JP2013156005A - ガスタービンエンジンのための燃料ノズルおよびその動作方法 - Google Patents
ガスタービンエンジンのための燃料ノズルおよびその動作方法 Download PDFInfo
- Publication number
- JP2013156005A JP2013156005A JP2012259287A JP2012259287A JP2013156005A JP 2013156005 A JP2013156005 A JP 2013156005A JP 2012259287 A JP2012259287 A JP 2012259287A JP 2012259287 A JP2012259287 A JP 2012259287A JP 2013156005 A JP2013156005 A JP 2013156005A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- nozzle assembly
- fuel nozzle
- porous
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
- F23R3/14—Air inlet arrangements for primary air inducing a vortex by using swirl vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07001—Air swirling vanes incorporating fuel injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2212/00—Burner material specifications
- F23D2212/10—Burner material specifications ceramic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2212/00—Burner material specifications
- F23D2212/20—Burner material specifications metallic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00008—Burner assemblies with diffusion and premix modes, i.e. dual mode burners
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
【課題】複数の燃料供給に関して、関連する燃料システムの設置コストおよび運転コストを増大させずに、燃料を切り替えることに対応するシステムを提供する。
【解決手段】タービンエンジンと共に使用するための燃料ノズル組立体が、少なくとも1つの燃料供給源に連結される少なくとも1つの燃料導管を含む。この燃料ノズル組立体はまた、多孔性部分234/236を有する少なくとも1つの壁230を含む少なくとも1つのスワラ224を含む。この少なくとも1つの壁230は少なくとも1つの燃料導管に連結される。多孔性部分234/236は、燃料流れがそこを通るのを促進するような多孔性を有する材料から形成される、少なくとも1つの壁の多孔性部分234/236を通る少なくとも1つの燃料流れ経路が画定される。多孔性部分234/236の多孔性値は、多孔性材料の拡散性の性質により、異なる燃料に対して燃料の流量を変化させることを促進する。
【選択図】図3
【解決手段】タービンエンジンと共に使用するための燃料ノズル組立体が、少なくとも1つの燃料供給源に連結される少なくとも1つの燃料導管を含む。この燃料ノズル組立体はまた、多孔性部分234/236を有する少なくとも1つの壁230を含む少なくとも1つのスワラ224を含む。この少なくとも1つの壁230は少なくとも1つの燃料導管に連結される。多孔性部分234/236は、燃料流れがそこを通るのを促進するような多孔性を有する材料から形成される、少なくとも1つの壁の多孔性部分234/236を通る少なくとも1つの燃料流れ経路が画定される。多孔性部分234/236の多孔性値は、多孔性材料の拡散性の性質により、異なる燃料に対して燃料の流量を変化させることを促進する。
【選択図】図3
Description
本発明の分野は概して回転機械に関し、より詳細にはタービンエンジン燃料ノズル組立体に関する。
少なくとも一部の既知のタービンエンジンは、燃焼器内で燃料と空気との混合物を点火して燃焼ガスを発生させ、この燃焼ガスは高温ガス経路を介してタービンに向かうように運ばれる。既知の燃焼器組立体は、燃料を燃焼器の燃焼領域まで運ぶ燃料ノズルを含む。タービンは燃焼ガスストリームの熱エネルギーを、タービンシャフトを回転させるのに使用される機械的エネルギーに変換する。タービンの出力は、例えば発電機、圧縮機またはポンプなどの、機械に動力供給するのに使用され得る。
このような既知の燃料ノズルは、既存の噴射開口部と燃料ノズル内に画定される噴射口とを通る所定の流量を発生させるように、特定の燃料ブレンドを噴射して分配するように構成される。このような既知の燃料ノズルは固定されて構成されることから、例えば、燃料の熱含量が多様であること、燃料の粘度が多様であること、および、体積流量が多様であることなどの、動的条件に反応するような特徴を含まない。所有者/操作者が燃料を切り替えることを望む場合、所有者/操作者は、タービンエンジンの運転を停止し、ノズルを、長時間の燃料切り替えに対応できる代替のノズルに取り替える。一部のガスタービン燃料システムでは、例えば調節可能な燃料流量スロットルバルブなどの、燃料流量調節デバイスが燃料ノズルの上流側に配置される。一部の他のガスタービン燃料システムでは、複数の燃料供給回路が設置される。これらの解決策は共にフライホイール上で燃料を切り替えることに対応するのを促進するためものである。しかし、これらの2つの解決策は、関連する燃料システムの設置コストおよび運転コストも増大させる。
