquid L 2 and the dehydrated cake S 2 .
Incidentally, in the solid-liquid separation step, by the performance of the solid-liquid separation means 30 is when the liquid L 1 and the solid S 1 is not completely separated, a part of the liquid L 1 adheres to a solid S 1. Since the liquid L 1 is included radioactive material removed from the active sludge, the solid S 1 when a part of the liquid L 1 is attached, radioactive substances eluted into the liquid L 1 is the solid S 1 It will be attached.
In such a case, if the dehydration step is performed, the separation liquid L 2 and the dehydration cake S 2 can be separated, so that even if a part of the liquid L 1 adheres to the solid S 1 in the solid-liquid separation step, the liquid L 1 eluted radioactive material can be prevented from adhering to the dewatered cake S 2.

脱水工程を行う場合は、分離した分離液Lを吸着材に吸着させることが好ましい。これにより、分離液L中に含まれる放射性物質を吸着材にさせ、分離液Lから放射性物質を除去できる。
図1に示す脱水手段50では、分離液Lを固液分離手段30によって分離された液体Lに合流させた後に、吸着手段40の吸着材に吸着させている。
When performing dehydration step, it is preferable to a separate separation liquid L 2 is adsorbed by the adsorbent. Thus, the radioactive substance contained in the separated liquid L 2 is the adsorbent can be removed radioactive material from the separated liquid L 2.
In the dehydrating means 50 shown in FIG. 1, the separation liquid L 2 is joined to the liquid L 1 separated by the solid-liquid separation means 30 and then adsorbed on the adsorbent of the adsorption means 40.

<作用効果>
以上説明したように、本発明の放射性物質の除去方法によれば、放射性物質を含む活性汚泥を可溶化して、活性汚泥中の放射性物質を液中に溶出させた後、液体と固体とを分離するので、活性汚泥から放射性物質を容易に除去できる。
さらに、放射性物質が溶出した液体を吸着材に吸着させれば、液体から放射性物質を除去することもできる。
<Effect>
As described above, according to the method for removing a radioactive substance of the present invention, the activated sludge containing the radioactive substance is solubilized and the radioactive substance in the activated sludge is eluted in the liquid, and then the liquid and the solid are separated. Since it isolate | separates, a radioactive substance can be easily removed from activated sludge.
Furthermore, if the liquid from which the radioactive substance is eluted is adsorbed by the adsorbent, the radioactive substance can be removed from the liquid.

また、液体と固体とを分離したときに液体の一部が固体に付着しても、この固体を脱水して分離液と脱水ケーキに分離すれば、液体に溶出した放射性物質が脱水ケーキに付着するのを防げる。
さらに、得られた分離液を吸着材に吸着させれば、分離液から放射性物質を除去できる。
Also, even if a part of the liquid adheres to the solid when the liquid and the solid are separated, if the solid is dehydrated and separated into a separated liquid and a dehydrated cake, the radioactive material eluted in the liquid adheres to the dehydrated cake. I can prevent it.
Furthermore, radioactive material can be removed from the separation liquid by adsorbing the obtained separation liquid to the adsorbent.

放射性物質が除去された活性汚泥は、固体として回収される。また、この固体を脱水すれば、脱水ケーキとして回収することができる。
これら固体や脱水ケーキは、放射性物質の濃度が十分に低減されているので、埋め立て処分はもちろんのこと、堆肥原料やセメント原料などに再利用することもできる。
The activated sludge from which radioactive substances have been removed is recovered as a solid. Moreover, if this solid is dehydrated, it can be recovered as a dehydrated cake.
Since these solids and dehydrated cakes have a sufficiently reduced concentration of radioactive substances, they can be reused not only for landfills but also for compost materials and cement materials.

なお、放射性物質の除去効果をより高めるために、得られた固体や脱水ケーキについて再度溶出工程および固液分離工程を行ってもよい(再処理)。再処理する場合は、固体や脱水ケーキを汚泥貯留手段または可溶化手段に返送すればよい。
再処理の有無は、固体や脱水ケーキ中の放射性物質の濃度を測定して判断すればよい。
In addition, in order to raise the removal effect of a radioactive substance more, you may perform an elution process and a solid-liquid separation process again about the obtained solid and dehydrated cake (reprocessing). In the case of reprocessing, the solid or dehydrated cake may be returned to the sludge storage means or solubilization means.
The presence or absence of reprocessing may be determined by measuring the concentration of radioactive material in the solid or dehydrated cake.

