JP2013155438A - Rolling member - Google Patents

Rolling member Download PDF

Info

Publication number
JP2013155438A
JP2013155438A JP2013029322A JP2013029322A JP2013155438A JP 2013155438 A JP2013155438 A JP 2013155438A JP 2013029322 A JP2013029322 A JP 2013029322A JP 2013029322 A JP2013029322 A JP 2013029322A JP 2013155438 A JP2013155438 A JP 2013155438A
Authority
JP
Japan
Prior art keywords
mass
nitride
less
carbonitriding
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013029322A
Other languages
Japanese (ja)
Inventor
Koji Ueda
光司 植田
Toru Ueda
徹 植田
Naoya Seno
直也 瀬野
Nobuaki Mitamura
宣晶 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013029322A priority Critical patent/JP2013155438A/en
Publication of JP2013155438A publication Critical patent/JP2013155438A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rolling member which has longer life, superior abrasion resistance and superior seizing resistance, by optimizing an Si-Mn-based nitride.SOLUTION: For instance, a rolling element 3 has an Si-Mn-based nitride formed on its surface layer through carbonitriding treatment or nitriding treatment. The surface layer is controlled so as to include 0.2 wt.% or more of nitrogen concentration, include 1% or more and less than 10% of an area rate of Si-Mn-based nitrides, and include the number of 100 pieces or more in 375 μmof the area of Si-Mn-based nitrides of 0.05 to 1 μm. Thereby, high strength is obtained by increasing the deposition amount of fine nitride to shorten a distance between the Si-Mn-based nitrides. Higher strength can be obtained by using a steel, which includes 0.3 to 2.2 wt.% Si and 0.3 to 2.0 wt.% Mn while controlling a ratio Si/Mn to 5 or less and which is subjected to carbonitriding quenching and tempering treatment.

Description

本発明は転動部材に関するものであり、例えば転がり軸受やボールねじ、リニアガイドの寿命延長や耐摩耗性・耐焼付き性向上といった機能向上に好適なものである。   The present invention relates to a rolling member, and is suitable for improving functions such as extending the life of rolling bearings, ball screws, and linear guides, and improving wear resistance and seizure resistance.

従来、転がり軸受には、JIS SUJ2、SUJ3に代表される軸受鋼が用いられ、通常、焼入れ・焼戻し処理によって硬度HRC60以上で使用される。しかし、転がり軸受の使用環境が多様化し、異物が混入するような潤滑下や潤滑が不十分な環境下では、これらの軸受鋼では十分な寿命が得られなかったり、焼き付きが生じたりする場合がある。
このため、SUJ2を用いてマルストレッシングと呼ばれる浸炭窒化処理を施し、窒素を固溶させることにより、軌道面表面の残留オーステナイト量を増加させることによって、異物混入潤滑下での圧痕縁の応力緩和を図ったり、窒素の効果で、耐焼き付き性の改善を図ったりしている。しかしながら、近年、転がり軸受の使用環境は益々過酷化し、SUJ2に浸炭窒化処理下だけでは、十分な効果が得られない場合が発生している。
Conventionally, for rolling bearings, bearing steels represented by JIS SUJ2 and SUJ3 are used, and are usually used at a hardness of HRC 60 or higher by quenching / tempering treatment. However, the usage environment of rolling bearings is diversified, and under the lubrication environment where foreign matter is mixed in or the lubrication is insufficient, these bearing steels may not be able to obtain a sufficient life or may cause seizure. is there.
For this reason, the carbonitriding process called marstreshing is performed using SUJ2, and the amount of retained austenite on the raceway surface is increased by solid-dissolving nitrogen, thereby reducing the stress at the indentation edge under lubrication mixed with foreign matter. And the seizure resistance is improved by the effect of nitrogen. However, in recent years, the usage environment of rolling bearings has become more severe, and there are cases where sufficient effects cannot be obtained only by subjecting SUJ2 to carbonitriding.

これを解決するため、下記特許文献1に記載される転がり軸受では、Si添加量の多い材料を用い、Si−Mnを含有する炭化物又は炭窒化物を面積率で1〜30%析出させ、滑り接触を伴う環境下や潤滑油が枯渇する環境下での耐摩耗性及び耐焼き付き性を改善している。   In order to solve this, in the rolling bearing described in Patent Document 1 below, a material having a large Si addition amount is used, and carbide or carbonitride containing Si-Mn is precipitated in an area ratio of 1 to 30%, and slipping is performed. Improved wear resistance and seizure resistance in environments with contact and in environments where lubricant is exhausted.

特開2003−193200号公報JP 2003-193200 A

しかしながら、前記特許文献1に記載される転がり軸受では、Si及びMnを含有した窒化物(以下、Si・Mn系窒化物と記す)を形成するための適正な材料組成や窒素濃度が規定されておらず、十分な性能を発揮できない場合がある。
本発明は、上記のような問題点に着目してなされたものであり、Si・Mn系窒化物の適正化を図ることで、より長寿命で、耐摩耗性、耐焼き付き性に優れる転動部材を提供することを目的とするものである。
However, in the rolling bearing described in Patent Document 1, an appropriate material composition and nitrogen concentration for forming a nitride containing Si and Mn (hereinafter referred to as Si / Mn nitride) are defined. In some cases, sufficient performance may not be exhibited.
The present invention has been made by paying attention to the above-mentioned problems. By optimizing the Si / Mn nitride, it has a longer life and has excellent wear resistance and seizure resistance. The object is to provide a member.