一態様では、タービンエンジンと共に使用するための燃料ノズル組立体が提供される。この燃料ノズル組立体は、少なくとも1つの燃料供給源に連結される少なくとも1つの燃料導管を含む。この燃料ノズル組立体はまた、多孔性部分を有する少なくとも1つの壁を含む少なくとも1つのスワラを含む。この少なくとも1つの壁は少なくとも1つの燃料導管に連結される。多孔性部分は、燃料流れがそこを通ることを促進するような多孔性を有する材料から形成される。それにより、この少なくとも1つの壁の多孔性部分を通る少なくとも1つの燃料流れ経路が画定される。
別の態様では、タービンエンジンを動作させる方法が提供される。このタービンエンジンは、少なくとも1つの多孔性部分を有する少なくとも1つのスワラを含む少なくとも1つの燃料ノズルに連結される少なくとも1つの燃料導管を含む。この多孔性部分は少なくとも1つの燃料導管の開口部の少なくとも一部分を覆う。この多孔性部分は、燃料流れがそこを通ることを促進するような多孔性を有する材料から形成される。この方法は、少なくとも1つの燃料供給源から少なくとも1つの燃料導管まで燃料を運ぶことを含む。この方法はまた、少なくとも1つの多孔性部分を介して燃焼器まで燃料を運ぶことを含む。
別の態様では、ガスタービンエンジンが提供される。このガスタービンエンジンは、少なくとも1つの燃焼器と、少なくとも1つの燃焼器に連結される少なくとも1つの燃料ノズル組立体とを含む。この少なくとも1つの燃料ノズル組立体は、少なくとも1つの燃料供給源に連結される少なくとも1つの燃料導管を含む。この少なくとも1つの燃料ノズル組立体はまた、多孔性部分を有する少なくとも1つの壁を含む少なくとも1つのスワラを含む。この多孔性部分は、燃料流れがそこを通ることを促進するような多孔性を有する材料から形成される。この少なくとも1つの燃料導管に少なくとも1つの壁が連結され、それにより、この少なくとも1つの壁の多孔性部分を介して少なくとも1つの燃料流れ経路が画定される。
図面を通して同様の参照符号が同様の部品を示している添付図面を参照して以下の詳細な説明を読むことにより、本発明のこれらのおよび他の特徴、態様および利点がより良く理解される。
特に明記しない限り、本明細書で提示される図面は本発明の発明性のある重要な特徴を説明することを意味する。これらの発明性のある重要な特徴は、本発明の1つまたは複数の実施形態を含む多様なシステムで適用可能であると考えられる。したがって、これらの図面は、本発明を実施するのに必要である、当業者に知られている従来のすべての特徴を含むことを意味しない。
本明細書の以下の部分および特許請求の範囲では、以下の意味を有するように定義される多数の用語を参照する。
単数形「a」、「an」および「the」は、文脈により明確に示されない限り、複数形も含む。
「適宜(OptionalまたはOptionally)」は、その後に記載される事象または状況が起こっても起こらなくてもよいこと、および、その事象が起こる例とその事象が起こらない例とがその説明に含まれることを意味する。
本明細書および特許請求の範囲を通して使用される概略的な表現は、関連する基本的な機能を変更することなく許容される程度で変化し得る任意の量的表現を修飾するのに適用され得る。したがって、「約」および「実質的に」などの1つまたは複数の語により修飾される値は明記される正確な値のみに限定されない。少なくとも一部の例では、概略的な表現は値を測定するための機器の精度に対応していてよい。ここでは、本明細書および特許請求の範囲を通して、範囲限界(range limitation)は組み合わされたりおよび/または取り替えられたりされ得、また、文脈または表現により明記されない限り、これらの範囲は特定され、その範囲に包含されるすべての部分範囲を含む。
図1は、回転機械100、すなわち、ターボ機械、より具体的にはガスタービンエンジンの概略図である。この例示の実施形態では、ガスタービンエンジン100は、空気取入区間102と、空気取入区間102の下流側に連結されて流体連通される圧縮機区間104とを含む。燃焼器区間106が圧縮機区間104の下流側に連結されて流体連通され、タービン区間108が燃焼器区間106の下流側に連結されて流体連通される。タービンエンジン100はタービン108の下流側に排気区間110を含む。さらに、この例示の実施形態では、タービン区間108はロータ組立体112を介して圧縮機区間104に連結され、ロータ組立体112には、限定しないが、圧縮機ロータまたは駆動シャフト114およびタービンロータまたは駆動シャフト115が含まれる。
この例示の実施形態では、燃焼器区間106は複数の燃焼器組立体すなわち燃焼器116を含み、これらは各々が圧縮機区間104に流体連通されるように連結される。燃焼器区間106はまた、少なくとも1つの燃料ノズル組立体118を含む。各燃焼器116は少なくとも1つの燃料ノズル組立体118に流体連通される。さらに、この例示の実施形態では、タービン区間108および圧縮機区間104は駆動シャフト114を介して負荷120に回転可能に連結される。例えば、負荷120には、限定しないが、発電機、および/または、例えばポンプなどの機械的駆動手段が含まれてよい。別法として、ガスタービンエンジン100は航空機エンジンであってもよい。この例示の実施形態では、圧縮機区間104は少なくとも1つの圧縮機ブレード組立体122を含む。また、この例示の実施形態では、タービン区間108も少なくとも1つのタービンブレードすなわちバケット124を含む。各圧縮機ブレード組立体122および各タービンバケット124は、ロータ組立体112、すなわちより具体的には、圧縮機駆動シャフト114およびタービン駆動シャフト115に連結される。
運転中、空気取入区間102が圧縮機区間104に向けて空気150を運ぶ。圧縮機区間104が入口空気150を圧縮して高圧および高温にし、圧縮空気152が燃焼器区間106に向けて排出される。圧縮空気152は燃料ノズル組立体118まで運ばれ、燃料(図示せず)と混合され、各燃焼器116内で燃焼され、それにより燃焼ガス154が発生し、この燃焼ガス154は下流側のタービン区間108に向かうように運ばれることになる。燃焼器116内に発生する燃焼ガス154は下流側のタービン区間108に向かうように運ばれる。タービンバケット124に衝突することにより、熱エネルギーが、ロータ組立体112を駆動するのに使用される機械的回転エネルギーに変換される。タービン区間108が駆動シャフト114および115を介して圧縮機区間104および/または負荷120を駆動させ、排ガス156が排気区間110を通して外界雰囲気まで排出される。
