JP2013156175A - Optical type flow velocity/water pressure measurement device - Google Patents

Optical type flow velocity/water pressure measurement device Download PDF

Info

Publication number
JP2013156175A
JP2013156175A JP2012017534A JP2012017534A JP2013156175A JP 2013156175 A JP2013156175 A JP 2013156175A JP 2012017534 A JP2012017534 A JP 2012017534A JP 2012017534 A JP2012017534 A JP 2012017534A JP 2013156175 A JP2013156175 A JP 2013156175A
Authority
JP
Japan
Prior art keywords
water pressure
flow velocity
flowing
measuring device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012017534A
Other languages
Japanese (ja)
Other versions
JP5676502B2 (en
Inventor
Yoshimi Ono
義視 小野
Masaki Izumo
正樹 出雲
Junichi Kazama
純一 風間
Kenji Kamoto
健治 嘉本
Toshiro Harada
敏郎 原田
Toshio Nakamura
俊男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Metropolitan Sewerage Service Corp
Original Assignee
Furukawa Electric Co Ltd
Tokyo Metropolitan Sewerage Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Metropolitan Sewerage Service Corp filed Critical Furukawa Electric Co Ltd
Priority to JP2012017534A priority Critical patent/JP5676502B2/en
Publication of JP2013156175A publication Critical patent/JP2013156175A/en
Application granted granted Critical
Publication of JP5676502B2 publication Critical patent/JP5676502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent error in flow velocity measurement and water pressure measurement of flowing water flowing in a flow passage such as a river.SOLUTION: An optical type flow velocity/water pressure measurement device comprises: a first fiber black grating 11 for detecting stress corresponding to flow velocity; a load transmission mechanism 12 for transmitting load of the stress to the first fiber black grating 11; a first housing 15 provided with a first diaphragm 13 for receiving the stress, and forming a first airtight chamber 14 for housing the first fiber black grating 11 and the load transmission mechanism 12; a flow velocity measurement part 2 provided with a pressure plate 16 provided on the upstream side of the first housing 15; a second fiber black grating 31 for detecting water pressure; a water pressure measurement part 3 having a second diaphragm 33 for transmitting the water pressure to the second fiber black grating 31 and a second housing 35 forming a second airtight chamber 34 for housing the second fiber black grating 31. The first airtight chamber 14 and the second airtight chamber 34 are provided adjacent to each other.

Description

本発明は、ファイバブラックグレーティング(FBG)を用いた、流速と水圧とを測定する装置に関し、より具体的には、河川や管路等の流路を流れる流水の流速と水圧を測定する装置に関するものである。   The present invention relates to an apparatus for measuring flow velocity and water pressure using a fiber black grating (FBG), and more specifically to an apparatus for measuring the flow velocity and water pressure of flowing water flowing through a channel such as a river or a pipeline. Is.

従来のFGBを用いた光式流速測定装置は、例えば、特許文献1に開示されている。特許文献1では、気密室を形成するハウジングと、ハウジング内に収容された、応力に応じて変位し、その変位量に応じた波長の光を出射するFBGと、ハウジング外の上流側にあって、流水の流速に応じた力を受ける受圧板と、一端部が受圧板側に固定されたシャフトを有し、受圧板に作用する力に応じてシャフトが変位し、その変位によりFBGを変位させる荷重伝達機構と、を備えている。また、特許文献1では、長期に渡って信頼性の高い流速測定を可能とするために、荷重伝達機構は、シャフトが貫通し受圧板に固定されたボス部と、内周部がボス部の外周に固定され、外周部がハウジング側に固定されたダイヤフラムとを有し、受圧板とシャフトとの間およびボス部とシャフトとの間にOリングがそれぞれ設けられている。   A conventional optical flow velocity measuring device using FGB is disclosed in Patent Document 1, for example. In Patent Document 1, a housing that forms an airtight chamber, an FBG that is accommodated in the housing, is displaced according to stress, and emits light having a wavelength according to the amount of displacement, and an upstream side outside the housing. The pressure receiving plate receives a force corresponding to the flow velocity of the flowing water, and a shaft having one end fixed to the pressure receiving plate. The shaft is displaced according to the force acting on the pressure receiving plate, and the FBG is displaced by the displacement. And a load transmission mechanism. Moreover, in Patent Document 1, in order to enable a highly reliable flow velocity measurement over a long period of time, a load transmission mechanism includes a boss portion that is penetrated by a shaft and fixed to a pressure receiving plate, and an inner peripheral portion that is a boss portion. A diaphragm fixed to the outer periphery and having an outer peripheral portion fixed to the housing side, and O-rings are provided between the pressure receiving plate and the shaft and between the boss portion and the shaft.

また、従来のFGBを用いた光式水圧測定装置は、例えば、特許文献2に開示されている。特許文献2では、圧力の変化を歪みの変化に変換するダイヤフラムに、光ファイバの長さ方向の一部に形成したFBGを取り付けた光式水圧測定装置であり、FBGの両側の2点のみをFBGにたるみがないようダイヤフラムに固定している。   Also, a conventional optical water pressure measuring device using FGB is disclosed in Patent Document 2, for example. Patent Document 2 is an optical water pressure measuring device in which an FBG formed in a part in the length direction of an optical fiber is attached to a diaphragm that converts a change in pressure into a change in strain, and only two points on both sides of the FBG are attached. The FBG is fixed to the diaphragm so that there is no slack.

一般に、河川や管路等の流路を流れる流水を測定する場合、流速測定装置を設置して水の流速を測定するだけではなく、水圧測定装置も設置して水圧を測定する。流速を測定するだけでなく、流速を測定した地点の水圧もあわせて測定することで、該地点の水位も計測する。該地点における水位も計測することにより、該地点の水位に応じた流速を正確に算出できる。   In general, when measuring flowing water flowing through a channel such as a river or a pipeline, not only is a flow velocity measuring device installed to measure the water flow velocity, but a water pressure measuring device is also installed to measure the water pressure. In addition to measuring the flow rate, the water level at the point where the flow rate was measured is also measured, thereby measuring the water level at that point. By measuring the water level at the point, the flow velocity according to the water level at the point can be accurately calculated.

しかし、従来、流速と水圧を測定するには、特許文献1に例示される光式流速測定装置と特許文献2に例示される光式水圧測定装置とを、別の地点に設置する必要があった。従って、流速の測定地点と水圧の測定地点が離れてしまうので、流速の測定地点について水位に応じた流速を正確に算出できないという問題や、流速の測定地点における流量に誤差が発生しやすいという問題があった。   However, conventionally, in order to measure the flow velocity and the water pressure, it is necessary to install the optical flow velocity measuring device exemplified in Patent Document 1 and the optical water pressure measuring device exemplified in Patent Literature 2 at different points. It was. Therefore, the flow velocity measurement point and the water pressure measurement point are separated from each other, so that the flow velocity according to the water level cannot be accurately calculated at the flow velocity measurement point, or the flow rate at the flow velocity measurement point is likely to have an error. was there.

また、流速測定装置と水圧測定装置とを別の地点に設置することにより、水の流れが阻害されやすくなるので、流速や流量を正確に算出できないという問題があった。   Moreover, since the flow of water is easily obstructed by installing the flow velocity measuring device and the water pressure measuring device at different points, there is a problem that the flow velocity and the flow rate cannot be accurately calculated.

特開2009−236777号公報JP 2009-236777 A 特開2002−98604号公報JP 2002-98604 A

本発明は上記した従来技術の問題に鑑みてなされたものであり、水位に応じた流速を正確に算出でき、流量の測定に誤差が発生するのを防止できる測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a measuring apparatus that can accurately calculate a flow velocity according to a water level and prevent an error in measuring a flow rate. To do.

本発明の態様は、流路に配置され、前記流路内を流れる流水の流速と水圧を測定する光式流速水圧測定装置であって、前記流速に応じた応力を検知する第1ファイバブラックグレーティングと、前記応力の負荷に連動して、前記第1ファイバブラックグレーティングに前記応力の負荷を伝達する負荷伝達機構と、前記応力を受ける第1ダイヤフラムを備え、前記第1ファイバブラックグレーティングと前記負荷伝達機構を収容する第1気密室を形成する第1ハウジングと、前記第1ハウジング外の前記流水の上流側に設けられ、前記応力を前記第1ダイヤフラムへ伝達する受圧板を備えた流速測定部と、前記水圧を検知する第2ファイバブラックグレーティングと、前記水圧を受け、該水圧を前記第2ファイバブラックグレーティングに伝達する第2ダイヤフラムと、前記第2ダイヤフラムを備え、前記第2ファイバブラックグレーティングを収容する第2気密室を形成する第2ハウジングを備えた水圧測定部と、を有し、前記第1気密室の前記流水の下流側に、前記第1気密室と隣接して前記第2気密室が設けられていることを特徴とする光式流速水圧測定装置である。   An aspect of the present invention is an optical flow velocity / water pressure measuring device that is disposed in a flow channel and measures a flow velocity and a water pressure of flowing water flowing in the flow channel, and detects a stress corresponding to the flow velocity. And a load transmission mechanism that transmits the stress load to the first fiber black grating in conjunction with the stress load, and a first diaphragm that receives the stress, and the first fiber black grating and the load transmission A first housing that forms a first hermetic chamber that houses a mechanism; and a flow velocity measuring unit that is provided upstream of the flowing water outside the first housing and includes a pressure receiving plate that transmits the stress to the first diaphragm. A second fiber black grating for detecting the water pressure and receiving the water pressure and transmitting the water pressure to the second fiber black grating A second diaphragm, and a water pressure measuring unit that includes the second diaphragm and includes a second housing that forms a second hermetic chamber that accommodates the second fiber black grating. The optical flow velocity water pressure measuring device is characterized in that the second hermetic chamber is provided on the downstream side of the flowing water adjacent to the first hermetic chamber.

上記態様の光式流速水圧測定装置では、流速測定部の第1気密室と水圧測定部の第2気密室とが、別体ではなく一体となっている。つまり、流速測定部と水圧測定部とが一体となっている。また、上記態様の光式流速水圧測定装置は、流水の上流側に流速測定部が、下流側に水圧測定部が、それぞれ配置されるように、流路内に設置される。   In the optical flow rate water pressure measuring device of the above aspect, the first hermetic chamber of the flow rate measuring unit and the second hermetic chamber of the water pressure measuring unit are integrated, not separate. That is, the flow velocity measurement unit and the water pressure measurement unit are integrated. Moreover, the optical flow velocity water pressure measuring apparatus of the said aspect is installed in a flow path so that a flow velocity measurement part may be arrange | positioned in the upstream of flowing water, and a water pressure measurement part may be arrange | positioned in the downstream, respectively.