<他の実施形態>
本発明の放射性物質の除去方法は、上述した方法に限定されない。
上述した方法では、図1に示すように、汚泥貯留手段10の汚泥貯留槽11に活性汚泥Sを一旦貯留させてから溶出手段20に供給しているが、活性汚泥Sは汚泥貯留槽11に貯留させなくてもよい。ただし、汚泥貯留槽11に活性汚泥Sを一旦貯留させておくと、可溶化工程の前に放射性物質を含まない上澄み液を活性汚泥Sから分離しておくことができるので、固液分離工程における処理量を削減できる。
<Other embodiments>
The method for removing a radioactive substance of the present invention is not limited to the method described above.
In the method described above, as shown in FIG. 1, activated sludge S 0 is temporarily stored in the sludge storage tank 11 of the sludge storage means 10 and then supplied to the elution means 20. The activated sludge S 0 is stored in the sludge storage tank. 11 need not be stored. However, once the activated sludge S 0 is stored in the sludge storage tank 11, the supernatant liquid that does not contain the radioactive material can be separated from the activated sludge S 0 before the solubilization step. The amount of processing in the process can be reduced.

また、図1に示す放射性物質の除去装置1では、溶出手段20がアルカリ処理と加温処理を併用したアルカリ処理手段21と、酸化処理と加温処理を併用した酸化処理手段22とで構成されているが、例えば酸化処理手段22としてオゾン発生装置等を備えたオゾン酸化処理手段を用いてもよい。   Moreover, in the radioactive substance removal apparatus 1 shown in FIG. 1, the elution means 20 is comprised by the alkali treatment means 21 which used the alkali treatment and the heating treatment together, and the oxidation treatment means 22 which used the oxidation treatment and the heating treatment together. However, for example, an ozone oxidation treatment means equipped with an ozone generator or the like may be used as the oxidation treatment means 22.

また、この例では、溶出工程としてアルカリ処理と加温処理を併用して第1の溶出処理(1回目)を行った後で、酸化処理と加温処理を併用して第2の溶出処理(2回目)を行っているが、上述したように溶出工程としてはアルカリ処理、酸化処理、酸処理、加温処理、超音波処理のいずれか1種を単独で1回または2回以上行ってもよいし、2種以上を併用して1回または2回以上行ってもよい。   In this example, after the first elution treatment (first time) is performed using both alkali treatment and heating treatment as the elution step, the second elution treatment (first treatment) is performed using both oxidation treatment and heating treatment. As described above, as the elution step, any one of alkali treatment, oxidation treatment, acid treatment, heating treatment, and ultrasonic treatment may be carried out once or twice or more as described above. Alternatively, two or more kinds may be used in combination, or may be performed once or twice or more.

溶出処理を1回行う場合は、例えば図2に示すような、アルカリ処理と加温処理を併用したアルカリ処理手段21のみで構成された溶出手段20を具備した放射性物質の除去装置2を用いたり、図3に示すような、酸化処理と加温処理を併用した酸化処理手段22のみで構成された溶出手段20を具備した放射性物質の除去装置3を用いたりすればよい。
また、例えば図4に示すように、アルカリ処理手段21に酸化剤添加手段22cを設けた溶出手段20を備えた放射性物質の除去装置4を用い、アルカリ処理と酸化処理と加温処理とを同時に行ってもよい。
When performing the elution treatment once, for example, as shown in FIG. 2, a radioactive substance removing apparatus 2 having an elution means 20 composed only of alkali treatment means 21 using both alkali treatment and heating treatment is used. As shown in FIG. 3, a radioactive substance removing device 3 having an elution means 20 composed only of an oxidation treatment means 22 using both an oxidation treatment and a heating treatment may be used.
Further, for example, as shown in FIG. 4, using the radioactive substance removing apparatus 4 provided with the elution means 20 provided with the oxidizing agent addition means 22c in the alkali treatment means 21, the alkali treatment, oxidation treatment and heating treatment are simultaneously performed. You may go.

なお、図2〜4では、アルカリ処理および/または酸化処理と、加温処理とを同時に行っているが、加温せずにアルカリ処理および/または酸化処理のみを行ってもよいし、アルカリや酸化剤を添加せずに加温処理のみを行ってもよい。
また、アルカリ処理手段21および/または酸化処理手段22に超音波発生装置を設け、アルカリ処理および/または酸化処理と、加温処理と、超音波処理とを同時に行ってもよいし、アルカリや酸化剤は添加せず、加温もせずに超音波処理のみ行ってもよい。
さらに、例えば図2のアルカリ添加手段21cに代えて酸添加手段を設け、酸処理を行ってもよい。
2 to 4, the alkali treatment and / or oxidation treatment and the heating treatment are performed simultaneously, but only the alkali treatment and / or oxidation treatment may be performed without heating, You may perform only a heating process, without adding an oxidizing agent.
In addition, an ultrasonic generator may be provided in the alkali treatment means 21 and / or the oxidation treatment means 22 so that the alkali treatment and / or oxidation treatment, the heating treatment, and the ultrasonic treatment may be performed simultaneously. Only the ultrasonic treatment may be performed without adding the agent and without heating.
Furthermore, for example, an acid addition means may be provided instead of the alkali addition means 21c in FIG.