図2は、ガスタービンエンジン100(図1に示される)と共に使用され得る燃料ノズル組立体118の断面図である。燃料ノズル組立体118は、燃料ノズル組立体118を通って延びる軸方向の中心線202を画定する。この例示の実施形態では、燃料ノズル組立体118はセンターボディ204を含む。空気カートリッジ206が径方向において軸方向の中心線202の周りに配置され、また、この空気カートリッジ206は軸方向において冷却/パージ空気接続部208からセンターボディ204の先端部まで延在する。空気カートリッジ206は拡散燃料ポート(diffusion fuel port)210および拡散燃料導管(diffusion fuel conduit)212を少なくとも部分的に画定する。燃料ノズル組立体118はまた、少なくとも1つの主予備混合燃料ポート214および少なくとも1つの主予備混合燃料導管216を画定する。燃料ノズル組立体118はまた、少なくとも1つの主空気ポート218および少なくとも1つの主空気導管220を画定する。拡散燃料導管212は空気カートリッジ206の周りを環状に延在し、空気カートリッジ206の径方向外側にある。主予備混合燃料導管216は組立体118内に配置され、ここでは、主予備混合燃料導管216は拡散燃料導管212の周りを環状に延在し、拡散燃料導管212の径方向外側にある。主空気導管220は組立体118内に配置され、ここでは、主空気導管220は主予備混合燃料導管216の周りを環状に延在し、主予備混合燃料導管216の径方向外側にある。
また、この例示の実施形態では、燃料ノズル組立体118はスワラ222を含む。スワラ222は主空気導管220内に配置される複数のベーン224を含む。スワラベーン224は主予備混合燃料導管216に流体連通されるように連結される。
さらに、この例示の実施形態では、拡散燃料ポート210、拡散燃料導管212、主予備混合燃料ポート214および主予備混合燃料導管216は複数の気体燃料供給源(図示せず)に流体連通されるように連結され、したがって、1つまたは複数の気体燃料を燃料ノズル組立体に選択的に運ぶことが可能である。この例示の実施形態では、燃料は炭素ガスであり、限定しないが、天然ガスおよび合成ガスなどである。別法として、燃料ノズル組立体118に供給される燃料は、本明細書で説明される燃料ノズル組立体118およびガスタービンエンジン100を運転することを可能にする任意の気体燃料であってもよい。
さらに、この例示の実施形態では、燃料ノズル組立体118は、冷却/パージ空気接続部208を介して冷却/パージ空気供給源(図示せず)に流体連通されるように連結される。冷却/パージ空気供給源は、圧縮機区間104(図1に示される)から運ばれる、ならびに/あるいは、限定しないが噴霧用空気タンクおよび/または補助産業用空気システムなどの独立した供給源から運ばれる加圧空気152の一部を含むことができる。燃料ノズル組立体118はまた、圧縮機区間104に流体連通され、加圧空気152の大部分を受け取る。
図3は、線3−3(図2に示される)に沿った、燃料ノズル組立体118(図2に示される)と共に使用され得るスワラベーン224の拡大断面図である。この例示の実施形態では、スワラベーン224は、ベーン空洞232を画定するように互いに連結される複数のベーン壁230を含み、ベーン空洞232は主予備混合燃料導管216(図2に示される)に流体連通されるように連結され、主予備混合燃料導管216から径方向に延在する。
また、この例示の実施形態では、ベーン壁230の少なくとも一部分、すなわち、ベーン壁230の部分234および236のうちの少なくとも一方は多孔性材料から形成される。この例示の実施形態では、部分234および236は共に多孔性である。具体的には、ベーン壁230の部分234および236は、燃料流れがそこを通るのを促進するような、すなわち、主空気導管220へ燃料が噴出されるのを促進するような所定の多孔性を有する材料から形成される。別法としては部分234および236の一方のみが多孔性である。また、別法として、ベーン壁230の他の所定の部分が多孔性材料から形成され、これには多孔性部分234および236が含まれても含まれなくてもよい。
さらに、この例示の実施形態では、多孔性部分234および236の各々が、径方向および軸方向において実質的に一定である所定の多孔性値を有する。別法として、多孔性部分234および236の各々は、径方向および軸方向において異なる所定の多孔性値、さらには互いに異なる所定の多孔性値を有してもよい。
さらに、この例示の実施形態では、多孔性部分234および236は、軸方向の中心線202(参照用に図3に示される)に平行な向きにおいて互いに直接に面する。多孔性部分234および236は主予備混合燃料導管216からスワラ222のケーシング部分238まで径方向外向きに延在する(すべて図2に示される)。
図4は、燃料ノズル組立体118のスワラベーン224(図2に示される)と共に使用され得る例示の多孔性材料300の一部分と併せた、スワラベーン224(図3に示される)の拡大平面図である。多孔性材料300は、限定しないが例えば酸化アルミニウム(AL2O3)および炭化ケイ素(SiC)などの、多孔性の焼結セラミック、または、限定しないが例えば、マルテンサイト系ステンレス鋼、チタニウム、ニッケル、Monel(登録商標)、Hastelloy(登録商標)およびInconel(登録商標)などの、焼結金属、のうちの少なくとも1つである。
多孔性材料300は、所定の多孔性を画定するように、または、材料300内の空隙空間の測定値すなわち全体積に対する空隙体積の0から1の間の比すなわち0%から100%の間の割合としての空隙率を画定するように形成される。この例示の実施形態では、空隙率は約20%から約70%の範囲内である。別法として、空隙率は、本明細書で説明される燃料ノズル組立体118およびガスタービンエンジン100(図1に示される)を運転するのを可能にする任意の値である。また、この例示の実施形態では、多孔性材料300内の平均の孔径は約250ミクロンから約1000ミクロンの範囲である。したがって、多孔性材料300の透過率は、所定の燃料に対して所定の圧力における所定の流量を定めるために、多孔性部分234および236(共に図3に示される)の各々に対して予め定められる。さらに、多孔性に関して上で考察したように、多孔性部分234および236の各々は、径方向および軸方向において実質的に一定の所定の透過率値を有する。別法として、多孔性部分234および236の各々は、径方向および軸方向において異なる所定の透過率値、さらには互いに異なる所定の透過率値を有してもよい。