上記課題を解決するために、本発明のうち請求項1に係る転動部材は、内方部材及び外方部材及び転動体の少なくとも一つの表面層に、浸炭窒化処理又は窒化処理によるSi・Mn系窒化物を有し、当該表面層の窒素濃度が0.2質量%以上2質量%以下であり、且つ前記窒化物面積率が1%以上10%未満であり、且つ0.05μm以上1μm以下のSi・Mn系窒化物の面積375μm中の個数が100個以上であることを特徴とするものである。
また、C:0.3質量%以上1.2質量%以下、Si:0.3質量%以上2.2質量%以下、Mn:0.3質量%以上2.0質量%以下、Cr:0.5質量%以上2.0質量%以下で、且つSi/Mnが5以下であり残部がFe及び不可避的不純物からなる鋼を浸炭窒化焼入れ、焼き戻し処理したことを特徴とするものである。
In order to solve the above-mentioned problems, a rolling member according to claim 1 of the present invention is provided with Si / Mn by carbonitriding or nitriding on at least one surface layer of an inner member, an outer member, and a rolling element. A nitrogen concentration of the surface layer is 0.2% by mass or more and 2% by mass or less, and the nitride area ratio is 1% or more and less than 10%, and 0.05 μm or more and 1 μm or less. The number of Si · Mn nitrides in the area of 375 μm 2 is 100 or more.
C: 0.3% by mass or more and 1.2% by mass or less, Si: 0.3% by mass or more and 2.2% by mass or less, Mn: 0.3% by mass or more and 2.0% by mass or less, Cr: 0 It is characterized by carbonitriding and quenching and tempering steel having 5 mass% or more and 2.0 mass% or less and Si / Mn of 5 or less and the balance being Fe and inevitable impurities.

本発明者らは、異物混入潤滑下の寿命を支配する因子を鋭意研究した結果、以下に述べるメカニズムによって転がり軸受の寿命が影響を受けることを見出した。異物混入潤滑下では、異物の噛み込みによって軌道輪に圧痕が形成される。この圧痕上を転動体が繰り返し通過すると、転動体が弱い場合には、形状の崩れを起こす。この形状が崩れた転動体が軌道輪に更に大きなダメージを与えて剥離に至る。従って、異物混入潤滑下で寿命を延長するためには、従来のように軌道輪の残留オーステナイトのみを増やして圧痕縁の応力を緩和させるだけでは寿命延長効果が小さく、転動体表面の圧痕の形成自体を抑制できるように転動体を強化する必要がある。   As a result of intensive studies on the factors governing the life under the contamination with foreign matter, the present inventors have found that the life of the rolling bearing is affected by the mechanism described below. Under foreign matter-mixed lubrication, indentations are formed on the races due to the biting of foreign matter. When the rolling element repeatedly passes over the indentation, the shape collapses when the rolling element is weak. The rolling element whose shape has collapsed causes even greater damage to the raceway and leads to peeling. Therefore, in order to extend the life under the contamination with foreign matter, simply increasing the retained austenite of the bearing ring and reducing the stress at the indentation edge as in the past, the effect of extending the life is small, and formation of indentations on the surface of the rolling element It is necessary to strengthen the rolling element so that it can be suppressed.

本発明では、転動体にSi及びMnを多く添加した鋼を用い、浸炭窒化処理を施して窒素を高濃度化し、硬質なSiとMnとを含有する窒化物、即ちSi・Mn系窒化物を表面に析出させて転動体を強化し、軌道輪に生じた圧痕による転動体の形状変化を著しく抑制しようとするものである。
転動体の強さは、Si・Mn系窒化物が寄与するものである。圧痕の形成を抑制するためには、変形の抵抗を大きくすることが重要であり、析出物の大きさが大きくなると、強化の効果が低減する。即ち、表面を強化するためには、Si・Mn系窒化物を微細に分散させる必要がある。本発明では、窒化物の面積率を1〜10%にして、十分に析出させると共に、1μm以下又は500nm以下の細かい析出物の個数を増やしたり比率を窒化物全体の20%以上としたりすることによって表面を強化することを特徴としている。
In the present invention, a steel containing a large amount of Si and Mn added to a rolling element is used, and a carbonitriding process is performed to increase the concentration of nitrogen, so that a nitride containing hard Si and Mn, that is, a Si · Mn nitride is obtained. It is intended to reinforce the rolling element by depositing on the surface, and to remarkably suppress the shape change of the rolling element due to the indentation generated on the race.
The strength of the rolling element is attributed to the Si · Mn nitride. In order to suppress the formation of indentations, it is important to increase the resistance of deformation, and when the size of the precipitate increases, the strengthening effect decreases. That is, in order to strengthen the surface, it is necessary to finely disperse the Si · Mn nitride. In the present invention, the area ratio of the nitride is set to 1 to 10% to sufficiently precipitate, and the number of fine precipitates of 1 μm or less or 500 nm or less is increased or the ratio is set to 20% or more of the entire nitride. It is characterized by strengthening the surface.