一方、溶出処理を2回以上行う場合、その組合せは図1に示すようなアルカリ処理と酸化処理に限定されず、例えばアルカリ処理と酸処理、酸化処理と酸処理、アルカリ処理と酸化処理と酸処理などでもよい。溶出処理の順序は特に限定されず、例えば図1においてアルカリ処理手段21と酸化処理手段22とを入れ替えてもよい。
さらに、アルカリ処理、酸化処理、酸処理等の化学処理や加温処理を1回以上行った後で、超音波処理等の機械処理を行ってもよい。
On the other hand, when the elution treatment is performed twice or more, the combination is not limited to the alkali treatment and the oxidation treatment as shown in FIG. 1, for example, alkali treatment and acid treatment, oxidation treatment and acid treatment, alkali treatment and oxidation treatment and acid treatment. Processing may be used. The order of the elution treatment is not particularly limited. For example, the alkali treatment means 21 and the oxidation treatment means 22 may be interchanged in FIG.
Furthermore, after chemical treatment such as alkali treatment, oxidation treatment, and acid treatment or heating treatment is performed at least once, mechanical treatment such as ultrasonic treatment may be performed.

また、図1に示す放射性物質の除去装置1では、脱水手段50により分離した分離液Lを固液分離手段30によって分離された液体Lに合流させた後に、吸着手段40の吸着材に吸着させているが、分離液Lは液体Lに合流させずに直接、吸着手段40の吸着材に吸着させてもよいし、吸着手段40とは別に吸着材を用意し、この吸着材に分離液Lを吸着させてもよい。
さらに、分離液Lは未処理の活性汚泥Sに添加してもよいし、汚泥貯留手段10、溶出手段20、固液分離手段30のいずれかに供給してもよい。
Further, in the radioactive substance removing apparatus 1 shown in FIG. 1, after the separated liquid L 2 separated by the dehydrating means 50 is merged with the liquid L 1 separated by the solid-liquid separating means 30, the adsorbent of the adsorbing means 40 is used. Although it is adsorbed, the separated liquid L 2 may be directly adsorbed to the adsorbent of the adsorbing means 40 without joining the liquid L 1 , or an adsorbent is prepared separately from the adsorbing means 40, and this adsorbent the separated liquid L 2 may be adsorbed.
Further, the separation liquid L 2 may be added to the untreated activated sludge S 0 , or may be supplied to any of the sludge storage means 10, the elution means 20, and the solid-liquid separation means 30.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
なお、以下の実施例および比較例では、セシウムの液中への溶出率を求めた。セシウムの溶出率は、セシウムの同位体の種類には影響を受けにくいと考えられるため、実施例および比較例は便宜上、安定同位体であるセシウム133(133Cs)を用いて行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
In the following examples and comparative examples, the dissolution rate of cesium into the liquid was determined. Since the elution rate of cesium is considered to be hardly affected by the type of isotope of cesium, the examples and comparative examples were performed using cesium 133 ( 133 Cs), which is a stable isotope, for convenience.

[セシウム含有活性汚泥の馴養]
表1に示す条件にて回分式活性汚泥処理を行い、以下のようにして活性汚泥中にセシウムを蓄積させた。なお、原水として、水道水で希釈した調整豆乳(16g/L)を用いた。この原水中のセシウム濃度は50ppbであった。
容量30Lの活性汚泥に原水15Lを加え、15時間曝気した後、2L排出し、残りを1時間静置して活性汚泥を沈降させた後、上澄み液を13L排水した。この処理操作を1サイクルとする。
ついで、13Lの上澄み液を排出した後の残渣に原水15Lを加え、同様の処理操作を合計21サイクル行い、活性汚泥を馴養した。21サイクル目の処理操作が終了した後の活性汚泥をセシウム溶出試験用の試料として用いた。
[Adaptation of activated sludge containing cesium]
Batch activated sludge treatment was performed under the conditions shown in Table 1, and cesium was accumulated in the activated sludge as follows. In addition, as the raw water, adjusted soymilk (16 g / L) diluted with tap water was used. The concentration of cesium in this raw water was 50 ppb.
15 L of raw water was added to activated sludge with a capacity of 30 L, aerated for 15 hours, then discharged 2 L, the rest was allowed to stand for 1 hour to settle the activated sludge, and then 13 L of the supernatant was drained. This processing operation is defined as one cycle.
Next, 15 L of raw water was added to the residue after discharging the 13 L supernatant, and the same treatment operation was performed for a total of 21 cycles to acclimate the activated sludge. The activated sludge after the treatment operation of the 21st cycle was used as a sample for the cesium elution test.

Figure 2013156227
Figure 2013156227

なお、表1中、「BOD」は生物化学的酸素要求量、「MLSS」は活性汚泥浮遊物質、「HRT」は水理学的滞留時間、「SRT」は汚泥滞留時間である。   In Table 1, “BOD” is the biochemical oxygen demand, “MLSS” is the activated sludge suspended matter, “HRT” is the hydraulic residence time, and “SRT” is the sludge residence time.