図2を参照すると、運転中、気体燃料240が軸方向において少なくとも1つの外部のガス燃料供給源から主予備混合燃料ポート214を介して主予備混合燃料導管216内まで運ばれる。燃料240は軸方向において主予備混合燃料導管216を介してスワラ222まで運ばれ、さらに、燃料240はスワラ222を介して径方向外側に運ばれて主空気導管220内に噴射される。空気152が主空気ポート218を介して主空気導管220内に運ばれ、空気ストリーム242が形成される。空気ストリーム242はスワラ222に向かうように運ばれ、空気ストリーム242と燃料240とが混合されて燃料/空気ストリーム244が形成され、この燃料/空気ストリーム244が燃焼器116まで運ばれる。
図3を参照すると、運転中、気体燃料240(図3では小さい正方形で示される)が主燃料導管216からスワラ222のケーシング部分238に向かうように径方向外向きに運ばれ(すべて図2に示される)、ここではベーン空洞232を介する。燃料240は対向する多孔性部分234および236から噴出されて主空気導管220内に入り、所定の燃料に対して所定の燃料ストリーム246および248を形成する。燃料ストリーム246および248ならびに空気ストリーム242は混合されて燃料/空気ストリーム244を形成し、燃料/空気ストリーム244が燃焼器116(図2に示される)まで運ばれる。
この例示の実施形態では、対向する多孔性部分234および236の所定の多孔性値により、主空気導管220内に噴射される異なるBTU値を有する燃料において集中した噴射が形成されるのを軽減することが促進される。さらに、燃焼器116(図1および2に示される)内に燃料を運ぶ前の、燃料ノズル組立体118(図1および2に示される)の直交流中噴流による混合(jet−in−crossflow mixing)に対する依存度が低下する。異なる燃料ブレンドではガスタービンエンジン100(図1に示される)での必要となる流量が異なることから、多孔性部分234および236の多孔性値は、多孔性材料300の拡散性の性質により、異なる燃料に対して燃料の流量を変化させることを促進する。したがって、燃料ノズル組立体118ならびに多孔性部分234および236は、多様な燃料を効果的に燃焼することを促進し、ここでは、燃料ノズル組立体118および上流側の燃料導管(図示せず)を修正するためにメンテナンスのために運転を停止する必要がない。
少なくとも一部の燃料においては、ガスタービンエンジン100内への燃焼噴射の特性がより安定し、それにより、圧力差が多様であること、粘度が多様であること、および、燃料流れ経路内で圧力が低下することによる影響が軽減される。また、多孔性材料300の固有の流量制限フィーチャにより、所定の許容差内で予め定められた通りに燃料が主空気導管220内に分配されることが促進され、これには、限定しないが、実質的に均等に分配することが含まれる。ガスタービンエンジン100の上流側の外部にある燃料制御デバイスを使用して流量を制御することにより、各燃料に対して燃料の背圧を所定の範囲内に維持することが促進される。さらに、燃料の流量が制御されることに加えて、複数の燃料ノズル118(図1に示される)の間で燃料流れが不均衡になること、規定を超えるような特性で燃料が燃焼されること、および、スワラベーン224のところでの分配プロファイルが許容範囲を外れることなど、の望ましくない状態による影響が軽減される。
図5は、ガスタービンエンジン100(図1に示される)を動作させる例示の方法500のフローチャートである。少なくとも1つの燃料供給源からの燃料240(図2に示される)が、少なくとも1つの燃料導管すなわち主予備混合燃料導管(図2に示される)まで運ばれる(502)。燃料240は少なくとも1つの燃料ノズル216(図2に示される)のスワラ222(図2に示される)の多孔性部分234および236(共に図2に示される)を介して燃焼器116(図2に示される)内に運ばれる(504)。多孔性部分234および236は、燃料流れ240がそこを通ることを促進するような所定の多孔性を有する材料300(図4に示される)から形成される。
方法500はまた、第1の燃料から第2の燃料へ移行することを含む(506)。第1の燃料が第1の燃料供給源から送られ(508)、ここでは、第1の燃料は第1の組み合わせの特性を有する。第2の燃料が第2の燃料供給源から送られ(510)、ここでは、第2の燃料は第2の組み合わせの特性を有する。第1の燃料供給源からの燃料流れを減少させる(512)。第2の燃料供給源からの燃料流れを増加させる(514)。第1の組み合わせの燃料特性と、第2の組み合わせの燃料特性と、多孔性部分234および236の多孔性との関数としての燃料噴射量を少なくとも部分的に変更することにより(518)、ガスタービンエンジン100のパワー出力が実質的に一定に維持される(516)。
スワラベーン224の多孔性部分234および236を介して燃焼器116内に運ばれる第1および第2の燃料の割合は0%から100%の間に及ぶ範囲内で変化する。また、燃焼器116内で燃焼される燃料ブレンドは2つの異なる燃料のみに限定されない。
上述の燃料ノズル組立体は、ガスタービンエンジンの運転の信頼性を向上させてディスラプションを軽減するためのコスト効率の高い方法を可能にする。具体的には、本明細書で説明されるデバイス、システムおよび方法は、燃料を切り替えてフライホイール上の燃料ブレンドの成分を調整することを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供する。本明細書で説明されるデバイス、システムおよび方法は、使用する燃料が異なるBTU値を有する場合に、燃料噴射が変動することを軽減しさらに離散的に噴射が集中する問題を軽減する。さらに、本明細書で説明されるデバイス、システムおよび方法は、燃料を関連する燃焼器内に運ぶ前の、燃料ノズル組立体の直交流中噴流による混合に対する依存度を低下させる。さらに、本明細書で説明されるデバイス、システムおよび方法は、スワラベーン壁が所定の多孔性値を有することおよび多孔性材料の拡散性の性質を有することにより、異なる燃料ブレンドでは異なる流量が必要となることに関係なく、異なる燃料に対して燃料の流量を変化させることを促進する。