転動体に関する数値の臨界的意義は以下の通りである。
[窒素濃度が0.2質量%以上、Si・Mn系窒化物の面積率が1〜10%]
Si及びMnを含有した析出物は、熱的に安定な窒化物であり、窒化物中におけるSiとMnとの組成の比率が約5:1であり、基地組織に0.01μm〜1μmの大きさで均一微細に分散し、硬さを向上させる特徴がある。この効果によって、寿命延長、耐摩耗性、耐焼き付き性の向上を図ることができる。Si・Mn系窒化物の面積率が1%以上で寿命が著しく向上するため、下限値を1%以上とし、窒素濃度を0.2質量%とする。Si・Mn系窒化物の面積率が10%を越えると効果が飽和するので、上限値を10%、窒素濃度を2質量%とすることが好ましい。
The critical significance of numerical values for rolling elements is as follows.
[Nitrogen concentration is 0.2 mass% or more, Si / Mn nitride area ratio is 1 to 10%]
The precipitate containing Si and Mn is a thermally stable nitride, the composition ratio of Si and Mn in the nitride is about 5: 1, and the base structure has a size of 0.01 μm to 1 μm. It is characterized by uniform fine dispersion and improved hardness. With this effect, the life extension, wear resistance, and seizure resistance can be improved. Since the lifetime is remarkably improved when the area ratio of the Si · Mn nitride is 1% or more, the lower limit is set to 1% or more, and the nitrogen concentration is set to 0.2% by mass. When the area ratio of the Si · Mn nitride exceeds 10%, the effect is saturated, so the upper limit is preferably 10% and the nitrogen concentration is preferably 2% by mass.

[面積375μm中における0.05μm以上1μm以下のSi・Mn系窒化物の個数が100個以上]
1μmを越える窒化物は、材料の強化にあまり寄与しない。細かい窒化物が分散している方が強化される。この理由としては、析出強化の理論において析出物粒子間距離の小さい方が強化能に優れるので、窒化物の面積率が同じであっても、析出粒子数が多ければ、相対的に粒子間距離が短くなり、強化される。即ち、Si及びMnの含有量の多い鋼を用い、Si・Mn系窒化物の面積率が1〜10%の範囲で、0.05μm以上1μm以下の微細な窒化物の個数を増やすのがよい。また、平均粒径が0.05μm以上のSi・Mn系窒化物のうち、0.05〜0.50μmのSi・Mn系窒化物の個数の比率を20%以上とすることにより、更に強化することが可能になる。
[The number of Si · Mn nitrides with an area of 375 μm 2 of 0.05 μm to 1 μm is 100 or more]
Nitride exceeding 1 μm does not contribute much to the strengthening of the material. The one where fine nitride is dispersed is strengthened. The reason for this is that the smaller the distance between precipitate particles in the theory of precipitation strengthening, the better the strengthening ability, so even if the area ratio of nitride is the same, if the number of precipitated particles is large, the distance between particles is relatively Is shortened and strengthened. That is, it is preferable to increase the number of fine nitrides of 0.05 μm or more and 1 μm or less in the range of 1 to 10% of the area ratio of Si / Mn nitride using steel with a large amount of Si and Mn. . Further, among Si · Mn nitrides having an average particle diameter of 0.05 µm or more, the ratio of the number of Si · Mn nitrides of 0.05 to 0.50 µm is further increased by 20% or more. It becomes possible.

面積375μmの範囲で、0.05μm以上1μm以下のSi・Mn系窒化物を100個以上にする手法としては、浸炭窒化処理温度を800℃以上870℃以下とすることが好ましい。この温度を越えると、窒化物が粗大化して、微細なSi・Mn系窒化物の個数が減少する。また、この処理温度より温度が高くなると、窒素の固溶限が大きくなるため、窒化物の量が少なくなり、所望の面積率が得られなくなる。浸炭窒化工程の初期から、Rxガスとエンリッチガスとアンモニウムガスの混合ガス雰囲気とし、CP値は1.2以上、アンモニアガスの流量はRxガス流量の少なくとも1/5以上とする。また、浸炭窒化後の焼入れは、油温60〜120℃の範囲で行う。この温度より高いと、十分な硬さが得られない場合がある。焼戻しは、160〜270℃の温度で行い、硬さの範囲としてはHv740以上、望ましくはHv780以上とする。また、必要に応じて、焼入れ処理後に、サブゼロ処理を行ってもよい。 The carbonitriding temperature is preferably 800 ° C. or more and 870 ° C. or less as a method of increasing the number of Si · Mn-based nitrides having a surface area of 375 μm 2 to 0.05 or more and 1 μm or less. When this temperature is exceeded, the nitride becomes coarse and the number of fine Si · Mn nitrides decreases. Further, when the temperature is higher than the treatment temperature, the solid solubility limit of nitrogen is increased, so that the amount of nitride is reduced and a desired area ratio cannot be obtained. From the initial stage of the carbonitriding step, a mixed gas atmosphere of Rx gas, enriched gas and ammonium gas is set, the CP value is 1.2 or more, and the flow rate of ammonia gas is at least 1/5 or more of the Rx gas flow rate. Moreover, quenching after carbonitriding is performed in the oil temperature range of 60 to 120 ° C. If it is higher than this temperature, sufficient hardness may not be obtained. Tempering is performed at a temperature of 160 to 270 ° C., and the hardness range is Hv 740 or higher, preferably Hv 780 or higher. Moreover, you may perform a subzero process after a quenching process as needed.