[実施例1]
先に馴養したセシウム含有活性汚泥を用いて、以下のようにしてセシウム溶出試験を行った。
まず、セシウム含有活性汚泥を、MLSSが10000mg/L程度になるまで濃縮した。この濃縮物400mLに濃度40質量%の水酸化ナトリウム(NaOH)を40%対DS(濃縮物の固形分100質量部に対して40質量部)添加し、処理温度:50℃、処理圧力:大気圧、処理時間:180分の処理条件で化学処理1(アルカリ処理と加温処理の併用)を行い、活性汚泥を可溶化させ、活性汚泥中のセシウムを溶出させた(溶出工程)。その後、遠心分離機を用いて液体と固体とを分離した(固液分離工程)。溶出処理条件を表2に示す。
固液分離前の固液中のMLSSおよびセシウム濃度と、固液分離後の液体中のセシウム濃度(溶出セシウム濃度)を測定した。なお、MLSSは「下水試験方法」(社団法人日本下水道協会、1997年版)に記載された「遠心分離法」に準拠して測定した。一方、セシウム濃度はJIS K 0133に準拠し、高周波プラズマ質量分析通則により、測定サンプルを硝酸分解した後、その分解溶液中のセシウム濃度をICP−MS法にて測定することにより求めた。
また、下記式よりセシウムの溶出率を求めた。これらの結果を表3に示す。
溶出率(%)=(液体中の溶出セシウム濃度/固液中のセシウム濃度)×100
[Example 1]
Using the cesium-containing activated sludge conditioned earlier, a cesium elution test was performed as follows.
First, the cesium-containing activated sludge was concentrated until MLSS became about 10000 mg / L. To 400 mL of this concentrate, 40% by weight of sodium hydroxide (NaOH) was added to 40% to DS (40 parts by weight with respect to 100 parts by weight of the solid content of the concentrate), processing temperature: 50 ° C., processing pressure: high. Atmospheric pressure, treatment time: Chemical treatment 1 (a combination of alkali treatment and heating treatment) was carried out under treatment conditions of 180 minutes to solubilize activated sludge, and cesium in the activated sludge was eluted (elution step). Then, the liquid and solid were isolate | separated using the centrifuge (solid-liquid separation process). The elution treatment conditions are shown in Table 2.
The MLSS and cesium concentrations in the solid liquid before the solid-liquid separation and the cesium concentration (elution cesium concentration) in the liquid after the solid-liquid separation were measured. In addition, MLSS was measured based on the "centrifugation method" described in the "sewage test method" (Japan Sewerage Association, 1997 edition). On the other hand, the cesium concentration was determined by measuring the cesium concentration in the decomposition solution by the ICP-MS method after decomposing the measurement sample with nitric acid according to JIS K 0133 according to the general rules of high-frequency plasma mass spectrometry.
Moreover, the elution rate of cesium was calculated | required from the following formula. These results are shown in Table 3.
Elution rate (%) = (elution cesium concentration in liquid / cesium concentration in solid liquid) × 100

[実施例2]
溶出工程において、化学処理1の後、機械処理として周波数20kHz、出力240Wの超音波処理を10分行った以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 2]
In the elution step, a cesium elution test was performed in the same manner as in Example 1 except that after chemical treatment 1, ultrasonic treatment with a frequency of 20 kHz and an output of 240 W was performed for 10 minutes as a mechanical treatment. The results are shown in Table 3.

[実施例3]
化学処理1の処理温度および処理時間を表2示すように変更した以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 3]
A cesium elution test was conducted in the same manner as in Example 1 except that the treatment temperature and treatment time of Chemical Treatment 1 were changed as shown in Table 2. The results are shown in Table 3.

[実施例4]
化学処理1の処理温度および処理時間を表2示すように変更し、さらに化学処理1の後、機械処理として周波数20kHz、出力240Wの超音波処理を10分行った以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 4]
The treatment temperature and treatment time of the chemical treatment 1 were changed as shown in Table 2, and the chemical treatment 1 was followed by ultrasonic treatment with a frequency of 20 kHz and an output of 240 W for 10 minutes after the mechanical treatment 1 as in Example 1. The cesium dissolution test was conducted. The results are shown in Table 3.

[実施例5]
化学処理1の代わりに、溶出工程において、濃縮物に濃度35質量%の過酸化水素(H)を5000mg−O/L(過酸化水素を添加した後の活性汚泥中の飽和溶存酸素量が5000mgとなる量)添加し、処理温度:150℃、処理圧力:1.5MPa、処理時間:5分の処理条件で化学処理2(酸化処理と加温処理の併用)を行った以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 5]
Instead of chemical treatment 1, in the elution step, the concentrate was charged with 5000 mg-O / L of hydrogen peroxide (H 2 O 2 ) having a concentration of 35% by mass (saturated dissolved oxygen in activated sludge after addition of hydrogen peroxide). Except that chemical treatment 2 (combination of oxidation treatment and heating treatment) was carried out under treatment conditions of treatment temperature: 150 ° C., treatment pressure: 1.5 MPa, treatment time: 5 minutes. A cesium elution test was conducted in the same manner as in Example 1. The results are shown in Table 3.