さらに、本明細書で説明されるデバイス、システムおよび方法は多様な燃料を効果的に燃焼することを促進し、ここでは、燃料ノズル組立体および上流側の燃料導管を修正するためにメンテナンスのために運転を停止する必要がない。本明細書で説明されるデバイス、システムおよび方法は、少なくとも一部の燃料に対して、ガスタービンエンジン内への燃料噴射の特性が多様であることの影響を制御すること促進し、すなわち、圧力差が多様であること、粘度が多様であること、および、燃料流れ経路内で圧力が低下することによる影響を軽減するために、燃料噴射の特性をより安定させることを促進する。また、本明細書で説明されるデバイス、システムおよび方法は、予め定められた通りに燃料が分配されるようにするために、多孔性材料の固有の流量制限フィーチャを使用することを促進する。さらに、本明細書で説明されるデバイス、システムおよび方法は、各燃料に対して燃料の背圧を所定の範囲内に維持することを促進するために、ガスタービンエンジンの上流側の外部にある燃料制御デバイスを使用することにより燃料の流量を制御することを促進する。さらに、燃料の流量が制御されることに加えて、燃料の流れが不均衡になること、規定を超えるような特性で燃料が燃焼されること、および、分配プロファイルが許容範囲を外れることなど、の望ましくない状態による影響が軽減される。
本明細書で説明される方法、システムおよび装置の例示の技術的効果は以下のうちの少なくとも1つを含む。(a)フライホイール上の燃料を切り替えて燃料ブレンドの成分を調整しながら、ガスタービンエンジンの運転の信頼性を向上させてディスラプションを軽減すること、(b)使用する燃料が異なるBTU値を有する場合に、燃料噴射が変動するのを軽減させることを促進しさらに離散的に噴射が集中する問題を軽減することを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること、(c)燃料を関連する燃焼器内に運ぶ前の、燃料ノズル組立体の直交流中噴流による混合に対する依存度を低下させることを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること、(d)異なる流量を必要とするような異なる燃料においてガスタービンエンジンを運転することを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること、(e)燃料ノズル組立体および上流側の導管を修正するためにメンテナンスのために運転を停止することなく、多様な燃料および燃料ブレンドを効果的に燃焼することを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること、(f)ガスタービンエンジン内への燃料噴射の特性が多様であることの影響を制御することを促進するような、すなわち、圧力差が多様であること、粘度が多様であること、および、燃料流れ経路内で圧力が低下することによる影響を軽減するために、燃料噴射の特性をより安定させることを促進するような、所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること、(g)各燃料に対して燃料の背圧を所定の範囲内に維持するためにガスタービンエンジンの上流側の外部にある燃料制御デバイスを使用することにより、燃料の流量を制御するために多孔性材料の固有の流量制限フィーチャを使用することを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること、ならびに、(h)燃料の流れが不均衡になること、規定を超えて燃料が流れること、および、分配プロファイルが許容範囲を外れることなどの影響を軽減するのを促進するような所定の多孔性値を有する、燃料ノズル組立体のスワラベーン壁を提供すること。
上では、ガスタービンエンジンのための燃料ノズル組立体および運転方法の例示の実施形態を詳細に説明してきた。これらの燃料ノズル組立体およびその組立体の運転方法は本明細書で説明される特定の実施形態のみに限定されず、むしろ、システムの構成要素および/または方法のステップは、本明細書で説明される他の構成要素および/またはステップから分離されて独立して利用されてもよい。例えば、これらの方法は他の燃焼システムおよび方法と組み合わされて使用されてもよく、本明細書で説明されるガスタービンシステムおよび燃料ノズル組立体ならびに方法を実施することのみに限定されない。むしろ、例示の実施形態は他の多くの燃焼用途と組み合わせて実施および利用され得る。
本発明の種々の実施形態の特定の特徴は一部の図面で示され他の図面では示されないが、これは単に簡略化のためである。本発明の原理に従い、図面のあらゆる特徴が任意の他の図面の任意の特徴と組み合わされて参照および/または請求され得る。
ここに記載される説明は、最良の形態を含めた本発明を開示するために、さらには、任意のデバイスまたはシステムを製造および使用することならびに採用される任意の方法を実施することを含めて、任意の当業者が本発明を実施するのを可能にするために、例を使用する。特許を受けることができる本発明の範囲は、特許請求の範囲によって定義され、当業者には思い付く他の例を含むことができる。このような他の例は、特許請求の範囲の文字通りの表現と違わない構造的要素を有する場合には、または、特許請求の範囲の文字通りの表現とほぼ違わない等価の構造的要素を含む場合には、特許請求の範囲内にあることが意図される。
100 ガスタービンエンジン(ターボ機械)
102 空気取込区間
104 圧縮機区間
106 燃焼器区間
108 タービン区間
110 排気区間
112 ロータ組立体
114 圧縮機(ロータ)駆動シャフト
115 タービン(ロータ)駆動シャフト
116 燃焼器
118 燃料ノズル組立体
120 負荷
122 圧縮機ブレード機構
124 タービンバケット機構
150 入口空気
152 圧縮空気
154 燃焼ガス
156 排ガス
202 軸方向の中心線
204 センターボディ
206 空気カートリッジ
208 冷却/パージ空気接続部
210 拡散燃料ポート
212 拡散燃料導管
214 主予備混合燃料ポート
216 主予備混合燃料導管
218 主空気ポート
220 主空気導管
222 スワラ
224 ベーン
230 ベーン壁
232 ベーン空洞
234 壁の多孔性部分
236 壁の多孔性部分
238 ケーシング部分
240 気体燃料流れの矢印
242 空気ストリーム
244 燃料/空気ストリーム
246 燃料ストリーム
248 燃料ストリーム
300 多孔性材料
500 方法