[Si含有量:0.3〜2.2質量%、Mn含有量:0.3〜2.0質量%、且つSi/Mn比率:5以下]
Si・Mn系窒化物を十分に析出させるためには、Si及びMnを多く含有した鋼を用いる必要がある(SUJ2(Si含有量0.25質量%、Mn含有量0.4質量%)では、浸炭窒化などで窒素を過剰に付与しても、Si・Mn系窒化物量が少ない)。このため、Si及びMnの含有量は以下の値を臨界値とする。
[Si content: 0.3 to 2.2 mass%, Mn content: 0.3 to 2.0 mass%, and Si / Mn ratio: 5 or less]
In order to sufficiently precipitate Si / Mn nitride, it is necessary to use a steel containing a large amount of Si and Mn (SUJ2 (Si content 0.25 mass%, Mn content 0.4 mass%). Even if nitrogen is added excessively by carbonitriding, the amount of Si / Mn nitride is small). For this reason, content of Si and Mn makes the following values critical values.

[Si含有量:0.3〜2.2質量%]
本発明に係る窒化物の析出に必要な元素であり、Mnの存在によって、0.3質量%以上の添加で、窒素と効果的に反応して顕著に析出する。
[Mn含有量:0.3〜2.0質量%]
本発明に係る窒化物の析出に必要な元素であり、Siとの共存によって、0.3質量%以上の添加でSi・Mn系窒化物の析出を促進させる作用がある。また、Mnはオーステナイトを安定化する働きがあるので、硬化熱処理後に残留オーステナイトが必要以上に増加するといった問題を防止するため、2.0質量%以下とする。
[Si content: 0.3 to 2.2% by mass]
It is an element necessary for the precipitation of the nitride according to the present invention, and due to the presence of Mn, it effectively reacts with nitrogen and precipitates significantly when added in an amount of 0.3% by mass or more.
[Mn content: 0.3 to 2.0 mass%]
It is an element necessary for precipitation of nitride according to the present invention, and has the effect of promoting the precipitation of Si / Mn nitride by addition of 0.3% by mass or more by coexistence with Si. Further, since Mn has a function of stabilizing austenite, it is set to 2.0% by mass or less in order to prevent a problem that residual austenite increases more than necessary after the heat treatment for curing.

[Si/Mn比率:5以下]
本発明に係る析出物は、焼戻しによる窒化物とは異なり、浸炭窒化処理時に侵入してきた窒素がオーステナイト域で、Mnを取り込みながら、Siと反応して形成される。従って、Si添加量に対してMn添加量が少ないと、十分に窒素を拡散させても、Si・Mn系窒化物の析出が促進されない。前述したSi及びMn添加量の範囲で、且つ窒素量を0.2%以上侵入させた場合、Si/Mn比率を5以下とすることによって、寿命延長や耐摩耗性・耐焼き付き性向上に効果のある面積率1.0%以上のSi・Mn系窒化物の析出量を確保することができる。
[Si / Mn ratio: 5 or less]
Unlike the nitride obtained by tempering, the precipitate according to the present invention is formed by reacting with Si while incorporating Mn in the austenite region where nitrogen that has entered during the carbonitriding process. Therefore, if the amount of Mn added is less than the amount of Si added, precipitation of Si / Mn nitride is not promoted even if nitrogen is sufficiently diffused. When the amount of Si and Mn added is within the range of 0.2% or more and the nitrogen content is 0.2% or more, by setting the Si / Mn ratio to 5 or less, it is effective in extending the life and improving the wear resistance and seizure resistance. It is possible to ensure the amount of precipitation of Si · Mn nitride having an area ratio of 1.0% or more.

[C:0.3質量%以上1.2質量%以下]
Cは、焼入れによってマルテンサイト組織となり、基地組織を硬化させる作用がある。転動部材として必要な心部硬さを得るためにCの下限値は0.3質量%以上とすることが好ましい。浸炭窒化時間を短縮するためには、0.5質量%以上が好ましく、0.8質量%以上がより好ましく、0.95質量%以上が更に好ましい。一方、過剰に添加すると、セメンタイトの析出が過剰となり、浸炭窒化処理によって粗大化して、靭性が低下する。このため、上限値を1.2質量%とすることが好ましい。
[C: 0.3% by mass or more and 1.2% by mass or less]
C becomes a martensite structure by quenching, and has the effect of hardening the base structure. In order to obtain the core hardness necessary for the rolling member, the lower limit value of C is preferably 0.3% by mass or more. In order to shorten the carbonitriding time, 0.5% by mass or more is preferable, 0.8% by mass or more is more preferable, and 0.95% by mass or more is more preferable. On the other hand, when it is added excessively, precipitation of cementite becomes excessive, coarsening occurs by carbonitriding, and toughness is reduced. For this reason, it is preferable to make an upper limit into 1.2 mass%.

[Cr:0.5質量%以上2.0質量%以下]
Crは焼入れ性を向上させると同時に、炭化物形成元素であり、材料を強化する炭化物の析出を促進し、更に微細化させる。0.5質量%未満であると焼入れ性が低下して十分な硬さが得られなかったり、浸炭窒化時に炭化物が粗大化したりする。2.0質量%を越えると、浸炭窒化時に表面にCr酸化膜が形成されて、炭素及び窒素の拡散を阻害する。そのため、Cr含有量は0.5質量%以上2.0質量%以下とすることが好ましい。
また、必要に応じて、Mo、Ni、Vの少なくとも1種類以上を添加してもよい。
[Cr: 0.5% by mass or more and 2.0% by mass or less]
Cr is a carbide forming element as well as improving hardenability, and promotes precipitation and further refines the carbide that strengthens the material. If it is less than 0.5% by mass, the hardenability is lowered and sufficient hardness cannot be obtained, or the carbides are coarsened during carbonitriding. If it exceeds 2.0% by mass, a Cr oxide film is formed on the surface during carbonitriding to inhibit the diffusion of carbon and nitrogen. Therefore, the Cr content is preferably 0.5% by mass or more and 2.0% by mass or less.
Moreover, you may add at least 1 or more types of Mo, Ni, and V as needed.