本発明の態様は、さらに、前記流水が前記第2ダイヤフラムの撓みに影響するのを抑制するための流水規制部材が、底部に設けられていることを特徴とする光式流速水圧測定装置である。   According to another aspect of the present invention, there is provided an optical flow velocity water pressure measuring device characterized in that a flowing water regulating member for suppressing the flowing water from affecting the deflection of the second diaphragm is provided at the bottom. .

本発明の態様は、前記流水規制部材が、板状体であり、該板状体表面の一方の端部から他方の端部へ、流水の流れ方向に対して平行方向の溝が形成されていることを特徴とする光式流速水圧測定装置である。   In the aspect of the present invention, the flowing water regulating member is a plate-like body, and a groove in a direction parallel to the flowing direction of the flowing water is formed from one end portion of the plate-like body surface to the other end portion. This is an optical flow velocity water pressure measuring device.

本発明の態様は、前記流水規制部材が、板状体であり、該板状体表面の上流側端部から延在する、流水の流れ方向に対して平行方向の溝と、該溝の下流側に該溝と連通した、流水の流れ方向に対して0°超90°未満の方向の溝とが形成されていることを特徴とする光式流速水圧測定装置である。   According to an aspect of the present invention, the flowing water regulating member is a plate-like body, and extends from an upstream end of the plate-like body surface. The groove is parallel to the flowing direction of the flowing water, and downstream of the groove. The optical flow velocity water pressure measuring device is characterized in that a groove in the direction of more than 0 ° and less than 90 ° with respect to the flowing direction of the flowing water is formed on the side.

本発明の態様は、前記負荷伝達機構に、前記第1ファイバブラックグレーティングの破損を防止するための負荷伝達規制構造が設けられていることを特徴とする光式流速水圧測定装置である。   An aspect of the present invention is the optical flow velocity water pressure measuring device, wherein the load transmission mechanism is provided with a load transmission regulation structure for preventing the first fiber black grating from being damaged.

本発明の態様は、前記第1気密室または前記第2気密室に、温度補償用ファイバブラックグレーティングが収容されていることを特徴とする光式流速水圧測定装置である。本発明では、第1気密室と第2気密室とが、隣接しかつ一体となっているので、1つの温度補償用ファイバブラックグレーティングにて、第1ファイバブラックグレーティングと第2ファイバブラックグレーティングの温度補正が可能となる。   An aspect of the present invention is an optical flow velocity water pressure measuring device in which a temperature compensating fiber black grating is accommodated in the first hermetic chamber or the second hermetic chamber. In the present invention, since the first hermetic chamber and the second hermetic chamber are adjacent to each other and integrated, the temperature of the first fiber black grating and the second fiber black grating is determined by one temperature compensating fiber black grating. Correction is possible.

本発明の態様は、前記第1ファイバブラックグレーティングの長手方向に対して並列に、ダミー用光ファイバまたはダミー用光ファイバテープ心線が設けられていることを特徴とする光式流速水圧測定装置である。上記「ダミー用光ファイバ」とは、ファイバブラックグレーティングが形成されておらず、よって、流速に応じた応力を検知しない光ファイバを意味する。上記「ダミー用光ファイバテープ心線」とは、ファイバブラックグレーティングが形成されておらず、よって、流速に応じた応力を検知しない光ファイバを有するテープ心線を意味する。ダミー用光ファイバ・ダミー用光ファイバテープ心線の本数を調整することで、第1ファイバブラックグレーティングに伝達される応力を調整できる。   An aspect of the present invention is an optical flow velocity water pressure measuring device in which a dummy optical fiber or a dummy optical fiber ribbon is provided in parallel to the longitudinal direction of the first fiber black grating. is there. The “dummy optical fiber” means an optical fiber in which a fiber black grating is not formed, and thus does not detect stress according to the flow velocity. The above “dummy optical fiber tape core wire” means a tape core wire having an optical fiber in which a fiber black grating is not formed, and thus a stress corresponding to a flow rate is not detected. The stress transmitted to the first fiber black grating can be adjusted by adjusting the number of dummy optical fibers and dummy optical fiber ribbons.

本発明の態様は、流水の流れ方向に対して平行方向の溝が形成された流水規制部材を備えた光式流速水圧測定装置を、流水の流れる流路に設置して、前記光式流速水圧測定装置の下流側の流れを整流して前記流水の流速と水圧を測定することを特徴とする流速水圧測定方法である。   According to an aspect of the present invention, an optical flow velocity water pressure measuring device including a flowing water regulating member having a groove formed in a direction parallel to a flowing direction of the flowing water is installed in a flow path of flowing water, and the optical flow velocity water pressure is The flow velocity water pressure measuring method is characterized in that the flow rate and the water pressure of the flowing water are measured by rectifying the flow on the downstream side of the measuring device.

本発明の態様は、流水の流れ方向に対して平行方向の溝が形成された流水規制部材を備えた光式流速水圧測定装置を下水道内に設置して、前記下水道内を流れる異物が、前記光式流速水圧測定装置周辺に堆積するのを防止して前記周辺を洗浄しながら前記下水道内の流水の流速と水圧を測定することを特徴とする流速水圧測定方法である。   In the aspect of the present invention, an optical flow velocity water pressure measuring device including a water flow regulating member in which a groove parallel to the flow direction of the flowing water is formed is installed in the sewer, and the foreign matter flowing in the sewer is The flow velocity water pressure measuring method is characterized in that the flow velocity and the water pressure of the flowing water in the sewer are measured while preventing the accumulation around the optical flow velocity water pressure measuring device and washing the periphery.

上記態様によれば、流速測定部と水圧測定部とが隣接し、かつ一体となっているので、小型化でき、流速の測定地点と水圧の測定地点とをほぼ一致させることができる。その結果、流速の測定地点について水位に応じた流速を正確に算出でき、また、流速の測定地点における流量測定値に誤差が発生するのを防止できる。さらに、流速測定部と水圧測定部とが一体となっているので、流水が光式流速水圧測定装置により阻害されるのを抑制でき、結果、流速や流量を正確に算出できる。   According to the above aspect, since the flow velocity measurement unit and the water pressure measurement unit are adjacent to each other and integrated, the size can be reduced, and the flow velocity measurement point and the water pressure measurement point can be substantially matched. As a result, the flow velocity corresponding to the water level can be accurately calculated at the flow velocity measurement point, and an error can be prevented from occurring in the flow rate measurement value at the flow velocity measurement point. Furthermore, since the flow velocity measuring unit and the water pressure measuring unit are integrated, it is possible to suppress the flowing water from being obstructed by the optical flow velocity water pressure measuring device, and as a result, the flow velocity and the flow rate can be accurately calculated.

上記態様によれば、流水規制部材により、流水が第2ダイヤフラムの撓みに影響を与えるのを抑制するので、第2ダイヤフラムは、流水に関係なく水圧に応じて撓み、結果、水圧を正確に測定できる。   According to the above aspect, since the flowing water restricting member suppresses the flowing water from affecting the bending of the second diaphragm, the second diaphragm bends according to the water pressure regardless of the flowing water, and as a result, the water pressure is accurately measured. it can.

上記態様によれば、板状体である流水規制部材の表面に、流水の流れ方向に対して平行方向に溝が設けられているので、流水によって運ばれてくる流路内の砂、泥、ゴミ等の異物が、上記溝を通ることで光式流速水圧測定装置の下流側へ円滑に流される。このように、上記溝は、異物を光式流速水圧測定装置の下流側へ流す自己洗浄作用を発揮する。上記溝の自己洗浄作用により、流路内を流れてくる異物が光式流速水圧測定装置とその周辺部に堆積するのを防止できるので、光式流速水圧測定装置の周囲に堆積した異物によって受圧板の変位が阻害されるのを防止し、より正確に流速を測定できる。また、光式流速水圧測定装置の周囲に堆積した異物が第2ダイヤフラムの撓みに影響を与えるのを防止できるので、より正確に水圧を測定できる。さらに、上記溝により、光式流速水圧測定装置の下流側にカルマン渦が発生するのを抑制できるので、光式流速水圧測定装置周辺の流れに整流作用を与えることができる。   According to the above aspect, since the grooves are provided on the surface of the flowing water regulating member which is a plate-like body in a direction parallel to the flowing direction of the flowing water, sand, mud in the flow path carried by the flowing water, Foreign matters such as dust are smoothly flowed to the downstream side of the optical flow velocity water pressure measuring device by passing through the groove. In this way, the groove exhibits a self-cleaning action that allows foreign matter to flow downstream of the optical flow velocity water pressure measuring device. The self-cleaning action of the groove can prevent foreign matter flowing in the flow path from accumulating on the optical flow velocity water pressure measuring device and its surroundings. It is possible to prevent the displacement of the plate from being obstructed and to measure the flow velocity more accurately. Moreover, since it can prevent that the foreign material deposited around the optical type flow velocity water pressure measuring device influences the bending of a 2nd diaphragm, a water pressure can be measured more correctly. Furthermore, since the Karman vortex can be prevented from being generated on the downstream side of the optical flow velocity water pressure measuring device by the groove, the flow around the optical flow velocity water pressure measuring device can be rectified.

上記態様によれば、流水の流れ方向に対して平行方向の溝に加えて、さらに流水の流れ方向に対して0°超90°未満の方向の溝が形成されているので、流路内の異物が光式流速水圧測定装置とその周辺部に堆積するのをより確実に防止できる。   According to the above aspect, in addition to the grooves in the direction parallel to the flowing direction of the flowing water, the grooves in the direction of more than 0 ° and less than 90 ° with respect to the flowing direction of the flowing water are formed. It is possible to more reliably prevent foreign matter from accumulating on the optical flow velocity water pressure measuring device and its peripheral part.