[実施例6]
溶出工程において、化学処理2の後、機械処理として周波数20kHz、出力240Wの超音波処理を10分行った以外は、実施例5と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 6]
In the elution step, a cesium elution test was conducted in the same manner as in Example 5 except that after the chemical treatment 2, ultrasonic treatment with a frequency of 20 kHz and an output of 240 W was performed for 10 minutes as a mechanical treatment. The results are shown in Table 3.

[実施例7]
化学処理1において、濃縮物400mLに水酸化ナトリウムを添加した後、濃度35質量%の過酸化水素を5000mg−O/L(過酸化水素を添加した後の活性汚泥中の飽和溶存酸素量が5000mgとなる量)添加し、処理温度:150℃、処理圧力:1.5MPa、処理時間:5分の処理条件に変更した以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 7]
In the chemical treatment 1, after adding sodium hydroxide to 400 mL of the concentrate, 5000 mg-O / L of hydrogen peroxide having a concentration of 35% by mass (the amount of saturated dissolved oxygen in the activated sludge after addition of hydrogen peroxide is 5000 mg) The cesium elution test was conducted in the same manner as in Example 1 except that the treatment temperature was 150 ° C., the treatment pressure was 1.5 MPa, and the treatment time was 5 minutes. The results are shown in Table 3.

[実施例8]
化学処理1の代わりに、溶出工程において、濃縮物にオゾン(O)を5000mg−O/L(オゾンを添加した後の活性汚泥中の飽和溶存酸素量が5000mgとなる量)添加し、処理温度:室温、処理圧力:大気圧、処理時間:720分の処理条件で化学処理3(酸化処理)を行った以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 8]
Instead of chemical treatment 1, in the elution step, ozone (O 3 ) is added to the concentrate at a concentration of 5000 mg-O / L (amount of saturated dissolved oxygen in the activated sludge after addition of ozone is 5000 mg). A cesium elution test was conducted in the same manner as in Example 1 except that chemical treatment 3 (oxidation treatment) was performed under the treatment conditions of temperature: room temperature, treatment pressure: atmospheric pressure, treatment time: 720 minutes. The results are shown in Table 3.

[実施例9]
溶出工程において、化学処理3の後、機械処理として周波数20kHz、出力240Wの超音波処理を10分行った以外は、実施例8と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 9]
In the elution step, a cesium elution test was performed in the same manner as in Example 8 except that after chemical treatment 3, ultrasonic treatment with a frequency of 20 kHz and an output of 240 W was performed for 10 minutes as a mechanical treatment. The results are shown in Table 3.

[実施例10]
溶出工程において、化学処理1の代わりに、機械処理として周波数20kHz、出力240Wの超音波処理を10分行った以外は、実施例1と同様にしてセシウム溶出試験を行った。結果を表3に示す。
[Example 10]
In the elution step, a cesium elution test was performed in the same manner as in Example 1 except that ultrasonic treatment with a frequency of 20 kHz and an output of 240 W was performed for 10 minutes instead of the chemical treatment 1. The results are shown in Table 3.

[比較例1]
セシウム含有活性汚泥を、MLSSが10000mg/L程度になるまで濃縮した後、遠心分離機を用いて液体と固体とを分離した(固液分離工程)。
固液分離前の固液(濃縮物)中のMLSSおよびセシウム濃度と、固液分離後の液体中のセシウム濃度(溶出セシウム濃度)を測定し、セシウムの溶出率を求めた。これらの結果を表3に示す。
[Comparative Example 1]
The cesium-containing activated sludge was concentrated until MLSS reached about 10,000 mg / L, and then the liquid and the solid were separated using a centrifuge (solid-liquid separation step).
The MLSS and cesium concentrations in the solid liquid (concentrate) before solid-liquid separation and the cesium concentration (elution cesium concentration) in the liquid after solid-liquid separation were measured, and the elution rate of cesium was determined. These results are shown in Table 3.

[比較例2]
セシウム含有活性汚泥を、MLSSが10000mg/L程度になるまで濃縮した。この濃縮物に純水を加え、遠心洗浄した。
上澄み液を除去した後、再度純水を加えて、固液中のMLSSおよびセシウム濃度を測定した。ついで、遠心洗浄して固体と液体とを分離し、液体(上澄み液)中のセシウム濃度(溶出セシウム濃度)を測定した。また、セシウムの溶出率を求めた。これらの結果を表3に示す。
[Comparative Example 2]
The cesium-containing activated sludge was concentrated until MLSS became about 10000 mg / L. Pure water was added to the concentrate and washed with centrifugation.
After removing the supernatant, pure water was added again, and the MLSS and cesium concentrations in the solid liquid were measured. Subsequently, the solid and the liquid were separated by centrifugal washing, and the cesium concentration (elution cesium concentration) in the liquid (supernatant liquid) was measured. Further, the dissolution rate of cesium was determined. These results are shown in Table 3.