[Mo:0.2質量%以上1.2質量%以下]
Moは、焼入れ性を向上させると同時に、炭窒化物形成元素であり、材料を強化する炭化物及び炭窒化物、窒化物の析出を促進し、更に微細化させる作用がある。その効果は、0.2質量%以上の添加で顕著になる。1.2質量%を越えると効果が飽和し、コストが高くなる。従って、Mo含有量は0.2質量%以上1.2質量%以下とすることが好ましい。
[Mo: 0.2% by mass or more and 1.2% by mass or less]
Mo is a carbonitride-forming element as well as improving hardenability, and has the effect of promoting precipitation and further refinement of carbides, carbonitrides, and nitrides that strengthen the material. The effect becomes remarkable when 0.2% by mass or more is added. If it exceeds 1.2% by mass, the effect is saturated and the cost increases. Accordingly, the Mo content is preferably 0.2% by mass or more and 1.2% by mass or less.

[Ni:0.5質量%以上3.0質量%以下]
Niは、焼入れ性を向上させると同時に、靭性を向上させる作用があり、その効果は0.5質量%以上の添加で顕著となる。オーステナイト安定化元素であり、3.0質量%以上添加すると残留オーステナイトが過剰となり、心部硬度が低下する。従って、Ni含有量は0.5質量%以上3.0質量%以下とすることが好ましい。
[Ni: 0.5% by mass or more and 3.0% by mass or less]
Ni has an effect of improving hardenability and at the same time improving toughness, and the effect becomes remarkable when 0.5% by mass or more is added. It is an austenite stabilizing element. When 3.0% by mass or more is added, the retained austenite becomes excessive and the core hardness decreases. Therefore, the Ni content is preferably 0.5% by mass or more and 3.0% by mass or less.

[V:0.5質量%以上1.5質量%以下]
Vは、浸炭窒化によって硬質な炭化物や炭窒化物を形成して、耐摩耗性を向上させる作用がある。その効果は、0.5質量%以上の添加で顕著となる。1.5質量%を越えて過剰に添加すると、素材の固溶炭素と結びついて炭化物を形成し、硬さが低下する。従って、V含有量は0.5質量%以上1.5質量%以下とすることが好ましい。
[V: 0.5% by mass or more and 1.5% by mass or less]
V has the effect of improving wear resistance by forming hard carbides and carbonitrides by carbonitriding. The effect becomes remarkable when 0.5% by mass or more is added. When it is added excessively exceeding 1.5% by mass, it is combined with the solid solution carbon of the material to form a carbide and the hardness is lowered. Accordingly, the V content is preferably 0.5% by mass or more and 1.5% by mass or less.

而して、本発明の転動部材によれば、内方部材及び外方部材及び転動体の少なくとも一つの表面層に、浸炭窒化処理又は窒化処理によるSi・Mn系窒化物を有し、当該表面層の窒素濃度が0.2質量%以上2質量%以下であり、且つSi・Mn系窒化物の面積率が1%以上10%未満であり、且つ0.05μm以上1μm以下のSi・Mn系窒化物の面積375μm中の個数を100個以上としたことにより、より長寿命で、耐摩耗性、耐焼き付き性に優れる。 Thus, according to the rolling member of the present invention, at least one surface layer of the inner member, the outer member, and the rolling element has a Si / Mn nitride by carbonitriding or nitriding, The nitrogen concentration of the surface layer is 0.2% by mass or more and 2% by mass or less, and the area ratio of the Si / Mn nitride is 1% or more and less than 10%, and the Si / Mn is 0.05 μm or more and 1 μm or less. By setting the number of the system nitrides in the area of 375 μm 2 to 100 or more, the lifetime is longer, and the wear resistance and seizure resistance are excellent.

また、C:0.3質量%以上1.2質量%以下、Si:0.3質量%以上2.2質量%以下、Mn:0.3質量%以上2.0質量%以下、Cr:0.5質量%以上2.0質量%以下で、且つSi/Mnが5以下であり残部がFe及び不可避的不純物からなる鋼を浸炭窒化焼入れ、焼き戻し処理したことにより、より一層の長寿命、耐摩耗性、耐焼き付き性を得ることができる。   C: 0.3% by mass or more and 1.2% by mass or less, Si: 0.3% by mass or more and 2.2% by mass or less, Mn: 0.3% by mass or more and 2.0% by mass or less, Cr: 0 .5% by mass or more and 2.0% by mass or less, and Si / Mn is 5 or less, and the remainder is Fe carbon and unavoidable impurities. Abrasion resistance and seizure resistance can be obtained.

本発明の転動部材を用いた深溝玉軸受の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the deep groove ball bearing using the rolling member of this invention. Si・Mn系窒化物の観察写真である。It is an observation photograph of Si.Mn nitride. 窒素濃度とSi・Mn系窒化物の面積率との関係を示す説明図である。It is explanatory drawing which shows the relationship between nitrogen concentration and the area ratio of Si * Mn type nitride. Si・Mn系窒化物の面積率とL10寿命との関係を示す説明図である。It is explanatory drawing which shows the relationship between the area ratio of Si * Mn type nitride, and L10 lifetime. 0.05〜1μmのSi・Mn系窒化物の個数と寿命比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the number of 0.05 to 1 micrometer Si * Mn type nitride, and a life ratio. Si/MN比率とSi・Mn系窒化物の面積率との関係を示す説明図である。It is explanatory drawing which shows the relationship between Si / MN ratio and the area ratio of Si * Mn type nitride.