上記態様によれば、第1ファイバブラックグレーティングの破損を防止する負荷伝達規制構造が設けられているので、流速が予想外に速くなって第1ファイバブラックグレーティングに伝達される応力が大きくなっても、光式流速水圧測定装置の故障を防止できる。   According to the above aspect, since the load transmission restricting structure that prevents the first fiber black grating from being damaged is provided, even if the flow velocity becomes unexpectedly high and the stress transmitted to the first fiber black grating increases. Failure of the optical flow rate water pressure measuring device can be prevented.

上記態様によれば、1つの温度補償用ファイバブラックグレーティングにて、第1ファイバブラックグレーティングと第2ファイバブラックグレーティングの温度補正をするので、装置の構造が簡素化でき、製造コストを低減できる。   According to the above aspect, since the temperature correction of the first fiber black grating and the second fiber black grating is performed with one temperature compensating fiber black grating, the structure of the apparatus can be simplified and the manufacturing cost can be reduced.

上記態様によれば、ダミー用光ファイバまたはダミー用光ファイバテープ心線により第1ファイバブラックグレーティングに伝達される応力を調整できるので、測定地点の流速に応じて流速測定部の感度を調整できる。   According to the above aspect, since the stress transmitted to the first fiber black grating by the dummy optical fiber or the dummy optical fiber ribbon can be adjusted, the sensitivity of the flow velocity measuring unit can be adjusted according to the flow velocity at the measurement point.

本発明の実施形態例に係る光式流速水圧測定装置の内部を示す正面図である。It is a front view which shows the inside of the optical flow velocity water pressure measuring apparatus which concerns on the example of embodiment of this invention. 本発明の実施形態例に係る光式流速水圧測定装置の側面断面図である。It is side surface sectional drawing of the optical type flow velocity water pressure measuring apparatus which concerns on the example of embodiment of this invention. 本発明の実施形態例に係る負荷伝達規制構造の正面図である。It is a front view of the load transmission regulation structure concerning the example of an embodiment of the present invention. 光式流速水圧測定装置内のFBGと外部の光源等が光ファイバで接続された光経路を示す模式図である。It is a schematic diagram which shows the optical path | route in which FBG in an optical flow velocity water pressure measuring device, an external light source, etc. were connected by the optical fiber. 実施形態例に係る流水規制部材の正面図である。It is a front view of the flowing water regulation member concerning an example of an embodiment. 第2の実施形態例に係る流水規制部材の正面図である。It is a front view of the flowing water control member which concerns on the example of 2nd Embodiment. 第3の実施形態例に係る流水規制部材の正面図である。It is a front view of the flowing water control member which concerns on the example of 3rd Embodiment.

以下に、本発明の実施形態例に係る光式流速水圧測定装置について、図面を用いながら説明する。図1、2に示すように、本発明の実施形態例に係る光式流速水圧測定装置1は、流速測定部2と、この流速測定部2の下流側に流速測定部2と隣接した水圧測定部3とを備え、流速測定部2と水圧測定部3とは連結部4を介して連結されることで、流速測定部2と水圧測定部3が一体化されている。この連結部4の強度は、周囲に設けられた板状の連結部補強部材43で補強されている。また、流速測定部2の底部30から水圧測定部3の底部32にわたって、板状体の流水規制部材5が1枚設置されている。   Hereinafter, an optical flow velocity water pressure measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, an optical flow velocity water pressure measuring apparatus 1 according to an embodiment of the present invention includes a flow velocity measuring unit 2 and a water pressure measurement adjacent to the flow velocity measuring unit 2 on the downstream side of the flow velocity measuring unit 2. The flow rate measuring unit 2 and the water pressure measuring unit 3 are connected to each other via the connecting unit 4 so that the flow rate measuring unit 2 and the water pressure measuring unit 3 are integrated. The strength of the connecting portion 4 is reinforced by a plate-like connecting portion reinforcing member 43 provided around the connecting portion 4. Further, one sheet-like flowing water regulating member 5 is installed from the bottom 30 of the flow velocity measuring unit 2 to the bottom 32 of the water pressure measuring unit 3.

流速測定部2は、従来のファイバブラックグレーティングを用いた光式流速測定装置と同様の構造を有したものでよく、よって、従来と同様のメカニズムにて流速を測定することができる。   The flow velocity measuring unit 2 may have a structure similar to that of a conventional optical flow velocity measuring device using a fiber black grating, and therefore, the flow velocity can be measured by the same mechanism as in the past.

実施形態例に係る流速測定部2は、図1、2に示すように、流速に応じた応力を検知する第1ファイバブラックグレーティング(第1FBG)11と、前記応力の負荷に連動して、前記第1FBG11に前記応力の負荷を伝達する負荷伝達機構12と、前記応力を受ける第1ダイヤフラム13を有し、前記第1FBG11と前記負荷伝達機構12を収容する第1気密室14を形成する第1ハウジング15を備えている。   As shown in FIGS. 1 and 2, the flow velocity measuring unit 2 according to the embodiment is coupled to the first fiber black grating (first FBG) 11 that detects stress according to the flow velocity, and the stress load, The first FBG 11 includes a load transmission mechanism 12 that transmits the stress load, and a first diaphragm 13 that receives the stress, and forms a first hermetic chamber 14 that houses the first FBG 11 and the load transmission mechanism 12. A housing 15 is provided.

負荷伝達機構12は、第1ハウジング15の上流側に設けられ、流水Fの流速に応じて力を受ける上流側受圧板16に、一方の端部が固定された一本のシャフト17と、このシャフト17に固定されているが第1ハウジング15には固定されていない、可動ブロックである第1FBG下流側取付台18と、第1ハウジング15に固定されているがシャフト17には固定されていない、固定ブロックである第1FBG上流側取付台19と、を有している。上流側受圧板16が流水Fの流速に応じた力を受けると、それに対応して、上流側受圧板16に一方の端部が固定されたシャフト17が下流側に変位し、この変位量に応じて第1FBG下流側取付台18も下流側に変位する。このとき、シャフト17が下流側に変位しても、第1FBG上流側取付台19は第1ハウジング15に固定されているので変位しない。第1FBG下流側取付台18の変位によって、一方の端部近傍が第1FBG上流側取付台19に、他方の端部が第1FBG下流側取付台18に接着剤で取り付けられている第1FBG11が、伸び方向の応力を受け、結果、第1FBG11が変位する。   The load transmission mechanism 12 is provided on the upstream side of the first housing 15, and a single shaft 17 having one end fixed to an upstream pressure receiving plate 16 that receives a force according to the flow velocity of the flowing water F, Fixed to the shaft 17 but not fixed to the first housing 15. The first FBG downstream mounting base 18, which is a movable block, is fixed to the first housing 15 but not fixed to the shaft 17. And a first FBG upstream mounting base 19 which is a fixed block. When the upstream pressure receiving plate 16 receives a force corresponding to the flow velocity of the flowing water F, the shaft 17 having one end fixed to the upstream pressure receiving plate 16 is displaced downstream, and this displacement amount Accordingly, the first FBG downstream mounting base 18 is also displaced downstream. At this time, even if the shaft 17 is displaced downstream, the first FBG upstream mounting base 19 is not displaced because it is fixed to the first housing 15. Due to the displacement of the first FBG downstream mount 18, the first FBG 11 in which one end portion is attached to the first FBG upstream mount 19 and the other end is attached to the first FBG downstream mount 18 with an adhesive, As a result, the first FBG 11 is displaced under stress in the elongation direction.

また、必要に応じて、負荷伝達機構12に負荷伝達規制構造20を取り付けてもよい。図2、3の実施形態例に示すように、負荷伝達規制構造20は、第1FBG下流側取付台18の上流側に隣接した、第1ハウジング15に固定されているがシャフト17には固定されていない、固定ブロックである上流側負荷伝達規制台21と、第1FBG下流側取付台18の下流側に隣接した、第1ハウジング15に固定されているがシャフト17には固定されていない、固定ブロックである下流側負荷伝達規制台22とを備えている。すなわち、上流側負荷伝達規制台21と下流側負荷伝達規制台22は、流水Fの流れ方向に沿って直線上に配置され、第1FBG下流側取付台18は、上流側負荷伝達規制台21と下流側負荷伝達規制台22との間に配置されている。従って、上流側負荷伝達規制台21の下流側表面23と第1FBG下流側取付台18の上流側表面24は所定量の間隔にて対向し、下流側負荷伝達規制台22の上流側表面25と第1FBG下流側取付台18の下流側表面26は所定量の間隔にて対向している。   Moreover, you may attach the load transmission control structure 20 to the load transmission mechanism 12 as needed. 2 and 3, the load transmission restricting structure 20 is fixed to the first housing 15 adjacent to the upstream side of the first FBG downstream mounting base 18 but is fixed to the shaft 17. Fixed to the first housing 15 adjacent to the downstream side of the first FBG downstream mounting base 18 but not fixed to the shaft 17, the fixed And a downstream load transmission restricting base 22 which is a block. That is, the upstream load transmission restriction base 21 and the downstream load transmission restriction base 22 are arranged on a straight line along the flow direction of the flowing water F, and the first FBG downstream mounting base 18 is connected to the upstream load transmission restriction base 21. It is arranged between the downstream side load transmission regulation base 22. Therefore, the downstream surface 23 of the upstream load transmission restriction base 21 and the upstream surface 24 of the first FBG downstream mounting base 18 face each other at a predetermined interval, and the upstream surface 25 of the downstream load transmission restriction base 22 The downstream surface 26 of the first FBG downstream mount 18 is opposed at a predetermined distance.