502 燃料を少なくとも1つの燃料供給源から少なくとも1つの燃料導管まで運ぶステップ
504 少なくとも1つの燃料ノズル組立体のスワラの多孔性部分を介して燃焼器内に燃料を運ぶステップ
506 第1の燃料から第2の燃料へ移行するステップ
508 第1の燃料供給源から第1の燃料を送るステップであり、ここでは、第1の燃料が第1の組み合わせの特性を有する
510 第2の燃料供給源から第2の燃料を送るステップであり、ここでは、第2の燃料が第2の組み合わせの特性を有する
512 第1の燃料供給源からの燃料流れを減少させるステップ
514 第2の燃料供給源からの燃料流れを増加させるステップ
516 ガスタービンエンジンのパワー出力を実質的に一定に維持するステップ
518 第1の組み合わせの燃料特性と、第2の組み合わせの燃料特性と、スワラの多孔性部分の多孔性との関数としての燃料噴射量を少なくとも部分的に変更するステップ
102 空気取込区間
104 圧縮機区間
106 燃焼器区間
108 タービン区間
110 排気区間
112 ロータ組立体
114 圧縮機(ロータ)駆動シャフト
115 タービン(ロータ)駆動シャフト
116 燃焼器
118 燃料ノズル組立体
120 負荷
122 圧縮機ブレード機構
124 タービンバケット機構
150 入口空気
152 圧縮空気
154 燃焼ガス
156 排ガス
202 軸方向の中心線
204 センターボディ
206 空気カートリッジ
208 冷却/パージ空気接続部
210 拡散燃料ポート
212 拡散燃料導管
214 主予備混合燃料ポート
216 主予備混合燃料導管
218 主空気ポート
220 主空気導管
222 スワラ
224 ベーン
230 ベーン壁
232 ベーン空洞
234 壁の多孔性部分
236 壁の多孔性部分
238 ケーシング部分
240 気体燃料流れの矢印
242 空気ストリーム
244 燃料/空気ストリーム
246 燃料ストリーム
248 燃料ストリーム
300 多孔性材料
500 方法
502 燃料を少なくとも1つの燃料供給源から少なくとも1つの燃料導管まで運ぶステップ
504 少なくとも1つの燃料ノズル組立体のスワラの多孔性部分を介して燃焼器内に燃料を運ぶステップ
506 第1の燃料から第2の燃料へ移行するステップ
508 第1の燃料供給源から第1の燃料を送るステップであり、ここでは、第1の燃料が第1の組み合わせの特性を有する
510 第2の燃料供給源から第2の燃料を送るステップであり、ここでは、第2の燃料が第2の組み合わせの特性を有する
512 第1の燃料供給源からの燃料流れを減少させるステップ
514 第2の燃料供給源からの燃料流れを増加させるステップ
516 ガスタービンエンジンのパワー出力を実質的に一定に維持するステップ
518 第1の組み合わせの燃料特性と、第2の組み合わせの燃料特性と、スワラの多孔性部分の多孔性との関数としての燃料噴射量を少なくとも部分的に変更するステップ
Claims (10)
- タービンエンジン(100)と共に使用するための燃料ノズル組立体(118)であって、
少なくとも1つの燃料供給源に連結される少なくとも1つの燃料導管(212/216)と、
多孔性部分(234/236)を有する少なくとも1つの壁(230)を含む少なくとも1つのスワラ(222)であって、前記少なくとも1つの壁が前記少なくとも1つの燃料導管に連結され、前記多孔性部分が、燃料流れ(246/248)がそこを通ることを促進するような多孔性を有する材料(300)から形成され、それにより、前記少なくとも1つの壁の前記多孔性部分を通る少なくとも1つの燃料流れ経路が画定される、少なくとも1つのスワラ(222)と
を含む、
燃料ノズル組立体(118)。 - 前記多孔性部分(234/236)の前記多孔性が軸方向において変化する、請求項1記載の燃料ノズル組立体(118)。
- 前記多孔性部分(234/236)の前記多孔性が径方向において変化する、請求項1記載の燃料ノズル組立体(118)。
- 前記スワラ(222)が複数のベーン(224)をさらに含み、前記複数のベーンの各ベーンが前記多孔性部分(234/236)を含む、請求項1記載の燃料ノズル組立体(118)。
- 前記複数のベーンの各ベーン(224)がベーン空洞(232)を中に画定する複数の壁(230)を含み、前記空洞の各々が前記少なくとも1つの燃料導管(216)に連結される、請求項4記載の燃料ノズル組立体(118)。
- 前記複数の壁(230)が一対の対向する前記多孔性部分(234/236)を含む、請求項5記載の燃料ノズル組立体(118)。
- 前記対向する多孔性部分(234/236)の前記多孔性が互いに実質的に類似する、請求項6記載の燃料ノズル組立体(118)。
- 前記対向する多孔性部分(234/236)が、複数の燃料ストリーム(246/248)を対応する空気流れストリーム(242)内に噴射するように構成される、請求項6記載の燃料ノズル組立体(118)。
- 前記多孔性部分(234/236)が、
焼結セラミック、および
焼結金属
のうちの少なくとも1つである、
請求項1記載の燃料ノズル組立体(118)。 - ガスタービンエンジン(100)であって、
少なくとも1つの燃焼器(116)と、
前記少なくとも1つの燃焼器に連結される少なくとも1つの燃料ノズル組立体(118)であって、前記少なくとも1つの燃料ノズル組立体が、
少なくとも1つの燃料供給源に連結される少なくとも1つの燃料導管(212/216)、および、
多孔性部分(234/236)を有する少なくとも1つの壁(230)を含む少なくとも1つのスワラ(222)であって、前記少なくとも1つの壁が前記少なくとも1つの燃料導管に連結され、前記多孔性部分が、燃料流れ(246/248)がそこを通ることを促進するような多孔性を有する材料(300)から形成され、それにより、前記少なくとも1つの壁の前記多孔性部分を通る少なくとも1つの燃料流れ経路が画定される、少なくとも1つのスワラ(222)
を含む、少なくとも1つの燃料ノズル組立体(118)と
を含むガスタービンエンジン(100)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/362,124 | 2012-01-31 | ||