次に、本発明の転動部材の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の転がり軸受の断面図である。この転がり軸受は、内方部材である内輪1、外方部材である外輪2、転動体3、保持器4を備えた深溝玉軸受である。
まず、窒素量とSi・Mn析出物量及び性能との関係を明らかにするため、下記表1の材料を直径65mm厚さ6mmの円板に旋削加工し、820〜900℃で2〜10時間、Rxガス、プロパンガス、及びアンモニアガスの混合ガス中で浸炭窒化処理後、油焼入れを施し、その後、160〜270℃で2時間、焼戻し処理を施した。処理温度、処理時間、アンモニアガス流量を変化させて、種々の窒素濃度の試験片を作成した。熱処理後、表面を研磨・ラッピングして鏡面仕上げした。なお、下記表1中、鋼種1はJIS SUJ3、鋼種2はJIS SUJ2に相当する。
Next, an embodiment of the rolling member of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of the rolling bearing of this embodiment. This rolling bearing is a deep groove ball bearing including an inner ring 1 that is an inner member, an outer ring 2 that is an outer member, rolling elements 3, and a cage 4.
First, in order to clarify the relationship between the amount of nitrogen, the amount of Si · Mn precipitates, and the performance, the materials shown in Table 1 below were turned into a 65 mm diameter and 6 mm thick disk, at 820 to 900 ° C. for 2 to 10 hours, After carbonitriding in a mixed gas of Rx gas, propane gas, and ammonia gas, oil quenching was performed, followed by tempering treatment at 160 to 270 ° C. for 2 hours. Test pieces having various nitrogen concentrations were prepared by changing the treatment temperature, treatment time, and ammonia gas flow rate. After the heat treatment, the surface was polished and lapped to give a mirror finish. In Table 1 below, steel type 1 corresponds to JIS SUJ3 and steel type 2 corresponds to JIS SUJ2.

Figure 2013155438
Figure 2013155438

[表面の窒化物の面積率及び窒素濃度の測定]
電界放射型走査型顕微鏡(FE−SEM)を用い、加速電圧10kVで転動体表面の観察を行った。窒化物面積率については、倍率5000倍で最低3視野以上写真を撮影し、写真を二値化してから画像解析装置を用いて面積率を計算した。対象となる窒化物が微細なものであるので、測定倍率5000倍、測定面積375μmとすると、0.05μm以上1μm以下の窒化物の数を測定することができる。窒素濃度の測定は、電子線マイクロアナライザ(EPMA)を用い、加速電圧15kVで行った。
[Measurement of surface area nitride ratio and nitrogen concentration]
Using a field emission scanning microscope (FE-SEM), the surface of the rolling element was observed at an acceleration voltage of 10 kV. As for the nitride area ratio, photographs were taken at least 3 fields of view at a magnification of 5000 times, and the area ratio was calculated using an image analyzer after binarizing the photographs. Since the target nitride is fine, if the measurement magnification is 5000 times and the measurement area is 375 μm 2 , the number of nitrides of 0.05 μm or more and 1 μm or less can be measured. The nitrogen concentration was measured using an electron beam microanalyzer (EPMA) at an acceleration voltage of 15 kV.

[寿命試験]
続いて、種々の試験片に対し、スラスト型寿命試験機により、異物混入潤滑下での試験を行った。試験条件は以下の通りである。
試験荷重:5880N(600kgf)
回転数:1000min−1
潤滑油:VG68
異物の硬さ:Hv870
異物の大きさ:74〜147μm
異物混入量:200ppm
[Life test]
Subsequently, various types of test specimens were tested under a foreign matter-mixed lubrication using a thrust type life tester. The test conditions are as follows.
Test load: 5880N (600kgf)
Rotational speed: 1000min -1
Lubricating oil: VG68
Hardness of foreign matter: Hv870
Foreign material size: 74 to 147 μm
Foreign matter contamination: 200ppm

各試験片における窒素濃度、面積率、寿命比を下記表2に示す。寿命比は、比較例1のL10寿命を1としたときの比率で示す。また、転動体表面の窒化物の観察写真を図2に示す。図2の下は、エネルギー分散型X線分散型分析装置で分析した窒化物の元素分析結果を示している。分析結果から、Si、Mn、Nのピークが出現しており、表面の窒化物は、Si・Mn系窒化物であることが分かる。   The nitrogen concentration, area ratio, and life ratio of each test piece are shown in Table 2 below. The life ratio is shown as a ratio when the L10 life of Comparative Example 1 is 1. Moreover, the observation photograph of the nitride on the rolling element surface is shown in FIG. The lower part of FIG. 2 shows the elemental analysis results of the nitride analyzed by the energy dispersive X-ray dispersive analyzer. From the analysis results, peaks of Si, Mn, and N appear, and it can be seen that the nitride on the surface is Si · Mn nitride.