上流側受圧板16が流水Fの速さに応じた力を受け、その応力に応じて、第1FBG下流側取付台18が下流側に変位するにあたり、上流側受圧板16が第1FBG11の伸びによる破損に至る過大な力を受けても、第1FBG下流側取付台18が負荷伝達規制構造20の下流側負荷伝達規制台22に上流側から当接することで、第1FBG下流側取付台18が所定の変位量を超えて下流側に変位するのを規制する。このように、第1FBG下流側取付台18の変位量が規制されることで、第1FBG11の伸びによる破損を防止する。FBGを形成する光ファイバの種類によっては、FBGの伸び率が数%程度に達するまで破断しない場合もあるが、通常、FBGは、伸び率が2%程度に達すると破断する。また、伸びがFBGに繰り返しかかると、2%程度の伸び率以下であっても破断が起こる場合がある。このため、FBGに繰り返し伸びがかかっても破断の起こらない程度の伸び率、すなわち、許容伸び率の範囲内に、FBGの伸びを規制するのが望ましい。そこで、図3の実施形態例では、上記許容伸び率を0.2%に設定している。従って、第1FBG11の最大伸び率が0.2%(図3の実施形態例では、第1FBG下流側取付台18と第1FBG上流側取付台19の間の第1FBG11の長さは25mmとしているので、伸び率0.2%相当の伸び量は50μmである。)となる位置、すなわち、第1FBG11の変位量が零点にある第1FBG下流側取付台18について、下流側負荷伝達規制台22の上流側表面25と第1FBG下流側取付台18の下流側表面26との間隔が50μmとなる位置に、下流側負荷伝達規制台22が取り付けられている。   When the upstream pressure receiving plate 16 receives a force corresponding to the speed of the flowing water F and the first FBG downstream mounting base 18 is displaced downstream according to the stress, the upstream pressure receiving plate 16 is caused by the extension of the first FBG 11. Even when an excessive force leading to breakage is received, the first FBG downstream mounting base 18 comes into contact with the downstream load transmission regulating base 22 of the load transmission regulating structure 20 from the upstream side, so that the first FBG downstream mounting base 18 is predetermined. The displacement to the downstream side exceeding the amount of displacement is regulated. In this way, the displacement amount of the first FBG downstream mounting base 18 is restricted, thereby preventing damage due to the extension of the first FBG 11. Depending on the type of optical fiber forming the FBG, the FBG may not break until the elongation reaches several percent, but the FBG usually breaks when the elongation reaches about 2%. Further, when the elongation is repeatedly applied to the FBG, the fracture may occur even when the elongation is about 2% or less. For this reason, it is desirable to regulate the elongation of the FBG within a range of an elongation that does not cause breakage even if the FBG is repeatedly elongated, that is, an allowable elongation. Therefore, in the embodiment of FIG. 3, the allowable elongation is set to 0.2%. Therefore, the maximum elongation of the first FBG 11 is 0.2% (in the embodiment shown in FIG. 3, the length of the first FBG 11 between the first FBG downstream mounting base 18 and the first FBG upstream mounting base 19 is 25 mm. , The elongation corresponding to 0.2% elongation is 50 μm), that is, the first FBG downstream mounting base 18 where the displacement amount of the first FBG 11 is at the zero point, upstream of the downstream load transmission regulating base 22. The downstream load transmission restriction base 22 is attached at a position where the distance between the side surface 25 and the downstream side surface 26 of the first FBG downstream attachment base 18 is 50 μm.

上記負荷伝達規制構造20は、第1ダイヤフラム13の変形を直接規制する構造と比較して、精度の高い規制が可能なので、確実に第1FBG11の破損を防止できる。   Since the load transmission restriction structure 20 can be regulated with higher precision than a structure that directly regulates deformation of the first diaphragm 13, it is possible to reliably prevent the first FBG 11 from being damaged.

上流側負荷伝達規制台21は、上流側が下流側に対して下方に傾いている傾斜地点に、光式流速水圧測定装置1を設置する必要がある場合に、第1FBG下流側取付台18が所定の変位量を超えて上流側に変位するのを規制して、第1FBG11のたわみによる破損を防止するためのものである。通常、FBGは、たわみによって曲げ半径の小さい曲線形状が形成されると破断する。よって、上流側負荷伝達規制台21の下流側表面23と第1FBG下流側取付台18の上流側表面24との間隔は、光ファイバの曲げによって破断が起こらない程度、例えば、100μm未満(図3では50μm)となるように、上流側負荷伝達規制台21が取り付けられている。   When the optical flow velocity / water pressure measuring device 1 needs to be installed at an inclined point where the upstream side is inclined downward with respect to the downstream side, the upstream FBG downstream mounting base 18 is predetermined. This is to prevent the first FBG 11 from being damaged by restricting the displacement to the upstream side beyond the displacement amount of the first FBG 11. Normally, the FBG breaks when a curved shape with a small bending radius is formed by the deflection. Therefore, the distance between the downstream surface 23 of the upstream load transmission regulation base 21 and the upstream surface 24 of the first FBG downstream mounting base 18 is such that no breakage occurs due to bending of the optical fiber, for example, less than 100 μm (FIG. 3 The upstream load transmission regulation base 21 is attached so as to be 50 μm.

上記の通り、第1FBG11は、一方の端部近傍が第1FBG上流側取付台19に、他方の端部近傍が第1FBG下流側取付台18に取り付けられているが、必要に応じて、図3に示すように、さらに、第1FBG11の長手方向に対して並列、すなわち平行方向に、一方の端部近傍が第1FBG上流側取付台19に、他方の端部近傍が第1FBG下流側取付台18に取り付けられているダミー用光ファイバ27またはダミー用光ファイバテープ心線27´を接着剤で取り付けてもよい。なお、この実施形態例ではダミー用光ファイバテープ心線27´が使用されている。   As described above, the first FBG 11 is attached to the first FBG upstream mounting base 19 at one end and to the first FBG downstream mounting base 18 at the other end. Further, as shown in FIG. 1, in the parallel direction to the longitudinal direction of the first FBG 11, that is, in the parallel direction, the vicinity of one end is the first FBG upstream mounting base 19, and the other end is the first FBG downstream mounting base 18. The dummy optical fiber 27 or the dummy optical fiber ribbon 27 'attached to the substrate may be attached with an adhesive. In this embodiment, a dummy optical fiber ribbon 27 'is used.

ダミー用光ファイバ27またはダミー用光ファイバテープ心線27´の本数は、後述する流速測定部2に要する感度に応じて適宜選択可能である。図3では、第1FBG11を中心に左右それぞれ1本ずつのダミー用光ファイバテープ心線27´が取り付けられている。ダミー用光ファイバ27またはダミー用光ファイバテープ心線27´を上記のように取り付けることで、その取り付け本数に応じて第1FBG11に与えられる応力が低減される。第1FBG11に与えられる応力が低減されることで、第1FBG11の変位量が低減され、結果、流速測定部2の感度を調整できる。また、ダミー用に光ファイバまたは光ファイバテープ心線を用いることにより、金属箔等、他の部材を使用する場合と比較して、容易に第1FBG11の張力バランスをとることができる。   The number of dummy optical fibers 27 or dummy optical fiber ribbons 27 ′ can be appropriately selected according to the sensitivity required for the flow velocity measuring unit 2 described later. In FIG. 3, one dummy optical fiber tape core wire 27 ′ is attached on each of the left and right sides around the first FBG 11. By attaching the dummy optical fiber 27 or the dummy optical fiber ribbon 27 'as described above, the stress applied to the first FBG 11 is reduced according to the number of the optical fibers. By reducing the stress applied to the first FBG 11, the displacement amount of the first FBG 11 is reduced, and as a result, the sensitivity of the flow velocity measuring unit 2 can be adjusted. Further, by using the optical fiber or the optical fiber ribbon for the dummy, it is possible to easily balance the tension of the first FBG 11 as compared with the case of using another member such as a metal foil.

シャフト17の上流側には金属製の第1ダイヤフラム13が設けられ、シャフト17の変位に応じて第1ダイヤフラム13が撓むように構成されている。また、シャフト17の下流側には金属製の下流側ダイヤフラム28が設けられている。第1ダイヤフラム13と下流側ダイヤフラム28を備えた第1ハウジング15により、高い気密性の保たれた第1気密室14が形成されている。   A first diaphragm 13 made of metal is provided on the upstream side of the shaft 17, and the first diaphragm 13 is bent according to the displacement of the shaft 17. A downstream diaphragm 28 made of metal is provided on the downstream side of the shaft 17. The first housing 15 having the first diaphragm 13 and the downstream diaphragm 28 forms a first hermetic chamber 14 that is kept highly airtight.

また、図2に示すように、下流側ダイヤフラム28は、光流速水圧測定装置1の外に対して、光流速水圧測定装置1の側面部にある板状の連結部補強部材43に形成された孔部44により、開放状態とされている。下流側ダイヤフラム28は、孔部44により流路内の流水Fと円滑に接触できるので、流水Fの水圧(静圧)を受けることができる構成となっている。従って、この下流側ダイヤフラム28により、上流側受圧板16に作用する水圧(静圧)を相殺することができる。流水Fの流速に応じて力を受ける上流側受圧板16に作用する静圧が、下流側ダイヤフラム28により相殺されることで、流水Fの流速が零のとき、第1FBG11の変位量が零に維持できるようになっている。   Further, as shown in FIG. 2, the downstream diaphragm 28 is formed on the plate-like connecting portion reinforcing member 43 on the side surface portion of the light flow velocity water pressure measuring device 1 with respect to the outside of the light flow velocity water pressure measuring device 1. The hole 44 is in an open state. Since the downstream diaphragm 28 can smoothly contact the running water F in the flow path through the hole 44, the downstream diaphragm 28 can receive the water pressure (static pressure) of the running water F. Therefore, the water pressure (static pressure) acting on the upstream pressure receiving plate 16 can be canceled by the downstream diaphragm 28. The static pressure acting on the upstream pressure receiving plate 16 that receives a force according to the flow velocity of the flowing water F is canceled by the downstream diaphragm 28, so that when the flow velocity of the flowing water F is zero, the displacement amount of the first FBG 11 becomes zero. It can be maintained.

水圧測定部3は、水の静圧を測定する部位であり、従来のファイバブラックグレーティングを用いた光式水圧測定装置と同様の構造を有したものでよい。よって、従来と同様のメカニズムにて水圧を測定することができる。   The water pressure measurement unit 3 is a part that measures the static pressure of water, and may have the same structure as a conventional optical water pressure measurement device using a fiber black grating. Therefore, the water pressure can be measured by the same mechanism as in the past.

実施形態例に係る水圧測定部3は、図1、2に示すように、水圧を検知する第2ファイバブラックグレーティング(第2FBG)31と、前記水圧を受け、該水圧を前記第2FBG31に伝達する金属製の第2ダイヤフラム33と、前記第2ダイヤフラム33を備え、前記第2FBG31を収容する第2気密室34を形成する第2ハウジング35と、を備えている。   As shown in FIGS. 1 and 2, the water pressure measurement unit 3 according to the embodiment receives a second fiber black grating (second FBG) 31 that detects water pressure and the water pressure, and transmits the water pressure to the second FBG 31. A second diaphragm 33 made of metal and a second housing 35 that includes the second diaphragm 33 and forms a second hermetic chamber 34 that houses the second FBG 31 are provided.