US13/362,124 US20130192243A1 (en) | 2012-01-31 | 2012-01-31 | Fuel nozzle for a gas turbine engine and method of operating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013156005A true JP2013156005A (ja) | 2013-08-15 |
Family
ID=47263137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012259287A Pending JP2013156005A (ja) | 2012-01-31 | 2012-11-28 | ガスタービンエンジンのための燃料ノズルおよびその動作方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130192243A1 (ja) |
EP (1) | EP2623867A1 (ja) |
JP (1) | JP2013156005A (ja) |
CN (1) | CN103225824A (ja) |
RU (1) | RU2012153067A (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140134551A1 (en) * | 2012-04-12 | 2014-05-15 | Massachusetts Institute Of Technology | Combustion Instability Suppression System Using Heat Insulating Flameholding Material |
WO2015040228A1 (de) * | 2013-09-23 | 2015-03-26 | Siemens Aktiengesellschaft | Brenner für eine gasturbine und verfahren zur reduzierung von thermoakustischen schwingungen in einer gasturbine |
RU2561754C1 (ru) * | 2014-02-12 | 2015-09-10 | Открытое акционерное общество "Газпром" | Кольцевая камера сгорания газотурбинного двигателя и способ её эксплуатации |
WO2015150114A1 (de) * | 2014-04-03 | 2015-10-08 | Siemens Aktiengesellschaft | Brenner, gasturbine mit einem solchen brenner und brennstoffdüse |
US20150345793A1 (en) * | 2014-06-03 | 2015-12-03 | Siemens Aktiengesellschaft | Fuel nozzle assembly with removable components |
US9939155B2 (en) | 2015-01-26 | 2018-04-10 | Delavan Inc. | Flexible swirlers |
CN111023156A (zh) * | 2019-12-25 | 2020-04-17 | 西北工业大学 | 一种燃气轮机燃烧室旋流喷嘴 |
EP3904768B1 (en) | 2020-04-28 | 2024-04-17 | Collins Engine Nozzles, Inc. | Fluid nozzle |
US12060997B1 (en) * | 2023-02-02 | 2024-08-13 | Pratt & Whitney Canada Corp. | Combustor with distributed air and fuel mixing |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511375A (en) * | 1994-09-12 | 1996-04-30 | General Electric Company | Dual fuel mixer for gas turbine combustor |
US6836720B2 (en) * | 2002-09-13 | 2004-12-28 | Elliott Energy Systems, Inc. | Offload control of turboalternator with rich burn quick quench lean burn combustor to prevent blowout of combustor |
US7033135B2 (en) * | 2003-11-10 | 2006-04-25 | General Electric Company | Method and apparatus for distributing fluid into a turbomachine |
US6993916B2 (en) * | 2004-06-08 | 2006-02-07 | General Electric Company | Burner tube and method for mixing air and gas in a gas turbine engine |
EP1847696A1 (de) * | 2006-04-21 | 2007-10-24 | Siemens Aktiengesellschaft | Bauteil für eine gestufte Verbrennung in einer Gasturbine und entsprechende Gasturbine. |
US8393157B2 (en) * | 2008-01-18 | 2013-03-12 | General Electric Company | Swozzle design for gas turbine combustor |
US8061142B2 (en) * | 2008-04-11 | 2011-11-22 | General Electric Company | Mixer for a combustor |
EP2154432A1 (en) * | 2008-08-05 | 2010-02-17 | Siemens Aktiengesellschaft | Swirler for mixing fuel and air |