Figure 2013156227
Figure 2013156227

Figure 2013156227
Figure 2013156227

表3から明らかなように、実施例1〜10の場合、セシウムの溶出率は90%以上と高かった。
すなわち、実施例1〜10の場合は固液分離前の固液中の全セシウムのうちの90%以上が、液中に溶出していることが分かった。
As is clear from Table 3, in Examples 1 to 10, the cesium elution rate was as high as 90% or more.
That is, in Examples 1 to 10, it was found that 90% or more of the total cesium in the solid liquid before solid-liquid separation was eluted in the liquid.

一方、溶出工程を行わなかった比較例1の場合、セシウムの溶出率は50%であった。
また、溶出工程の代わりに洗浄を行った比較例2の場合、セシウムの溶出率は12.5%であった。
すなわち、比較例1、2の場合は固液分離前の固液中の全セシウムのうちの50%以上が液中には溶出しておらず、活性汚泥(固体)に取り込まれたままであることが分かった。
なお、比較例2の方が比較例1よりもセシウムの溶出率が低いことから、セシウム含有活性汚泥の馴養に用いた原水由来のセシウムが、セシウム含有活性汚泥の表面にも付着していると推測できる。比較例2の場合は、セシウム含有活性汚泥の表面に付着したセシウムが1回目の遠心洗浄において除去されたため、固液中のセシウム濃度が、実施例1〜10や比較例1に比べて低かったと考えられる。
On the other hand, in the case of Comparative Example 1 in which the elution step was not performed, the cesium elution rate was 50%.
Moreover, in the case of the comparative example 2 which performed washing | cleaning instead of the elution process, the elution rate of cesium was 12.5%.
That is, in the case of Comparative Examples 1 and 2, 50% or more of the total cesium in the solid liquid before the solid-liquid separation is not eluted in the liquid and is still taken into the activated sludge (solid). I understood.
In addition, since the elution rate of cesium is lower in Comparative Example 2 than in Comparative Example 1, cesium derived from raw water used for acclimatization of cesium-containing activated sludge is attached to the surface of cesium-containing activated sludge. I can guess. In the case of Comparative Example 2, cesium adhering to the surface of the cesium-containing activated sludge was removed in the first centrifugal cleaning, so that the cesium concentration in the solid liquid was lower than in Examples 1 to 10 and Comparative Example 1. Conceivable.

以上の結果より、本発明であれば、活性汚泥を可溶化させることで活性汚泥中のセシウムが液中に溶出し、活性汚泥から放射性物質を除去できることが示された。   From the above results, it was shown that, by solubilizing activated sludge, cesium in activated sludge is eluted in the liquid and radioactive substances can be removed from activated sludge by the present invention.

[試験例]
以下、試験例について説明する。
以下の試験例では、液中に溶出した放射性セシウムを吸着材が吸着できるかを確認するために行った。
[Test example]
Hereinafter, test examples will be described.
In the following test examples, it was carried out in order to confirm whether the adsorbent can adsorb radioactive cesium eluted in the liquid.

放射性セシウム134(134Cs)および放射性セシウム137(137Cs)を含む活性汚泥を焼却した焼却灰100gを0.1molの塩酸1Lに添加し、1.5時間撹拌させた後、沈殿分離により固体と液体とに固液分離した。分離した液体500mLを0.45μmの濾紙で濾過し、濾液を試験液として用いた。
この試験液中の134Cs濃度および137Cs濃度を、ゲルマニウム半導体検出器を用いて測定した結果、134Cs濃度は15.9Bq/L、137Cs濃度は21.4Bq/Lであった。これらの結果を表4に示す。
100 g of incinerated ash obtained by incinerating activated sludge containing radioactive cesium 134 ( 134 Cs) and radioactive cesium 137 ( 137 Cs) was added to 1 L of 0.1 mol of hydrochloric acid, and the mixture was stirred for 1.5 hours. Solid-liquid separation into liquid. 500 mL of the separated liquid was filtered with 0.45 μm filter paper, and the filtrate was used as a test solution.
As a result of measuring the 134 Cs concentration and the 137 Cs concentration in this test solution using a germanium semiconductor detector, the 134 Cs concentration was 15.9 Bq / L and the 137 Cs concentration was 21.4 Bq / L. These results are shown in Table 4.