図2に示すように、第2ダイヤフラム33は、第2ハウジング35の底部よりも高い位置に配置されている。また、第2ダイヤフラム33は、光式流速水圧測定装置1の外に対して、後述する板状体の流水規制部材5に形成された貫通孔60により、開放状態とされている。よって、第2ダイヤフラム33は流路内の流水Fと円滑に接触できるので、水圧を正確に測定できる構成となっている。第2ダイヤフラム33の第2気密室側34には、2つの第2FBG取付台38、39が対向配置され、第2FBG31の一方の端部近傍が、一方の第2FBG取付台38に取り付けられ、第2FBG31の他方の端部近傍が、他方の第2FBG取付台39に取り付けられている。   As shown in FIG. 2, the second diaphragm 33 is disposed at a position higher than the bottom of the second housing 35. Moreover, the 2nd diaphragm 33 is made into the open state by the through-hole 60 formed in the flowing water control member 5 of the plate-shaped body mentioned later with respect to the outside of the optical flow velocity water pressure measuring apparatus 1. FIG. Therefore, since the 2nd diaphragm 33 can contact smoothly the flowing water F in a flow path, it has the structure which can measure a water pressure correctly. Two second FBG mounting bases 38 and 39 are arranged opposite to each other on the second airtight chamber side 34 of the second diaphragm 33, and one end portion of the second FBG 31 is attached to one second FBG mounting base 38. The vicinity of the other end of the 2FBG 31 is attached to the other second FBG mount 39.

第2ダイヤフラム33を備えた第2ハウジング35により、高い気密性の保たれた第2気密室34が形成されている。第2ダイヤフラム33に水圧がかかると、第2ダイヤフラム33が撓み、この撓みに対応して、2つの第2FBG取付台38、39がそれぞれ変位し、第2FBG31に歪みが発生する。   The second housing 35 including the second diaphragm 33 forms a second hermetic chamber 34 that is kept highly airtight. When water pressure is applied to the second diaphragm 33, the second diaphragm 33 bends, and the two second FBG mounts 38, 39 are displaced in response to the bend, and the second FBG 31 is distorted.

水圧測定部3の第2気密室34内には、別途、温度を検出して温度を補償するための温度補償用ファイバブラックグレーティング(温度補償用FBG)36が設けられている。さらに、水圧を正確に測定するためには、水圧測定部3の第2気密室34内部は大気圧に調整されるのが好ましいので、光式流速水圧測定装置1外に、別途、圧力測定装置(図示せず)が設置されている。この圧力測定装置の大気圧導入パイプと第2気密室34内部とが接続されているので、第2気密室34内部が大気圧に補正されている。   A temperature compensation fiber black grating (temperature compensation FBG) 36 for detecting the temperature and compensating the temperature is separately provided in the second hermetic chamber 34 of the water pressure measurement unit 3. Further, in order to accurately measure the water pressure, the inside of the second hermetic chamber 34 of the water pressure measuring unit 3 is preferably adjusted to the atmospheric pressure. Therefore, in addition to the optical flow velocity water pressure measuring device 1, a pressure measuring device is separately provided. (Not shown) is installed. Since the atmospheric pressure introduction pipe of the pressure measuring device and the inside of the second hermetic chamber 34 are connected, the inside of the second hermetic chamber 34 is corrected to the atmospheric pressure.

図4に示すように、光式流速水圧測定装置1の外には、別途、さらに、光源51、波長計52、データ処理装置53及び光サーキュレータ54が設置されている。光サーキュレータ54と第2FBG31は光ファイバ55で接続され、第2FBG31と第1FBG11は光ファイバ56で接続されている。第1FBG11と一方の端部で接続されている光ファイバ57の他方の端部は、無反射端58となっている。光サーキュレータ54と第2FBG31を接続している光ファイバ55には、別途、第2気密室34に対応する位置に温度補償用FBG36が設けられている。光サーキュレータ54と光源51との間、光サーキュレータ54と波長計52との間は、それぞれ、光ファイバ59、59´で接続されている。   As shown in FIG. 4, a light source 51, a wavelength meter 52, a data processing device 53, and an optical circulator 54 are additionally provided outside the optical flow velocity water pressure measuring device 1. The optical circulator 54 and the second FBG 31 are connected by an optical fiber 55, and the second FBG 31 and the first FBG 11 are connected by an optical fiber 56. The other end of the optical fiber 57 connected to the first FBG 11 at one end is a non-reflective end 58. The optical fiber 55 connecting the optical circulator 54 and the second FBG 31 is separately provided with a temperature compensating FBG 36 at a position corresponding to the second hermetic chamber 34. Optical fibers 59 and 59 'are connected between the optical circulator 54 and the light source 51, and between the optical circulator 54 and the wavelength meter 52, respectively.

光源51からの光は、光サーキュレータ54を介して、温度補償用FBG36が設けられた光ファイバ55、第2FBG31、光ファイバ56、第1FBG11、光ファイバ57の順で通光する。上流側受圧板16が流水Fの速さに応じた力を受けると、その応力に応じて第1FBG11が変位して伸び歪みが生じる。これにより、第1FBG11の回折格子の周期が変化してブラッグ波長(FBGが反射する特定の波長領域)がシフトし、シャフト17の変位量、すなわち、第1FBG11の伸び歪み量に応じた波長の光が、第1FBG11から反射光として出射される。この出射光が光ファイバ56、光ファイバ55の順で通光し、光サーキュレータ54を介して波長計52へ送られる。さらに、この波長計52で観測される波長データがデータ処理装置53へ送られる。データ処理装置53は、波長計52から送られるデータに基づき流速を求める。   Light from the light source 51 passes through the optical circulator 54 in the order of the optical fiber 55 provided with the temperature compensating FBG 36, the second FBG 31, the optical fiber 56, the first FBG 11, and the optical fiber 57. When the upstream pressure receiving plate 16 receives a force corresponding to the speed of the flowing water F, the first FBG 11 is displaced according to the stress and an elongation strain is generated. As a result, the period of the diffraction grating of the first FBG 11 changes to shift the Bragg wavelength (a specific wavelength region reflected by the FBG), and light having a wavelength corresponding to the amount of displacement of the shaft 17, that is, the amount of elongation strain of the first FBG 11. Is emitted as reflected light from the first FBG 11. The emitted light passes through the optical fiber 56 and the optical fiber 55 in this order, and is sent to the wavelength meter 52 via the optical circulator 54. Further, the wavelength data observed by the wavelength meter 52 is sent to the data processing device 53. The data processing device 53 obtains the flow velocity based on the data sent from the wavelength meter 52.

第2ダイヤフラム33が水圧に応じて撓むと、この撓み量に応じて、第2ダイヤフラム33の第2気密室34側に取り付けられた2つの第2FBG取付台38、39がそれぞれ変位し、この第2FBG取付台38、39の変位量に応じて第2FBG31に所定量の歪みが生じる。これにより、第2FBG31の回折格子の周期が変化してブラッグ波長がシフトし、第2FBG31の歪み量に応じた波長の光が第2FBG31から反射光として出射される。この出射光が光ファイバ55および光サーキュレータ54を介して波長計52へ送られる。さらに、この波長計52で観測される波長データがデータ処理装置53へ送られる。データ処理装置53は、波長計52から送られるデータに基づき水圧を求める。   When the second diaphragm 33 bends according to the water pressure, the two second FBG mounts 38 and 39 attached to the second airtight chamber 34 side of the second diaphragm 33 are displaced according to the amount of the bend, respectively. A predetermined amount of distortion occurs in the second FBG 31 in accordance with the amount of displacement of the 2FBG mounts 38 and 39. As a result, the period of the diffraction grating of the second FBG 31 changes and the Bragg wavelength shifts, and light having a wavelength corresponding to the distortion amount of the second FBG 31 is emitted from the second FBG 31 as reflected light. The emitted light is sent to the wavelength meter 52 via the optical fiber 55 and the optical circulator 54. Further, the wavelength data observed by the wavelength meter 52 is sent to the data processing device 53. The data processing device 53 obtains the water pressure based on the data sent from the wavelength meter 52.

なお、第1FBG11、第2FBG31、温度補償用FBG36のブラック波長を、それぞれ異なる波長に設定することで、いずれのFBGからの反射光であるかを波長計52にて識別することができる。   The wavelength meter 52 can identify which FBG is reflected by setting the black wavelengths of the first FBG 11, the second FBG 31, and the temperature compensating FBG 36 to different wavelengths.

図1、2の実施形態例に係る光式流速水圧測定装置1では、連結部4は管状体であり、連結部4の上流側端部41は第1ハウジング15の下流側表面に固定され、連結部4の下流側端部42は第2ハウジング35の上流側表面に固定されている。このように、管状の連結部4が、流速測定部2と水圧測定部3とを一体化させている。また、連結部4の内部には、第2FBG31と第1FBG11とを接続する光ファイバ56と、第1FBG11と一方の端部で接続されている光ファイバ57が挿通されている。   In the optical flow velocity hydraulic pressure measuring device 1 according to the embodiment of FIGS. 1 and 2, the connecting portion 4 is a tubular body, and the upstream end 41 of the connecting portion 4 is fixed to the downstream surface of the first housing 15, The downstream end 42 of the connecting portion 4 is fixed to the upstream surface of the second housing 35. In this way, the tubular connecting portion 4 integrates the flow velocity measuring portion 2 and the water pressure measuring portion 3. In addition, an optical fiber 56 that connects the second FBG 31 and the first FBG 11 and an optical fiber 57 that is connected to the first FBG 11 at one end are inserted into the connecting portion 4.