US8291705B2 (en) * | 2008-08-13 | 2012-10-23 | General Electric Company | Ultra low injection angle fuel holes in a combustor fuel nozzle |
US8661779B2 (en) * | 2008-09-26 | 2014-03-04 | Siemens Energy, Inc. | Flex-fuel injector for gas turbines |
US20100162714A1 (en) * | 2008-12-31 | 2010-07-01 | Edward Claude Rice | Fuel nozzle with swirler vanes |
US20100180599A1 (en) * | 2009-01-21 | 2010-07-22 | Thomas Stephen R | Insertable Pre-Drilled Swirl Vane for Premixing Fuel Nozzle |
US9429074B2 (en) * | 2009-07-10 | 2016-08-30 | Rolls-Royce Plc | Aerodynamic swept vanes for fuel injectors |
US8584467B2 (en) * | 2010-02-12 | 2013-11-19 | General Electric Company | Method of controlling a combustor for a gas turbine |
-
2012
- 2012-01-31 US US13/362,124 patent/US20130192243A1/en not_active Abandoned
- 2012-11-26 EP EP20120194222 patent/EP2623867A1/en not_active Withdrawn
- 2012-11-28 RU RU2012153067/06A patent/RU2012153067A/ru not_active Application Discontinuation
- 2012-11-28 JP JP2012259287A patent/JP2013156005A/ja active Pending
- 2012-11-30 CN CN2012105070976A patent/CN103225824A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
US20130192243A1 (en) | 2013-08-01 |
RU2012153067A (ru) | 2014-06-10 |
EP2623867A1 (en) | 2013-08-07 |
CN103225824A (zh) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013156005A (ja) | ガスタービンエンジンのための燃料ノズルおよびその動作方法 | |
US9010082B2 (en) | Turbine engine and method for flowing air in a turbine engine | |
EP3320268B1 (en) | Burner for a gas turbine and method for operating the burner | |
KR101792453B1 (ko) | 가스 터빈 연소기, 가스 터빈, 제어 장치 및 제어 방법 | |
RU2566621C2 (ru) | Способ работы газовой турбины с последовательным сгоранием и газовая турбина для осуществления указанного способа | |
JP5406460B2 (ja) | 保炎マージンの範囲内で作動させるのを可能にするための方法及びシステム | |
KR102040425B1 (ko) | 연소기 및 가스 터빈 | |
CA2668219A1 (en) | Turbomachine injection nozzle including a coolant delivery system | |
CN101995019A (zh) | 用于燃烧器的气动挂架燃料喷射器系统 | |
US9322336B2 (en) | Fuel nozzle for gas turbine | |
CN110418880A (zh) | 燃气轮机 | |
US9032736B2 (en) | Method for operating a burner and burner, in particular for a gas turbine | |
US20140157788A1 (en) | Fuel nozzle for gas turbine | |
JP2004028098A (ja) | 1軸形ガスタービンの火炎温度の制御及び調節システム | |
JP5693514B2 (ja) | ガスタービン燃焼器 | |
JP2015129490A (ja) | 燃焼器およびガスタービン | |
US11946422B2 (en) | Method of operating a combustor for a gas turbine | |
KR20230112676A (ko) | 가스 터빈 연소기 및 가스 터빈 | |
JP2013139815A (ja) | タービンアセンブリ及びタービン部品間の流体流を低減する方法 | |
US10371048B2 (en) | Combustor and gas turbine | |
JP2014202475A (ja) | 触媒燃焼空気加熱システム | |
US9328923B2 (en) | System and method for separating fluids | |
US20230288067A1 (en) | Combustor for a gas turbine | |
WO2024116966A1 (ja) | ガスタービンの運転方法 | |
GB2614037A (en) | Gas turbine arrangement |