この試験液に1cm×1cmの吸着材を5枚浸漬させ、24時間撹拌して吸着処理を行った。ついで、吸着材を取り除き、吸着処理後の試験液について134Cs濃度および137Cs濃度を、ゲルマニウム半導体検出器を用いて測定し、下記式よりセシウムの除去率を求めた。結果を表4に示す。
除去率(%)={(吸着処理前の試験液中のセシウム濃度−吸着処理後の試験液中のセシウム濃度)/吸着処理前の試験液中のセシウム濃度}×100
Five adsorbents of 1 cm × 1 cm were immersed in this test solution, and the adsorbing treatment was performed by stirring for 24 hours. Next, the adsorbent was removed, and the 134 Cs concentration and 137 Cs concentration of the test solution after the adsorption treatment were measured using a germanium semiconductor detector, and the removal rate of cesium was determined from the following formula. The results are shown in Table 4.
Removal rate (%) = {(cesium concentration in test solution before adsorption treatment−cesium concentration in test solution after adsorption treatment) / cesium concentration in test solution before adsorption treatment} × 100

なお、吸着処理には、以下のようにして製造した吸着材を用いた。
まず、不織布に放射線を照射して反応活性点を生成させた。放射線照射は、電子線を用いて窒素雰囲気下でトータル線量が200kGyになる条件で行った。
ついで、放射線照射した不織布の存在下、モノ(2−メタクリロイルオキシエチル)アシッドホスフェートと、ジ(2−メタクリロイルオキシエチル)アシッドホスフェートの混合モノマー(モノ/ジ=70質量%/30質量%)を10質量%の濃度で、メタノールと純水の混合溶媒(メタノール/純水=10質量%/90質量%)中で、60℃で12時間グラフト重合させ、不織布にグラフト鎖が導入した吸着材を得た。
In addition, the adsorption material manufactured as follows was used for adsorption processing.
First, the non-woven fabric was irradiated with radiation to generate reaction active sites. Irradiation was performed using an electron beam under conditions of a total dose of 200 kGy in a nitrogen atmosphere.
Subsequently, 10 (mono / di = 70% by mass / 30% by mass) of a mixed monomer of mono (2-methacryloyloxyethyl) acid phosphate and di (2-methacryloyloxyethyl) acid phosphate in the presence of the irradiated nonwoven fabric. Graft polymerization is carried out at 60 ° C. for 12 hours in a mixed solvent of methanol and pure water (methanol / pure water = 10 mass% / 90 mass%) at a concentration of mass% to obtain an adsorbent in which graft chains are introduced into the nonwoven fabric. It was.

Figure 2013156227
Figure 2013156227

表4から明らかなように、液中に溶出した放射性セシウムは、吸着材に吸着されることが分かった。
従って、放射性物質を含む活性汚泥を可溶化し、活性汚泥中の放射性物質を液中に溶出させた後、液体と固体とを分離し、分離した液体中の放射性物質を吸着材に吸着させることで、液体から放射性物質を除去できることが示された。
As is clear from Table 4, it was found that radioactive cesium eluted in the liquid was adsorbed by the adsorbent.
Therefore, solubilize activated sludge containing radioactive material, elute the radioactive material in activated sludge into the liquid, separate the liquid and solid, and adsorb the radioactive material in the separated liquid to the adsorbent It was shown that radioactive material can be removed from the liquid.

1:放射性物質の除去装置、10:汚泥貯留手段、11:汚泥貯留槽、20:溶出手段、21:アルカリ処理手段、21a:第1の処理槽、21b:撹拌機、21c:アルカリ添加手段、22:酸化処理手段、22a:第2の処理槽、22b:撹拌機、22c:酸化剤添加手段、30:固液分離手段、40:吸着手段、50:脱水手段、S:活性汚泥、S:固体、S:脱水ケーキ、L:液体、L:分離液、L:除去液。 1: Radioactive substance removal device, 10: sludge storage means, 11: sludge storage tank, 20: elution means, 21: alkali treatment means, 21a: first treatment tank, 21b: stirrer, 21c: alkali addition means, 22: oxidation treatment means, 22a: second treatment tank, 22b: stirrer, 22c: oxidant addition means, 30: solid-liquid separation means, 40: adsorption means, 50: dehydration means, S 0 : activated sludge, S 1: solid, S 2: dehydrated cake, L 1: liquid, L 2: the separated liquid, L 3: removal liquid.

Claims (6)