従って、第1ハウジング15の下流側表面のうち連結部4の上流側端部41が固定されている箇所には、光ファイバ56と光ファイバ57を第1気密室14内から連結部4内へ挿通しつつ第1気密室14内部が気密性を保持できるよう、光ファイバ56と光ファイバ57の径に対応した孔部が形成されている。同様に、第2ハウジング34の上流側表面のうち連結部4の下流側端部42が固定されている箇所には、光ファイバ56と光ファイバ57を第2気密室34内から連結部4内へ挿通しつつ第2気密室34内部が気密性を保持できるよう、光ファイバ56と光ファイバ57の径に対応した孔部が形成されている。   Accordingly, the optical fiber 56 and the optical fiber 57 are moved from the inside of the first hermetic chamber 14 to the inside of the connecting portion 4 at a portion of the downstream surface of the first housing 15 where the upstream end 41 of the connecting portion 4 is fixed. Holes corresponding to the diameters of the optical fiber 56 and the optical fiber 57 are formed so that the inside of the first hermetic chamber 14 can maintain hermeticity while being inserted. Similarly, the optical fiber 56 and the optical fiber 57 are connected from the inside of the second hermetic chamber 34 to the inside of the connecting portion 4 at a location where the downstream end 42 of the connecting portion 4 is fixed on the upstream surface of the second housing 34. Holes corresponding to the diameters of the optical fiber 56 and the optical fiber 57 are formed so that the inside of the second hermetic chamber 34 can be kept airtight while being inserted into the optical fiber 56.

なお、上記実施形態例に代えて、第1ハウジング15の下流側表面のうち連結部4の上流側端部41が固定されている箇所と、第2ハウジング35の上流側表面のうち連結部4の下流側端部42が固定されている箇所に、それぞれ、光ファイバ56と光ファイバ57の径よりも大きい径を有する孔部を設け、第1気密室14内部と第2気密室34内部が連結部4を介して連通した構成としてもよい。   It should be noted that, instead of the above embodiment, the location where the upstream end 41 of the connecting portion 4 is fixed on the downstream surface of the first housing 15 and the connecting portion 4 on the upstream surface of the second housing 35. Are provided with holes having diameters larger than the diameters of the optical fiber 56 and the optical fiber 57, respectively, so that the inside of the first hermetic chamber 14 and the inside of the second hermetic chamber 34 are provided. It is good also as a structure connected via the connection part 4. FIG.

また、実施形態例に係る光式流速水圧測定装置1に流水規制部材を設けてもよい。流水規制部材を設けることで、流水Fが第2ダイヤフラム33の撓みに影響するのを抑制して、より正確な水圧を測定できる。流水規制部材は、上流からの流水Fの勢いが第2ダイヤフラム33の撓みに影響を与えるのを抑制できるものであれば特に限定されず、例えば、所定の厚さを有する板状体が挙げられる。この板状体の一方の表面を、第1気密室14とは反対側の第1ハウジング15の底部30表面に取り付けることによって、上流側受圧板16の動作を阻害することなく、上流からの流水Fが板状体の上流側の側面により規制され、結果、上流からの流水Fが第2ダイヤフラム33の撓みに影響するのを抑制できる。   Moreover, you may provide a flowing water control member in the optical flow velocity water pressure measuring apparatus 1 according to the embodiment. By providing the flowing water restricting member, it is possible to suppress the flowing water F from affecting the bending of the second diaphragm 33 and to measure the water pressure more accurately. The flowing water regulating member is not particularly limited as long as it can suppress the momentum of the flowing water F from the upstream from affecting the bending of the second diaphragm 33. For example, a plate-like body having a predetermined thickness can be mentioned. . By attaching one surface of the plate-like body to the surface of the bottom 30 of the first housing 15 on the side opposite to the first hermetic chamber 14, the flowing water from the upstream side is not hindered. F is regulated by the upstream side surface of the plate-like body, and as a result, it is possible to suppress the flowing water F from the upstream from affecting the bending of the second diaphragm 33.

その他、流水規制部材の例には、図2、5に示すように、光式流速水圧測定装置1の長さ・幅と略同等の寸法を有する矩形の板状体に、厚さ方向の貫通孔60と該貫通孔60と連通した切り欠き61が設けられた流水規制部材5がある。貫通孔60は第2ダイヤフラム33の位置に対応する箇所に設けられ、切り欠き61の開口部62は下流側に設けられている。この流水規制部材5を光式流速水圧測定装置1の底部に取り付けると、切り欠き61の開口部62が下流側に設けられているので、上流からの流水Fを規制できるだけでなく、光式流速水圧測定装置1の側面方向からの流水Fや光式流速水圧測定装置1により発生する流水Fの渦も規制できる。   In addition, as an example of the flowing water regulating member, as shown in FIGS. 2 and 5, a rectangular plate-like body having dimensions substantially the same as the length and width of the optical flow velocity water pressure measuring device 1 is penetrated in the thickness direction. There is a flowing water regulating member 5 provided with a hole 60 and a notch 61 communicating with the through hole 60. The through hole 60 is provided at a position corresponding to the position of the second diaphragm 33, and the opening 62 of the notch 61 is provided on the downstream side. When this flowing water regulating member 5 is attached to the bottom of the optical flow velocity water pressure measuring device 1, the opening 62 of the notch 61 is provided on the downstream side, so that not only the flowing water F from the upstream can be restricted, but also the optical flow velocity. The running water F from the lateral direction of the water pressure measuring device 1 and the vortex of the running water F generated by the optical flow velocity water pressure measuring device 1 can also be regulated.

また、貫通孔60は第2ダイヤフラム33の位置に対応する箇所に設けられているので、第2ダイヤフラム33は、流水規制部材5に邪魔されることなく光式流速水圧測定装置1外の水の圧力を正確に受けることができる。流水規制部材5は、上流からの流水Fだけでなく、側面からの流水Fや流水Fの渦も規制できるので、流水Fが第2ダイヤフラム33の撓みに影響するのをより確実に抑制でき、さらに精度良く水圧を測定できる。なお、流水規制部材5には、光式流速水圧測定装置1の底部に取り付けるためのねじ孔63が設けられている。   Further, since the through hole 60 is provided at a position corresponding to the position of the second diaphragm 33, the second diaphragm 33 is not disturbed by the flowing water regulating member 5, and the water outside the optical flow velocity water pressure measuring device 1 is not disturbed. The pressure can be accurately received. Since the flowing water regulating member 5 can regulate not only the flowing water F from the upstream but also the flowing water F and the vortex of the flowing water F from the side surface, the flowing water F can be more reliably suppressed from affecting the bending of the second diaphragm 33, Furthermore, the water pressure can be measured with high accuracy. The flowing water regulating member 5 is provided with a screw hole 63 for attaching to the bottom of the optical flow velocity water pressure measuring device 1.

また、図6に示すように、第2の実施形態例として、上記した貫通孔60と切り欠き61を備えた板状体の表面に、さらに、流水Fの流れ方向に対して略平行方向に直線状の溝である縦溝64が複数本設けられている流水規制部材5´としてもよい。図6では、この縦溝64は、流水Fの流れ方向に対して平行方向となるように、矩形である流水規制部材5´の長手方向に対して平行に設けられている。また、この縦溝64は、流水規制部材5´の長手方向に対して直交する一方の側面から他方の側面まで形成されている。   Moreover, as shown in FIG. 6, as a second embodiment, on the surface of the plate-like body provided with the above-described through hole 60 and the notch 61, and further in a direction substantially parallel to the flow direction of the flowing water F. It is good also as flowing water control member 5 'provided with two or more the longitudinal grooves 64 which are linear grooves. In FIG. 6, the longitudinal grooves 64 are provided in parallel to the longitudinal direction of the flowing water regulating member 5 ′ that is rectangular so as to be parallel to the flowing direction of the flowing water F. The longitudinal groove 64 is formed from one side surface orthogonal to the longitudinal direction of the flowing water regulating member 5 ′ to the other side surface.

従って、縦溝64の開口が流路の底面側に対向するように、流水規制部材5´を光式流速水圧測定装置1の底部に取り付けると、流水Fによって運ばれてくる流路内の砂、泥、ゴミ等の異物が、上流側から縦溝64に入って縦溝64内を下流方向へ流れ、流水規制部材5´の下流側へ排出されるので、異物は光式流速水圧測定装置1の下流側へ円滑に流される。このように、縦溝64を形成した流水規制部材5´は、異物を光式流速水圧測定装置1の下流へ流して、光式流速水圧測定装置1の周囲に異物が堆積するのを防止する自己洗浄機能を有するので、異物が、上流側受圧板16の動作と第2ダイヤフラム33の撓みに影響を与えるのを防止して、精度良く流速と水圧を測定できる。   Therefore, when the flowing water regulating member 5 ′ is attached to the bottom of the optical flow velocity water pressure measuring device 1 so that the opening of the vertical groove 64 faces the bottom surface side of the flow path, the sand in the flow path carried by the flowing water F Since foreign matter such as mud and dust enters the longitudinal groove 64 from the upstream side, flows in the longitudinal direction in the longitudinal groove 64, and is discharged to the downstream side of the flowing water regulating member 5 ', the foreign matter is an optical flow velocity water pressure measuring device. 1 is smoothly flowed to the downstream side. In this way, the flowing water regulating member 5 ′ having the vertical groove 64 flows foreign matter downstream of the optical flow velocity water pressure measuring device 1 and prevents foreign matter from accumulating around the optical flow velocity water pressure measuring device 1. Since it has a self-cleaning function, foreign matter can be prevented from affecting the operation of the upstream pressure receiving plate 16 and the deflection of the second diaphragm 33, and the flow velocity and water pressure can be measured with high accuracy.

一方、流水F中に本実施形態例の光式流速水圧測定装置1を設置すると、該光式流速水圧測定装置1により流水Fが乱れて、該装置1の下流側にカルマン渦が発生する場合がある。特に、光式流速水圧測定装置1の水面側部位と流路底部側部位との間で流速差が大きい場合には、上記カルマン渦が発生しやすい傾向がある。しかし、上記のように、光式流速水圧測定装置1の底部に、縦溝64を形成した流水規制部材5´を取り付けると、流水Fが縦溝64を通過するので、カルマン渦の発生を抑制でき、光式流速水圧測定装置1周辺の流れに整流作用を与えることができる。   On the other hand, when the optical flow velocity water pressure measuring device 1 of the present embodiment is installed in the flowing water F, the flowing water F is disturbed by the optical flow velocity water pressure measuring device 1 and a Karman vortex is generated on the downstream side of the device 1. There is. In particular, when the flow velocity difference between the water surface side portion and the flow path bottom portion side portion of the optical flow velocity water pressure measuring device 1 is large, the Karman vortex tends to occur. However, as described above, when the flowing water regulating member 5 ′ having the vertical groove 64 is attached to the bottom of the optical flow velocity water pressure measuring device 1, the flowing water F passes through the vertical groove 64, thereby suppressing the generation of Karman vortex. The flow around the optical flow velocity water pressure measuring device 1 can be rectified.