Figure 2013155438
Figure 2013155438

図3には、窒素濃度とSi・Mn系窒化物の面積率との関係を示す。Si・Mn系窒化物の面積率、即ち析出量は、窒素濃度に比例して増大することが分かる。従って、Si、Mn添加量の多い鋼の方が、同一窒化量で比較した場合に、Si・Mn系窒化物の析出量が多いことになる。また、図4には、Si・Mn系窒化物の面積率とL10寿命との関係を示す。Si・Mn系窒化物の面積率が1%以上になると寿命が著しく向上することが分かる。また、Si・Mn系窒化物の面積率が10%を越えると効果が飽和していることが分かる。   FIG. 3 shows the relationship between the nitrogen concentration and the area ratio of the Si / Mn nitride. It can be seen that the area ratio of Si.Mn nitride, that is, the amount of precipitation, increases in proportion to the nitrogen concentration. Therefore, when the amount of Si and Mn added is large, the amount of Si / Mn nitride deposited is larger when compared with the same amount of nitriding. FIG. 4 shows the relationship between the area ratio of the Si / Mn nitride and the L10 life. It can be seen that the life is remarkably improved when the area ratio of the Si · Mn nitride is 1% or more. It can also be seen that the effect is saturated when the area ratio of the Si · Mn nitride exceeds 10%.

また、下記表3には、Si・Mn系窒化物の面積率、0.05μm〜1μmのSi・Mn系窒化物の個数、寿命試験結果を、図5には0.05μm〜1μmのSi・Mn系窒化物の個数と寿命比率との関係を示す。これらから明らかなように、測定面積375μmの範囲内にSi・Mn系窒化物を100個以上分散させることにより、基地組織が強化され、異物混入潤滑下での寿命が延長する。 Table 3 below shows the area ratio of the Si · Mn nitride, the number of Si · Mn nitrides of 0.05 μm to 1 μm, the life test results, and FIG. 5 shows the Si · Mn nitride of 0.05 μm to 1 μm. The relationship between the number of Mn-type nitrides and a lifetime ratio is shown. As is apparent from these, by dispersing 100 or more Si · Mn nitrides within a measurement area of 375 μm 2 , the base structure is strengthened and the life under the contamination with foreign matters is extended.

Figure 2013155438
Figure 2013155438

次に、前述と同様に、種々の鋼に対し、820〜870℃で2〜10時間、Rxガス、プロパンガス、及びアンモニアガスの混合ガス中で浸炭窒化処理後、油焼入れを施し、その後、160〜270℃で2時間、焼戻し処理を施した。その際、熱処理時間、熱処理温度、アンモニアガス流量を変化させて鋼種11〜27の鋼を作製し、その鋼で、JIS6206深溝玉軸受の転動体を作製し、合わせてSUJ2で軌道輪を作製し、以下の寿命試験を行った。   Next, as described above, various carbon steels were carbonitrided in a mixed gas of Rx gas, propane gas, and ammonia gas at 820 to 870 ° C. for 2 to 10 hours, and then subjected to oil quenching, Tempering treatment was performed at 160 to 270 ° C. for 2 hours. At that time, steel types 11 to 27 were produced by changing the heat treatment time, heat treatment temperature, and ammonia gas flow rate, and the rolling elements of JIS 6206 deep groove ball bearings were produced from the steel, and the bearing rings were also produced using SUJ2. The following life test was conducted.

[寿命試験]
試験荷重:6223N(635kgf)
回転数:3000min−1
潤滑油:VG68
異物の硬さ:Hv590
異物の大きさ:74〜147μm
異物混入量:200ppm
寿命試験の結果、化学成分(質量%)、Si/Mn比率、窒素濃度(質量%)、Si・Mn系窒化物面積率、0.05μm〜1μmのSi・Mn系窒化物の個数を表4に示す。寿命は、比較例21(SUJ2相当)のL10寿命を1としたときの比で表す。
[Life test]
Test load: 6223N (635kgf)
Rotational speed: 3000 min -1
Lubricating oil: VG68
Hardness of foreign matter: Hv590
Foreign material size: 74 to 147 μm
Foreign matter contamination: 200ppm
As a result of the life test, the chemical composition (mass%), the Si / Mn ratio, the nitrogen concentration (mass%), the Si / Mn nitride area ratio, and the number of Si · Mn nitrides of 0.05 μm to 1 μm are shown in Table 4. Shown in The life is expressed as a ratio when the L10 life of Comparative Example 21 (equivalent to SUJ2) is 1.

Figure 2013155438
Figure 2013155438

表4から明らかなように、本発明範囲の鋼を用い、窒素濃度0.2質量%以上2.0質量%以下、Si・Mn系窒化物面積率1%以上10%以下、0.05〜1μmのSi・Mn系窒化物の個数が100個以上の実施例は、比較例に比べて寿命延長効果が大きい。
また、この表4中のSi/Mn比率とSi・Mn系窒化物面積率との関係を図6に示す。例えば比較例13,14は、本発明範囲の鋼を用い、更に窒素濃度を0.2質量%以上としているが、Si含有量に対してMn含有量が少ないものであり、Si・Mn系窒化物の析出量が面積率で1%以下になっている。図6から明らかなように、Si/Mnの比率を5以下にすることによって、Si・Mn系窒化物の析出を促進することができる。
As is apparent from Table 4, the steel in the range of the present invention was used, and the nitrogen concentration was 0.2% by mass or more and 2.0% by mass or less, the Si / Mn nitride area ratio was 1% or more and 10% or less, 0.05 to The example in which the number of 1 μm Si · Mn-based nitrides is 100 or more has a greater life extension effect than the comparative example.
The relationship between the Si / Mn ratio in Table 4 and the Si / Mn nitride area ratio is shown in FIG. For example, Comparative Examples 13 and 14 use steel within the scope of the present invention and further have a nitrogen concentration of 0.2% by mass or more. However, the Mn content is smaller than the Si content, and Si · Mn-based nitriding is performed. The amount of precipitation of the product is 1% or less in terms of area ratio. As is apparent from FIG. 6, the Si / Mn nitride precipitation can be promoted by setting the Si / Mn ratio to 5 or less.

なお、上記実施形態では、転動体に本発明の転動部材を適用した事例のみを示したが、内外輪の何れか、又は内外輪、転動体全てに適用しても同様の効果が得られる。
また、説明した深溝玉軸受を始め、アンギュラ玉軸受、円筒ころ軸受、円錐ころ軸受、自動調心ころ軸受、針状ころ軸受のほか、軸受の種類を問わず、好適に使用することができる。
また、ボールねじやリニアガイドの転動体にも好適に用いることができる。
In addition, in the said embodiment, although the example which applied the rolling member of this invention to the rolling element was shown, the same effect is acquired even if it applies to any of an inner and outer ring | wheel, or an inner and outer ring, and all rolling elements. .
In addition to the deep groove ball bearings described above, angular ball bearings, cylindrical roller bearings, tapered roller bearings, self-aligning roller bearings, needle roller bearings, and other types of bearings can be used suitably.
Moreover, it can be used suitably also for the rolling element of a ball screw or a linear guide.

1は内輪(内方部材)
2は外輪(外方部材)
3は転動体
4は保持器
1 is the inner ring (inner member)
2 is the outer ring (outer member)
3 is a rolling element 4 is a cage

Claims (1)

内方部材及び外方部材及び転動体の少なくとも一つの表面層に、浸炭窒化処理又は窒化処理によるSi・Mn系窒化物を有し、当該表面層の窒素濃度が0.2質量%以上2質量%以下であり、且つ前記窒化物面積率が1%以上10%未満であり、且つ0.05μm以上1μm以下のSi・Mn系窒化物の面積375μm中の個数が100個以上であり、C:0.3質量%以上1.2質量%以下、Si:0.3質量%以上2.2質量%以下、Mn:0.3質量%以上2.0質量%以下、Cr:0.5質量%以上2.0質量%以下で、且つSi/Mnが5以下であり残部がFe及び不可避的不純物からなる鋼を浸炭窒化焼入れ、焼き戻し処理したことを特徴とする転動部材。 At least one surface layer of the inner member, the outer member, and the rolling element has a carbonitriding or nitriding Si / Mn nitride, and the nitrogen concentration of the surface layer is 0.2% by mass or more and 2% by mass. %, The nitride area ratio is 1% or more and less than 10%, and the number of Si · Mn nitrides having an area of 375 μm 2 of 0.05 μm or more and 1 μm or less is 100 or more, and C : 0.3 mass% to 1.2 mass%, Si: 0.3 mass% to 2.2 mass%, Mn: 0.3 mass% to 2.0 mass%, Cr: 0.5 mass A rolling member characterized by carbonitriding and quenching and tempering a steel composed of at least% and not more than 2.0% by mass and having Si / Mn of 5 or less with the balance being Fe and inevitable impurities.
JP2013029322A 2006-05-19 2013-02-18 Rolling member Withdrawn JP2013155438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029322A JP2013155438A (en) 2006-05-19 2013-02-18 Rolling member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006140111 2006-05-19
JP2006140111 2006-05-19
JP2013029322A JP2013155438A (en) 2006-05-19 2013-02-18 Rolling member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006148497A Division JP5372316B2 (en) 2006-05-19 2006-05-29 Rolling member

Publications (1)

Publication Number Publication Date
JP2013155438A true JP2013155438A (en) 2013-08-15

Family

ID=49050918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029322A Withdrawn JP2013155438A (en) 2006-05-19 2013-02-18 Rolling member

Country Status (1)

Country Link
JP (1) JP2013155438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044197A (en) * 2016-09-13 2018-03-22 株式会社ジェイテクト Steel member and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044197A (en) * 2016-09-13 2018-03-22 株式会社ジェイテクト Steel member and method for producing the same

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
WO2007135929A1 (en) Rolling bearing
JP3435799B2 (en) Rolling bearing
JP5372316B2 (en) Rolling member
JP3873741B2 (en) Rolling bearing
JP2009192071A (en) Roller bearing
JP4998054B2 (en) Rolling bearing
JP6725235B2 (en) Rolling sliding member, manufacturing method thereof, and rolling bearing
JP5168898B2 (en) Rolling shaft
JP5070735B2 (en) Rolling bearing
JP2008151236A (en) Rolling bearing
JP4857746B2 (en) Rolling support device
JP2009222076A (en) Four-row tapered roller bearing
JP2008232212A (en) Rolling device
JP2013155438A (en) Rolling member
JP5668283B2 (en) Manufacturing method of rolling sliding member
JP5194538B2 (en) Rolling bearing
JP2009191942A (en) Rolling bearing
JP2012201933A (en) Planetary gear device
JP2022170860A (en) rolling bearing
JP2005337361A (en) Roller bearing
JP5211453B2 (en) Rolling bearing
JP3084421B2 (en) Rolling bearing made of carburized steel
JP7212100B2 (en) rolling bearing
JP5233171B2 (en) Rolling bearing

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131002