放射性物質を含む活性汚泥から放射性物質を除去する方法であって、
前記活性汚泥を可溶化し、活性汚泥中の放射性物質を液中に溶出させる溶出工程と、
溶出工程の後に液体と固体とを分離する固液分離工程とを有することを特徴とする放射性物質の除去方法。
A method for removing radioactive material from activated sludge containing radioactive material,
An elution step of solubilizing the activated sludge and elution of radioactive materials in the activated sludge into the liquid;
A method for removing a radioactive substance, comprising: a solid-liquid separation step of separating a liquid and a solid after the elution step.
固液分離工程により分離した液体中の放射性物質を吸着材に吸着させる吸着工程を有することを特徴とする請求項1に記載の放射性物質の除去方法。   The method for removing a radioactive substance according to claim 1, further comprising an adsorption step in which the radioactive substance in the liquid separated by the solid-liquid separation step is adsorbed by an adsorbent. 固液分離工程により分離した固体を脱水し、分離液と脱水ケーキに分離する脱水工程を有し、脱水工程により分離した分離液を吸着材に吸着させることを特徴とする請求項1または2に記載の放射性物質の除去方法。   3. The method according to claim 1, further comprising a dehydration step of dehydrating the solid separated by the solid-liquid separation step and separating the solid into a separation solution and a dehydrated cake, wherein the separation solution separated by the dehydration step is adsorbed on an adsorbent. The removal method of the radioactive substance of description. 前記放射性物質がセシウムであることを特徴とする請求項1〜3のいずれか一項に記載の放射性物質の除去方法。   The method for removing a radioactive substance according to claim 1, wherein the radioactive substance is cesium. 活性汚泥を可溶化する方法が、アルカリ処理、酸化処理、酸処理、加温処理、超音波処理からなる群より選ばれる1種以上の方法であることを特徴とする請求項1〜4のいずれか一項に記載の放射性物質の除去方法。   The method for solubilizing activated sludge is at least one method selected from the group consisting of alkali treatment, oxidation treatment, acid treatment, heating treatment, and ultrasonic treatment. A method for removing a radioactive substance according to any one of the above. 前記吸着材が、高分子基材の存在下で反応性モノマーがグラフト重合したグラフト物であることを特徴とする請求項2または3に記載の放射性物質の除去方法。   The method for removing a radioactive substance according to claim 2 or 3, wherein the adsorbent is a graft product obtained by graft polymerization of a reactive monomer in the presence of a polymer substrate.
JP2012019184A 2012-01-31 2012-01-31 Method for removing radioactive material Pending JP2013156227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019184A JP2013156227A (en) 2012-01-31 2012-01-31 Method for removing radioactive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019184A JP2013156227A (en) 2012-01-31 2012-01-31 Method for removing radioactive material

Publications (1)

Publication Number Publication Date
JP2013156227A true JP2013156227A (en) 2013-08-15

Family

ID=49051538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019184A Pending JP2013156227A (en) 2012-01-31 2012-01-31 Method for removing radioactive material

Country Status (1)

Country Link
JP (1) JP2013156227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130093A (en) * 2012-12-28 2014-07-10 Eu-Bs Co Ltd Radioactive cesium recovery method
JP2016065729A (en) * 2014-09-23 2016-04-28 前田建設工業株式会社 Dehydration/solidification device for sludge containing radioactive substance
JP2022052694A (en) * 2020-09-23 2022-04-04 チン ツェン ファン Method used for preparing curable slurry by wet decomposition waste liquid of waste ion exchange resin, and solidifying/fixing other waste, waste ion exchange resin and improved wet oxidation method of organic matter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130093A (en) * 2012-12-28 2014-07-10 Eu-Bs Co Ltd Radioactive cesium recovery method
JP2016065729A (en) * 2014-09-23 2016-04-28 前田建設工業株式会社 Dehydration/solidification device for sludge containing radioactive substance
JP2022052694A (en) * 2020-09-23 2022-04-04 チン ツェン ファン Method used for preparing curable slurry by wet decomposition waste liquid of waste ion exchange resin, and solidifying/fixing other waste, waste ion exchange resin and improved wet oxidation method of organic matter
JP7095130B2 (en) 2020-09-23 2022-07-04 チン ツェン ファン Wet decomposition of waste ion exchange resin A method of preparing a curable slurry with waste liquid and using it to solidify / fix other waste, and an improved wet oxidation method of waste ion exchange resin and organic matter.

Similar Documents

Publication Publication Date Title
JP4933734B2 (en) Treatment of water containing persistent substances
CN101223109A (en) Method for treating water containing hardly decomposable substance
WO2005070833A1 (en) Method for treating raw water containing hardly decomposable substance
JP5782229B2 (en) Wastewater treatment method
JP3091251B2 (en) Pulp recovery from absorbent products
JP2013156227A (en) Method for removing radioactive material
JP2978542B2 (en) Method and apparatus for concentrating dissolved and solid radioactive materials
JP5198648B2 (en) Treatment of water containing persistent substances
JP3729342B2 (en) Method and apparatus for treating radioactive wastewater
JP2005058934A (en) Treatment method for biologically treated water-containing water
JP5845478B2 (en) Method and apparatus for treating radioactive material-containing wastewater
JP2004016969A (en) Sewage treatment equipment
JP2004202313A (en) Method and apparatus for treating washing wastewater
JPH11183691A (en) Method for treating liquid radioactive waste
JP2008155075A (en) Sewage treatment method and apparatus
JP2003266090A (en) Wastewater treatment method
JP2003103271A (en) Treatment method for dioxins in wastewater
JP6007282B2 (en) Waste water treatment method and waste water treatment equipment
US11807565B2 (en) Remediation of per- and poly-fluoroalkyl substances in wastewater
JP3941293B2 (en) Method and apparatus for treating harmful substances in sewage
JP2013103156A (en) Biological sludge volume reduction method and apparatus
JP3387823B2 (en) Extraction method of dioxins in sludge
EP1914014A1 (en) Method of detoxification treatment for filter with persistent substance adhering thereto
JP2005246347A (en) Method and apparatus for treating sewage
JP3444783B2 (en) Removal method of dioxins in sludge