なお、縦溝64の本数は1本でも複数本でもよいが、流水規制部材5´の自己洗浄作用と整流作用を高める点で複数本が好ましい。   In addition, although the number of the longitudinal grooves 64 may be one or more, a plurality of longitudinal grooves 64 are preferable in terms of enhancing the self-cleaning action and the rectifying action of the flowing water regulating member 5 ′.

また、図7に示すように、第3の実施形態例として、上記した貫通孔60と切り欠き61と縦溝64とを備えた矩形の板状体の表面に、さらに、流水Fの流れ方向に対して0°超90°未満の方向、すなわち、縦溝64に対して0°超90°未満の方向に直線状に形成された溝である斜め溝65を複数本設けた流水規制部材5″としてもよい。この斜め溝65は、縦溝64と連通しており、縦溝64との接続部から流水規制部材5″の長手方向に対して平行方向の側面まで形成されている。また、斜め溝65は貫通孔60の上流側に設けられている。従って、流水Fによって運ばれてくる流路内の砂、泥、ゴミ等の異物が、上流側から縦溝64に入って縦溝64内を下流方向へ流れ、縦溝64と斜め溝65との接続部から斜め溝65内に入って流水規制部材5″の斜め下流方向へ排出される。よって、異物が光式流速水圧測定装置1とその周辺部に堆積するのをより確実に防止できる。また、斜め溝65は貫通孔60の上流側に設けられているので、異物が貫通孔60内に流入するのを防止して、第2ダイヤフラム33の撓みに流水F中の異物が影響するのを確実に抑制できる。これにより、水圧測定の精度がさらに向上する。   Further, as shown in FIG. 7, as a third embodiment, the flow direction of the flowing water F is further provided on the surface of the rectangular plate-like body provided with the above-described through hole 60, the notch 61, and the vertical groove 64. The flowing water regulating member 5 provided with a plurality of oblique grooves 65 that are linearly formed in a direction exceeding 0 ° and less than 90 ° with respect to the vertical groove 64, ie, in a direction exceeding 0 ° and less than 90 ° with respect to the longitudinal groove 64 The slanted groove 65 communicates with the longitudinal groove 64 and is formed from the connecting portion with the longitudinal groove 64 to the side surface parallel to the longitudinal direction of the flowing water regulating member 5 ″. Further, the oblique groove 65 is provided on the upstream side of the through hole 60. Accordingly, foreign matters such as sand, mud, and dust in the flow channel carried by the running water F enter the vertical groove 64 from the upstream side and flow in the vertical groove 64 in the downstream direction. From the connecting portion into the slanting groove 65 and discharged obliquely downstream of the flowing water regulating member 5 ″. Therefore, it is possible to more reliably prevent foreign matter from being deposited on the optical flow velocity water pressure measuring device 1 and its peripheral portion. In addition, since the oblique groove 65 is provided on the upstream side of the through hole 60, the foreign matter is prevented from flowing into the through hole 60, and the foreign matter in the running water F affects the bending of the second diaphragm 33. Therefore, the accuracy of the water pressure measurement is further improved.

図7では、貫通孔60の下流側に流水Fの流れ方向に対して90°超180°未満の方向に、すなわち、上記貫通孔60の上流側の斜め溝65に対して貫通孔60を介して対向するように、別の斜め溝66が複数本形成されている。この別の斜め溝66は、貫通孔60の下流側に別途形成された別の縦溝67と連通している。この貫通孔60の下流側に設けられた斜め溝66と縦溝67によって、上流側の斜め溝64から斜め下流方向へ排出された異物や光式流速水圧測定装置1の下流に堆積した異物を、より下流側へ円滑に流すことができる。   In FIG. 7, on the downstream side of the through hole 60 in the direction of more than 90 ° and less than 180 ° with respect to the flowing direction of the flowing water F, that is, with respect to the oblique groove 65 on the upstream side of the through hole 60. A plurality of other oblique grooves 66 are formed so as to face each other. The other oblique groove 66 communicates with another vertical groove 67 separately formed on the downstream side of the through hole 60. By means of the oblique grooves 66 and the longitudinal grooves 67 provided on the downstream side of the through-hole 60, foreign matter discharged from the upstream oblique groove 64 in the obliquely downstream direction and foreign matter deposited downstream of the optical flow velocity water pressure measuring device 1 are removed. , Can flow smoothly to the downstream side.

なお、斜め溝64の本数は1本でも複数本でもよいが、流水規制部材の自己洗浄作用を高める点で複数本が好ましい。   In addition, although the number of the slanting grooves 64 may be one or plural, a plurality is preferable in terms of enhancing the self-cleaning action of the flowing water regulating member.

上記、流水規制部材5、5´、5″の光式流速水圧測定装置1への取り付け方法は、特に限定されず、例えば、ねじ孔63を用いたねじ止めが挙げられる。また、流水規制部材5、5´、5″の材質は特に限定されないが、防錆性、耐腐食性の点からSUS製が好ましい。   The method for attaching the flowing water regulating member 5, 5 ′, 5 ″ to the optical flow velocity water pressure measuring device 1 is not particularly limited, and examples thereof include screwing using a screw hole 63. Further, the flowing water regulating member. The material of 5, 5 ′, 5 ″ is not particularly limited, but SUS is preferable from the viewpoint of rust prevention and corrosion resistance.

次に、本発明の実施形態例に係る光式流速水圧測定装置1の使用方法例について説明する。本発明の光式流速水圧測定装置1を設置する流路は特に限定されないが、ここでは、下水道内に設置する場合を例にとって説明する。下水道の底面部の所定の測定地点に、流速測定部2の上流側受圧板16が上流側を向くように、すなわち、水圧測定部3が下流側となるように、本発明の光式流速水圧測定装置1を配置する。光式流速水圧測定装置をねじ止め等で測定地点の底面部に固定し、光源、波長計、データ処理装置は、地上の観測室に設置する。これにより、作業員は観測室にて、該測定地点の流速と、水圧、すなわち水位とを観測できる。   Next, an example of how to use the optical flow velocity water pressure measuring apparatus 1 according to the embodiment of the present invention will be described. Although the flow path in which the optical flow velocity water pressure measuring apparatus 1 of the present invention is installed is not particularly limited, here, a case where it is installed in a sewer will be described as an example. The optical flow velocity water pressure of the present invention so that the upstream pressure receiving plate 16 of the flow velocity measuring unit 2 faces the upstream side, that is, the water pressure measuring unit 3 is downstream, at a predetermined measurement point on the bottom surface of the sewer. A measuring device 1 is arranged. The optical flow velocity water pressure measurement device is fixed to the bottom of the measurement point by screwing or the like, and the light source, wavelength meter, and data processing device are installed in the observation room on the ground. Thereby, the worker can observe the flow velocity at the measurement point and the water pressure, that is, the water level in the observation room.

次に、他の実施形態例について説明する。上記実施形態例では、流水規制部材5、5´、5″の切り欠き61の開口部62は下流側、すなわち、上記流水規制部材5、5´、5″の長手方向に対して直交する側面の一方に設けられていたが、この開口部62の位置は、上流側以外であれば特に限定されず、例えば、流水Fの流れ方向に対して直交する方向、すなわち、流水規制部材5、5´、5″の長手方向に対して平行方向の側面の一方に設けてもよい。また、上記実施形態例では、第2気密室34に温度補償用ファイバブラックグレーティング36が収容されていたが、これに代えて、第1気密室14に収容されてもよい。   Next, another embodiment will be described. In the above embodiment, the opening 62 of the notch 61 of the flowing water regulating member 5, 5 ′, 5 ″ is downstream, that is, a side surface orthogonal to the longitudinal direction of the flowing water regulating member 5, 5 ′, 5 ″. However, the position of the opening 62 is not particularly limited as long as it is other than the upstream side. For example, the direction orthogonal to the flow direction of the flowing water F, that is, the flowing water regulating members 5 and 5 is provided. It may be provided on one of the side surfaces parallel to the longitudinal direction of “5 ″. In the above embodiment, the temperature-compensating fiber black grating 36 is accommodated in the second hermetic chamber 34. Instead, it may be accommodated in the first hermetic chamber 14.

上記実施形態例では、より円滑に異物を下流側に流すために、貫通孔60の下流側に、別途、別の斜め溝66と縦溝67が設けられていたが、この別の斜め溝66と縦溝67は、設けなくてもよい。   In the above embodiment example, in order to allow the foreign matter to flow more smoothly to the downstream side, another diagonal groove 66 and a vertical groove 67 are separately provided on the downstream side of the through hole 60. The vertical groove 67 may not be provided.

本発明の光式流速水圧測定装置は、流速の測定地点と水圧の測定地点とをほぼ一致させることができ、さらに、溝を設けた流水規制部材を取り付けることで異物による測定誤差の発生を防止できるので、流水中に異物が多く存在しつつ、流速と流量の正確なデータが必要とされる分野、例えば、下水道の分野で、特に利用価値が高い。   The optical flow velocity water pressure measuring device of the present invention can make the flow velocity measurement point and the water pressure measurement point substantially coincide with each other, and further prevent the occurrence of measurement errors due to foreign matters by attaching a flowing water regulating member provided with a groove. Therefore, it is particularly useful in fields where there are many foreign substances in running water and accurate flow rate and flow rate data is required, such as sewerage.

1 光式流水測定装置
2 流速測定部
3 水圧測定部
5、5´、5″ 流水規制部材
11 第1ファイバブラックグレーティング
12 負荷伝達機構
14 第1気密室
20 負荷伝達規制構造
27 ダミー用光ファイバ
27´ ダミー用光ファイバテープ心線
31 第2ファイバブラックグレーティング
34 第2気密室
36 温度補償用ファイバブラックグレーティング
64 縦溝
65 斜め溝
DESCRIPTION OF SYMBOLS 1 Optical flow measuring device 2 Flow velocity measuring part 3 Water pressure measuring part 5, 5 ', 5 "Flow regulating member 11 1st fiber black grating 12 Load transmission mechanism 14 First airtight chamber 20 Load transmission regulating structure 27 Dummy optical fiber 27 ′ Dummy optical fiber ribbon 31 second fiber black grating 34 second hermetic chamber 36 temperature compensation fiber black grating 64 longitudinal groove 65 oblique groove

Claims (9)

流路に配置され、前記流路内を流れる流水の流速と水圧を測定する光式流速水圧測定装置であって、
前記流速に応じた応力を検知する第1ファイバブラックグレーティングと、
前記応力の負荷に連動して、前記第1ファイバブラックグレーティングに前記応力の負荷を伝達する負荷伝達機構と、
前記応力を受ける第1ダイヤフラムを備え、前記第1ファイバブラックグレーティングと前記負荷伝達機構を収容する第1気密室を形成する第1ハウジングと、
前記第1ハウジング外の前記流水の上流側に設けられ、前記応力を前記第1ダイヤフラムへ伝達する受圧板を備えた流速測定部と、
前記水圧を検知する第2ファイバブラックグレーティングと、
前記水圧を受け、該水圧を前記第2ファイバブラックグレーティングに伝達する第2ダイヤフラムと、
前記第2ダイヤフラムを備え、前記第2ファイバブラックグレーティングを収容する第2気密室を形成する第2ハウジングを備えた水圧測定部と、を有し、
前記第1気密室の前記流水の下流側に、前記第1気密室と隣接して前記第2気密室が設けられていることを特徴とする光式流速水圧測定装置。
An optical flow rate water pressure measuring device that is disposed in a flow path and measures a flow speed and a water pressure of flowing water flowing in the flow path,
A first fiber black grating that detects stress according to the flow velocity;
A load transmission mechanism for transmitting the stress load to the first fiber black grating in conjunction with the stress load;
A first housing comprising a first diaphragm for receiving the stress, and forming a first hermetic chamber for accommodating the first fiber black grating and the load transmission mechanism;
A flow velocity measuring unit provided on the upstream side of the flowing water outside the first housing and provided with a pressure receiving plate for transmitting the stress to the first diaphragm;
A second fiber black grating for detecting the water pressure;
A second diaphragm that receives the water pressure and transmits the water pressure to the second fiber black grating;
A water pressure measurement unit including a second housing that includes the second diaphragm and forms a second hermetic chamber that houses the second fiber black grating;
The optical flow rate water pressure measuring apparatus, wherein the second hermetic chamber is provided adjacent to the first hermetic chamber on the downstream side of the flowing water in the first hermetic chamber.
さらに、前記流水の流れが前記第2ダイヤフラムの撓みに影響するのを抑制するための流水規制部材が、底部に設けられていることを特徴とする請求項1に記載の光式流速水圧測定装置。   2. The optical flow velocity water pressure measuring device according to claim 1, further comprising: a flowing water regulating member for suppressing the flow of the flowing water from affecting the deflection of the second diaphragm. . 前記流水規制部材が、板状体であり、該板状体表面の一方の端部から他方の端部へ、流水の流れ方向に対して平行方向の溝が形成されていることを特徴とする請求項2に記載の光式流速水圧測定装置。   The flowing water regulating member is a plate-like body, and a groove in a direction parallel to the flowing direction of flowing water is formed from one end portion of the plate-like body surface to the other end portion. The optical flow velocity water pressure measuring device according to claim 2. 前記流水規制部材が、板状体であり、該板状体表面の上流側端部から延在する、流水の流れ方向に対して平行方向の溝と、該溝の下流側に該溝と連通した、流水の流れ方向に対して0°超90°未満の方向の溝とが形成されていることを特徴とする請求項2に記載の光式流速水圧測定装置。   The flowing water regulating member is a plate-like body, and extends from the upstream end of the surface of the plate-like body. The groove is parallel to the flowing direction of the flowing water, and communicates with the groove on the downstream side of the groove. The optical flow velocity water pressure measuring device according to claim 2, wherein a groove having a direction of more than 0 ° and less than 90 ° with respect to a flowing direction of the flowing water is formed. 前記負荷伝達機構に、前記第1ファイバブラックグレーティングの破損を防止するための負荷伝達規制構造が設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の光式流速水圧測定装置。   5. The optical flow velocity water pressure according to claim 1, wherein the load transmission mechanism is provided with a load transmission regulation structure for preventing the first fiber black grating from being damaged. measuring device. 前記第1気密室または前記第2気密室に、温度補償用ファイバブラックグレーティングが収容されていることを特徴とする請求項1乃至5のいずれか1項に記載の光式流速水圧測定装置。   The optical flow velocity water pressure measuring device according to any one of claims 1 to 5, wherein a temperature compensating fiber black grating is accommodated in the first hermetic chamber or the second hermetic chamber. 前記第1ファイバブラックグレーティングの長手方向に対して並列に、ダミー用光ファイバまたはダミー用光ファイバテープ心線が設けられていることを特徴とする請求項1乃至6のいずれか1項に記載の光式流速水圧測定装置。   The dummy optical fiber or the dummy optical fiber tape core wire is provided in parallel with the longitudinal direction of the first fiber black grating, according to any one of claims 1 to 6. Optical flow velocity water pressure measuring device. 請求項3または4に記載の光式流速水圧測定装置を流水の流れる流路に設置して、前記光式流速水圧測定装置の下流側の流れを整流して前記流水の流速と水圧を測定することを特徴とする流速水圧測定方法。   The optical flow velocity water pressure measuring device according to claim 3 or 4 is installed in a flow path through which flowing water flows, and a flow on the downstream side of the optical flow velocity water pressure measuring device is rectified to measure the flow velocity and water pressure of the flowing water. The flow velocity water pressure measuring method characterized by this. 請求項3または4に記載の光式流速水圧測定装置を下水道内に設置して、前記下水道内を流れる異物が、前記光式流速水圧測定装置周辺に堆積するのを防止して前記周辺を洗浄しながら前記下水道内の流水の流速と水圧を測定することを特徴とする流速水圧測定方法。   5. The optical flow velocity water pressure measuring device according to claim 3 or 4 is installed in a sewer, and foreign matter flowing in the sewer is prevented from accumulating around the optical flow velocity water pressure measuring device to clean the periphery. While measuring the flow velocity and the water pressure of the flowing water in the sewer, the flow velocity water pressure measuring method characterized by the above-mentioned.
JP2012017534A 2012-01-31 2012-01-31 Optical flow velocity water pressure measuring device Expired - Fee Related JP5676502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017534A JP5676502B2 (en) 2012-01-31 2012-01-31 Optical flow velocity water pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017534A JP5676502B2 (en) 2012-01-31 2012-01-31 Optical flow velocity water pressure measuring device

Publications (2)

Publication Number Publication Date
JP2013156175A true JP2013156175A (en) 2013-08-15
JP5676502B2 JP5676502B2 (en) 2015-02-25

Family

ID=49051492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017534A Expired - Fee Related JP5676502B2 (en) 2012-01-31 2012-01-31 Optical flow velocity water pressure measuring device

Country Status (1)

Country Link
JP (1) JP5676502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125073A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Optical pressure sensor
CN110108894A (en) * 2019-04-26 2019-08-09 北京航空航天大学 A kind of more rotor-speed measurement methods based on phase correlation and optical flow method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352558B (en) * 2015-10-22 2019-03-29 哈尔滨工业大学 A kind of downhole optic fiber vortex-shedding meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082674A (en) * 1996-09-06 1998-03-31 Nippon Haikon Kk Flow-rate sensor device
JP2002098604A (en) * 2000-09-25 2002-04-05 Furukawa Electric Co Ltd:The Optical pressure sensor
JP2007024791A (en) * 2005-07-20 2007-02-01 Furukawa Electric Co Ltd:The Measuring system
JP4851480B2 (en) * 2008-03-27 2012-01-11 古河電気工業株式会社 Flow velocity measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082674A (en) * 1996-09-06 1998-03-31 Nippon Haikon Kk Flow-rate sensor device
JP2002098604A (en) * 2000-09-25 2002-04-05 Furukawa Electric Co Ltd:The Optical pressure sensor
JP4570222B2 (en) * 2000-09-25 2010-10-27 古河電気工業株式会社 Optical pressure sensor
JP2007024791A (en) * 2005-07-20 2007-02-01 Furukawa Electric Co Ltd:The Measuring system
JP4794931B2 (en) * 2005-07-20 2011-10-19 古河電気工業株式会社 Measuring system
JP4851480B2 (en) * 2008-03-27 2012-01-11 古河電気工業株式会社 Flow velocity measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125073A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Optical pressure sensor
CN110108894A (en) * 2019-04-26 2019-08-09 北京航空航天大学 A kind of more rotor-speed measurement methods based on phase correlation and optical flow method

Also Published As

Publication number Publication date
JP5676502B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
US8234931B2 (en) Karman vortex flowmeter assembly comprising a fiber bragg grating sensor and method to measure a fluid flow rate
CN109196394B (en) Displacement detection device using fiber bragg grating sensor and method for adjusting sensitivity and durability of displacement detection device
US7730792B2 (en) Method and device for compensation for influences, which interfere with the measurement accuracy, in measurement devices of the vibration type
EP1124112A2 (en) Optical fiber sensor
JP2008070357A (en) Optical pressure sensor
JP5313608B2 (en) Optical fiber sensor
US8746079B2 (en) Mass flow sensor and method for determining the mass flow in a pipe
JP6276684B2 (en) Optical measurement of fastener preload
JP2010266437A (en) Fiber bragg grating detection system
EP2361370B1 (en) A flow meter
JP2008089320A (en) Flow rate measuring apparatus
JP5676502B2 (en) Optical flow velocity water pressure measuring device
CN1743795A (en) Optical fiber grating displacement sensor
KR100685186B1 (en) Acceleration and inclination measurement system based on fiber bragg gratings
JP5699052B2 (en) Spray pressure measuring device
WO2015098425A1 (en) Strain sensor and strain sensor installation method
JP2008107295A (en) Optical pressure sensor and its manufacturing method
JP4794931B2 (en) Measuring system
KR101105369B1 (en) Apparatus and Method for Measuring Deflection of Bridge Plate using Fiber Bragg Grating Sensor
JP2009063400A (en) Differential optical fiber flow sensor and flow detection system using the same
JP4762620B2 (en) Measuring device and flow velocity measuring system
JP2009063399A (en) Optical fiber flow sensor and flow detection system using the same
KR101016578B1 (en) Water pressure sensor using an optical fiber sensor
KR100305381B1 (en) Optical sensor for measuring deformation of institution
US10161772B1 (en) Variable orifice flow sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees